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ABSTRACT

Use of the complex-envelope (CE) representation of band-pass limited sources and

their resulting fields increases the allowable time-step in finite-difference time-domain (FDTD)

simulations. The complex envelope representation transforms band-pass limited fields and

sources to complex-valued low-pass limited form and Maxwells equations from real-valued

partial differential equations (PDEs) to complex-valued PDEs. Previous CE FDTD schemes

have used complex valued difference equations in terms of complex valued field quantities

to approximate these complex PDEs. This choice requires the use of complex numbers and

complex operations in the computer program implementing the solution. An alternative CE

FDTD scheme using only real numbers and operations can be derived from the real valued

PDEs obtained by substituting the rectangular form of the complex field and source quan-

tities into the complex PDEs and then separating each resulting complex PDE into its two

equivalent real valued PDEs. The formulation of the CE FDTD using real values is demon-

strated for a two-dimensional geometry where the electric field has only a z component. This

implicit formulation requires only the solution of tridiagonal matrices. Results are presented

for a 2D cavity problem with an electric current source. A reference solution for this problem

is obtained by first solving the problem in the frequency domain and then transform it to

the time-domain using the inverse fast Fourier transform (IFFT). Comparison of the two

solutions demonstrates the accuracy of the new formulation.
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CHAPTER 1

INTRODUCTION

In the past decade the finite-difference time-domain (FDTD) method has been widely used

in solving electromagnetic problems. As a tool to solve Maxwell’s equations, it is based

on approximations that simplifies differential equations into difference equations. There are

many different schemes that can be applied in the simplification process. It is well known

that implicit methods are better than explicit methods in terms of accuracy and freedom

from dispersion. However, implicit methods can involve solving dense matrices at each time

step which is time-consuming. Usually further approximations to the difference equations

will be made so that the dense matrices will be transformed in to some other form, for

example tridiagonal matrices, and consequently a solution can be obtained by simplified

calculations. However, because of the additional approximations, additional errors will be

introduced and as a result the new schemes may not be stable.

According to the sampling theorem, in the time domain, the sampling frequency fs

has to be larger than 2fmax, where fmax is the maximum frequency of a band-pass limited

signal. The maximum frequency is a function of the center frequency fo and bandwidth B. In

the time domain, while sampling, the time step (the sampling period) is a function the fmax,

so that, as fmax becomes larger, the time step becomes very small. Consequently due to the
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sampling theorem requirement, the usual FDTD methods suffer from the disadvantage that

the time step is a function of the maximum frequency of the source. Particularly, for high

center frequency signals, the time step can be very small which means many time steps will

be needed to compute the fields for some fixed length of time. Because errors in each step

of calculation accumulate, needing a very large number of time steps to obtain the solution

is problematic.

Nevertheless benefitting from introducing complex-envelope (CE) formulations, this

problem can be solved by shifting the center frequency of band-pass limited signals to zero

resulting in a much smaller fmax, especially for signals of narrow bandwidth because now

fmax is equal to half the bandwidth. By doing so, the time steps could be several orders of

magnitude larger than before so that many fewer time steps will be needed. In other words,

solution can be obtained much faster than before, even with the extra calculation needed

because all fields are complex-valued.

Recently, CE-FDTD formulations are applied to different areas and many alterna-

tive forms have been presented. In [1], the advantageous properties of CE-FDTD technique

were discussed through its application in transmission line (TL) problems. After using such

technique together with the original expression of electric fields from the well-known tele-

grapher’s equations in the TL problem presented, the number of temporal cells has been

reduced significantly. By CE formulation, the center frequency was shifted to be zero which

means the temporal discretization step only depends on the bandwidth rather than the cen-

ter frequency, as the sampling theorem implies. In other words, by reducing the maximum

frequency of the signal through CE formulations, the time step in FDTD formulation be-

comes several orders larger than the conventional one. From the result of a 1D example,

several advantages of CE-FDTD were demonstrated, such as less memory and processing

time and usefulness in the investigation of the immunity effectiveness of a great variety of

devices containing TL’s against modern spread spectrum communication applications. In

[2], unconditionally stable CE split-step perfectly matched layer (PML) algorithm is pre-
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sented for modeling open region FDTD problems. Based on the CE-FDTD formulations

[3], the time step was split into six pieces equally, together with the modification on spatial

derivatives in absorbing boundary conditions (ABCs), open region problems were modeled.

From the results of a 2D example, a great improvement has been made by the proposed al-

gorithm reducing the maximum reflection error for different Courant-Friedrichs-Lewy (CFL)

numbers and for different cell sizes per wavelength. In [4], for modelling PML-ABCs, the

alternating direction implicit (ADI) scheme was incorporated into the CE-FDTD implemen-

tations of the scalar wave-equation derived in the PML region at the domain boundaries.

Through the given 2D example, the proposed technique possesses higher accuracy compared

with the classical ADI scalar wave equation PML formulations in modelling band limited

electromagnetic applications. In [5], the stability condition for the CE-FDTD with an ex-

plicit formulation is examined and explicit formulation of the CE-FDTD are shown, to give

up their most valuable property, increased time step, because of stability requirement.

In this thesis, the CE-FDTD formulation is applied to Maxwell’s curl equations.

Instead of computing complex-valued fields, Maxwell’s equations in CE form are split into

an equivalent set of real-valued PDEs by grouping the real and imaginary terms separately.

Except for an extra term, these equations possess the same form as the equations derived

from Maxwell’ equations with real-valued variables. As will be explained in Section 3 of

Chapter 2, the extra terms can be treated as part of the known current source. As a result,

any implicit scheme, which can be applied to the real-valued equations, can also be applied

to the real and imaginary parts of CE forms. In Chapter 2, a 2D example is given and solved

by applying an approximate Crank-Nicolson scheme. A reference solution is given in Chapter

3. In the reference solution, the CE fields are calculated in the frequency domain and then

transformed to the time domain. Finally in Chapter 4, results from Matlab programs based

on those two methods are presented. The results show that the CE FDTD formulation using

real-valued field-variables is accurate and stable.
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CHAPTER 2

COMPLEX-ENVELOPE FDTD

In this chapter the complex-envelope (CE) finite-difference time-domain (FDTD) using real-

valued field-variables method is presented.

In Section 2.1, the CE formulation is introduced using a sinusoidal function exam-

ple. After that we will discuss pre-envelope and Hilbert Transform, from which the relation

between of the Fourier-transform results of one function and its complex envelope will be

illustrated.

In Section 2.2, the finite-difference (FD) approximation will be discussed. Central-

difference approximations for the first and second derivatives will be given. Using these

approximations partial differential equations (PDEs) can be transformed into difference equa-

tions.

In Section 2.3, the general 3D formulation of the proposed numerical method will

be given. Compared with the original real wave equations, it will be demonstrated that the

proposed method possesses the potential to be implemented with any kind of implicit FDTD

scheme; however the solutions based upon different schemes may not all be stable.

In Section 2.4, an example of a 2D TMz cavity problem with perfect electric conductor

(PEC) boundary conditions will be given to demonstrate the proposed method in practice.
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Maxwell’s equations of complex fields will be expanded in Cartesian coordinate system and

then separated into groups according to the directions of terms. After this, complex fields

will be divided into the combination of real parts and imaginary parts, all real and imaginary

parts will be organized separately to form two groups of equations.

In Section 2.5 and Section 2.6, both the real group and imaginary group will be

discussed in detail, though they are quite similar. Based upon the FD approximation, those

PDEs will be transformed into difference equations sampled spatially and temporally by

∆x, ∆y and ∆t. After making some substitution and reorganization, the in-phase part and

quadrature part of the electric fields will be obtained respectively by solving only tridiagonal

matrices.
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2.1 Complex-Envelope Representation

A real band-pass limited signal with bandwidth B can be represented as

x(t) = A(t) cos[2πfot+ φ(t)] (2.1)

where fo is the center frequency, A(t) is the amplitude and φ(t) is the phase. Using Euler’s

equation, (2.1) can be written as

x(t) = <
{
A(t) exp [jφ(t)] exp [j2πfot]

}
. (2.2)

The complex-envelope representation of x(t) is

x̃(t) = A(t) exp [jφ(t)] = xp(t) + jxq(t), (2.3)

where xp(t) and xq(t) are the in-phase and quadrature portions of x(t). Both xp(t) and xq(t)

are low-pass limited with bandwidth B/2 With (2.4), we can rewrite (2.2) as

x(t) = <
{
x̃(t) exp [j2πfot]

}
, (2.4)

or

x(t) = <
{

[xp(t) + jxq(t)][cos(2πfot) + j sin(2πfot)]
}
. (2.5)

Then the bandpass-limited signal x(t) can be expressed as [6] [3]

x(t) = xp(t) cos(2πfot)− xq(t) sin(2πfot). (2.6)

The bandwidth and center frequency of x(t) can be expressed as

B = fmax − fmin (2.7)
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and

fo =
fmax + fmin

2
(2.8)

where fmax and fmin are the maximum and minimum frequencies in x(t).

To understand the relationship between the Fourier transform of x(t) and the Fourier

transform of x̃(t), it is useful to introduce the pre-envelope, x+(t), and Hilbert transform,

x̂(t), of x(t). These three time function are related by th expression

x+(t) = x(t) + jx̂(t). (2.9)

Consider the Hilbert Transform pairs

H{a(t) cos(2πfot)} = a(t) sin(2πfot) (2.10)

and

H{a(t) sin(2πfot)} = −a(t) cos(2πfot), (2.11)

where H{} is the Hilbert Transform operation. After substituting (2.6) into (2.9) we have

x+(t) =
{
xp(t) cos(2πfot)− xq(t) sin(2πfot)

}
+ jH

{
xp(t) cos(2πfot)− xq(t) sin(2πfot)

}
=
{
xp(t) cos(2πfot)− xq(t) sin(2πfot)

}
+ j
{
xp(t) sin(2πfot) + xq(t) cos(2πfot)

}
=
{
xp(t) + jxq(t)

}{
cos(2πfot) + j sin(2πfot)

}
= x̃(t)ej2πfot. (2.12)

Here, the standard engineering definition of Fourier Transform is used so that

X(f) =

∞∫
−∞

x(t)e−j2πftdt (2.13)
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and

x(t) =

∞∫
−∞

X(f)ej2πftdt. (2.14)

We obtain the Fourier Transform of the complex envelope signal as

X̃(f) = F{x̃(t)}

= F{x+(t)e−j2πfot}

= F{x(t)e−j2πfot + jx̂(t)e−j2πfot}

= X(f + fo) + jF{[x(t)⊗ 1

πt
]e−j2πfot}

= X(f + fo) + j{X(f + fo)[−j sgn(f + fo)]}

= X(f + fo) + {X(f + fo) sgn(f + fo)}, (2.15)

where

sgn(f) =


1, if f > 0;

0, if f = 0;

−1, if f < 0.

(2.16)

Using (2.15) and (2.16), the relationship between X(f) and X̃(f) can be written as

X̃(f) =


2X(f + fo) if f + fo > 0

0 if f + fo ≤ 0.

(2.17)

Thus in frequency domain, X̃(f) is the positive part of X(f) with double magnitude after

shifting down to the baseband with a center frequency of zero. This process is illustrated in

Figure 2.1 and Figure 2.2.
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2.2 Finite-Difference approximations

An arbitrary continuous function can be sampled at discrete points and the accuracy

is determined by the sampling rate. After sampling, the discrete function we obtained is

used to represent the original continuous one with acceptable error. This technique can be

used to approximate the partial differential equations in electromagnetic problems of interest

[7].

Consider the an arbitrary continuous function f(x). From the Taylor series we have

f(x+ ∆x) = f(x) + ∆xf ′(x) +
(∆x)2

2!
f ′′(x) +

(∆x)3

3!
f ′′′(x) +

(∆x)4

4!
f ′′′′(x) + ... (2.18)

and

f(x−∆x) = f(x)−∆xf ′(x) +
(∆x)2

2!
f ′′(x)− (∆x)3

3!
f ′′′(x) +

(∆x)4

4!
f ′′′′(x) + ... (2.19)

where f ′(x) is the first derivative of f(x) respect to x and f ′′(x) is the second derivative of

f(x) respect to x and so forth. Subtracting the two equations above yields

f(x+ ∆x)− f(x−∆x) = 2∆xf ′(x) + 2
(∆x)3

3!
f ′′′(x) + ... (2.20)

so that

f(x+ ∆x)− f(x−∆x)

2∆x
= f ′(x) +

(∆x)2

3!
f ′′′(x) + ... . (2.21)

Thus

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
− (∆x)2

3!
f ′′′(x) + ...

=
f(x+ ∆x)− f(x−∆x)

2∆x
+O((∆x)2), (2.22)

where O((∆x)2) is the order of the error meaning that the error is proportional to ∆x2.
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Neglecting the error term yields the second-order accurate central-difference approximation

to the first derivative

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

≈ f(x+ ∆x)− f(x−∆x)

2∆x
. (2.23)

Adding (2.18) and (2.19) gives

f(x+ ∆x) + f(x−∆x) = 2f(x) + 2
(∆x)2

2!
f ′′(x) + 2

(∆x)4

4!
f ′′′′(x) + ..., (2.24)

so that

f ′′(x) =
f(x+ ∆x) + f(x−∆x)− 2f(x)− 2 (∆x)4

4!
f ′′′′(x) + ...

(∆x)2

=
f(x+ ∆x) + f(x−∆x)− 2f(x)

(∆x)2
− 2

(∆x)2

4!
f ′′′′(x) + ...

=
f(x+ ∆x) + f(x−∆x)− 2f(x)

(∆x)2
+O((∆x)2). (2.25)

Neglecting the error term yields the second-order accurate approximation to the second-order

derivative:

f ′′(x) =
f(x+ ∆x) + f(x−∆x)− 2f(x)

(∆x)2
. (2.26)

In the following sections the second-order accurate approximation for the first and

second derivatives will be used to approximate both temporal and spatial derivatives.
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2.3 Three-Dimensional Complex-Envelope FDTD

Formulation

The proposed complex-envelope formulation possesses the potential to be used with

any type of implicit FDTD scheme based on the Crank-Nicolson approximation [8], although

the results from different schemes may not be all stable. In order to explain why, both the

complex-envelope and wide band real wave equations will be presented and compared.

2.3.1 Wave Equations with Complex-Valued Field-Variables

In free space Maxwell’s curl equations for real-valued field-variables are

∇×H = εo
∂E

∂t
+ J (2.27)

and

∇× E = −µo
∂H

∂t
−M (2.28)

where εo and µo are the permittivity and permeability of free space. Substituting CE field-

variables into the expressions above yields

∇×<
{

H̃ · ej2πfot
}

= εo
∂<
{

Ẽej2πfot
}

∂t
+ <

{
J̃ej2πfot

}
(2.29)

and

∇×<
{

Ẽej2πfot
}

= −µo
∂<
{

H̃ej2πfot
}

∂t
−<

{
M̃ej2πfot

}
. (2.30)

where Ẽ is complex envelope of the electric field intensity, H̃ is complex envelope of the

magnetic field intensity, J̃ is complex envelope of the electric current density, and M̃ is

complex envelope of the magnetic current density. Removing the real operator and dividing
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through by exp(j2πfot) yields the complex envelope version of Maxwell’s curl equations

∇× H̃ = εo
∂Ẽ

∂t
+ j2πfoẼ + J̃ (2.31)

and

∇× Ẽ = −µo
∂H̃

∂t
− j2πfoH̃− M̃. (2.32)

After expanding the curl operators, (2.31) and (2.32) can be written as

1

εo

[
âx
(∂H̃z

∂y
− ∂H̃y

∂z

)
+ ây

(∂H̃x

∂z
− ∂H̃z

∂x

)
+ âz

(∂H̃y

∂x
− ∂H̃x

∂y

)]
= âx

[∂Ẽx
∂t

+ j2πfoẼx
]

+ ây
[∂Ẽy
∂t

+ j2πfoẼy
]

+ âz
[∂Ẽz
∂t

+ j2πfoẼz
]

+ âx
1

εo
J̃x + ây

1

εo
J̃y + âz

1

εo
J̃z (2.33)

and

1

µo

[
âx
(∂Ẽz
∂y
− ∂Ẽy

∂z

)
+ ây

(∂Ẽx
∂z
− ∂Ẽz

∂x

)
+ âz

(∂Ẽy
∂x
− ∂Ẽx

∂y

)]
= −âx

[∂H̃x

∂t
+ j2πfoH̃x

]
− ây

[∂H̃y

∂t
+ j2πfoH̃y

]
− âz

[∂H̃z

∂t
+ j2πfoH̃z

]
− âx

1

µo
M̃x − ây

1

µo
M̃y − âz

1

µo
M̃z. (2.34)

Equating the x, y and z component of (2.33) yields

1

εo

(∂H̃z

∂y
− ∂H̃y

∂z

)
=
[∂Ẽx
∂t

+ j2πfoẼx
]

+
1

εo
J̃x, (2.35)

1

εo

(∂H̃x

∂z
− ∂H̃z

∂x

)
=
[∂Ẽy
∂t

+ j2πfoẼy
]

+
1

εo
J̃y (2.36)

and

1

εo

(∂H̃y

∂x
− ∂H̃x

∂y

)
=
[∂Ẽz
∂t

+ j2πfoẼz
]

+
1

εo
J̃z. (2.37)
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Equating the x, y and z component of (2.34) yields

1

µo

(∂Ẽz
∂y
− ∂Ẽy

∂z

)
= −

[∂H̃x

∂t
+ j2πfoH̃x

]
− 1

µo
M̃x, (2.38)

1

µo

(∂Ẽx
∂z
− ∂Ẽz

∂x

)
= −

[∂H̃y

∂t
+ j2πfoH̃y

]
− 1

µo
M̃y (2.39)

and

1

µo

(∂Ẽy
∂x
− ∂Ẽx

∂y

)
= −

[∂H̃z

∂t
+ j2πfoH̃z

]
− 1

µo
M̃z. (2.40)

After expanding the complex-envelope terms into in-phase and quadrature parts the equa-

tions above can be written as

1

εo

[∂(Hp
z + jHq

z )

∂y
−
∂(Hp

y + jHq
y)

∂z

]
=
[∂(Ep

x + jEq
x)

∂t
+ j2πfo

(
Ep
x + jEq

x

)]
+

1

εo
(Jpx + jJqx), (2.41)

1

εo

[∂(Hp
x + jHq

x)

∂z
− ∂(Hp

z + jHq
z )

∂x

]
e =

[∂(Ep
y + jEq

y)

∂t
+ j2πfo

(
Ep
y + jEq

y

)]
+

1

εo
(Jpy + jJqy ), (2.42)

1

εo

[∂(Hp
y + jHq

y)

∂x
− ∂(Hp

x + jHq
x)

∂y

]
=
[∂(Ep

z + jEq
z)

∂t
+ j2πfo

(
Ep
z + jEq

z

)]
+

1

εo
(Jpz + jJqz ), (2.43)

1

µo

[∂(Ep
z + jEq

z)

∂y
−
∂(Ep

y + jEq
y)

∂z

]
= −

[∂(Hp
x + jHq

x)

∂t
+ j2πfo

(
Hp
x + jHq

x

)]
− 1

µo
(Mp

x + jM q
x), (2.44)

1

µo

[∂(Ep
x + jEq

x)

∂z
− ∂(Ep

z + jEq
z)

∂x

]
= −

[∂(Hp
y + jHq

y)

∂t
+ j2πfo

(
Hp
y + jHq

y

)]
− 1

µo
(Mp

y + jM q
y ) (2.45)
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and

1

µo

[∂(Ep
y + jEq

y)

∂x
− ∂(Ep

x + jEq
x)

∂y

]
= −

[∂(Hp
z + jHq

z )

∂t
+ j2πfo

(
Hp
z + jHq

z

)]
− 1

µo
(Mp

z + jM q
z ). (2.46)

Equations (2.41) to (2.46) are similar respect to the structure, so here we take just (2.41)

for example. Carrying through the derivative operator in (2.41) yields

1

εo

[(∂Hp
z

∂y
+ j

∂Hq
z

∂y

)
−
(∂Hp

y

∂z
+ j

∂Hq
y

∂z

)]
=
∂Ep

x

∂t
+ j

∂Eq
x

∂t
+ j2πfo

(
Ep
x + jEq

x

)
+

1

εo
(Jpx + jJqx)ej2πfot

=

{
∂Ep

x

∂t
− 2πfoE

q
x +

1

εo
Jpx

}
+ j

{
∂Eq

x

∂t
+ 2πfoE

q
x +

1

εo
Jqx

}
. (2.47)

Equating the real and imaginary parts of (2.47) gives

1

εo

[∂Hp
z

∂y
−
∂Hp

y

∂z

]
=
∂Ep

x

∂t
+

1

εo
Jpx − 2πfoE

q
x (2.48)

and

1

εo

[∂Hq
z

∂y
−
∂Hp

y

∂z

]
=
∂Eq

x

∂t
+

1

εo
Jqx + 2πfoE

p
x. (2.49)

The CE equations above are entirely real and in terms of real-valued field-variables. The ten

equations corresponding to equations (2.42) through (2.46) are similar to the two equations

above.

2.3.2 Real Wave Equations

Starting from Maxwell’s curl equations with real-valued fields,

∇×H =
∂D

∂t
+ J (2.50)
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and

∇× E = −∂B

∂t
−M, (2.51)

After expanding the curl operators and equating the x, y and z components we have

1

εo

(∂Hz

∂y
− ∂Hy

∂z

)
=
∂Ex
∂t

+ âx
1

εo
Jx, (2.52)

1

εo

(∂Hx

∂z
− ∂Hz

∂x

)
=
∂Ey
∂t

+ ây
1

εo
Jy, (2.53)

1

εo

(∂Hy

∂x
− ∂Hx

∂y

)
=
∂Ez
∂t

+
1

εo
Jz, (2.54)

1

µo

(∂Ez
∂y
− ∂Ey

∂z

)
= −∂Hx

∂t
− âx

1

µo
Mx, (2.55)

1

µo

(∂Ex
∂z
− ∂Ez

∂x

)
= −∂Hy

∂t
− ây

1

µo
My (2.56)

and

1

µo

(∂Ey
∂x
− ∂Ex

∂y

)
= −∂Hz

∂t
− 1

µo
Mz. (2.57)

2.3.3 Comparison of The Real Wave Equations and CE Wave

Equations with Real Field-Variables

In order to make a comparison, (2.52), (2.48) and (2.49) are repeated here

1

εo

(∂Hz

∂y
− ∂Hy

∂z

)
=
∂Ex
∂t

+
1

εo
Jx, (2.52)

1

εo

[∂Hp
z

∂y
−
∂Hp

y

∂z

]
=
∂Ep

x

∂t
+

1

εo
Jpx − 2πfoE

q
x (2.48)

and

1

εo

[∂Hq
z

∂y
−
∂Hp

y

∂z

]
=
∂Eq

x

∂t
+

1

εo
Jqx + 2πfoE

p
x. (2.49)
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When computing the real-valued field-variables using the complex-envelope equations, (2.48)

and (2.49) are employed alternatively at times offset by half a time step. For example, while

processing (2.48), all the terms are unknowns except the last two on the right. There are

Jpx , the source which is known for all time, and Eq
x, which is known by use of (2.49) at the

previous half time step. The same situation exists for (2.49) in which Jqx is known and Ep
x

is known by use of (2.48) at the previous half time step. In this way, the time varying fields

can be calculated by employing (2.48) and (2.49) alternately at half time steps.

Now compare (2.48) with (2.52). All the terms are exactly the same except the

notation p and the term Eq
x. Since Eq

x is known when we use (2.48), it can be treated

as part of the source and after doing that all the unknowns are positioned the same as

they are in (2.52) which means any implicit FDTD scheme that can be used for the real

wave equations is potentially appropriate for the complex-envelope equations, although the

stability of the new method is not certain. However after considering the high similarity of

(2.41) to (2.46) one can make the conclusion that the complex-envelope equations possess

the potential application with any type of implicit FDTD scheme.
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2.4 Two-Dimensional Cavity Problem with TMz

Polarized Source

To illustrate the CE-FDTD method with real-valued field-variables, a two-dimensional

cavity problem, infinite in the z-direction, was chosen as an example. In the example the

source current results in fields that are transverse-magnetic to z (TMz) so that Ẽx = Ẽy =

H̃z = 0, J̃ = âzJ̃z and M̃ = âxM̃x + âyM̃y.

Because the fields are independent of z, all fields in (2.35), (2.36) and (2.40) are zero;

however (2.37), (2.38) and (2.39) can be written as

1

εo

(∂H̃y

∂x
− ∂H̃x

∂y

)
=
∂Ẽz
∂t

+ j2πfoẼz +
1

εo
J̃z, (2.58)

1

µo

(∂Ẽz
∂y
− ∂Ẽy

∂z

)
= −

[∂H̃x

∂t
+ j2πfoH̃x

]
− 1

µo
M̃x (2.59)

and

1

µo

(∂Ẽx
∂z
− ∂Ẽz

∂x

)
= −

[∂H̃y

∂t
+ j2πfoH̃y

]
− 1

µo
M̃y. (2.60)

Here using real part terms and imaginary terms respectively to build new equations, each of

the three equations above can be split into two groups as Real Terms Equations

1

εo

[∂Hp
y

∂x
− ∂Hp

x

∂y

]
=
[∂Ep

z

∂t
− 2πfoE

q
z +

1

εo
Jpz
]
, (2.61)

1

µo

∂Ep
z

∂y
= −

[∂Hp
x

∂t
− 2πfoH

q
x +

1

µo
Mp

x

]
(2.62)

and

− 1

µo

∂Ep
z

∂x
= −

[∂Hp
y

∂t
− 2πfoH

q
y +

1

µo
Mp

y

]
, (2.63)
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and Imaginary Terms Equations

j
1

εo

[∂Hq
y

∂x
− ∂Hq

x

∂y

]
= j
[Eq

z

∂t
+ 2πfoE

p
z +

1

εo
Jqz
]
, (2.64)

j
1

µo

∂Eq
z

∂y
= −j

[Hq
x

∂t
+ 2πfoH

p
x +

1

µo
M q

x

]
(2.65)

and

−j 1

µo

∂Eq
z

∂x
= −j

[Hq
y

∂t
+ 2πfoH

p
y +

1

µo
M q

y

]
. (2.66)

Finally after rearranging the equations, we obtain real part equations as

∂Hp
x

∂t
= − 1

µo
Mp

x −
1

µo

∂Ep
z

∂y
+ 2πfoH

q
x, (2.67a)

∂Hp
y

∂t
= − 1

µo
Mp

y +
1

µo

∂Ep
z

∂x
+ 2πfoH

q
y , (2.67b)

∂Ep
z

∂t
=

1

εo

[∂Hp
y

∂x
− ∂Hp

x

∂y
− Jpz

]
+ 2πfoE

q
z , (2.67c)

and imaginary part equations as

∂Hq
x

∂t
= − 1

µo
M q

x −
1

µo

∂Eq
z

∂y
− 2πfoH

p
x, (2.68a)

∂Hq
y

∂t
= − 1

µo
M q

y +
1

µo

∂Eq
z

∂x
− 2πfoH

p
y , (2.68b)

∂Eq
z

∂t
=

1

εo

[∂Hq
y

∂x
− Hq

x

∂y
− Jqz

]
− 2πfoE

p
z . (2.68c)
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2.5 Real Part of Curl Equations

Now consider the equations group (2.67). Using the central-difference approximation

centered at time point n+ 1
2
, (2.67) can be approximated as

Ep
z |n+1 − Ep

z |n

∆t
=

1

εo

[
Dx(

Hp
y |n+1 +Hp

y |n

2
)−Dy(

Hp
x|n+1 +Hp

x|n

2
)− (

Jpz |n+1 + Jpz |n

2
)
]

+ 2πfoE
q
z |n+ 1

2 , (2.69)

Hp
x|n+1 −Hp

x|n

∆t
= − 1

µo
Dy(

Ep
z |n+1 + Ep

z |n

2
)− 1

2µo

[
Mp

x |n+1 +Mp
x |n
]

+ 2πfoH
q
x|n+ 1

2 (2.70)

and

Hp
y |n+1 −Hp

y |n

∆t
=

1

µo
Dx(

Ep
z |n+1 + Ep

z |n

2
)− 1

2µo

[
Mp

y |n+1 +Mp
y |n
]

+ 2πfoH
q
y |n+ 1

2 . (2.71)

Here the operators Dx and Dy are the central difference approximations of the derivatives

on x and y. In order to explain how the fields in the equations above are sampled, the Yee

grid is illustrated in Figure 2.3.
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Figure 2.3. The Yee Cell — after [9].
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The integer i and j are the spatial indices of the fields on the x − y mesh grid.

Expanding the Dx and Dy operators centered at the position of Ez in cell i, j gives

Ep
z |n+1
i,j − Ep

z |ni,j
∆t

=
1

εo

(Hp
y |n+1
i+1,j −Hp

y |n+1
i,j ) + (Hp

y |ni+1,j −Hp
y |ni,j)

2∆x

− 1

εo

(Hp
x|n+1
i,j+1 −Hp

x|n+1
i,j ) + (Hp

x|ni,j+1 −Hp
x|ni,j)

2∆y

− 1

εo
(
Jpz |n+1

i,j + Jpz |ni,j
2

)

+ 2πfoE
q
z |
n+ 1

2
i,j , (2.72)

Hp
x|n+1
i,j −Hp

x|ni,j
∆t

= − 1

µo

(Ep
z |n+1
i,j − Ep

z |n+1
i,j−1) + (Ep

z |ni,j − Ep
z |ni,j−1)

2∆y

− 1

2µo

[
Mp

x |n+1
i,j +Mp

x |ni,j
]

+ 2πfoH
q
x|
n+ 1

2
i,j , (2.73)

and

Hp
y |n+1
i,j −Hp

y |ni,j
∆t

=
1

µo

(Ep
z |n+1
i,j − Ep

z |n+1
i−1,j) + (Ep

z |ni,j − Ep
z |ni−1,j)

2∆x

− 1

2µo

[
Mp

y |n+1
i,j +Mp

y |ni,j
]

+ 2πfoH
q
y |
n+ 1

2
i,j . (2.74)

After rearrangement, we have

Ep
z |n+1
i,j − Ep

z |ni,j =
∆t

2∆xεo

[
(Hp

y |n+1
i+1,j −Hp

y |n+1
i,j ) + (Hp

y |ni+1,j −Hp
y |ni,j)

]
− ∆t

2∆yεo

[
(Hp

x|n+1
i,j+1 −Hp

x|n+1
i,j ) + (Hp

x|ni,j+1 −Hp
x|ni,j)

]
− ∆t

2εo

[
Jpz |n+1

i,j + Jpz |ni,j
]

+ ∆t2πfoE
q
z |
n+ 1

2
i,j , (2.75)

Hp
x|n+1
i,j −Hp

x|ni.j = − ∆t

2∆yµo

[
(Ep

z |n+1
i,j − Ep

z |n+1
i,j−1) + (Ep

z |ni,j − Ep
z |ni,j−1)

]
− ∆t

2µo

[
Mp

x |n+1
i,j +Mp

x |ni,j
]

+ ∆t2πfoH
q
x|
n+ 1

2
i,j (2.76)
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and

Hp
y |n+1
i,j −Hp

y |ni,j =
∆t

2∆xµo

[
(Ep

z |n+1
i,j − Ep

z |n+1
i−1,j) + (Ep

z |ni,j − Ep
z |ni−1,j)

]
− ∆t

2µo

[
Mp

y |n+1
i,j +Mp

y |ni,j
]

+ ∆t2πfoH
q
y |
n+ 1

2
i,j . (2.77)

Now in order to simplify the equations, new constants are introduced as follows:

∆t

2∆xεo
=
ηo
2
αx, (2.78)

∆t

2∆xµo
=

1

2ηo
αx, (2.79)

∆t

2∆yεo
=
ηo
2
αy (2.80)

and

∆t

2∆yµo
=

1

2ηo
αy (2.81)

where

αx =
∆t

√
µoεo∆x

=
c∆t

∆x
(2.82)

and

αy =
∆t

√
µoεo∆y

=
c∆t

∆y
. (2.83)

Here c is the speed of light and ηo is the characteristic impedance in free space. If we define

the new source terms as

Spz |ni,j = −∆t

2εo

[
Jpz |n+1

i,j + Jpz |ni,j
]
, (2.84)

T px |ni,j = − ∆t

2µo

[
Mp

x |n+1
i,j +Mp

x |ni,j
]
, (2.85)

and

Rp
y|ni,j = − ∆t

2µo

[
Mp

y |n+1
i,j +Mp

y |ni,j
]
, (2.86)
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then (2.75) to (2.77) can be rewritten as

Ep
z |n+1
i,j = Ep

z |ni,j +
η

2
αx
[
(Hp

y |n+1
i+1,j −Hp

y |n+1
i,j ) + (Hp

y |ni+1,j −Hp
y |ni,j)

]
− η

2
αy
[
(Hp

x|n+1
i,j+1 −Hp

x|n+1
i,j ) + (Hp

x|ni,j+1 −Hp
x|ni,j)

]
+ Spz |ni,j

+ ∆t2πfoE
q
z |
n+ 1

2
i,j , (2.87)

Hp
x|n+1
i,j = Hp

x|ni,j −
1

2η
αy
[
(Ep

z |n+1
i,j − Ep

z |n+1
i,j−1) + (Ep

z |ni,j − Ep
z |ni,j−1)

]
+ T px |ni,j + ∆t2πfoH

q
x|
n+ 1

2
i,j (2.88)

and

Hp
y |n+1
i,j = Hp

y |ni,j +
1

2η
αx
[
(Ep

z |n+1
i,j − Ep

z |n+1
i−1,j) + (Ep

z |ni,j − Ep
z |ni−1,j)

]
+Rp

y|ni,j + ∆t2πfoH
q
y |
n+ 1

2
i,j . (2.89)

Consider (2.87) can also be written as

Ep
z |n+1
i,j = Ep

z |ni,j

+
αx
2

[
ηoH

p
y |n+1
i+1,j

]
− αx

2

[
ηoH

p
y |n+1
i,j

]
+
αx
2

[
ηoH

p
y |ni+1,j −Hp

y |ni,j
]

− αy
2

[
ηoH

p
x|n+1
i,j+1

]
+
αy
2

[
ηoH

p
x|n+1
i,j

]
− αy

2

[
ηoH

p
x|ni,j+1 − ηHp

x|ni,j
]

+ Spz |ni,j + ∆t2πfoE
q
z |
n+ 1

2
i,j . (2.90)
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Now after substituting (2.88) and (2.89) into (2.90), we have

Ep
z |n+1
i,j = Ep

z |ni,j

+
αx
2

{
ηoH

p
y |ni+1,j +

αx
2

[
(Ep

z |n+1
i+1,j − Ep

z |n+1
i,j ) + (Ep

z |ni+1,j − Ep
z |ni,j)

]
+ ηoR

p
y|ni+1,j + ηo∆t2πfoH

q
y |
n+ 1

2
i+1,j

}
− αx

2

{
ηoH

p
y |ni,j +

αx
2

[
(Ep

z |n+1
i,j − Ep

z |n+1
i−1,j) + (Ep

z |ni,j − Ep
z |ni−1,j)

]
+ ηoR

p
y|ni,j + ηo∆t2πfoH

q
y |
n+ 1

2
i,j

}
+
αx
2

[
ηoH

p
y |i+1,j − ηoHp

y |ni,j
]

− αy
2

{
ηoH

p
x|ni,j+1 −

αy
2

[
(Ep

z |n+1
i,j+1 − Ep

z |n+1
i,j ) + (Ep

z |ni,j+1 − Ep
z |ni,j)

]
+ ηoT

p
x |ni,j+1 + ηo∆t2πfoH

q
x|
n+ 1

2
i,j+1

}
+
αy
2

{
ηoH

p
x|ni,j −

αy
2

[
(Ep

z |n+1
i,j − Ep

z |n+1
i,j−1) + (Ep

z |ni,j − Ep
z |ni,j−1)

]
+ ηoT

p
x |ni,j + ηo∆t2πfoH

q
x|
n+ 1

2
i,j

}
− αy

2

[
ηoH

p
x|ni,j+1 − ηoHp

x|ni,j
]

+ Spz |ni,j + ∆t2πfoE
q
z |
n+ 1

2
i,j . (2.91)
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Now if we expand those brackets

Ep
z |n+1
i,j = Ep

z |ni,j

+
{αx

2
ηHp

y |ni+1,j +
α2
x

4
(Ep

z |n+1
i+1,j − Ep

z |n+1
i,j ) +

α2
x

4
(Ep

z |ni+1,j − Ep
z |ni,j)

+ ηoR
p
y|ni+1,j +

αx
2
η∆t2πfoH

q
y |
n+ 1

2
i+1,j

}
−
{αx

2
ηHp

y |ni,j +
α2
x

4
(Ep

z |n+1
i,j − Ep

z |n+1
i−1,j) +

α2
x

4
(Ep

z |ni,j − Ep
z |ni−1,j)

+ ηoR
p
y|ni,j +

αx
2
η∆t2πfoH

q
y |
n+ 1

2
i,j

}
+
αx
2

[
ηHp

y |i+1,j −Hp
y |ni,j
]

−
{αy

2
ηHp

x|ni,j+1 −
α2
y

4
(Ep

z |n+1
i,j+1 − Ep

z |n+1
i,j )−

α2
y

4
(Ep

z |ni,j+1 − Ep
z |ni,j)

+ ηoT
p
x |ni,j+1 +

αx
2
η∆t2πfoH

q
x|
n+ 1

2
i,j+1

}
+
{αy

2
Hp
x|ni,j −

α2
y

4
(Ep

z |n+1
i,j − Ep

z |n+1
i,j−1)−

α2
y

4
(Ep

z |ni,j − Ep
z |ni,j−1)

]
+ ηoT

p
x |ni,j +

αy
2
η∆t2πfoH

q
x|
n+ 1

2
i,j

}
− αy

2

[
ηHp

x|ni,j+1 − ηHp
x|ni,j
]

+ Spz |ni,j + ∆t2πfoE
q
z |
n+ 1

2
i,j , (2.92)

that is

(
1 +

α2
x

2
+
α2
y

2

)
Ep
z |n+1
i,j −

α2
x

4

(
Ep
z |n+1
i+1,j + Ep

z |n+1
i−1,j

)
−
α2
y

4

(
Ep
z |n+1
i,j+1 + Ep

z |n+1
i,j−1

)
=
(
1 +

α2
x

2
+
α2
y

2

)
Ep
z |ni,j +

α2
y

4

(
Ep
z |ni+1,j + Ep

z |ni−1,j

)
+
α2
y

4

(
Ep
z |ni,j+1 + Ep

z |ni,j−1

)
+ αx

[
ηHp

y |ni+1,j − ηHp
y |ni,j
]

+
2πfo∆tαx

2

[
ηHq

y |
n+ 1

2
i+1,j − ηHq

y |
n+ 1

2
i,j

]
− αy

[
ηHp

x|ni,j+1 − ηHp
x|ni,j
]
− 2πfo∆tαy

2

[
ηHq

x|
n+ 1

2
i,j+1 − ηHq

x|
n+ 1

2
i,j

]
+ 2πfo∆tE

q
z |
n+ 1

2
i,j

+ Spz |ni,j +
αx
2

[
ηoR

p
y|ni+1,j − ηoRp

y|ni,j
]
− αy

2

[
ηoT

p
x |ni,j+1 − ηoT px |ni,j

]
. (2.93)
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Here for simplicity we define

F n
R = αx

[
ηHp

y |ni+1,j − ηHp
y |ni,j
]

+
2πfo∆tαx

2

[
ηHq

y |
n+ 1

2
i+1,j − ηHq

y |
n+ 1

2
i,j

]
− αy

[
ηHp

x|ni,j+1 − ηHp
x|ni,j
]
− 2πfo∆tαy

2

[
ηHq

x|
n+ 1

2
i,j+1 − ηHq

x|
n+ 1

2
i,j

]
+ 2πfo∆tE

q
z |
n+ 1

2
i,j (2.94)

and

W p|ni,j = Spz |ni,j +
αx
2

[
Rp
y|ni+1,j −Rp

y|ni,j
]
− αy

2

[
T px |ni,j+1 − T px |ni,j

]
, (2.95)

then after reorganizing the terms, (2.93) can be written as

Ep
z |n+1
i,j −

α2
x

4

(
Ep
z |n+1
i+1,j − 2Ep

z |n+1
i,j + Ep

z |n+1
i−1,j

)
−
α2
y

4

(
Ep
z |n+1
i,j+1 − 2Ep

z |n+1
i,j + Ep

z |n+1
i,j−1

)
= Ep

z |ni,j +
α2
y

4

(
Ep
z |ni+1,j − 2Ep

z |ni,j + Ep
z |ni−1,j

)
+
α2
y

4

(
Ep
z |ni,j+1 − 2Ep

z |ni,j + Ep
z |ni,j−1

)
+ F n

R +W p|ni,j (2.96)

Then after expanding αx and αy, we have

Ep
z |n+1
i,j −

(
c∆t

2

)2
[
Ep
z |n+1
i+1,j − 2Ep

z |n+1
i,j + Ep

z |n+1
i−1,j

(∆x)2

]
−
(
c∆t

2

)2
[
Ep
z |n+1
i,j+1 − 2Ep

z |n+1
i,j + Ep

z |n+1
i,j−1

(∆y)2

]

= Ep
z |ni,j +

(
c∆t

2

)2 [Ep
z |ni+1,j − 2Ep

z |ni,j + Ep
z |ni−1,j

(∆x)2

]
+

(
c∆t

2

)2 [Ep
z |ni,j+1 − 2Ep

z |ni,j + Ep
z |ni,j−1

(∆y)2

]
+ F n

R +W p|ni,j. (2.97)

Here if we define

b =
c∆t

2
(2.98)

and consider(2.97), then

(1− b2D2x − b2D2y)E
p
z |n+1
i,j = (1 + b2D2x + b2D2y)E

p
z |ni,j + F n

R +W p|ni,j (2.99)

Here D2x and D2y are the second-order central-difference approximations with respect to x
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and y. From [10], in this case one type of approximation has been proposed so that (2.99)

can be written as

(1− b2D2x)(1− b2D2y)E
p
z |n+1
i,j = (1 + b2D2x)(1 + b2D2y)E

p
z |ni,j + F n

R +W p|ni,j (2.100)

Now if we define

Ep
ss|i,j =

(
1− b2D2y

)
Ep
z |n+1
i,j (2.101)

then the left hand side of (2.100) can be written as

(
1− b2D2x

)
Ep
ss|i,j = Ep

ss|i,j − b2D2xE
q
ss|i,j

= Ep
ss|i,j − (

c∆t

2
)2 1

∆x2

[
Ep
ss|i+1,j − 2Ep

ss|i,j + Ep
ss|i−1,j

]
=
(
1 +

α2
x

2

)
Ep
ss|i,j −

α2
x

4

(
Ep
ss|i+1,j + Ep

ss|i−1,j

)
. (2.102)

Now consider Ep
ss|i,j, similarly we have

(
1− b2D2y

)
Ep
z |n+1
i,j =

(
1 +

α2
y

2

)
Ep
z |n+1
i,j −

α2
y

4

(
Ep
z |n+1
i,j+1 + Ep

z |n+1
i,j−1

)
. (2.103)

Consider the right hand side of (2.100). Similarly we have

(
1 + b2D2y

)
Ep
z |ni,j =

(
1−

α2
y

2

)
Ep
z |ni,j +

α2
y

4

(
Ep
z |ni,j+1 + Ep

z |ni,j−1

)
, (2.104)

then

(
1 + b2D2x

)(
1 + b2D2y

)
Ep
z |ni,j =

(
1 + b2D2y

)
Ep
z |ni,j + b2D2x

[(
1 + b2D2y

)
Ep
z |ni,j
]

=
(
1−

α2
y

2

)
Ep
z |ni,j +

α2
y

4

(
Ep
z |ni,j+1 + Ep

z |ni,j−1

)
+ b2D2x

[(
1−

α2
y

2

)
Ep
z |ni,j +

α2
y

4

(
Ep
z |ni,j+1 + Ep

z |ni,j−1

)]
, (2.105)
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that is

(
1 + b2D2x

)(
1 + b2D2y

)
Ep
z |ni,j =

(
1−

α2
y

2

)
Ep
z |ni,j +

α2
y

4

(
Ep
z |ni,j+1 + Ep

z |ni,j−1

)
+ (

c∆t

2
)2 1

∆x2

[(
1−

α2
y

2

)(
Ep
z |ni+1,j − 2Ep

z |ni,j + Ep
z |ni−1,j

)
+
α2
y

4

(
Ep
z |ni+1,j+1 − 2Ep

z |ni,j+1 + Ep
z |ni−1,j+1

)
+
α2
y

4

(
Ep
z |ni+1,j−1 − 2Ep

z |ni,j−1 + Ep
z |ni−1,j−1

)]
. (2.106)

After reorganizing, we have

(
1 + b2D2x

)(
1 + b2D2y

)
Ep
z |ni,j =

(
1− α2

x

2

)(
1−

α2
y

2

)
Ep
z |ni,j

+
α2
y

4

(
1− α2

x

2

)[
Ep
z |ni,j+1 + Ep

z |ni,j−1

]
+
α2
x

4

(
1−

α2
y

2

)[
Ep
z |ni+1,j + Ep

z |ni−1,j

]
+
α2
xα

2
y

16

[
Ep
z |ni+1,j+1 + Ep

z |ni−1,j+1

+ Ep
z |ni+1,j−1 + Ep

z |ni−1,j−1

]
. (2.107)

When solving (2.100), the right hand side, equivalent to right hand side of (2.107)

plus terms F n
R and W p|ni,j, are all knowns and for the left hand side, (2.101) and (2.102)

can be used. In this way, at each time step, Ep
ss|i,j can be obtained by solving a tridiagonal

matrix based on (1 − b2D2x) in (2.102) and knowns on the right of (2.100). After that,

Ep
ss|i,j is a known and by (2.101) and (2.103), similarly Ep

z |n+1
i,j can be obtained by solving a

tridiagonal matrix.
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2.6 Imaginary Part of Curl Equations

Now consider the equations group (2.68). Using the central-difference approximation

centered at time point n, (2.68) can be approximated as

Eq
z |n+ 1

2 − Eq
z |n−

1
2

∆t
=

1

2εo
Dx

(
Hq
y |n+ 1

2 +Hq
y |n−

1
2

)
− 1

2εo
Dy

(
Hq
x|n+ 1

2 +Hq
x|n−

1
2

)
− 1

2εo

(
Jqz |n+ 1

2 + Jqz |n−
1
2

)
− 2πfoE

p
z |n, (2.108)

Hq
x|n+ 1

2 −Hq
x|n−

1
2

∆t
= − 1

2µo
Dy

(
Eq
z |n+ 1

2 + Eq
z |n−

1
2

)
− 1

2µo

(
M q

x |n+ 1
2 +M q

x |n−
1
2

)
− 2πfoH

p
x|n (2.109)

and

Hq
y |n+ 1

2 −Hq
y |n−

1
2

∆t
=

1

2µo
Dx

(
Eq
z |n+ 1

2 + Eq
z |n−

1
2

)
− 1

2µo

(
M q

y |n+ 1
2 +M q

y |n−
1
2

)
− 2πfoH

p
y |n. (2.110)

Now similar as what has been done in the previous section, after expanding those equations

by approximating them on the spatial scheme, we will obtain

Eq
z |
n+ 1

2
i,j − Eq

z |
n− 1

2
i,j

∆t
=

1

2εo∆x

(
Hq
y |
n+ 1

2
i+1,j −Hq

y |
n+ 1

2
i,j +Hq

y |
n− 1

2
i+1,j −Hq

y |
n− 1

2
i+1,j

)
− 1

2εo∆y

(
Hq
x|
n+ 1

2
i,j+1 −Hq

x|
n+ 1

2
i,j +Hq

x|
n− 1

2
i,j+1 −Hq

x|
n− 1

2
i,j

)
− 1

2εo

(
Jqz |

n+ 1
2

i,j + Jqz |
n− 1

2
i,j

)
− 2πfoE

p
z |ni,j, (2.111)

Hq
x|
n+ 1

2
i,j −Hq

x|
n− 1

2
i,j

∆t
= − 1

2µo∆y

(
Eq
z |
n+ 1

2
i,j − Eq

z |
n+ 1

2
i,j−1 + Eq

z |
n− 1

2
i,j − Eq

z |
n− 1

2
i,j−1

)
− 1

2µo

(
M q

x |
n+ 1

2
i,j +M q

x |
n− 1

2
i,j

)
− 2πfoH

p
x|ni,j, (2.112)
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and

Hq
y |
n+ 1

2
i,j −Hq

y |
n− 1

2
i,j

∆t
=

1

2µo∆x

(
Eq
z |
n+ 1

2
i,j − Eq

z |
n+ 1

2
i−1,j + Eq

z |
n− 1

2
i,j − Eq

z |
n− 1

2
i−1,j

)
− 1

2µo

(
M q

y |
n+ 1

2
i,j +M q

y |
n− 1

2
i,j

)
− 2πfoH

p
y |ni,j. (2.113)

By introducing the simplified expression (2.78) to (2.81) and source expressions as

∆t

2εo∆x
=
ηo
2
αx, (2.78)

∆t

2εo∆y
=
ηo
2
αy, (2.79)

∆t

2µo∆x
=

1

2ηo
αx, (2.80)

∆t

2µo∆y
=

1

2ηo
αy, (2.81)

Sqz |
n− 1

2
i,j = −∆t

2εo

[
Jqz |

n+ 1
2

i,j + Jqz |
n− 1

2
i,j

]
, (2.114)

T qx |
n− 1

2
i,j = − ∆t

2µo

[
M q

x |
n+ 1

2
i,j +M q

x |
n− 1

2
i,j

]
(2.115)

and

Rq
y|
n− 1

2
i,j = − ∆t

2µo

[
M q

y |
n+ 1

2
i,j +M q

y |
n− 1

2
i,j

]
, (2.116)
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and rearranging (2.111) to (2.113), we will have

Eq
z |
n+ 1

2
i,j = Eq

z |
n− 1

2
i,j +

αx
2

(
ηoH

q
y |
n+ 1

2
i+1,j − ηoHq

y |
n+ 1

2
i,j + ηoH

q
y |
n− 1

2
i+1,j − ηoHq

y |
n− 1

2
i+1,j

)
− αy

2

(
ηoH

q
x|
n+ 1

2
i,j+1 − ηoHq

x|
n+ 1

2
i,j + ηoH

q
x|
n− 1

2
i,j+1 − ηoHq

x|
n− 1

2
i,j

)
+ Sqz |

n− 1
2

i,j −∆t2πfoE
p
z |ni,j, (2.117)

Hq
x|
n+ 1

2
i,j = Hq

x|
n− 1

2
i,j −

αy
2

( 1

ηo
Eq
z |
n+ 1

2
i,j −

1

ηo
Eq
z |
n+ 1

2
i,j−1 +

1

ηo
Eq
z |
n− 1

2
i,j −

1

ηo
Eq
z |
n− 1

2
i,j−1

)
+ T qx |

n− 1
2

i,j −∆t2πfoH
p
x|ni,j (2.118)

and

Hq
y |
n+ 1

2
i,j = Hq

y |
n− 1

2
i,j +

αx
2

( 1

ηo
Eq
z |
n+ 1

2
i,j −

1

ηo
Eq
z |
n+ 1

2
i−1,j +

1

ηo
Eq
z |
n− 1

2
i,j −

1

ηo
Eq
z |
n− 1

2
i−1,j

)
+Rq

y|
n− 1

2
i,j −∆t2πfoH

p
y |ni,j. (2.119)

In order to avoid confusion in the equation transform, (2.117) can be written as

Eq
z |
n+ 1

2
i,j = Eq

z |
n− 1

2
i,j

+
αx
2
ηoH

q
y |
n+ 1

2
i+1,j

− αx
2
ηoH

q
y |
n+ 1

2
i,j

+
αx
2

(
ηoH

q
y |
n− 1

2
i+1,j − ηoHq

y |
n− 1

2
i+1,j

)
− αy

2
ηoH

q
x|
n+ 1

2
i,j+1

+
αy
2
ηoH

q
x|
n+ 1

2
i,j

− αy
2

(
ηoH

q
x|
n− 1

2
i,j+1 − ηoHq

x|
n− 1

2
i,j

)
+ Sqz |

n− 1
2

i,j −∆t2πfoE
p
z |ni,j. (2.120)
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After substituting (2.118) and (2.119) into (2.120), we have

Eq
z |
n+ 1

2
i,j = Eq

z |
n− 1

2
i,j

+
αx
2
ηo

[
Hq
y |
n− 1

2
i+1,j +

αx
2

( 1

ηo
Eq
z |
n+ 1

2
i+1,j −

1

ηo
Eq
z |
n+ 1

2
i,j +

1

ηo
Eq
z |
n− 1

2
i+1,j −

1

ηo
Eq
z |
n− 1

2
i,j

)
+Rq

y|
n− 1

2
i+1,j −∆t2πfoH

p
y |ni+1,j

]
− αx

2
ηo

[
Hq
y |
n− 1

2
i,j +

αx
2

( 1

ηo
Eq
z |
n+ 1

2
i,j −

1

ηo
Eq
z |
n+ 1

2
i−1,j +

1

ηo
Eq
z |
n− 1

2
i,j −

1

ηo
Eq
z |
n− 1

2
i−1,j

)
+Rq

y|
n− 1

2
i,j −∆t2πfoH

p
y |ni,j
]

+
αx
2

(
ηoH

q
y |
n− 1

2
i+1,j − ηoHq

y |
n− 1

2
i+1,j

)
− αy

2
ηo

[
Hq
x|
n− 1

2
i,j+1 −

αy
2

( 1

ηo
Eq
z |
n+ 1

2
i,j+1 −

1

ηo
Eq
z |
n+ 1

2
i,j +

1

ηo
Eq
z |
n− 1

2
i,j+1 −

1

ηo
Eq
z |
n− 1

2
i,j

)
+ T qx |

n− 1
2

i,j+1 −∆t2πfoH
p
x|ni,j+1

]
+
αy
2
ηo

[
Hq
x|
n− 1

2
i,j −

αy
2

( 1

ηo
Eq
z |
n+ 1

2
i,j −

1

ηo
Eq
z |
n+ 1

2
i,j−1 +

1

ηo
Eq
z |
n− 1

2
i,j −

1

ηo
Eq
z |
n− 1

2
i,j−1

)
+ T qx |

n− 1
2

i,j −∆t2πfoH
p
x|ni,j
]

− αy
2

(
ηoH

q
x|
n− 1

2
i,j+1 − ηoHq

x|
n− 1

2
i,j

)
+ Sqz |

n− 1
2

i,j −∆t2πfoE
p
z |ni,j. (2.121)
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That is equivalent to

Eq
z |
n+ 1

2
i,j = Eq

z |
n− 1

2
i,j

+
αx
2

[
ηoH

q
y |
n− 1

2
i+1,j +

αx
2

(
Eq
z |
n+ 1

2
i+1,j − Eq

z |
n+ 1

2
i,j + Eq

z |
n− 1

2
i+1,j − Eq

z |
n− 1

2
i,j

)
+ ηoR

q
y|
n− 1

2
i+1,j − ηo∆t2πfoHp

y |ni+1,j

]
− αx

2

[
ηoH

q
y |
n− 1

2
i,j +

αx
2

(
Eq
z |
n+ 1

2
i,j − Eq

z |
n+ 1

2
i−1,j + Eq

z |
n− 1

2
i,j − Eq

z |
n− 1

2
i−1,j

)
+ ηoR
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After grouping same terms together, it can be written as
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and
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then the equation above can be simplified as
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Here again if we define b = c∆t
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Here similar as what has been done in the previous section, from [10] an approximation has

been proposed so that the equation above can be written as
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then the left hand side of (2.128) can be written as
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Consider the right hand side of (2.128). Similarly we have
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that is
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After reorganizing, we have
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Similar as what has been done in previous section, the right hand side of (2.128),

equivalent to right hand side of (2.135) plus F
n− 1

2
I and Wq|

n− 1
2

i,j , are all knowns and for the

left hand side, (2.129) and (2.130) can be used. At each time step, Eq
ss|i,j can be obtained by

solving a tridiagonal matrix based on (1− b2D2x) in (2.130) and knowns on the right hand

side of (2.128). After that Eq
ss|i,j is a known, and by (2.129) and (2.131), similarly Eq

z |
n+ 1

2
i,j

can be obtained by solving a tridiagonal matrix.
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CHAPTER 3

ANALYTICAL SOLUTION USING

THE FREQUENCY DOMAIN

In this chapter, a reference solution for the 2D cavity problem will be presented to compare

with the proposed FDTD solution given in Chapter 2. A completely different method, the

reference solution is first obtained in frequency domain and then transformed to time domain.

Image theory is used to account for the reflections from the cavity walls.

In FDTD method, a single sampling point is used to represent the source region,

which means in reality we have a squared surface source region, with area equal to ∆x×∆y.

However, in reference solution with that source current, a surface integral of the Hankel’s

function of second kind is required which is very complicated. So a compressed line source,

original source current multiplied by the area ∆x×∆y in the origin, is used for approximation

instead the original squared surface which simplifies the problem. However, in the region

close to the source, the size of the source can not be neglected, which means a line source

approximation is not appropriate. In addition, due to the singularity problem of the Hankel’s

function of the second kind at the origin, no solution can be obtained at the origin in this

way. Consequently the reference solution can only be used to compared with the FDTD
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solution at a limited number of spatial points which is relatively far from the source. With

source region of small size and large cavity, most of points can be covered in the reference

solution.

In Section 3.1, a general analysis based upon an electric surface source, with only a z

component, is presented. Starting from the magnetic field in terms of an electric source and

Green’s function, the electric field is given by the product of some constants and the surface

integral of the electric source current and the Hankel’s function of the second kind.

In Section 3.2, image theory will be introduced in order to formulate the perfect

electric conductor (PEC) boundary conditions. Two figures are used to illustrate the idea

of generating reflection waves by building a limited number of image sources.
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3.1 Electric Field in Free Space

Our source current is the Gaussian function of time t as

J(ρ′, t) = âz exp
[
− (t− td)2/2σ2

]
cos(2πfot)δ(ρ

′), (3.1)

where ρ′ is the magnitude of ρ′. Then after using Fourier transform, in the frequency domain

J(ρ′, f) = âzσ
√
π/2 exp

{
−2
[
(f − fo)πσ

]2}
exp {−j2πtd(f − fo)} δ(ρ′)

+ âzσ
√
π/2 exp

{
−2
[
(f + fo)πσ

]2}
exp {−j2πtd(f + fo)} δ(ρ′). (3.2)

Using the equations in [11], the electric field outside of the source region due to the

z-directed electric current source can be written as

Ez(ρ, f) = −jηok
∫
Jz(ρ

′, f)g(ρ,ρ′)dS ′. (3.3)

where

g(ρ,ρ′) =
1

4j
H(2)
o (k∆ρ) (3.4)

and

∆ρ = |ρ− ρ′| =
√

(x− x′)2 + (y − y′)2. (3.5)

Here x and y represent the position of the observation point in Cartesian coordinate system

while x′ and y′ represent the position of the source.
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Substituting the Green’s function into (3.3) yields

Ez(ρ, f) = −ηok
4

∫
Jz(ρ

′, f)H(2)
o (k∆ρ)dS ′

= −ηok
4
σ
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[
2πfρ

foλo

]
,

(3.6)

where ρ is the magnitude of ρ. By applying the CE transformation via (2.17) to 3.6, the

terms around (f + fo) are removed, then the remaining terms are translated from f0 to 0

and the magnitude is doubled so that

Ẽz(ρ, f) = −µofσπ
√
π/2 exp

{
−2
[
(f − fo)πσ

]2}
exp {−j2πtd(f − fo)}H(2)

o

[2πfρ
foλo

]
. (3.7)

Finally the solution in the time domain is given by

Ẽz(ρ, t) = F−1
{
Ẽz(ρ, f)

}
. (3.8)

F−1 is the inverse Fourier transform operator and in Matlab it can be performed by

Ẽz(ρ, t) = N∆f ifft
{
Ẽz(ρ, f)

}
, (3.9)

where in the equation above ifft is the inverse fast Fourier transform in Matlab, N is the

number of points of Ẽz(ρ, f), and ∆f is the frequency step when sampling Ẽz(ρ, f) in the

frequency domain.
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3.2 Image Theory

With the PEC (Perfect Electric Conductor) boundaries around the square domain,

in order to analyze the behavior of the total electric field, the effect from the reflection waves

has to be considered. In [12], if the source is near the PEC boundary, the image source can

be determined as illustrated in Figure 3.1.
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Figure 3.1. Electric and magnetic sources and their images near the electric conductor —after
[12].

Through this figure we will be able to approximate the effect of PEC boundary condition

by placing one or more images on the other side of the boundaries with correct phases. One

image is sufficient for replacing the effect of one boundary exactly; however, with multiple

boundaries, due to the multiple reflection paths from different angles, an infinite number of

images are needed to model the reflection waves for all time. This seems impossible, but in
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our problem the end time is set to a fixed value so only the waves traveling from near by

image sources will propagate to the field point of interest before the end time. Because of

this a finite number of image sources can be used to model the effect of the PEC boundaries

of the 2D cavity.

Figure 3.2 illustrates the original and image sources for the cavity problem. In the

figure, the red box represents the original domain of the cavity while purple boxes represent

image domains with image sources; those sources with filled circles represent a positive source

(the same as the actual source), while the unfilled circles represent the negative sources

(minus the actual source). By selecting a reasonably small ending time, a limited number

of image sources around the real source are required to approximate the PEC boundaries.

This is illustrated in examples given in the following chapter.
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Figure 3.2. Images of a two-dimensional cavity with PEC walls and a transverse-magnetic
source —after [13].
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CHAPTER 4

RESULT

In this chapter results from the CE FDTD method and the reference IFFT/Image Theory

method will be compared. The physical problem considered here is illustrated in Fig 4.1.

The physical problem is a square area of free space, 20λo × 20λo with PEC walls at the

boundaries. Excitation is provided by a line source of electric current placed at the center

of the domain.

6
y
-x

r a-� ρ

� -20λo
?

6

20λo

Symbols:r Electric Current
Line Source

a Arbitrary Field Point

PEC Wall

λoWavelength at
Center Frequency (fo)

Figure 4.1. Domain of calculation.
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In the CE-FDTD method the spatial domain needs to be sampled and then filled

with Yee cells. Here the original geometry is square, so it is convenient for the Yee cells to

be squares too and their dimension is given by ∆x×∆y where ∆x = ∆y. The expression of

the source current density implemented on the center Yee cell is

J = âz
1

∆x∆y
exp

{
−(t− td)2/2σ2

}
cos(2πfot), (4.1)

where td is the time delay for the Gaussian pulse function to reach its peak,

td = 4
√

2B, (4.2)

and the pulse width is determined by

σ =
4

πB
(4.3)

where B is the bandwidth of the source as defined by (2.7). Here

fo = 10 MHz, (4.4)

fmin = 8 MHz, (4.5)

fmax = 12 MHz, (4.6)

B = 4 MHz, (4.7)

and the temporal and spatial sampling intervals are

∆x =
λmin
Nx

, (4.8)

∆y =
λmin
Ny

(4.9)

46



and

∆t =
2

NtB
, (4.10)

where

λmin =
co
fmin

, (4.11)

Nx = 40, (4.12)

Ny = 40 (4.13)

and

Nt = 20. (4.14)

For CE-FDTD method, the equations in Chapter 2 are used and the reference results are

obtained using the inverse fast Fourier transform (IFFT) solution in Chapter 3.

Section 4.1 presents the complex-envelope electric field versus time for three points

on the x-axis. For each point, the in-phase part, the quadrature part and the magni-

tude are given. Figures illustrating the difference between the CE-FDTD method and the

IFFT/Image Theory method are also presented. In Section 4.2, surface plots showing the

spatial distribution of the complex-envelope electric field for a fixed time are given.
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4.1 Electric Field over Time

Figures 4.2 through Figure 4.7 plot the electric field versus time for a field point on

the x-axis 5λo from the origin for the time interval 0 to 4µs. In 4µs, the electric field can

propagate over 40λo from the source at the origin. Hence 24 image sources are sufficient to

determine the CE electric field using IFFT/Image Theory method.

In Figures 4.2 to 4.4, for every time the differences between the FDTD and IFFT

solutions for the in-phase parts and quadrature parts are quite small, and tend to increase

as time increases. However, compared with the peak magnitude of electric field from both

methods, differences are still relatively small at the end time of 4µs.

One reason for the error increase with time is likely the accumulation of errors in

the FDTD method as the computations progress. On the other hand, it might also result

from errors in the IFFT/Image Theory method. As time increases, an increasing number

of image sources contribute to the field. At 4µs the result is a superposition of fields from

25 sources. In order to obtain a correct result, all fields from different sources must possess

perfect phase. This is difficult to achieve for a large number of sources.

Figures 4.8 through Fig 4.13 plot the electric field versus time for a fixed point on the

x-axis 2λo from the origin. Figures 4.14 through 4.19 plot the electric field versus time for

a fixed point on the x-axis 0.5λo from the origin. As expected, errors for the field points at

5λo, 2λo and 0.5λo from the origin are similar in magnitude and exhibit the same increasing

error with increasing time characteristic.
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Figure 4.2. In-phase part of the electric field for ρ = 5λo.

49



Figure 4.3. Magnitude of the difference between the in-phase parts of the IFFT and FDTD
solutions for ρ = 5λo.
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Figure 4.4. Quadrature part of the electric field for ρ = 5λo.
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Figure 4.5. Magnitude of the difference between the quadrature parts of the IFFT and
FDTD solutions for ρ = 5λo.
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Figure 4.6. Magnitude of the CE electric field for ρ = 5λo.
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Figure 4.7. Magnitude of difference between the magnitudes of the CE electric field for the
IFFT and FDTD solutions for ρ = 5λo.
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Figure 4.8. In-phase part of the electric field for ρ = 2λo.
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Figure 4.9. Magnitude of the difference between the in-phase parts for the IFFT and FDTD
solutions for ρ = 2λo.
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Figure 4.10. Quadrature part of the electric field for ρ = 2λo.

57



Figure 4.11. Magnitude of the difference between the quadrature parts for the IFFT and
FDTD solutions for ρ = 2λo.
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Figure 4.12. Magnitude of the CE electric field for ρ = 2λo.
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Figure 4.13. Magnitude of difference between the magnitudes of the CE electric field for the
IFFT and FDTD solutions for ρ = 2λo.
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Figure 4.14. In-phase part of the electric field for ρ = 0.5λo.
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Figure 4.15. Magnitude of difference between the in-phase parts of the electric field for the
IFFT and FDTD solutions for ρ = 0.5λo.
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Figure 4.16. Quadrature part of the electric field for ρ = 0.5λo.
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Figure 4.17. Magnitude of difference between the quadrature parts of the IFFT and FDTD
solutions for ρ = 0.5λo.
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Figure 4.18. Magnitude of CE electric field for ρ = 0.5λo.
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Figure 4.19. Magnitude of difference between the magnitudes of the CE electric field for the
IFFT and FDTD solutions for ρ = 0.5λo.
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4.2 Electric Field over Space

Figures (4.20) to Figure (4.22) are surface plots of the CE electric field at 2.3µs for the

whole computational domain of the cavity determined using the FDTD method. In all the

figures, the fields propagate uniformly away from the source at the origin. In the areas close

to the edges, reflections from the PEC boundaries combine with incident waves to generate

ripples in the “peak circles”.

Figure 4.20. In-phase part of the CE electric field versus x and y for t = td + 0.5µs.
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In addition, since the ending time, 2.3µs, is small, the Gaussian pulse (source) has

just started to decreasing in amplitude. Consequently, the magnitude of electric field near

the source region is still very large.

Figure 4.21. Quadrature part of the CE electric field versus x and y for t = td + 0.5µs.
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Figure 4.22. Magnitude of the CE electric field versus x and y for t = td + 0.5µs.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

The formulation of the CE FDTD method using real-valued field-variables was presented and

solutions for a 2D cavity problem from both the proposed numerical method and a reference

method were given.

5.1 Conclusion

Using real-valued field-variables, the CE PDEs can be split into two groups of real-

valued PDEs that can potentially be used with any implicit FDTD scheme. As a result,

band-pass limited electromagnetic problems can be solved in the base band using many

existing FDTD formulations.

The primary advantage of the CE FDTD over the standard FDTD is that the time

step can be several orders of magnitude larger meaning that fewer time steps are needed

for a calculation. A further advantage of the present CE FDTD over existing CE FDTD

methods is that existing methods require calculation with complex numbers whereas the

present method uses calculation with real numbers alone. This is an advantage because a
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complex multiplication requires three real multiplications and a complex division requires

three real divisions and three real multiplications.

In the plots of electric field versus time for the cavity problem, result from the present

method and the reference method are nearly identical until 2µs. In 2µs the wave can travel

20 free space wavelengths. After 2µs the error tends to increase, however, it is still relatively

small at 4µs. Plots of the electric field over the spatial domain at 2.3µs shows a stable result

with waves that propagate without obvious dispersion.

5.2 Future Work

This thesis presents the central ideas required to formulate a complex-envelope FDTD

method with real-valued field-variables and gives an example formulation in 2D based on

the Douglas Gunn algorithm given by Sun and Trueman [10]. However, much remains to

be done to develop the CE FDTD method with real-valued field-variables into a useful tool

for practical electromagnetics problems. First and foremost is the development of a 3D

formulation. Also, needed are appropriate absorbing boundaries to terminate the spatial

mesh as well as a carefully stability and dispersion analysis.
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