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ABSTRACT 

The purpose of this study was to examine the effects three cuff widths (5 cm, 10 cm, 12 

cm) have on arterial occlusion pressure (AOP) in the arm. A secondary purpose was to determine 

if arm circumference, blood pressure, arm length, and sex should be accounted for when 

applying these cuff widths. Two hundred and forty-nine participants visited the laboratory one 

time to measure arm length, arm circumference, brachial systolic (bSBP) and diastolic blood 

pressure (bDBP) followed by assessment of standing AOP as determined by a Doppler probe. 

One way repeated measure ANOVAs were used to examine differences between cuff widths and 

sex. Hierarchical linear regression was used to determine the variables explaining the most 

unique variance for each cuff width. Significant differences were observed between all cuff 

widths (p < 0.001) with AOP being highest for the 5 cm cuff [145 (19) mmHg] then 10 cm cuff 

[123 (13) mmHg], and 12 cm cuff [120 (12) mmHg]. Although a model consisting of arm 

circumference, bSBP, arm length, bDBP, and sex explained the most variance in AOP for all 

three cuffs (5 cm, R2 = 0.651; 10 cm, R2 = 0.570; 12 cm, R2 = 0.557), arm circumference 

explained the most unique variance for each cuff width (5 cm, Part = .554; 10 cm, Part = .419; 12 

cm, Part = .406). There were significant sex differences in AOP for the 5 cm [males 149 (19); 

females 142 (19) mmHg, p = 0.003, d = 0.36], 10 cm [males 127 (13); females 121 (13) mmHg, 

p = 0.002, d = 0.46], and 12 cm [males 122 (12); females 118 (12) mmHg, p = 0.009, d = 0.33] 

cuffs. Wider cuffs, in comparison to narrow cuffs require less pressure for AOP in the arm while 

standing. Future studies should report the cuff width used and carefully consider the impact it has 

on the amount of restriction occurring. Since AOP is affected by individual differences, the same 



 iii

pressure should not be applied to all participants. In order to make BFR relative in the upper 

body, arm circumference and bSBP should be accounted for. 
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CHAPTER I: INTRODUCTION 

 In order to maintain a healthy lifestyle one should regularly participate in resistance 

training, as it is vital to muscular fitness. Advantages of resistance training include potential 

benefits regarding bone health (Moghadasi, & Siavashpour, 2012), as well as positive effects on 

body composition (Swanepoel et al., 2013), blood sugar levels (Castaneda et al., 2002), and 

insulin sensitivity (Klimcakova et al., 2006). It has been shown that muscle strength in particular 

has a protective effect against all-cause mortality even when controlling for cardiorespiratory 

fitness (Ruiz et al., 2008). In addition, muscular strength promotes greater independence in the 

elderly as it increases the ability to perform activities of daily living (Rantanen et al., 2002). 

Even though the potential benefits are well established, most people do not engage in the 

recommended amount of muscle strengthening activity, especially the elderly (Vezina, Der 

Ananian, Greenberg, & Kurka, 2014). In order to improve muscular strength it is recommended 

that individuals use a load of at least 60% of their 1-repetition maximum (1-RM) (ACSM, 2011). 

However, for certain populations such as the elderly or injured, higher loads may be 

contraindicated as it places more mechanical stress on the joints. In a summary of research 

regarding the topic, blood flow restriction (BFR) provides a safe, effective alternative to high 

load resistance training (Loenneke, Wilson, Marin, Zourdos, & Bemben, 2011). When BFR is 

combined with low load resistance training there are improvements in muscle size and strength 

in the elderly (Takarada et al., 2000), healthy (Yasuda, Fujita, Ogasawara, Sato, & Abe 2010), 

and athletic populations using loads as low as 20% 1-RM (Yamanaka, Farley, & Caputo, 2012)  



 2

Given the novelty of BFR, questions arise about its safety. Common questions regarding 

the safety of BFR are whether there is increased muscle damage when combined with exercise, 

or a susceptibility to blood clotting due to the restriction of blood flow. However, available 

evidence suggests that neither one is occurring to an appreciable level with BFR. For example, 

when considering muscle damage after a training protocol, acute changes in torque following 

BFR exercise were due to fatigue and not necessarily damage to the muscle (Loenneke et al., 

2013b). Further, an investigation of blood markers indicative of muscle damage (creatine kinase) 

and inflammation (interleukin 6) following 6-weeks of training showed no differences between 

blood flow restriction training and traditional high load training at post-testing (Karabulut, Sherk, 

Bemben D., & Bemben M., 2013). Similarly, markers of blood coagulation do not increase after 

chronic or acute bouts of moderate BFR combined with exercise using low loads (Clark et al., 

2011; Madarame et al., 2010).  

Blood flow restriction is the process of using a restrictive cuff placed on the proximal 

portion of a limb with the goal of restricting arterial blood flow into the muscle and occluding 

venous blood flow out of the muscle (Yasuda et al., 2010). An important consideration when 

performing BFR is the inflation pressure applied to the limb. It is possible there is an optimal 

range of arterial restriction as it applies to BFR which if too low or too high may not produce the 

desired result (Loenneke, Thiebaud, Abe, & Bemben, 2014). For example, applying various 

pressures during BFR has been shown to produce different results in muscle activation 

(Loenneke et al., 2014) and metabolic responses (Yasuda et al., 2010).  It is suggested that all 

research done with BFR should make an attempt to apply pressures relative to individuals rather 

than the same arbitrary pressure applied to all participants (Loenneke et al., 2013a). However, 

most studies still use an arbitrary pressure for all participants regardless of individual differences. 
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This is bad practice as arterial occlusion pressure when using a standard cuff size is determined 

by limb circumference in the lower body (Shaw, & Murray, 1982; Van Roekel, & Thurston, 

1984; Loenneke et al., 2012). The variance between arterial occlusion pressures is largely 

explained by limb circumference and is not further explained by including body composition (i.e. 

muscle or fat thickness) (Loenneke at al., 2014). Therefore, applying the same arbitrary pressure 

to participants with different limb sizes could result in experiencing varied levels of arterial BFR, 

which in turn could compromise the overall safety, or effectiveness of the stimulus.  In order to 

examine and understand the effects of varying levels of BFR, the cuff width should first be 

standardized.  

Currently, most studies apply cuff widths (some unreported) and pressures arbitrarily (i.e. 

using the same pressure for every participant regardless of individual differences). The cuff used 

will ultimately dictate how the pressure is being applied to the tissue. Wider cuffs apply pressure 

over a greater distance, in turn exposing more of the underlying tissue to a restrictive pressure. 

This increases the resistance of blood to flow, which results in wider cuffs requiring a lower 

pressure to reach complete arterial occlusion (Crenshaw, Hargens, Gershuni, & Rydevik, 1988; 

Moore, Garfin, & Hargens, 1987; Graham, Breault, McEwen, Eng, & McGraw, 1993; Loenneke 

et al., 2012). If a wider cuff is used with a pressure determined from a study using a narrow cuff 

it could result in a condition of complete arterial occlusion, which is not the goal of BFR 

training. In addition, comparison of cuff widths used for BFR has shown that different widths 

may also have an effect on the cardiovascular response and perceived exertion to exercise 

(Rossow et al., 2012). In order to gain more insight into BFR, the methodological issue regarding 

the use of arbitrary cuff width in the upper body should be investigated and understood as it may 

play a critical role in arterial occlusion pressure. This in turn will lead to the possible 
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development of more optimal pressure application as well as ensuring safety of those 

participating in BFR by itself or in combination with exercise. 

Purpose 

 The purpose of the study was to investigate the effects of different cuff widths on arterial 

occlusion in the upper body. In addition, the factors contributing to those differences were 

investigated. 

Research Question 

 How do cuff widths of 5cm, 10cm, and 12cm affect the final pressure necessary for 

arterial occlusion in the upper body? 

Hypothesis 

 It was hypothesized that as the cuff became wider it would result in a lower pressure 

needed for arterial occlusion.  

Sub question 

 As cuff width changes, do limb circumference, brachial systolic blood pressure, brachial 

diastolic blood pressure, limb length and sex differences explain the variance in arterial 

occlusion differently?  

Sub hypothesis 

 It was hypothesized that limb circumference would explain the most variance for each 

cuff width used in the upper body.  

Significance of Study 

 This study investigated how arterial occlusion pressure changed across cuff widths. If 

differences between cuff widths were found it would give researchers the information necessary 

to choose the best cuff widths for studies. Further, the study determined what factors contributed 
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most to the differences between each cuff width leading to a more proper pressure application as 

it determined which individual participant factors should be accounted for when applying BFR. 

In turn this potentially creates a more optimal, safer stimulus for BFR studies.  

Assumptions 

1. Participants answered all questions truthfully. 

2. Participants were not using medication for hypertension. 

3. Participants did not have caffeine within 8 hours of testing. 

4. Participants were in a true resting state for arterial occlusion measurements. 

5. Participants fasted for 2 hours prior to testing. 

Delimitations 

1. The results of this study are only applicable to men and women between the ages  

of 18-35. 

2. The effects of differing cuff widths are limited to three cuff sizes (5cm, 10cm, 12cm). 

 

Limitations 

1. The effects of cuff width on BFR were not investigated during exercise. 

2. The measure of arterial occlusion is not necessarily a measurement of blood flow volume. 

Arterial occlusion is only a measure of flow or no flow; the amount of flow was not determined. 

Operational Definitions 

1. Arterial Occlusion Pressure (AOP)- the minimal inflation pressure needed in a pneumatic 

air cuff applied to the upper arm to eliminate arterial blood flow measured at the radial artery. 



 6

2. Blood flow restriction (BFR) exercise- exercise while applying pressure via restrictive 

cuffs placed on a limb proximal to the working muscle. The pressure is applied to restrict blood 

flow to the exercising muscle. 

3. One-Repetition maximum (1-RM)- a measure of strength; the maximum amount of 

weight that can be lifted for a given exercise with one muscular contraction. 

4. Brachial systolic blood pressure (bSBP)- the pressure exerted against the vascular wall of 

the brachial artery during contraction of the heart. 

5. Brachial diastolic blood pressure (bDBP)- the pressure exerted against the vascular wall 

of the brachial artery while the heart is relaxed.  
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CHAPTER II: LITERATURE REVIEW 

History of Blood Flow Restriction Training 

Applying blood flow restriction (BFR) while performing various modes of exercise has 

been studied since the 1930’s. Barcroft & Millen used BFR in conjunction with calf raises in 

order to better understand blood flow during muscle contractions (1939). However, applying 

BFR while exercising with low load resistance for the purpose of increasing muscle size and 

strength has been credited to Yoshiaki Sato after noticing the numb feeling during prolonged 

kneeling was similar to the feeling he experienced in response to resistance training (Sato, 2005). 

Shinohara et al. (1998) was the first study published which examined BFR in combination with 

exercise and the effect it has on strength. They observed increases in maximal voluntary 

contraction (MVC) and maximum rate of torque development (MRTD) after two and four weeks 

of BFR training (Shinohara, Kouzaki, Yoshihisa, & Fukunuga, 1998).  

Efficacy of Blood Flow Restriction Alone 

Applying BFR without exercise produces enough of a stimulus to attenuate atrophy and 

losses in strength. During immobilization following ACL surgery, BFR applied to the upper 

thigh showed significantly less atrophy in the knee extensors when compared to control. The 

protocol consisted of 5 minutes BFR followed by 3 minutes rest applied 5 times twice daily for 

11 days. The pressure was applied using a 9cm cuff inflated to a final pressure between 200-260 

mmHg (Takarada, Takazawa, & Ishii, 2000). BFR with a 7.7 cm cuff inflated to 200 mmHg 
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applied to healthy males immobilized at the ankle for 2 weeks prevented muscular 

weakness due to disuse and resulted in an attenuated loss of leg circumference when compared to 

a control, and isometric training group (Kubota, Sakuraba, Sawaki, Sumide, & Tamura, 2008). 

Applying a much lower BFR pressure of 50 mmHg (7.7 cm cuff) to the leg of males immobilized 

at the ankle produced similar results in attenuating atrophy (Kubota, Sakuraba, Koh, Ogura, & 

Tamura, 2010). Therefore, available evidence suggests even at very low pressures BFR in the 

absence of exercise elicits favorable responses in skeletal muscle.  

Efficacy Of Blood Flow Restriction With Aerobic Exercise 

Although BFR alone has been shown to slow the loss of muscle mass and strength, 

combining it with low intensity aerobic exercise results in increased muscle mass and strength. 

Walking in combination with BFR applied to the upper thigh using a 5cm cuff inflated to 200 

mmHg increased muscle size and strength after 3 weeks in healthy young men (Abe, Kearns, & 

Sato, 2005) and after 6 weeks in active, older adults (Abe et al., 2010). In addition to 

improvements in muscle size and strength, BFR may also improve cardiovascular fitness. To 

illustrate, treadmill training at a final intensity of 40% VO2max in combination with BFR (11 cm 

cuff, inflated to 200 mmHg) has resulted in improved VO2max of trained basketball players 

following 2 weeks of training (Park et al., 2010). Older, sedentary women walking at 45% heart 

rate reserve while under BFR (5cm cuff; 160-180 mmHg) increased muscle size, strength, and 

VO2peak (control group also increased VO2peak) after 10 weeks of training (Ozaki et al., 2011). 

Cycling at intensities of 40% VO2max for 15 minutes 3 days/week for 8 weeks is also an effective 

modality to improve aerobic capacity, increase muscle size, and strength in young men when 

applying BFR (210 mmHg) (Abe et al., 2010). Improved vascular health has also been shown in 

elderly women after walking with BFR (140-200 mmHg) for 6 weeks (Iida et al., 2010). Thus, 
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combining BFR with aerobic exercise results in small, but meaningful improvements in muscle 

size and strength. 

Efficacy of Blood Flow Restriction With Low-load Resistance Exercise 

BFR with low-load resistance exercise compared to other modalities provides the most 

robust stimulus for increases in muscle mass and strength (Loenneke, Wilson, Marin, Zourdos, & 

Bemben, 2012). Performing elbow flexion exercise while applying BFR to the upper arm using a 

3.3 cm cuff inflated to 100 mmHg in combination with low-load resistance (50-30% 1RM) 

increased skeletal muscle size and strength similar to that of high-load (80%-50% 1RM) 

resistance training in older females after 16 weeks (Takarada et al., 2000). However, the appeal 

of BFR training is the ability to elicit similar adaptations through low workloads. A lower total 

workload is more beneficial when considering elderly and injured populations which may be 

contraindicated to training at high intensities or volumes. Even though low-load resistance 

training to failure results in increased muscle size and strength, BFR training (8 cm cuff; 100 

mmHg) produces similar results with an overall workload 3 times lower, during a 6-week 

training program (Farup et al., 2015). As little as 6 days of elbow flexor training with 30% 1RM 

in combination with BFR (3cm cuff; 100 mmHg) increased muscle volume in men and 

eumenhorrheic women (Sakamaki, Yasuda, & Abe, 2012). Low-load BFR (100-160 mmHg) 

training can also be used to supplement a traditional high-load training program as it has been 

shown to produce favorable results in muscle size, and strength of young men after 6 weeks of 

training (Yasuda et al., 2011). As a supplement to a traditional high-load training program, BFR 

using elastic knee wraps, increased dynamic 1RM squat strength in collegiate football players 

after 7 weeks (Luebbers, Fry, Kriley, & Butler, 2014). This type of training also seems to have a 

positive effect on synergistic muscles that are not directly undergoing restriction of blood flow. 
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For example, BFR (160 mmHg) training with 30% 1RM in young men performing a free-weight 

bench press (Yasuda, Fujita, Ogasawara, Sato, & Abe, 2010) increased chest muscle size despite 

the restriction of blood flow only being applied to the upper arm. Similar results have been found 

in older women undergoing BFR (3.3cm cuff; 80 mmHg) while performing chest press using 

low-intensity elastic bands (Thiebaud et al., 2013). Low-load (30%1RM) bench press training in 

combination with BFR (3 cm cuff; 160 mmHg) for 6 weeks increased muscle size and strength, 

and had no adverse effects on carotid arterial compliance in comparison to a high-intensity load 

(75% 1RM) in young men (Ozaki et al., 2013).  

Possible Mechanisms of Blood Flow Restriction  

The exact mechanism responsible for the muscular adaptations to BFR is not exactly 

clear. The literature suggests it may be due to multiple mechanisms such as cell swelling, 

mechanical stress, and metabolic stress working alone or in concert with one another that 

produces favorable results in skeletal muscle (Pearson, & Hussain, 2014). Cell swelling may be 

responsible for the muscular response to BFR in the absence of exercise. Applying BFR to an 

immobilized limb at 70% arterial occlusion pressure with a 5cm cuff showed no significant 

increases in EMG activity, whole blood lactate, or heart rate indicating no changes in muscle 

activation or metabolic accumulation (Loenneke et al., 2012). However, there was a decrease in 

plasma volume in conjunction with an acute increase in muscle thickness suggesting a shift of 

fluid into muscle cells, which in turn may stimulate anabolic/ anti-catabolic pathways. Although 

previous studies have shown attenuated atrophy and loss of strength in immobilized legs 

undergoing BFR (Takarada, 2000; Kubota, 2008; Kubota, 2010) combining BFR with aerobic 

exercise elicits increased muscle size and strength. When combining low-intensity aerobic 

training with BFR there is an increased venous pooling of blood compared to applying BFR 
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alone. The increased venous pooling may further augment the movement of fluid into the muscle 

cells explaining why BFR in combination with aerobic exercise increases muscle size and 

strength (Loenneke, et al., 2012). In addition to cellular swelling, adding mechanical stress to 

BFR using aerobic exercise may be the mechanism responsible for increases in size and strength. 

However, the increased muscle adaptation with aerobic modalities may not be as great as those 

found in response to BFR resistance exercise. The discrepancy in the amount of muscle size and 

strength gain between the modalities may be due to the addition of metabolic accumulation with 

resistance exercise. To illustrate this comparison, low intensity walking while applying BFR 

resulted in no real differences in whole blood lactate (Loenneke, Thrower, Balapur, Barnes, & 

Pujol, 2011). In contrast, evidence suggests an increase in metabolite accumulation (e.g. pH, 

CO2, and blood lactate) after performing elbow flexion using 20% 1RM while undergoing BFR 

(3cm; 100/160 mmHg), which is enough to augment muscle activation over a repetition matched 

control group (Yasuda et al., 2010). Thus, BFR resistance exercise works through a mechanism 

of cellular swelling (Yasuda, Loenneke, Thiebaud, & Abe, 2012), and in addition it increases 

motor unit recruitment compared to BFR aerobic exercise. Further, the increased recruitment of 

larger motor units while undergoing BFR resistance exercise with low loads is similar to that of 

high load training (Suga et al., 2012). The mechanisms associated with BFR whether working 

alone or with one another are responsible for stimulating pathways associated with muscle 

hypertrophy (Gundermann et al., 2012; Laurentino et al., 2012; Manini et al., 2011). 

Safety Considerations 

 When compared to other types of resistance training, BFR in combination with low load 

resistance exercise does not appear to pose any additional risk to participants with regards to 

muscle damage and blood clotting. At rest, following BFR exercise (5cm cuff; 160 mmHg-240 
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mmHg) with 20% 1RM there were no significant increases from baseline in creatine kinase 

(CK), which is a marker of muscle damage, and Interleukin-6 (IL-6) an inflammation marker, 

indicating a stimulus that does not induce chronic damage to the cellular membrane (Karabulut, 

2013). Further, knee extensions to failure using 30% 1RM with BFR (13.5cm cuff; females-90 

mmHG, males- 100 mmHg) increased translocation of heat shock proteins indicative of stress, 

but showed no observable signs of myofibrillar damage (Cumming, Paulsen, Wernbom, 

Ugelstad, & Raastad, 2014). Following BFR exercise, torque which may be the best indirect 

indicator of muscle damage (Warren, Lowe, & Armstrong, 1999) returned back to baseline 

within 24 hours. Therefore short-term decrements in torque associated with BFR may be 

attributable to muscle fatigue and not necessarily damage. To further illustrate this point, 

applying BFR with no form of exercise had no effect on torque, indicating any change in muscle 

function during BFR exercise may be due to the exercise and not BFR per se (Loenneke, 2013). 

Since BFR training involves a pooling of blood and metabolites such as lactate in working 

muscle thrombus may also be a concern. An investigation of prothrombin fragment I + II, 

thrombin-antithrombin III complex, D-dimer, and fibrin degradation product showed there is no 

increased risk of thrombin or clot formation following leg press exercise at 30% 1RM in 

combination with BFR as there were no increases in blood markers following the protocol 

(Madarame et al., 2010). Additionally, fibrinolytic activity a process involved in breaking down 

blood clots was actually increased after a bout of BFR exercise while markers of inflammation 

and coagulation were not affected (Clark, 2011). In the same study 4 weeks of BFR training did 

not result in any negative effects on nerve or vascular function, in fact, vascular function may 

actually be improved by BFR exercise. Elderly women not only experienced increases in muscle 

size and strength, but also showed improvement in venous compliance following 6 weeks of 
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slow walk training combined with BFR (200 mmHg) (Iida et al., 2011). Similarly, arterial 

compliance was improved after 10 weeks of walk training in sedentary men and women using 

BFR with a 5cm cuff inflated to 200 mmHg (Ozaki, Miyachi, Nakajima, & Abe, 2011). In 

summary, BFR does not appear to pose any greater risk to participants compared to traditional 

resistance training. 

Pressure Application 

As BFR has been established as a stimulus for increases in muscle size and strength the 

application should be carefully considered as further studies are implemented. Applying arbitrary 

pressures in which participant and cuff differences are not accounted for may in fact have an 

effect on the protocol, participant safety and/or comfort, and the overall adaptation to the 

stimulus. For instance, complete arterial occlusion using a 3cm cuff resulted in participants being 

unable to complete a training protocol using repetitions of 30-15-15-15 when compared to 

moderate blood flow restriction (Yasuda et al., 2009). If an investigator inadvertently applies a 

pressure that occludes blood flow this could potentially affect the protocol and physiologic 

responses. For example, comparing various applied pressures (0 mmHg, 98 mmHg, 121 mmHg, 

and 147 mmHg) during BFR exercise resulted in differences in EMG activity during the exercise 

bout (Yasuda, Brechue, Fujita, Sato, & Abe 2008) illustrating the way in which pressure may 

alter the stimulus. An altered stimulus may in fact affect the acute and perhaps chronic 

adaptations to BFR training. For example, venous blood gases and metabolite responses to 

occlusion training are different with pressures of 100 mmHg and 160 mmHg using a 3cm cuff 

(Yasuda et al., 2010). When comparing a 50 mmHg BFR protocol to 200 mmHg, Kubota (2011) 

suggested that a too low a pressure might not be as effective in the attenuation of muscular 

atrophy. However, too high a pressure may potentially increase participant discomfort and risk of 
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negative side effects (Rossow, 2012). Furthermore, the application of high pressures may be 

unnecessary, as it does not seem to provide a more desirable stimulus. Applying BFR (5cm cuff) 

beyond 50% of estimated arterial occlusion pressure did not appear to increase acute muscular 

responses during knee extension training (Loenneke et al., 2014). In summary, there seems to be 

an optimal range of pressure application during training with BFR, which maximizes beneficial 

muscle responses and minimizes participant risk or discomfort. 

Cuff Type and Size 

An important aspect of BFR methodology is the application of pressure through the use 

of elastic bands (Luebbers et al., 2014), elastic inflatable cuffs (Abe et al., 2010), or nylon 

inflatable cuffs (Loenneke et al, 2014). The majority of BFR literature use pneumatic inflatable 

cuffs. The cuff material seems to have little effect on arterial occlusion pressure provided the 

cuffs are the same width (Loenneke et al., 2013), however, an inverse relationship between cuff 

width and arterial occlusion pressure in the upper and lower body exists (Graham, 1993). This 

may be due to the manner in which pressure is transmitted to the underlying tissue. Crenshaw et 

al., 1988 found that wider cuffs in the arms and legs of cadavers transmit a greater percentage of 

the same applied pressure to deeper tissue; in turn this results in a lower pressure needed for 

arterial occlusion. In the upper body, after examining 3 cuff sizes (4.5cm, 8.0cm, and 15.5cm) 

applied to 7 males and 3 females it was found that as cuff width became wider, pressure needed 

for arterial occlusion became lower (Moore, 1987). A study done in the lower body using 

common cuffs found in literature (13.5cm and 5cm) with a large sample of 116 participants 

showed that a wide cuff required lower pressures to occlude blood flow in the supine position. 

Further, it established that limb circumference is the largest predictor of arterial occlusion 

pressure if the same size cuff is being applied (Loenneke, 2012). In addition to having an effect 
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on arterial occlusion pressure, cuff width also elicits different cardiovascular responses as well as 

differences in participant comfort/discomfort. Wider cuffs (13.5cm) resulted in cardiovascular 

responses such as increased heart rate, increased brachial and central blood pressures, as well as 

higher ratings of perceived exertion and pain when compared to narrow cuffs (5 cm) inflated to 

the same pressure (130% of brachial systolic blood pressure) (Rossow, 2012). Further, one 

potential issue concerning the use of wide cuffs may be the diminished effect on increased 

muscle size. After a 4-week ischemic training protocol Kacin, and Strazar (2011) found that 

increases in cross-sectional area were smaller in the area of the muscle under cuff application. 

However, the difference in muscle size increases could also be due to the high pressure used for 

the study (230 mmHg), or heterogeneity of muscle as size increases are not typically uniform 

along the length of the muscle (Yasuda, Loenneke, Thiebaud, & Abe 2012). Regardless, using a 

narrow cuff could potentially minimize any effects on muscle adaptation if there is an adverse 

effect due to cuff application.  

Pressure For Arterial Occlusion 

When applying BFR, inflation pressure should be made relative to the individual 

(Loenneke et al., 2013a). This ensures that all participants are receiving a similar stimulus. 

Currently, the same pressures are being applied to participants in upper body BFR studies 

regardless of differing cuff widths and individual differences (Table 1 and Table 2). All tissue 

underneath the cuff does not necessarily experience the same pressure applied by the cuff, in fact 

the deeper tissue experiences less pressure than tissue closer to the surface (Shaw & Murray, 

1982). This is illustrated by a study that shows as the limb circumference becomes larger the 

pressure needed for occlusion becomes greater as well (Van Roekel, 1984). Individual 

differences, especially as they pertain to limb circumference should be considered when applying 
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BFR. In the upper and lower body 171 participants were tested using a 5cm cuff to determine 

which factors explained the most variance in arterial occlusion pressure. It was observed in the 

upper body while in the supine position, limb circumference and brachial systolic blood pressure 

should be accounted for when determining pressures for BFR training (Loenneke, 2014). 

However, no literature exists in the upper body using a large sample size to explain the 

differences between various common cuff widths and the effect they have on arterial occlusion 

pressure in the standing position.  



 

 17

CHAPTER III: METHODOLOGY 

Participants 

Two hundred and forty nine participants (102 males, 147 females) between the ages of 

18-35 years old were recruited for the study through the use of flyers posted on campus, word of 

mouth, and class announcements on the campus of The University of Mississippi. Participants 

were required to fill out an exclusion criteria form. This form was aimed at identifying any 

exclusion criteria such as age outside of 18-35 years old, currently taking medication for 

hypertension, eating within 2 hours, or having ingested caffeine within 8 hours of testing. If the 

participant did not meet any exclusion criteria they were then asked to read, understand, and sign 

an informed consent form as well as complete a health history questionnaire.  

Inclusion Criteria 

1. Between the ages 18-35 years. 

2. Not taking medication for hypertension. 

3. Fasted for at least 2 hours before testing. 

4. No ingestion of caffeine within 8 hours of testing 

Exclusion Criteria 

1. Outside the ages of 18-35 years. 

2. Taking medication for hypertension. 

3. Eating within 2 hours of testing 
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4. Ingested caffeine within 8 hours of testing. 

Experimental Design 

 Upon arriving at the laboratory participants had their height and body mass measured. 

Next, limb circumference and length of the right upper arm was measured. Afterwards, 

participants were asked to rest comfortably in the seated position for 10 minutes. Once the 

participant rested for 10 minutes, systolic and diastolic blood pressure was measured using an 

automatic blood pressure machine. Participants remained seated and rested comfortably for 5 

minutes. Following 5 minutes of rest, participants were asked to stand and a cuff was applied for 

the determination of arterial occlusion pressure #1. Once arterial occlusion pressure #1 was 

determined the cuff was deflated and removed. Participants were again asked to sit and relax 

comfortably for 5 minutes. At the conclusion of the rest period participants were asked to stand. 

At that time the second cuff was applied and arterial occlusion pressure #2 was determined, after 

which the cuff was immediately deflated and removed. Another seated rest period of 5 minutes 

was observed after which arterial occlusion pressure #3 was determined. Once arterial occlusion 

pressure #3 was measured the cuff was deflated and removed, completing the testing session. 

The cuffs widths (5cm, 10cm, 12cm) were applied in a randomized order. 

Height and Body Mass 

 Standing height was measured to the nearest 0.1cm using a stadiometer. Participants were 

asked to remove shoes and any headwear or high hairstyles that may affect an accurate 

measurement. They were asked to stand up straight with heels together and against the 

stadiometer platform. Body mass was measured using a digital scale to the nearest 0.1kg. 

Participants were asked to remove shoes, excess clothing, and anything from their pockets to 

ensure a more accurate body mass measurement. 
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Blood Pressure 

 Systolic and diastolic blood pressure was measured using an automated blood pressure 

machine (Omron #HEM-907XL) in the seated position by applying the appropriate sized cuff to 

the right arm. At least two measurements were taken and the values were averaged. If the 

measurements differed by more than 5 mmHg a subsequent measure was taken. 

Limb Anthropometry 

 Limb circumference and length were assessed on the right arm using a body tape 

measure. Limb circumference was measured at a distance halfway between the acromion and 

olecranon processes. Limb length was measured as the distance from the acromion process to the 

lateral epicondyle. 

Arterial Occlusion Pressure 

 In the standing position one of three cuffs (SC5-5cm, SC10-10cm, SC12-12cm; 

Hokanson, Bellevue, WA, USA) was applied to the proximal portion of the right arm. Arterial 

pressure was determined by detecting a pulse using a handheld bidirectional Doppler probe 

placed at the radial artery. The cuffs were connected to an E20 Rapid Cuff Inflator (Hokanson, 

Bellevue, WA, USA) and inflated until the point at which no pulse was detected. The inflation 

pressure was recorded to the nearest 1 mmHg as arterial occlusion pressure (AOP). Upon 

determining AOP the cuff was immediately deflated. The process was repeated two more times 

using the remaining cuff sizes. Five minutes of rest separated each trial of arterial occlusion 

pressure. Cuffs sizes were applied in a randomized order. 

Statistical Analyses 

 A one way repeated measures ANOVA was used to determine differences in AOP 

between cuff widths. If significant, a post hoc Fisher’s LSD was used to determine where the 
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differences were amongst cuffs. Hierarchical linear regression was used to determine which 

variables best predicted AOP for each cuff. Predictors were entered into the model in blocks 

starting with Block 1, which consisted of arm circumference and bSBP as they have both been 

shown to predict arterial occlusion pressure in the upper body. Block 2 added in bDBP and arm 

length due to bDBP having been a small predictor of AOP and limb length due to the assumption 

that a longer limb would result in a longer blood vessel in turn creating an increased resistance to 

blood flow. The final block, Block 3 added in sex, as it has not been shown to be a significant 

predictor of AOP. Changes in Pearson correlation, part correlation coefficient, R2, standard error 

of the estimate (SEE), and the change in F-value was determined for each block. Variance 

inflation factor and Pearson correlations were used to determine the degree of multicollinearity 

of the ith independent variable with other independent variables for all hierarchical regression 

models. Multicollinearity between variables was defined as a VIF ≥ 10 and/or Pearson 

correlations of 0.85 or greater. To determine if sex differences existed in AOP across cuff 

widths, a repeated measures ANOVA with a between subject factor of sex was used. If there was 

an interaction, a Fishers LSD test was used to identify differences between cuff widths within 

each sex and independent sample t-tests were used to identify differences for sex within each 

cuff width. Cohen’s d was used to determine the magnitude of difference. Data was analyzed 

using SPSS statistical software package version 19.0 (SPSS Inc., Chicago, IL). Significance was 

set at p ≤ 0.05.
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Table 1. Acute Upper Body BFR Exercise Studies 

Author, Year Cuff Width (cm) Final Pressure (mmHg) Exercise Position 

Barnett, 2015 5 40% AOP Elbow Flexion Standing 

Brandner, 2014 10.5 80% SBP/ 130% SBP Elbow Flexion Unreported 

Counts, 2015 5 40-90% AOP Elbow Flexion Standing 

Dorneles, 2015 14.5 SBP – 20 Elbow Flexion Unreported 

Garten, 2015 Unreported SBP – 20 Elbow Flexion Unreported 

Goldfarb, 2008 10 SBP – 20 Elbow Flexion Unreported 

Hollander, 2010 Unreported SBP – 20 Elbow Flexion Unreported 

Madarame, 2010 3 130 Elbow Flexion/ Extension Unreported 

Maior, 2015 14 SBP – 20 Elbow Flexion Standing 

Neto, 2014 6 80% AOP Elbow Flexion/ Extension Unreported 

Neto, 2014 6 80% SBP Elbow Flexion/ Extension Unreported 

Reeves, 2006 Unreported SBP – 20 Elbow Flexion Standing 

Sato, 2005 3 150% SBP Elbow Flexion/ Extension Unreported 

Thiebaud, 2013 3 120 Elbow Flexion Standing 

Thiebaud, 2014 3.3 120 Elbow Flexion Unreported 

Vieira, 2013 Unreported 120 Elbow Flexion Seated 

Vieira, 2014 Unreported 110 Elbow Flexion Unreported 

Yasuda, 2006 3 100% SBP Bench Press Supine 

Yasuda, 2008 3 0%, 80%, 100%, 120% SBP Elbow Flexion Seated 

Yasuda, 2009 3 160/ 300 Elbow Flexion Seated 

Yasuda, 2010 3 100/ 160 Elbow Flexion Seated 

Yasuda, 2013 3 160 Elbow Flexion Seated 

Yasuda, 2014 3 160 Elbow Flexion Unreported 
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Table 2. Chronic Upper Body BFR Exercise Studies 

Author, Year Cuff Width (cm) Final Pressure (mmHg) Exercise Position 

Burgomaster, 2003 12 100 Elbow Flexion Seated 

Counts, 2015 5 40-90% AOP Elbow Flexion Standing 

Credeur, 2010 Unreported 80 Handgrip Unreported 

Farup, 2015 8 100 Elbow Flexion Seated 

Hunt, 2012 13 80 Handgrip Unreported 

Leubbers, 2014 7.6 Unknown Bench Press Unreported 

Lowery, 2014 Unreported  Elbow Flexion Unreported 

Moore, 2004 7 100 Elbow Flexion Seated 

Ozaki, 2013 3 160 Bench Press Supine 

Sakamaki, 2012 3 100 Elbow Flexion Unreported 

Takarada, 2000 3.3 ~110 (avg) Elbow Flexion Seated 

Thiebaud, 2013 3.3 120 Chest Press, Row, Shoulder Press Seated 

Weatherholt, 2013 3 180 Elbow Flexion/ Extension Seated 

Yamanaka, 2012 5 Unknown Bench Press Unreported 

Yasuda, 2010  Unreported 160 Bench Press Supine 

Yasuda, 2011  Unreported 160 Bench Press Supine 

Yasuda, 2011 Unreported 160 Bench Press Supine 

Yasuda, 2012 3 160 Elbow Flexion Unreported 

Yasuda, 2014  3 170-260 Elbow Flexion/ Extension Seated 

Yasuda, 2014 3 270 Elbow Flexion/ Extension Unreported 
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CHAPTER IV: RESULTS 

Participant Characteristics 

Two hundred forty-nine participants met inclusion criteria and consented to participate in 

the study. Of the 249 participants, 102 were male and 147 were female (41% and 59% 

respectively). Participant characteristics for the entire data set can be found in Table 3. Further, 

participant characteristics were separated by sex to examine any differences between males and 

females; these differences can be found in Table 4. Significant differences were present in age (p 

= 0.001), height (p < 0.001), body mass (p < 0.001), arm circumference (p < 0.001), arm length 

(p < 0.001), brachial systolic blood pressure (bSBP) (p < 0.001), and arterial occlusion pressure 

(AOP) for cuff widths of 5 cm (p = 0.003), 10 cm (p = 0.002) and 12 cm (p = 0.009). However, 

no differences existed in brachial diastolic blood pressure (bDBP) between sexes (p = 0.309). 

The largest differences (as determined by Cohen’s d) between sexes were for height (d = 2.27), 

body mass (d = 1.30), arm circumference (d = 1.31), and arm length (d = 1.71). It is of note the 

effect size for sex differences in AOP for each cuff width were; d = 0.36 (5 cm), d = 0.46 (10 

cm), and d = 0.33 (12 cm). 
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Table 3. Total participant characteristics (n = 249).  

Variable Mean (SD) Minimum Maximum 

Age (yr) 21 (2) 18 34 

Height (cm) 170.5 (9.8) 146 200 

Body mass (kg) 74.4 (16.2) 45 141 

Arm Circ (cm) 32.7 (4.8) 22 47 

Arm Length (cm) 33.2 (2.7) 23 41 

bSBP (mmHg) 110 (10) 89 148 

bDBP (mmHg) 65 (8) 48 105 

AOP 5cm (mmHg) 145 (19) 108 239 

AOP 10cm (mmHg) 123 (13) 95 175 

AOP 12cm (mmHg) 120 (12) 92 166 

BMI: Body Mass Index; Arm Circ: Arm Circumference; bSBP: Brachial Systolic 

Blood Pressure; bDBP: Brachial Diastolic Blood Pressure; and AOP: Arterial 

Occlusion Pressure. 
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Table 4. Participant characteristics Male (n = 102) and Female (n = 147)  

 Male  Female  

Variable Mean (SD) Minimum Maximum  Mean (SD) Minimum Maximum Cohen’s d 

Age (yr) 22 (3) 18 34  21 (2)* 18 34 0.40 

Height (cm) 179.4 (7.0) 164 200  164.3 (6.4)* 146 184 2.27 

Body mass (kg) 84.9 (14.9) 62 141  67.1 (12.7)* 45 121 1.30 

Arm Circ (cm) 35.8 (3.9) 28 47  30.5 (4.1)* 22 47 1.31 

Arm Length (cm) 35.3 (2.1) 30 41  31.8 (2)* 23 36 1.71 

bSBP (mmHg) 114 (9) 91 148  107 (9)* 89 136 0.7 

bDBP (mmHg) 65 (8) 48 85  66 (9) 48 105 -0.11 

AOP 5cm (mmHg) 149 (19) 113 239  142 (19)* 108 229 0.36 

AOP 10cm (mmHg) 127 (13) 102 175  121 (13)* 95 166 0.46 

AOP 12cm (mmHg) 122 (12) 95 166  118 (12)* 92 155 0.33 

BMI: Body Mass Index; Arm Circ: Arm Circumference; bSBP: Brachial Systolic Blood Pressure; bDBP: Brachial Diastolic 

Blood Pressure; and AOP: Arterial Occlusion Pressure. Significant differences between males and females indicated by * (p < 

0.05). 
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Arterial Occlusion Pressure 

 A one-way repeated measures ANOVA revealed significant differences in AOP between 

cuff widths (Figure 1, p < 0.001). Pairwise comparisons showed AOP was highest for the 5cm 

wide cuff compared to the 10 cm (p < 0.001) and 12 cm wide cuff (p < 0.001). Also, AOP for the 

10 cm wide cuff was higher in comparison to the 12 cm wide cuff (p < 0.001). Independent t-

tests revealed significant differences in AOP between sexes for the 5 cm (p = 0.003), 10 cm (p = 

0.002), and 12 cm (p = 0.009) wide cuffs (Figure 2). Further, within each sex, AOP was highest 

for the 5cm cuff and lowest for the 12cm wide cuff (5 cm > 10 cm > 12 cm, Figure 2). 

 

 
Figure 1. Cuff Width Arterial Occlusion Pressure 

Cuffs with different letters represent significant differences in arterial occlusion pressure (p < 

0.05). Variability represented as standard deviations. 
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Figure 2. Sex Differences in Arterial Occlusion Pressure 

Significant difference in arterial occlusion between males and females indicated by * (p<0.05). 

Variability represented as standard deviations. 

Hierarchical Regression Models 

 The hierarchical linear regression model for the 5 cm wide cuff can be found in Table 5. 

Block 3 consisting of arm circumference, bSBP, upper arm length, bDBP, and sex explained the 

most variance for this cuff width. Examining standardized betas and part correlation coefficients 

revealed that arm circumference explained the most unique variance in each individual block. 

The model for the 10 cm wide cuff can be found in Table 6. Block 3 consisting of arm 

circumference, bSBP, upper arm length, bDBP, and sex explained the most variance for this cuff 

width. Examining standardized betas and part correlation coefficients revealed that arm 

circumference explained the most unique variance in block 2 and 3, whereas bSBP explained the 

most unique variance in block 1. The hierarchical model for the 12 cm wide cuff can be found in 

Table 7. Block 3, which consisted of arm circumference, bSBP, upper arm length, bDBP, and 

sex explained the most variance for this cuff width. Examining standardized betas and part 

correlation coefficients revealed that bSBP explained the most unique variance in each individual 
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block. As cuff width changed, the part correlation coefficient for each variable also changed. 

Figure 3 illustrates the difference in part correlation coefficients of each variable within block 3 

(which explained the most variance) for each cuff width. When partialing out the effects for all 

other variables, arm circumference explained the most unique variance in AOP for the 5 cm wide 

cuff (Part = .554), as well as the 10 cm (Part = .419), and 12 cm (Part = .406) cuffs. Brachial 

systolic blood pressure was the next largest predictor for the 5 cm (Part = .355), 10 cm (Part = 

.366), and 12 cm (Part = .387) wide cuffs. Arm length was not a significant predictor of AOP for 

any cuff widths. Brachial diastolic blood pressure did not explain much variance for any of the 

three cuff widths (5 cm Part = .068, 10 cm Part = .094, and 12 cm Part = .081. Sex, similar to 

bDBP did not explain much variance for any cuff widths (5 cm Part = .199, 10 cm Part = .144, 

and 12 cm Part = .156).  
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Table 5. Model for 5 cm wide cuff 

Block 1 Stand. β p Value Part   

Arm Circumference .528 < .001 .527   

bSBP .481 < .001 .480   

 R R2 SEE Mean Square Error Sig. F Change 

 .741 .550 13.3 178.3 < .001 

Block 2 Stand. β p Value Part   

Arm Circumference .605 < .001 .519   

bSBP .390 < .001 .297   

Upper Arm Length -.184 < .001 -.153   

bDBP .216 < .001 .169   

 R R2 SEE Mean Square Error Sig. F Change 

 .782 .611 12.4 155.2 < .001 

Block 3 Stand. β p Value Part   

Arm Circumference .715 < .001 .554   

bSBP .521 < .001 .355   

 Upper Arm Length -.058 .259 -.043   

bDBP .096 .073 .068   

Sex .315 < .001 .199   

 R R2 SEE Mean Square Error Sig. F Change 

 .807 .651 11.8 140.0 < .001 

bSBP: Brachial Systolic Blood Pressure; bDBP: Brachial Diastolic Blood Pressure. 
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Table 6. Model for 10 cm wide cuff 

Block 1 Stand. β p Value Part   

Arm Circumference .408 < .001 .407   

bSBP .547 < .001 .545   

 R R2 SEE Mean Square Error Sig. F Change 

 .707 .49 9.8 96.4 < .001 

Block 2 Stand. β p Value Part   

Arm Circumference .462 < .001 .396   

bSBP .443 < .001 .338   

Upper Arm Length -.137 .009 -.113   

bDBP .220 < .001 .172   

 R R2 SEE Mean Square Error Sig. F Change 

 .741 .549 9.3 87.5 < .001 

Block 3 Stand. β p Value Part   

Arm Circumference .541 < .001 .419   

bSBP .537 < .001 .366   

 Upper Arm Length -.046 .422 -.034   

bDBP .133 .026 .094   

Sex .227 .001 .144   

 R R2 SEE Mean Square Error Sig. F Change 

 .755 .570 9.1 83.8 .001 

bSBP: Brachial Systolic Blood Pressure; bDBP: Brachial Diastolic Blood Pressure. 
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Table 7. Model for 12 cm wide cuff 

Block 1 Stand. β p Value Part   

Arm Circumference .373 < .001 .372   

bSBP .558 < .001 .556   

 R R2 SEE Mean Square Error Sig. F Change 

 .694 .481 9.3 86.5 < .001 

Block 2 Stand. β p Value Part   

Arm Circumference .438 < .001 .376   

bSBP .466 < .001 .355   

Upper Arm Length -.160 .003 -.133   

bDBP .208 < .001 .163   

 R R2 SEE Mean Square Error Sig. F Change 

 .730 .533 8.8 78.5 < .001 

Block 3 Stand. β p Value Part   

Arm Circumference .524 < .001 .406   

bSBP .568 < .001 .387   

 Upper Arm Length -.062 .288 -.045   

bDBP .114 .060 .081   

Sex .246 < .001 .156   

 R R2 SEE Mean Square Error Sig. F Change 

 .747 .557 8.6 74.7 < .001 

bSBP: Brachial Systolic Blood Pressure; bDBP: Brachial Diastolic Blood Pressure. 
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Figure 3. Part Correlation Coefficients for Cuff Widths 

Arm Circum = 50% arm circumference; bSBP = brachial systolic blood pressure;  

bDBP = brachial diastolic blood pressure. 

Multicollinearity 

 None of the variables met the criteria for multicollinearity as determined by no values of  

VIF ≥ 10 (Table 8, highest observed value = 2.4), and no correlation coefficients ≥ 0.85 (Table 9, 

highest observed value = 0.607). 

 

Table 8. Variance Inflation Factors 

Variables VIF 

Arm Circumference 1.6 

bSBP 2.1 

Arm Length 1.8 

bDBP 1.9 

Sex 2.4 

bSBP: Brachial Systolic Blood Pressure; bDBP: Brachial Diastolic 

Blood Pressure. 
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Table 9. Values for Multicollinearity Amongst Variables 

 Arm 

Circ 

bSBP Arm 

Length 

bDBP Sex 

Arm Circ - .076 .499* .100 -.542* 

bSBP .076 - .250* .607* -.308* 

Arm 

Length 

.499* .250* - .076 -.647* 

bDBP .100 .607* .076 - .065 

Sex -.542* -.308* -.647* .065 - 

Arm Circ; Arm Circumference; bSBP: Brachial Systolic Blood Pressure; 

and bDBP: Brachial Diastolic Blood Pressure. * denotes significance 

(p<0.05). 

 

Regression Formulas 

The formula for each cuff width is as follows (Sex: Male = 0, Female = 1). 

AOP 5 cm (mmHg) = 2.926 (Arm circumference) + 1.002 (bSBP) – 0.428 (Arm Length) + 

0.213 (bDBP) + 12.668 (Sex) – 68.493 

AOP 10 cm (mmHg) = 1.545 (Arm circumference) + 0.722 (bSBP) – 0.235 (Arm Length) + 

0.205 (bDBP) + 6.378 (Sex) – 15.918 

AOP 12 cm (mmHg) = 1.393 (Arm circumference) + 0.710 (bSBP) – 0.294 (Arm Length) + 

0.164 (bDBP) + 0.6419 (Sex) – 8.752
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CHAPTER V: DISCUSSION 

 This study revealed significant differences in arterial occlusion pressure (AOP) when 

comparing 5 cm, 10 cm, and 12 cm cuff widths applied to the upper arm. In addition, significant 

differences in AOP were present between males and females for each cuff. It was found that a 

model consisting of arm circumference, brachial systolic blood pressure (bSBP), arm length, 

brachial diastolic blood pressure (bDBP), and sex explained the most variance in AOP for all 

three cuffs. However, when controlling for all other variables arm circumference was responsible 

for explaining the most unique variance in AOP for each cuff width, followed by bSBP. In 

comparison, bDBP and sex seemed to explain little unique variance. Furthermore, upper arm 

length was not a significant predictor of AOP for any cuff. As the cuff became wider the amount 

of unique variance explained by arm circumference became less, however it was still responsible 

for explaining the most unique variance for all three cuff widths. 

Main Findings 

1.  There were significant differences in AOP between 5 cm, 10 cm, and 12 cm wide cuffs 

a. The pressure required for arterial occlusion was greatest when applying the 5cm 

wide cuff and lowest when applying the 12 cm wide cuff. 

2. Arterial occlusion pressure was significantly higher for males than females for each cuff 

width.
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3. A model consisting of arm circumference, bSBP, arm length, bDBP, and sex explained 

the most variance in AOP for each cuff width. 

4. Arm circumference explained the most unique variance for each cuff when controlling 

for all other variables. 

Arterial Occlusion Pressure 

The results of the present study determined that there were significant differences in AOP 

across the three different cuff widths applied in the upper body. A narrow cuff required a higher 

inflation pressure to occlude blood flow in comparison to a wider cuff. This was evident in our 

data when comparing 5 cm cuff (mean AOP = 145 mmHg), 10 cm cuff (mean AOP = 123 

mmHg), and 12 cm cuff (mean AOP = 120 mmHg) widths. In congruence with our findings, 

Loenneke et al. (2012) found that wide nylon cuffs (13.5 cm) occluded blood flow at a lower 

pressure compared to a narrow elastic cuff (5 cm) in participants lying in the supine position. 

Similar relationships between cuff width and AOP have been found in the upper (Crenshaw et al. 

1988; Graham et al. 1990; Moore et al. 1987) and lower body (Alastair et al. 2004; Crenshaw et 

al. 1988; Graham et al. 1990). The differences in AOP due to cuff width seem to be explained by 

the way pressure applied from the cuff is distributed to tissue underneath. Hargens et al. (1987) 

studied the distribution pattern of tissue fluid pressure underneath an 8 cm wide cuff and 

observed a peak in pressure at mid-cuff accompanied by a decrease in tissue fluid pressure as 

distance to the cuff edges became smaller. Further investigation by Crenshaw et al. (1988) 

compared these patterns using an 18 cm wide cuff on the thighs and a 12 cm wide cuff on the 

arms of disarticulated cadavers. At the same inflation pressure the authors observed a wider 

plateau of high tissue fluid pressure mid-cuff using the wider option, meaning a larger amount of 

tissue was exposed to a higher pressure versus the narrow cuff distribution. Furthermore, there 
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was less disparity between the tissue fluid pressure in deep tissue and the applied pressure from 

the wide cuff compared to a narrow cuff inflated to the same pressure.  

Factors Predicting AOP 

An investigation of the factors thought to influence AOP revealed a model that consisted 

of arm circumference, bSBP, upper arm length, bDBP, and sex explained the most variance for 

all three cuff widths. Of these variables, arm circumference explained the most unique variance 

in AOP for each cuff when partialing out the effects of all other variables. This coincides with 

previous data in the lower body by Loenneke et al. (2012) showing limb circumference to be the 

largest predictor of AOP when applying a wide or narrow cuff. Moore et al. (1987) also found 

the same to be true in the upper body when comparing multiple cuff widths, though the sample 

size was quite small (n = 10). Loenneke et al. (2015) further supported this using a 5 cm wide 

cuff applied to 171 participants in the supine position. Interestingly, a model including 

composition of the limb (i.e. muscle and fat) did not explain any additional unique variance in 

AOP when compared to a model including limb circumference of the upper (Loenneke et al. 

2015) and lower body (Loenneke et al. 2012; Loenneke et al. 2015). According to Hargens et al. 

(1987) the amount of pressure within the limb is a function of tissue depth. The distribution of 

pressure from cuff inflation creates a pattern such that subcutaneous tissue experiences a greater 

percentage of applied pressure compared to the deep tissue. Moreover, the disparity between 

subcutaneous and deep tissue fluid pressure becomes even greater as limb size increases. The 

data from Shaw and Murray (1982) supports this concept as the authors found that mean tissue 

fluid pressure in the thigh of cadavers was lower in larger legs. Therefore, as circumference of 

the limb increases, a greater cuff inflation pressure would need to be applied in order to create a 

large enough tissue fluid pressure for arterial occlusion. 
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In the present study bSBP was the next largest predictor of AOP for each cuff width, 

although the significance of bSBP in predicting AOP has been variable in the upper and lower 

body. For example, in the lower body, Alastair et al. (2004) determined bSBP alone was not 

correlated well enough with AOP to be used as a predictor. Similarly, Loenneke et al. (2012) 

questioned the method of using bSBP for prediction of AOP in the lower body, as it did not 

explain any additional variance when added to a model consisting of leg circumference, ankle 

blood pressure, and bDBP. The authors determined using ankle blood pressure seems to be a 

more appropriate measure to determine AOP in the lower body, as it is more specific to the limb 

being measured. In the upper body, Moore et al. (1987) concluded bSBP was not a significant 

predictor of AOP when applying cuff widths of 4.5 cm, 8 cm, and 15.5 cm to seven males and 

three females. In contrast, the current study, as well as Loenneke et al. (2015) found bSBP to be 

a significant predictor of AOP in the upper body. However, limb circumference was still 

responsible for explaining the most unique variance when accounting for all other variables. 

Interestingly, Van Roekel and Thurston (1985) determined bSBP to be more important than limb 

circumference when determining AOP for the upper and lower body. It is of note the participants 

were under anesthesia so it would be difficult to compare differences between studies. Also, if 

the cuff (45.2 cm wide) used to determine AOP in the upper body was similar in width to the 

cuff for blood pressure measures it seems reasonable to believe the numbers would be quite 

similar.  

To our knowledge, no previous research has been conducted to specifically investigate 

the relationship between AOP and arm length. However, we chose to include upper arm length in 

the model due to the possible role it has in hemodynamics. Blood pressure is dependent upon 

many variables such as viscosity, as well as the diameter and length of the blood vessel. When 
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all other variables remain unchanged, increasing or decreasing the length of a vessel will change 

the fluid pressure within that blood vessel (Widmaier, Raff, & Strang, 2011). When controlling 

for all other variables, upper arm length did not explain any additional variance in AOP for any 

cuff width. We hypothesized this particular finding may be due to the vessel length restricted by 

the cuff remaining constant within and between subjects (due to cuff width application); 

therefore no change in pressure would result. In comparison, the limb circumference does not 

change within subjects, but does change between subjects. To illustrate this point, a 5 cm wide 

cuff applied to a long limb would restrict the same length (5 cm) of blood vessel when applied to 

a short limb. Although the vessel length may change between participants with arm length the 

portion of that vessel being restricted by the cuff remains the same.  

Brachial diastolic blood pressure was responsible for explaining some variance in AOP 

for all three cuffs, although the amount was small in comparison to arm circumference and 

bSBP. This agreed with data from Loenneke et al. (2012 and 2015) in the lower body and the 

upper body. The difference in variance explained by bDBP and bSBP may be due to the 

similarity of AOP measurements and bSBP in the upper body, given that AOP is the lowest 

restrictive pressure at which blood flow is ceased and bSBP is the highest restrictive pressure at 

which blood flows after being occluded. Similar to bDBP, sex differences explained little 

variance in AOP in comparison to arm circumference and bSBP. To our knowledge no previous 

studies have been designed to look at the specific relationship between sex and AOP. 

 

Cuff Width Changes 

Across cuff widths the amount of unique variance explained by arm length, bDBP, and 

sex was relatively small when controlling for all other variables. As previously mentioned, arm 
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circumference explained the most variance for each cuff, however, as the cuff became wider the 

amount of unique variance explained by circumference became less. Crenshaw et al. (1988) also 

suggested limb circumference becomes less of a factor for wider cuffs, yet the present data 

revealed it was still responsible for explaining the most unique variance in AOP, even for the 

widest cuff (12 cm). However, Loenneke et al. (2012) determined limb circumference had a 

greater influence on AOP for a wide cuff compared to a narrow cuff in the lower body. This 

discrepancy could potentially be due to some methodological differences. The wide cuff used by 

Loenneke et al. (2012) was nylon whereas the narrow cuff used was elastic and exerts an initial 

pressure when placed on the limb. Also, the present study was conducted in the upper body with 

participants in the standing position compared to the supine position.  

In comparison to arm circumference, bSBP explained less unique variance for the 5 cm 

wide cuff. Even though bSBP explained a greater portion of variance as cuff width became larger 

it was still not as much as that uniquely explained by arm circumference. Although previous 

research varies as it pertains to bSBP being a significant predictor of AOP, Loenneke et al. 

suggests it is logical in the upper body given how similar the two measurements are. It is 

reasonable to believe that bSBP would explain more variance in AOP if the cuff size used to 

restrict blood flow was similar to the one used for blood pressure measurements. Graham et al. 

(1990), examined AOP as a function of the ratio between cuff width and limb circumference, 

stating AOP would become sub-systolic at a ratio greater than 0.3. Although the present data 

does not support this exact idea it does seem to support the trend of an increasingly larger cuff 

width to limb ratio resulting in a lower pressure needed for AOP. 
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Sex Differences 

 Differences in AOP were present between sexes, resulting in a higher pressure needed to 

occlude blood flow in males for all three cuff widths. Although previous studies included males 

and females as participants when investigating cuff width differences, none to our knowledge 

have been specifically designed to investigate the effect sex differences have on AOP. However, 

Loenneke et al. (2015) retrospectively separated differences by sex and determined 

circumference was still responsible for explaining the most variance in AOP. Even though 

differences existed in AOP between sexes they seem to be driven by anthropometric differences, 

more specifically differences in limb circumference. As determined by effect sizes the largest 

differences between males and females were height, body mass, arm circumference, and arm 

length. Of these variables, arm circumference has been repeatedly demonstrated to be a large 

predictor of AOP, and therefore it can be reasonably assumed to be driving the differences 

between sexes. 
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CHAPTER VI: CONCLUSIONS 

 The purpose of this study was to compare the effects common cuff widths used in blood 

flow restriction (BFR) would have on arterial occlusion pressure (AOP) of the upper body. In 

addition, the study was designed to examine which factors (arm circumference, brachial systolic 

blood pressure (bSBP), arm length, brachial diastolic blood pressure (bDBP), and sex) were 

responsible for predicting AOP and how those factors would change between cuff widths used.  

Hypothesis 

It was hypothesized that as the cuff became wider it would result in a lower pressure 

needed for arterial occlusion (AOP). 

The hypothesis was supported by the data. The 5 cm cuff required the greatest amount of 

pressure in order to occlude blood flow, followed by the 10 cm cuff. The 12 cm cuff required the 

least amount of pressure to reach arterial occlusion. 

Sub question 

As cuff width changes, will limb circumference, brachial systolic blood pressure, brachial 

diastolic blood pressure, limb length and sex differences explain the variance in arterial 

occlusion differently? 

Sub-hypothesis 

It was hypothesized that limb circumference would explain the most variance for 

each cuff width used in the upper body.
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The hypothesis was supported by the data. Although the amount of unique variance explained by 

arm circumference became less as the cuff became wider, it was still responsible for explaining 

the largest amount of unique variance in AOP for each individual cuff.  

Significance 

 Blood flow restriction in combination with low load resistance training is a safe, effective 

modality to improve muscle mass and strength. This type of training may be a useful alternative 

to those contraindicated to high load resistance training. Training with BFR, or research 

investigating BFR should be done so only after careful consideration of the cuff width being 

applied. Results of the present study indicate AOP in the upper body is different when applying 

various cuff widths in the standing position. This highlights the need for researchers to identify 

the cuff width used in order for methodology to be truly replicable. In addition, rather than using 

an arbitrary inflation pressure (i.e. same pressure for each individual) for BFR in the upper body 

it should be based upon individual differences, specifically differences in arm circumference and 

bSBP, thus ensuring all participants are receiving the same relative stimulus. Given that low load 

resistance exercise in combination with BFR has been shown to increase muscle size and 

strength to a similar degree across low and high pressures (Counts et al. 2015), being able to 

avoid these higher pressures may potentially reduce the risk of adverse effects. Lastly, the 

equations derived from this study will provide a quick, inexpensive way for researchers and 

clinicians to determine AOP in the upper body using three common cuff widths. 

Future Research 

 Data from the current study should be followed up in future studies by determining what 

differences exist between common cuff widths applied during BFR exercise. Also, as AOP is not 
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a measure of blood flow volume it should be investigated how blood flow is impacted by 

variables such as cuff width, arm circumference, bSBP, arm length, bDBP, and sex differences.
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