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ABSTRACT 

The application of blood flow restriction during low load exercise has consistently been 

shown to augment muscle hypertrophy which has been attributed to metabolic accumulation. It 

remains unknown, however, whether metabolites can augment muscle growth independent of 

further mechanical tension, specifically when maintained post high-load training. Thirteen 

untrained individuals performed 24 training sessions. The control arm performed one set of 

elbow flexion (70% 1RM) exercise to volitional fatigue, while the experimental arm performed 

the same protocol immediately followed by 3 min of blood flow restriction (70% arterial 

occlusion). Both conditions completed the same volume (3687 vs. 3638 kg) of exercise. There 

was an interaction (p=0.031) demonstrating an attenuation of muscle growth at the 60% site in 

the experimental [pre: 3.1 (0.6), post: 3.1 (0.7) cm] vs. control [pre: 3.1 (0.7), post 3.3 (0.7) cm] 

condition. Muscle growth at the 50% site did not differ between the experimental [pre: 2.9 (0.6), 

post 2.9 (0.6) cm] and control [pre: 2.8 (0.7), post: 2.9 (0.6) cm] condition (p=0.31) nor did it 

differ at the 70% site [experimental pre: 3.3 (0.60), post 3.5 (0.7) cm; control pre: 3.4 (0.7), post 

3.6 (0.7) cm]. Although there were no differences at the group level, there were attenuations at 

the individual level. The number of measured sites displaying growth at or outside the error of 

the measurement was greater in the control (21) vs. experimental (10) condition. The application 

of blood flow restriction post high-load exercise did not augment, but appeared to attenuate 

muscle growth at the group and individual level. With regard to one-repetition maximum 

strength, increases were observed in both the control [pre: 13.5 (3.8), post: 16.3 (4.5) kg] and 

experimental [pre: 13.7 (4.1), post: 16.3 (4.6) kg] conditions with no differences between 
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conditions. No changes were observed for isometric or isokinetic strength for either the control 

or experimental conditions. These results unveil the possibilities that 1) metabolites do not have 

anabolic properties per se, and may be detrimental for muscle hypertrophy; 2) immediate post-

exercise blood flow is important for muscle hypertrophy; and/or 3) metabolites have anabolic 

properties but this was masked by the restriction of blood flow.  
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CHAPTER 1: INTRODUCTION 

An increase in the size of a muscle fiber is known as muscle hypertrophy and is known to 

occur after repetitive bouts of resistance training in humans. Muscle hypertrophy involves a 

variety of complex cellular and molecular mechanisms responsible for the formation of new 

proteins (90). When the number of proteins synthesized is greater than the number of proteins 

degraded, a positive net protein balance occurs, causing an increase in muscle size (78).  

It was originally thought that heavier loads were necessary to produce muscle 

hypertrophy (9); a notion further supported by the American College of Sports Medicine (3). 

However, it has since been shown that muscle hypertrophy can occur through the lifting of 

lighter loads as long as the exercise is performed to volitional fatigue (66). Furthermore, blood 

flow restriction training (BFR) has been shown to increase muscle size through the lifting of 

lighter loads (20-30% 1RM) without the need to exercise to volitional fatigue (54). The increases 

in muscle size seen from BFR are comparable to that of high load training (43, 55), and provide 

insight that there may be a number of mechanisms responsible for muscle hypertrophy. 

The primary mechanism responsible for muscle hypertrophy during high load training is 

thought to be mechanical tension. Since BFR training is performed with lighter loads that 

otherwise do not result in increased muscle size (101), it is unlikely mechanical tension alone is 

sufficient to stimulate robust muscular hypertrophy. Therefore, increases in muscle size from 

BFR may be reliant on alternative mechanisms to elicit growth in the absence of high levels of 

mechanical tension. The application of BFR has not been shown to provide any further muscle 

adaptation when combined with high load training (44), but this has only been implemented 
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intermittently due to high levels of participant discomfort (44). This provides some insight that 

the BFR stimulus may only augment the hypertrophic response when insufficient mechanical 

tension is present.  

It is currently thought that a buildup of metabolites causes an increase in systemic 

hormones, growth factors, activation of higher threshold motor units (53) and cellular swelling 

(48). These mechanisms have been hypothesized to occur during commonly implemented BFR 

protocols and therefore may be acting in conjunction with mechanical tension to stimulate 

muscle growth. In contrast, applying a restrictive stimulus post exercise would allow for a 

prolonged period of cell swelling and metabolic accumulation without any additional muscle 

contraction or mechanical tension. However, the hypertrophic effects of prolonged cell swelling 

and metabolic accumulation at the conclusion of exercise, but without further mechanical 

tension, remains to be tested. The aforementioned BFR protocols used in conjunction with low 

load resistance training have not been designed to differentiate between the potential additive 

effects of these alternative hypertrophic mechanisms. BFR applied to immobilized limbs has 

been shown to attenuate disuse atrophy (11) supporting its effectiveness independent of 

mechanical tension, but this method does not induce muscle hypertrophy. Therefore, applying 

BFR during low load exercise may be reliant on mechanical tension in addition to some 

previously mentioned mechanisms (metabolic accumulation, cell swelling, etc.) to further 

produce increases in muscle size. Inflating a pressure cuff at the conclusion of one set of high 

load training would differ from traditional unrestricted high load training in that a greater buildup 

of metabolites would be pooled within the muscle as a result of the initial exercise bout. If 

metabolic accumulation can stimulate muscle hypertrophy when maintained after exercise, and 

independent of mechanical tension, inflating a pressure cuff at the conclusion high load training 
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may further augment the muscle hypertrophic response seen from high load training itself. 

However, these alternative mechanisms thought to be responsible for muscle hypertrophy during 

BFR training may only be important in the absence of sufficient mechanical tension during low 

load training. During high load training the anabolic stimulus provided from mechanical tension 

alone is likely enough to maximally stimulate muscle hypertrophy, although this has not been 

previously studied. By implementing a model that restricts blood flow strictly post exercise, it 

will allow for the effectiveness of alternative muscle hypertrophic mechanisms to be analyzed 

without further muscle contraction or mechanical tension. If muscle size is further increased with 

BFR post exercise, it will demonstrate that these alternative mechanisms can augment muscle 

growth when maintained after exercise. If there is no augmentation in muscle size, it will 

demonstrate that mechanical tension may be maximally stimulating muscle growth in itself; or, 

that metabolic accumulation may be reliant on the presence of mechanical tension. 

Purpose 

The purpose of the study is to see if restricting blood flow for 3 minutes post exercise can 

augment muscle hypertrophy independent of additional mechanical tension. Although 

metabolites will not be directly measured via muscle biopsy, acute data from our laboratory 

would suggest that prolonged fatigue resulting from the BFR stimulus is evident 3 minutes post 

exercise, which is likely indicative of metabolic accumulation sustained within the muscle. 

Research Question 

Will restricting blood flow for 3 minutes post-exercise following high load training 

produce greater increases in muscle size and strength than high load training itself?  
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Hypothesis 

There will be no difference in muscle size and strength between the conditions 

performing high load training and those performing high load training followed by BFR. This is 

hypothesized as it seems likely mechanical tension from high load training is already maximally 

stimulating the muscle hypertrophic response, in which case adding additional mechanisms may 

provide no further benefit.  

Significance of Study  

The implementation of BFR in combination with resistance exercise involves both 

mechanical tension and alternative mechanisms thought to be involved in muscle hypertrophy 

(cell swelling, metabolic stress, etc.). However, traditional BFR protocols are not designed to 

determine the effects of these alternative mechanisms as they are always followed by subsequent 

bouts of mechanical tension. Therefore, by restricting blood flow at the conclusion of exercise, 

our design allows us to analyze the muscle hypertrophic effects of these alternative mechanisms 

without further mechanical tension. High load exercise produces metabolites that may then be 

pooled within the muscle at the conclusion of exercise with the application of a restriction 

stimulus. If the pooling of metabolites can further augment muscle growth, it will provide insight 

that alternative mechanisms may signal muscle hypertrophy when maintained after mechanical 

tension. If the application of BFR post exercise does not augment muscle growth, it will provide 

insight that alternative mechanisms occurring during BFR cannot further augment the 

hypertrophic response from high load training; or, that these alternative mechanisms will not 

induce muscle growth without the presence of additional mechanical tension.    
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Assumptions  

1. Participants performed as many repetitions as they could.  

2. Participants were properly hydrated before testing for muscle thickness.  

3. Participants truthfully answered all questions on the health history questionnaire.  

Delimitations 

1. The results of the study are indicative of the effects on untrained people between the ages of 

18-35.  

2. The application may be limited to the limbs. 

Limitations 

1. It is possible that a crossover in strength may have occurred where the exercised arm increases 

the strength of the contralateral arm. However, since both arms were being exercised it is 

unlikely that this crossover in strength had a large impact on the overall strength of each arm 

(66).     

2. Muscle biopsies were not taken to ensure metabolites were present and elevated during the 3 

minute post exercise period; however, acute pilot data from our lab demonstrated a prolonged 

decrement in torque 3 minutes post exercise which is indicative of an increase in metabolites.  

3. We only implemented one set of exercise to avoid having the metabolic stress of blood flow 
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restriction augment the mechanical tension provided by an additional set of exercise. Despite 

this, one set of exercise appeared to be sufficient for muscle growth. 

4. We retrospectively observed sex differences but were not appropriately powered to analyze 

them. Future studies could seek to analyze these differences. 

5. We cannot infer that trapping metabolites per se is not anabolic given that we were also 

required to restrict arterial blood flow, potentially limiting the nutrient delivery and associative 

anabolic signaling(89). Despite this potential limitation, this would seemingly be the only 

plausible way to pool metabolites post-exercise.    

Operational Definitions 

1. Blood Flow Restriction (BFR) –Exercise performed with a cuff or wrap placed around the 

most proximal part of the limb to restrict arterial blood flow and occlude venous return.   

2. Arterial Occlusion – The lowest pressure at which no pulse can be detected at the wrist. 

3. Muscle Thickness – The distance between the muscle-fat interface and underlying bone will 

be measured via B-mode ultrasound.   

4. 1RM – The maximal load that can be lifted one time with proper form for the dumbbell 

unilateral elbow flexion exercise.  
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CHAPTER 2: LITERATURE REVIEW 

History of BFR 

In 1966 Yoshiaki Sato knelt down at a ceremony and noticed the restricted blood flow in 

his leg from kneeling produced a numb tingling sensation similar to that felt during resistance 

exercise (84). He hypothesized a similar restriction of blood flow was playing a role in muscular 

adaptations seen at the conclusion of weight training. Sato then set out to create a pneumatic 

device that would allow for the inflation of cuffs to be applied during exercise. Several studies 

have been published demonstrating the effectiveness of blood flow restriction (BFR) at 

increasing muscle size during walking (2) and resistance exercise (21). These novel findings 

have provided the basis for what is today known as BFR training.    

Implementation of BFR Stimulus 

The pressure applied during BFR should be normalized to the individual and can be 

estimated based off limb circumference and brachial systolic blood pressure (46). The 

normalization of BFR can be expressed as a percentage of arterial occlusion and allows for a 

common stimulus to be applied to all participants. In addition to the applied pressure, the width 

of the cuff has major implications on the overall restrictive pressure as wider cuffs provide 

greater restriction stimuli at a given pressure (47). Although a wide range of pressures appear to 

be effective for the BFR stimulus (49), applying higher pressures may increase the risk of injury, 

while applying too low of a pressure may be ineffective for stimulating muscle hypertrophy.  
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Protocols involving BFR training are often classified as either continuous or intermittent. 

Continuous BFR involves applying the restriction stimulus for the entire duration of exercise, 

while intermittent allows for unrestricted blood flow during rest periods. There is a distinct 

difference between these two protocols in that continuous BFR results in a significantly greater 

metabolic accumulation equivalent to that of high load training; however, intermittent BFR does 

not (86). This can likely be attributed to the trapping of metabolites within the muscle during 

continuous BFR, while deflating the cuff intermittently allows metabolites to be flushed out of 

the muscle. Therefore, continuous BFR results in a greater level of perceived discomfort (18) and 

makes it a difficult application in conjunction with high load training. To illustrate, Laurentino et 

al. (44) changed protocols to allow for intermittent BFR as participants were unable to withstand 

the discomfort of continuous BFR when applied during knee extensor exercises completed with a 

load corresponding to 80% of their one repetition maximum (1RM). 

BFR in the Absence of Exercise  

Blood flow restriction applied in the absence of exercise has been shown to attenuate 

atrophy after periods of disuse (11). The application of BFR in the absence of exercise seems to 

be effective regardless of the pressure applied as both high (40) and low (39) pressures have 

successfully attenuated losses in muscular strength. The same protocol used in the previous 

studies consisting of 5 minute inflations followed by 3 minute deflations, was later shown to 

have no effect on lactate or EMG activity (48). The authors did note an increase in muscle 

thickness three minutes after the final deflation which indicated a potential role for cell swelling. 

Applying BFR without exercise can be a useful tool for people on bed rest or those recovering 

from major surgery by acting as a stepping stone toward increased physical activity (45). 
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Aerobic BFR Training 

Low intensity aerobic exercise in combination with BFR has been shown to increase 

muscle size (1, 2, 75, 82) albeit to a lesser extent than when applied in conjunction with low load 

resistance training. When applied during 2 minute walk intervals lasting 15 minutes in duration, 

BFR increased quadriceps and lower leg muscle thickness (2, 82). The protocol implemented by 

Abe et al. was performed at a speed of just 50 m/min and was later shown not to result in 

increased metabolic accumulation (52). This demonstrates that other mechanisms such as cell 

swelling and mechanical tension are likely responsible for the hypertrophic effects of slow 

walking in combination with BFR. Additionally, low intensity cycling performed for 15 minutes 

at 40% VO2 max increased muscle size, strength, and VO2 max in a BFR group but not control 

group (1). These studies demonstrate increases in muscle size can be seen across various 

modalities of aerobic exercise when combined with the BFR stimulus.  

Low Load BFR Resistance Training  

Blood flow restriction is most commonly incorporated in conjunction with low load 

training and has been shown to elicit muscle growth in athletic (57), elderly (92), clinical (61) 

and rehabilitative (71) populations. The standard protocol for BFR training involves 4 sets 

consisting of 30, 15, 15, and 15 repetitions, respectively, completed with a training load of 20% 

or 30% 1RM (54). Low load training in combination with BFR has been shown to elicit 

increases in muscle size comparable to that of high load training (101) and low load training to 

volitional fatigue (16, 17). These findings support the importance of BFR training in at risk 

populations as low load training to failure is reliant on training protocols consisting of upwards 

of 165 repetitions, whereas BFR reduces the required workload to around 75 repetitions (49). To 
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further support the efficacy of BFR training, perceptual responses tend to be similar to that of 

low load resistance training to failure (49) and lower (36) or equal (31) to that of high load 

resistance training. 

High Load BFR Resistance Training  

High load resistance training in combination with intermittent BFR has been shown to 

provide no further augmentation to muscle growth when compared to high load unrestricted 

resistance training (44). In the aforementioned study, participants exercised under complete 

arterial occlusion and thus intermittent BFR was used due to high levels of discomfort reported 

by the participants. This is of importance because, as previously mentioned, intermittent BFR 

results in a significantly lower metabolic accumulation than that of continuous BFR (86). 

Additionally, exercising with higher loads under complete arterial occlusion probably resulted in 

a lower total volume of exercise, although this was not reported. A separate study concluded that 

intermittent BFR, implemented with high load training, resulted in significantly greater increases 

in lower body strength than high load training without BFR (12). While significant, the group 

undergoing BFR saw an approximate 3kg greater increase in squat strength which was likely 

within the error of the measurement as the 2% increase in strength did not exceed the 2.6% 

coefficient of variation reported with 1RM squat testing (85). The lack of a measure for muscle 

size makes it further difficult to conclude whether BFR had a significant effect on high load 

resistance training.  
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High Load Training with Short Rest Intervals 

High load resistance training completed with shorter rest intervals provides a modality of 

training that although different, provides some similarities to that of BFR training. When very 

short rest periods are implemented, a greater buildup of metabolites occurs as there is less time 

for its clearance between sets. To demonstrate, high load training performed with only 10 

seconds rest between sets increased lactate levels to greater than 21 mmol/L (38); increases have 

also been observed at the conclusion of BFR exercise (87). Reducing the rest intervals during 

resistance training has been shown to produce greater increases in muscle size and strength 

despite similar volumes of completed work (94), indicating metabolic accumulation may have 

helped to further augment the increases in muscle size. The impact of metabolic accumulation 

per se cannot automatically be credited for the increases in muscle size as further mechanical 

tension was present. It is plausible that a decrease in the amount of time allowed for recovery 

may have helped to recruit an increased number of type II muscle fibers in the absence of 

sufficient recovery time.  

 What Causes Muscle Hypertrophy?   

When protein synthesis exceeds protein breakdown a positive net protein balance occurs, 

that when maintained over time, results in muscle hypertrophy. A variety of physiological 

adaptations and responses to exercise are thought to be responsible for increases in protein 

synthesis through the mechanistic target of rapamycin (mTOR) signaling pathway. mTOR exists 

in 2 complexes appropriately named mTORC1 and mTORC2 and are distinguished by their 

interaction with the drug rapamycin. mTORC1, which is inhibited by rapamycin, is the major 

signaling pathway for protein synthesis and can be stimulated by growth factors, amino acids and 
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resistance exercise (59). mTORC2 plays a smaller role in the upward signaling of mTORC1 by 

allowing for full phosphorylation of protein kinase B (Akt) which is responsible for activating 

mTORC1 (59). The mTORC1 signaling pathway can be activated through a variety of different 

mechanisms each taking a unique route based on the initial entry point into the cascade. The 

mechanisms that are driving muscle hypertrophy are likely all converging on the same mTORC1 

pathway and thus may only be necessary for muscle growth in the absence of sufficient 

mechanical tension; i.e. cell swelling and metabolic accumulation may not be necessary for 

muscle hypertrophy during high load training due to high levels of mechanical tension already 

maximizing the hypertrophic response. 

The idea that low load training to failure (20-30%1RM), and low load BFR training (20-

30%1RM) have both been shown to stimulate muscle hypertrophy provides evidence there are 

mechanisms other than mechanical tension alone that can promote increases in muscle size (16, 

17). One proposed hypothesis is that an accumulation of metabolites, most notably hydrogen 

ions and lactate, causes a decreased intramuscular pH which may then stimulate muscle growth 

through a variety of mechanisms (53). However, an increase in metabolites cannot explain the 

full hypertrophic response occurring during BFR exercise as low intensity walking in 

combination with BFR elicited muscle growth (2) using a protocol that was later shown not to 

result in a significant accumulation of metabolites (52). The most robust increases in muscle size 

are seen when BFR is combined with low load resistance training. When low load resistance 

exercise is combined with BFR there is an increase in metabolic accumulation, motor unit 

recruitment and cell swelling. However, it is not presently known whether the robust increases in 

muscle size from BFR in combination with low load resistance training are a product of 

increased metabolic accumulation and/or cell swelling per se, or simply increased muscle 
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activation through metabolically fatigued muscle fibers.  

Mechanical Tension  

             Mechanical tension refers to the load placed on a muscle during resistance exercise and 

is likely the primary stimulator of muscle hypertrophy during high load resistance training. In the 

absence of heavier loads, mechanical tension alone is not likely sufficient enough to maximally 

stimulate muscle hypertrophy during low load/low intensity BFR exercise. Although currently 

unknown, it seems likely that some level of mechanical tension must be present along with 

another hypertrophic mechanism to produce increases in muscle size from BFR training. 

Mechanical tension works to stimulate muscle hypertrophy through mechanoreceptors within the 

muscle that sense levels of tension and respond by activating a protein kinase that eventually 

activates mTORC1 (59). Mechanical tension during eccentric contractions in rats has been 

shown to increase phosphorylation of the Tuberous Sclerosis 2 (TSC2) complex, which serves to 

suppress mTORC1, in which case the phosphorylation of TSC2 would lead to a greater 

activation of  mTORC1 (34). Additionally, greater increases in muscle strength and size are often 

reported in eccentric as opposed to concentric contractions (93) further supporting the 

importance of mechanical tension for driving muscle growth. However, when comparing 

eccentric and concentric isotonic exercise in combination with BFR, greater increases in both 

muscle size and strength were seen following concentric only training (100). The discrepancy in 

size and strength was likely due to the increased metabolic accumulation occurring with 

concentric exercise (73) further suggesting its involvement in muscle growth.     

Satellite Cells  

            It has long been hypothesized that muscle damage may be important for increases in 

muscle size (102). Mauro (62) accurately predicted satellite cells, located between the 
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sarcolemma and basement membrane, become activated when stressed, and enter into the 

sarcoplasm potentially merging with existing myofibers. While BFR exercise may not result in 

measurable muscle damage (50, 97), proliferation of myogenic stem cells has been shown to 

occur from BFR training (70). The authors concluded this proliferation of myogenic stem cells 

may have been due to muscle cell swelling, a hypoxic like stimulus, and/or may have been due to 

the release of hepatocyte growth factor by means of nitric oxide. The increase in myogenic stem 

cells is of importance as myonuclei are responsible for supplying mRNA transcripts, and when 

an insufficient number of myonuceli are present, a muscle cell can no longer grow as the 

myonucleur domain becomes too large to maintain (91). Work from Stuart Phillips’ laboratory 

recently noted a direct correlation between accretion of satellite cells and muscle growth 

following high load exercise (5), suggesting they may be responsible to some extent for increases 

in muscle size. Removing satellite cells, however, has no negative effect on short term muscle 

hypertrophy (64), demonstrating they are likely only required for long term growth given the 

myonuclear domain can expand before muscle growth is limited by insufficient myonuclei.  

Systemic Hormones 

            Systemic hormones released during resistive exercise have been long thought to be 

responsible for increases in muscle size (37) and have been proposed as a mechanism during 

BFR exercise (58). Work from Stu Phillips’ laboratory has recently demonstrated increases in 

post-exercise systemic hormones likely have little to no effect on muscle size or strength 

following traditional high load protocols (96). In contrast to traditional high load training, BFR 

has been shown to increase growth hormone by 290 times that of resting levels (88). This still 

seems unlikely to have a large impact on muscle hypertrophy as injecting pharmacological doses 

of growth hormone has been shown to have no positive benefit on increasing muscle size in 
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adults (6). Further support against systemic hormones playing a large role is the observation that 

muscle hypertrophy has been shown to occur in BFR but not in non-exercised control limbs (35) 

despite both limbs being exposed to elevated systemic hormones. Additionally, the most likely 

hormone to cause anabolic adaptations, testosterone, is either minimally elevated for less than 15 

minutes (58) or unchanged (21, 81) post BFR exercise.  

Growth Factors 

            Insulin like growth factor 1 (IGF-1) is secreted by the liver in response to resistance 

training, and while not mandatory for muscle growth, has been positively correlated (27). An 

IGF-1 receptor on the sarcolemma is activated by stretching of the muscle and can initiate the 

mTORC1 cascade as well as the accretion of myonuclei through satellite cell proliferation (24). 

While systemic IGF-1 does not appear to be elevated substantially (58, 87) or even at all 

following BFR exercise (20, 21, 77), local IGF-1 produced in skeletal muscle exists in a different 

isoform (i.e. mechano-growth factor) and may assist in muscle hypertrophy when activated 

through heavy loading or stretching (83), with the latter possibly occurring during BFR training.   

Cell Swelling  

            Cell swelling occurs when fluid shifts from the plasma into the muscle, but unlike venous 

pooling of blood, is maintained for at least several minutes post exercise. Blood flow restriction 

training to failure has shown to increase muscle cell swelling as much as (16) or more so (17) 

than low load training to failure. The discrepant findings may be due to the load used (30 vs 40% 

1RM) whereas heavier loads in conjunction with BFR may promote greater swelling. It has been 

proposed that the swelling of a muscle can activate a volume sensing G-protein receptor in 

similar fashion to that of a mechanical sensor during high load training (56). This activation of 

the G-Protein receptor would then begin the cascade of phosphorylating proteins down the 
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mTORC1 pathway stimulating muscle growth. 

Muscle Activation  

            The occurrence of muscle hypertrophy is likely dependent upon a high activation of type 

II fibers which seems to be the one variable constant across all protocols shown to elicit robust 

muscle growth. While slow walking in combination with BFR has been shown to produce 

increases in muscle size (2), these increases are only marginal in comparison to muscle growth 

seen when BFR is combined with low load resistance training (54); which consequently may be 

attributed to a limited reliance on type II fiber activation. During muscle contraction, type I 

fibers are preferentially recruited unless a great enough stimulus is needed to recruit both type I 

and type II fibers (30). Therefore, during low load resistance exercise, type II fibers are rarely 

recruited which results in a fewer quantity of fibers to be stimulated for growth. Applying BFR 

has been shown to increase muscle activation to a greater extent than repetition matched low 

load training during exercise (67, 88) and immediately after rest intervals (99); demonstrating 

that BFR both increases and prolongs muscular fatigue. When low load training is performed to 

volitional fatigue, electromyography (EMG) activity is similar (17, 49) or slightly greater (16) 

than that of BFR training. Interestingly, even with lower EMG activity (55 vs. 65% of maximal 

isometric strength recorded during the final set), Fahs et al. noted greater increases in lateral 

thigh muscle size from BFR training. Additionally, when compared to high load training, BFR 

has been shown to produce equal (86) or slightly lower levels of muscle activation (49, 98). 

Regardless, the similarity in muscle activation is likely due to an increase in type II fiber 

activation to assist in lifting a heavier load during high load training; whereas, in BFR training, 

the prolonged fatiguing of type I fibers requires the additional recruitment of type II fibers to 

account for the loss of force production (8).  
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Reduction in Protein Breakdown 

            An alteration in protein balance can occur by an increase in muscle protein synthesis or a 

decrease in muscle protein breakdown (MPB). Some negative regulators of muscle growth such 

as myostatin serve to inhibit mTORC1, while others are directly involved in the degradation of 

proteins through the ubiquitin proteasome pathway. Basal levels of myostatin messenger RNA 

(mRNA) expression appear to decline to a slightly greater extent at the conclusion of low load 

BFR training when compared to high load training completed over 16 training sessions (43). 

Differential results have been found when assessing MPB after the completion of traditional high 

load resistance exercise. One study reported elevated MPB at 3 and 24 hours post exercise in a 

fasted state (79), while another study reported no increase in MPB when assessed 24 hours post 

exercise in a fasted state (19) despite implementing similar volumes of exercise. Although 

statistically different outcomes were reported, these values were similar in that Phillips et al 

reported an 18% increase in MPB while Fry et al. reported a 16% increase. Contrary to 

traditional high load training, fractional MPB taken in the fasted state at the conclusion of BFR 

exercise revealed no change at 6 or 24 hours post exercise (26). Since MPB remained unaltered 

when measured 6 hours post exercise, it would appear any increase in MPB occurring from low 

load BFR exercise would be limited to shorter post exercise durations than that of high load 

training. 
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CHAPTER 3: METHODS 

Participants 

Sixteen untrained participants were recruited to participate in the study. The sample size 

was chosen based on an estimated effect size of 0.79 which was averaged from three similar 

studies [0.53 (32), 0.63 (17) and 1.2 (100)]. Using G*Power software (GPower 3.1), an estimated 

sample size of 12 people was recommended to appropriately observe statistical significance at 

the 0.05 alpha level with a power level of 0.8. Inclusion criteria were as follows: (1) must be 

untrained in the upper body for at least one year; (2) cannot be using tobacco; (3) cannot have 

had more than one risk factor for thromboembolism (69); (4) and must have been between the 

ages of 18 and 35. All participants provided informed written consent for this study which was 

approved by the university’s institutional review board.   

Study Design 

            On visit one participants filled out initial paperwork to ensure they were eligible for 

participation. Following, and in a counterbalanced fashion, participants had one arm assigned as 

the experimental arm while the other arm served as the control arm. Participants then had their 

height and body mass measured before undergoing 10 minutes of seated rest. Following rest, 

participants had their arterial occlusion pressure measured on their experimental arm and were 

then familiarized with the isokinetic and isometric strength tests. On visit two, participants had 

their anterior upper arm and thigh (internal control) muscle thickness measured before being 

tested for maximal isokinetic, isometric, and isotonic (one repetition maximum (1RM)) strength 

of both arms. Visits 3-26 consisted of exercise training three times for week with each visit
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separated by at least 48 hours. Visit 27 was held 48-72 hours after the final testing visit and 

consisted of muscle thickness, and isokinetic, isometric and 1RM strength testing.  

Arterial Occlusion 

            Following 10 min of seated rest, participants were asked to stand and a 5 cm nylon cuff 

(Hokanson, Bellevue, WA, USA) was placed at the most proximal part of the arm. With an MD6 

Doppler probe (Hokanson, Bellevue, WA, USA) at the radial artery, the cuff was inflated by one 

mmHg increments until a pulse was no longer detected at the wrist. The lowest pressure in which 

a pulse was no longer present was recorded as the individual's arterial occlusion pressure. The 

arterial occlusion measure was taken to allow for the restrictive stimulus to be made relative to 

each individual as suggested previously (47). 

Isometric and Isokinetic Strength 

            Participants were seated on a dynamometer (Biodex Medical Systems, Shirley, New 

York, USA) with the seat and lever arm adjusted appropriately and the settings recorded and 

standardized for all future tests. The dynamometer was adjusted for each individual and all 

settings were recorded to ensure a similar testing protocol throughout. After weighing the 

individuals arm to correct for gravity, participants performed 3 successive isokinetic contractions 

at 180°/s and then rested for 90 seconds before repeating the test again at the same speed. After 

another 90 seconds of rest participants performed the same procedure involving 2 sets of 3 

isokinetic contractions at 60°/s. Following another 90 seconds of rest, participants performed 

isometric testing in the same position. The lever arm was locked into place at 60° and 

participants performed 2 maximal isometric contractions each lasting 3 seconds in duration and 

separated by 1 minute of rest. The highest value for each test was recorded as the maximum peak 

torque.  
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One-Repetition Maximum (1RM) Strength 

            After a brief warmup consisting of 7-10 repetitions with approximately 30% of the 

individuals estimated 1RM, the load was increased to approximately 70% 1RM and one 

repetition was performed. After increasing the load to an estimated 90% 1RM individuals 

performed a 1RM attempt. The load was then progressively increased until the individual could 

no longer perform the exercise through a full range of motion with proper form. All 1RM 

attempts were separated by approximately 90 seconds rest and were performed with the 

individuals back and heels against a wall to ensure strict form. All 1RMs were measured to the 

nearest 0.5 kg and were usually obtained in around 5 attempts. The 1RM tests were performed 

pre and post exercise, as well as during the 13th (i.e. the midpoint) visit in order to readjust the 

training load. 

Muscle Thickness 

            An Aloka SSD-500 B-mode ultrasound (Aloka Co. Ltd., Tokyo, Japan) was used to 

measure the distance between the muscle-fat and muscle-bone interface by an experienced tester. 

All images were printed and analyzed by the same person who was blinded to the condition. 

Three images were taken at each of three sites including 50%, 60%, and 70% the distance 

between the lateral epicondyle and the acromion process. An additional measure of thigh muscle 

thickness was taken at 50% of the distance between the lateral epicondyle of the femur and the 

greater trochanter and was used to assess the stability of the measurement over time. Participants 

were asked to refrain from any planned exercise within 24 h of muscle thickness measures. The 

minimal difference (i.e. reliability) needed to be considered real for the anterior portion of the 

upper and lower arm was calculated at 0.2 cm prior to the investigation using the procedure 

detailed previously by Weir (95). 
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Arm Circumference 

The distance from the acromion process to the lateral epicondyle was measured with a 

standard tape measure and a mark was made 10 cm proximal to the lateral epicondyle. 

Circumference measures were taken on both arms every training visit prior to exercise.   

Training Protocol 

In a counterbalanced fashion individuals were assigned one arm to serve as the 

experimental arm and one arm to serve as the control arm. On training visits individuals 

performed one set of standing elbow flexion exercise to volitional fatigue using a load 

corresponding to 70% of the predetermined 1RM for that arm. All exercise was performed to the 

beat of a metronome allowing 1 second for the concentric and 1 second for the eccentric portion 

of the exercise. During each training session, individuals alternated which arm exercised first and 

5 minutes of rest preceded exercise of the contralateral arm. Both arms exercised with a 5 cm 

nylon cuff (Hokanson, Bellevue, WA, USA) placed at the most proximal part of the arm. Upon 

completion of the final repetition, the control arm had the pressure cuff removed immediately, 

while the experimental arm had the cuff inflated to 70% of their predetermined arterial occlusion 

pressure for 3 minutes. During the 3 minute post-exercise period individuals were required to 

remain standing with their arms kept loosely at their side.  

Ratings of Perceived Discomfort 

The Borg (CR10+) scale was used to assess ratings of discomfort before, immediately 

post, and 1,2, and 3 min post-exercise. The scale was explained in depth to all participants on the 

initial training visit and all participants fully understood the scale. As described previously (51), 

participants were asked ‘‘What are your worst experiences of discomfort? ‘Maximum discomfort 

(rating of 10)’ is your main point of reference; it is anchored by your previously experienced 
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worst discomfort. The worst discomfort that you have ever experienced, the ‘Maximum 

discomfort’ may not be the highest possible level of discomfort. There may be a level of 

discomfort that is still stronger than your 10; if this is the case, you will say 11 or 12. If the 

discomfort is much stronger, for example, 1.5 times ‘Maximum Discomfort’ you will say 15; any 

questions?’’  

Statistical Analysis 

Using the SPSS 20 statistical software package (SPSS Inc., Chicago, IL) a 2 (condition) x 

3 (time) repeated measures analysis of variance (ANOVA) was used to determine significant 

changes in 1RM strength. If an interaction was present a one ANOVA way was used to compare 

differences across time for each condition and a paired t test was used to compare differences 

between conditions at each time point. If no interaction was present main effects of time and 

condition were interpreted. Additionally, a 2 (condition) x 2 (time) repeated measures ANOVA 

was used to compare differences for muscle thickness, isometric strength, isokinetic strength, 

volume, repetitions, and circumference. If there was an interaction paired t tests were used to 

compare differences across time and to compare differences between conditions at each time 

point. If no interaction was present main effects of time and condition were interpreted. Finally, a 

Wilcoxin signed-rank test was used to compare ratings of discomfort between conditions at each 

of the 5 time points. The level of significance will be set at p≤0.05 for all statistical tests.
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CHAPTER 4: RESULTS AND DISCUSSION 
 

All data are reported as means (standard deviations) with the exception of discomfort 

which is reported as 50th percentile (25th percentile, 75th percentile).  

Demographics 

A total of 16 individuals were recruited for participation in the study. Three individuals 

withdrew for personal reasons unrelated to participation in the study, and thus data for 13 

individuals (6 males and 7 females) was included in the analysis (Table 1). The average age, 

height and body mass, respectively, were 22 (3) years, 169.1 (9.4) cm and 76.2 (20.0) kg (Table 

2). The average arterial occlusion pressure measured before exercise was 152 (25) mmHg which 

corresponded to 106 (17) mmHg applied as the 70% arterial occlusion post-exercise.  

 

Table 1. Individual Demographics 

ID Sex  
Age 

(years) 
Height 
(cm) 

Body Mass 
(kg) 

Total AOC 
(mmHg)  

70% AOC 
(mmHg) 

2 M 20 161.6 56.6 111 78 
3 F 20 165.7 48.1 140 98 
4 F 23 161.7 53 143 100 
5 F 21 163.8 95.4 154 108 
7 M 26 183.7 104.2 164 115 
8 F 21 168.4 84.2 205 144 
9 F 21 153.8 72.3 180 126 
10 F 23 162.6 62 133 93 
12 M 21 168.2 89 134 94 
13 F 24 177.7 66.2 138 97 
14 F 25 166.8 73.4 163 114 
15 F 20 183.6 113.7 182 127 
16 F 32 180.8 73.7 136 95 

AOC = arterial occlusion pressure, M=male, F=female 
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Muscle Thickness 

There was no condition x time interaction (p=0.31), main effect of condition (p=0.71) or 

main effect of time (p=0.19) at the 50% site of the anterior upper arm (Table 3, Figure 1). At the 

60% site, there was a condition x time interaction (p=0.03) with the control condition increasing 

from pre to post (p=0.042), however, no change was observed in the experimental condition 

from pre to post (Table 3, Figure 1, p=0.74). Additionally, when examining post muscle 

thickness at the 60% site, there was a trend toward greater muscle thickness in the control vs. 

experimental condition (p=0.06). At the 70% site, there was no condition x time interaction 

(p=0.90) or main effect of condition (p=0.177), however there was a main effect of time (Table 

3, Figure 1, p=0.006) with muscle thickness increasing from pre to post. For thigh muscle 

thickness which served as the internal control [control pre: 3.9 (1.4) cm, control post: 3.9 (1.3) 

cm; experimental pre: 4.0 (1.2) experimental post: 4.1 (1.4)], there was no condition x time 

interaction (p=0.25), main effect of condition (p=0.55) or main effect of time (p=0.29) 

suggesting our measurements were stable across time. Interpreting these changes within the  

context of our reliability, we are confident that we have indeed measured muscle growth as 

opposed to edema (14) because we did not see increases in arm circumference, did not observe 

any pre exercise discomfort during any of the training sessions, and performed the post-training 

muscle thickness measurement 48-72 hours after training which has previously demonstrated to 

be ample time for swelling to subside when assessed at the fiber level (70). 
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Table 2. Muscle Thickness   

 Control   Experimental   

Location Pre  Post  ∆ Pre  Post  ∆ 

50% 2.8 (0.7) 2.9 (0.6) 0.1 2.9 (0.6) 2.9 (0.6) 0.0 

60%  3.1 (0.7)  3.3 (0.7)* 0.2 3.1 (0.6) 3.1 (0.7) 0.0 

70%  3.4 (0.7) 3.6 (0.7)*  0.2 3.3 (0.6) 3.5 (0.7)*  0.2  

Thigh  3.9 (1.4)  3.9 (1.3) 0.0 4.0 (1.2) 4.1 (1.4) 0.1 

All values (cm) are presented as mean (standard deviation) *statistically significant from pre 
value  
 
 

When analyzing individual responses at or exceeding 0.2 cm (error of measurement), 

there were a greater number of participants displaying meaningful increases in the control 

condition at each the [50% (control = 46% vs. experimental = 23%), 60% (control = 53% vs. 

experimental = 15%), and 70% sites (control = 61% vs. experimental = 38%) Table 4]. 

Individual responses displaying the within participant difference in muscle growth between the 

control and experimental condition at each site are displayed in Figure 2. That is, for each of the 

3 sites (i.e. 50, 60, 70%) on all 13 individuals (total of 36 calculations), the pre to post change in 

muscle thickness of the control condition was subtracted from that of the experimental condition 

(∆ experimental - ∆ control). Therefore, a negative value demonstrates a more advantageous 

effect of muscle size for the control condition, while a positive value demonstrates a more 

advantageous effect of for the experimental condition. A value of 0 illustrates a similar response 

between the experimental and control conditions. Furthermore, the individual pre to post changes 

for the experimental and control conditions are displayed in Figure 3.  

 



	

	 	 	
  

26	

 
Figure 1. Muscle Thickness   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Values are expressed as mean (standard deviation). The 50%, 60% and 70% sites indicate the 
location of muscle thickness measured as the distance from the lateral epicondyle to the 
olecranon process.  con = control, exp = experimental, *significantly different from pre, ‡ 
condition x time interaction with the control condition trending toward being greater than the 
experimental at the post measure (p=0.06). 
 

 

Table 3. Meaningful Increases in Muscle Thickness  

 
 Control Experimental 

50% 6 3 
60% 7 2 
70% 8 5 

Values are individual participants meeting or exceeding the error (0.2 cm) of the measurement. 
The 50%, 60% and 70% sites indicate the location of muscle thickness measured as the distance 
from the lateral epicondyle to the olecranon process.   
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Figure 2. Within Subject Differences in Muscle Thickness Between Conditions 

Values are calculated for each individual at each location using the equation (∆ experimental - ∆ 
control). A positive value favors muscle growth in the experimental condition, a negative value 
favors muscle growth in the control condition, and a value of 0 indicates a similar response 
between the control and experimental condition.  
 

The 50% site was the only measured site where muscle growth was not observed at the 

group level in either the control or experimental condition. It has previously been suggested that 

the application of a pneumatic cuff during resistive exercise may attenuate growth of muscle 

tissue placed under the cuff (15, 35). While, we applied a cuff that was not inflated, there still 

was some restriction placed on the anterior upper arm, particularly during the concentric portion 

of the exercise. Even so, muscle growth has been shown to occur in exercised tissue located 

under restriction (42), leaving open the possibility that the volume of exercise performed in the 

present study (1 set) was not sufficient to activate the more proximally located portion of the 

elbow flexors. We also cannot rule out the possibility that the 50% location was not activated 

enough during the elbow flexion exercise given the proximal location that was measured. 
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Figure 3. Individual Changes in Muscle Thickness 

 

 

 

 

 

 

 

 

 
 
 
 
A-C illustrate pre to post values (cm) at each the 50, 60 and 70% sites measured for muscle 
thickness. D-F illustrate the pre to post changes in muscle thickness (cm) with circles 
representing each individual and the solid black line representing the median pre to post change 
(some circles may represent more than one individual, if they both had similar median 
differences); exp=experimental, con=control.  
 

The 60% location clearly displays that the experimental condition appeared to be 

attenuated by the post-exercise application of BFR (Figure 1, Table 3). While statistically 

significant at the group level, this was also observed at each of the 3 measured sites when 

examining individual responses (Figure 2, Figure 3). While we hypothesized there would be no 

difference in muscle growth between conditions, we thought it would be plausible that the 

experimental arm would see a greater increase in muscle size given the trapping of metabolites 

post-exercise. For example, lactate has been shown to induce hypertrophy when administered in 

vitro and in mouse models performing treadmill exercise (72). While unexpected, the attenuated 

growth in the experimental condition may be partially explained by the location and quantity of 
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reactive oxygen species produced. For example, reperfusion results in a drastic increase in 

reactive oxygen species produced within the mitochondria which may serve to inhibit upstream 

activators of the mechanistic target of rapamycin (mTOR), whereas traditional exercise produces 

reactive oxygen species at locations along the sarcolemma (e.g. NADPH and Xanthine oxidases) 

(60) thought to be involved in mechanotransduction (33). Additionally, it has been shown that 

muscle contraction during BFR alleviates some of the oxidative stress caused by vascular 

occlusion (22, 23), and therefore, it is possible that the magnitude of oxidative stress caused by 

high load training combined with post-exercise occlusion exceeded that which has been 

speculated to be beneficial (7, 60, 65).  

In addition to the possibility that metabolites may have been detrimental through 

oxidative stress, it is possible that metabolic accumulation may have been detrimental through 

activation of the energy sensing AMP-activated protein kinase (AMPK) complex, which serves 

to decrease protein synthesis and elevate proteolysis (28). We cannot strictly attribute the 

detrimental effects observed to the trapping of metabolites, however, as we also restricted arterial 

blood flow for a 3 minute post-exercise period. It has previously been suggested that an increase 

in post-occlusive blood flow may be responsible for some of the adaptation provided by blood 

flow restriction (76), and while this has been refuted elsewhere (25), the elevation in blood flow 

caused by sodium nitroprusside did not match the immediate post-exercise elevation in blood 

flow caused by BFR. This restriction of blood flow could have potentially limited post-exercise 

nutrient delivery and associative anabolic signaling (89). The limited arterial blood flow could 

also have induced a state of hypoxia which could serve to increase protein degradation through 

up-regulation of the E3 ligases muscle ring finger-1 (MURF1) and muscle atrophy F box 

(MAFbx) associated with the ubiquitin proteasome system (10). Despite this finding, the increase 
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in E3 ligases may be attributed to remodeling associated with increased protein synthesis (4) 

occurring from the synergistic ablation procedure as opposed to the hypoxic environment. While 

it has previously been hypothesized that BFR may augment muscle growth by decreasing 

myostatin mRNA (43), it is possible that our protocol may have actually increased myostatin 

mRNA from the hypoxic stimulus (29), resulting in a decrease in protein synthesis through 

inhibition of protein kinase B (Akt), an upstream activator of mTOR. The increase in myostatin 

mRNA resulting from hypoxia appeared to diminish, however, with the presence of functional 

overload (10). Additionally, the present study differs from systemic hypoxia in that we analyzed 

a localized hypoxic-like stimulus specific to the arm, which may have produced different results.    

It could be hypothesized that a larger muscle would be capable of producing a greater 

number of metabolites, and therefore the larger amount of muscle mass present in males may 

produce different results from the post-exercise application of BFR. For this reason, we 

retrospectively analyzed differences between males and females in relation to changes in muscle 

thickness (Figure 4, Table 5), but did not perform additional statistical analyses because we were 

not powered to do so. However, when examining Figure 4, there were only two experimental 

conditions that decreased from pre to post in males, whereas 10 conditions decreased in females. 

Additionally, when analyzing Table 5, it would appear that females were more negatively 

impacted in the experimental condition when compared to males.  

This detrimental effect of post-exercise BFR being specific to females is difficult to 

explain, but may be related to differences in metabolites and/or fiber type composition between 

genders. For example, given that females possess a larger percentage of type I fibers in 

comparison to males, it is possible that females produced a greater number of mitochondrial 

reactive oxygen species (80). Despite the production of endogenous antioxidants within the 
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mitochondria(80), it is possible that the ratio of reactive oxygen species exceeded that of 

antioxidants, thus resulting in detrimental levels of oxidative stress (7, 60, 65), particularly when 

produced within the mitochondria (60). Another possible explanation is that because males 

express more type II muscle fibers they produce a greater amount of lactate during exercise. If 

lactate is indeed anabolic as previously suggested (72), it is possible that the anabolic effects of 

lactate were sufficient to overcome the catabolic effects caused by restricting blood flow for 3 

minutes post-exercise.  

 

Figure 4. Sex Differences in Muscle Thickness   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are expressed in cm as (post – pre). Circles represent each individual change and the solid 
black line represents the median pre to post change (some circles may represent more than one 
individual, if they both had similar median differences); exp = experimental, con=control.  
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Table 4. Sex Differences in Muscle Thickness 

 Pre 50% Post 50% ∆ 
Males Control  3.4 (0.4) 3.5 (0.4) 0.1 

Male Experimental  3.2 (0.4) 3.3 (0.3) 0.1 
Females Control  2.4 (0.5) 2.5 (0.5) 0.1 

Females Experimental  2.6 (0.5) 2.5 (0.5) -0.1 
 Pre 60% Post 60% ∆ 

Males Control  3.6 (0.5) 3.8 (0.4) 0.2 
Male Experimental  3.5 (0.5) 3.7 (0.3) 0.2 

Females Control 2.6 (0.5) 2.8 (0.6) 0.2 
Females Experimental  2.8 (0.5) 2.7 (0.5) -0.1 

 Pre 70% Post 70% ∆ 
Males Control  4.0 (0.5) 4.2 (0.4) 0.2 

Male Experimental  3.8 (0.5) 4.1 (0.4) 0.3 
Females Control 2.9 (0.5) 3.1 (0.4) 0.2 

Females Experimental  3.0 (0.5) 3.0 (0.5) 0 
All values (cm) are expressed as mean (standard deviation).  

 

One-Repetition Maximum Strength (1RM) 

There was no condition x time interaction (p=0.94) or main effect of condition (p=0.77), 

however, there was a main effect of time (p<0.001) with 1RM strength increasing from pre to 

mid (P<0.001), mid to post (Table 6, p=0.002), and pre to post (p<0.001).  
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Figure 5. One Repetition Maximum (1RM) Strength 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Values (kg) are presented as mean (standard deviation). There were no significant differences 
between conditions. Letters indicate significant differences from one another.   
 

The increase in 1RM strength was similar for both the control and experimental 

condition, which is not surprising given that both arms performed the identical protocol 

throughout the study duration. The dissociation between muscle size and strength has been 

documented previously (66), and is likely related to the principle of specificity. Whereas muscle 

growth is largely reliant on fatiguing the muscle (66) and increasing muscle activation (68), 

increases in 1RM strength can be accomplished by adhering to the principle of specificity and 

performing resistance exercise at or near an individuals 1RM for that particular exercise (74). 

The individual responses in 1RM strength appear to be fairly consistent across the entire study 

population (Figure 6). These results demonstrate that pooling metabolites post-exercise did not 

appear to have any effect at the individual level either.  
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Table 5. One Repetition Maximum (1RM) strength 

 Pre a Mid b Post c 
Control  13.5 (3.8) 15.3 (4.3) 16.3 (4.5) 

Experimental 13.7 (4.1) 15.5 (4.9) 16.3 (4.6) 

 
Values are expressed in kg as mean (standard deviation). Letters indicate significant differences. 
Both conditions increased from pre to mid and mid to post with no differences between 
conditions.  
 
 

The differences in 1RM strength were quite large with some individuals increasing 1RM 

strength by less than 1 kg, while others increased by more than 5 kg (Figure 5B). This variability 

in individual responses has been observed previously in a large cohort of individuals also 

performing elbow flexion exercise (32). Furthermore, males in the study saw greater absolute 

increases in 1RM strength (3.4 vs. 1.6 kg); however, when expressed relative to pre-training 

values males and females saw similar relative increases (19 vs. 15%) (Table 7), which is 

supportive of previous research (32). 

Figure 6. Individual Changes in One-Repetition Maximum (1RM) Strength 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data are expressed in kg. A. Individual changes in 1RM strength. B. Pre to post changes in 1RM 
strength. Circles represent individual changes and the solid line represents the group median.   
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The differences in 1RM strength were quite large with some individuals increasing 1RM 

strength by less than 1 kg, while others increased by more than 5 kg (Figure 5B). This variability 

in individual responses has been observed previously in a large cohort of individuals also 

performing elbow flexion exercise (32). Furthermore, males in the study saw greater absolute 

increases in 1RM strength (3.4 vs. 1.6 kg); however, when expressed relative to pre-training 

values males and females saw similar relative increases (19 vs. 15%) (Table 7). This is 

supportive of previous research examining sex differences in elbow flexion 1RM strength (32).  

 

Figure 7. Sex Differences in One-Repetition Maximum (1RM) Strength  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All values are expressed in kg. Figures A and C illustrate pre to post changes for each specific 
individual. Figures B and D illustrate changes in 1RM strength (post – pre) with circles 
illustrating individual responses and the solid line depicting the median value (some circles may 
represent more than one individual, if they both had similar median differences).  
 

Given the differences in the control and experimental conditions present in females for 
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muscle thickness, additional individual plots were created to compare pre to post differences in 

1RM strength between conditions and across sex (Figure 7). We did not observe any clear pattern 

for 1RM strength between conditions for either males or females. Specifically, the detrimental 

effect observed in the experimental condition of females did not result in reductions in 1RM 

strength. While Table 7 illustrates a trend toward the experimental condition resulting in greater 

increases in 1RM strength among both males and females, the individual plots reveal that this 

may be largely driven by the responses of one male and one female included in the analysis 

(Figure 7).  

 

Table 6. Sex Differences in One-Repetition Maximum (1RM) Strength  

 Pre  Post ∆ 
 Male Control  16.8 (2.5) 20.5 (2.3)  3.7 (22%) 

Male Experimental 17.4 (2.8) 20.5 (3.1) 3.1 (17%) 
  

Female Control  10.6 (1.8) 12.7 (2.0) 2.1 (19%) 
Female Experimental 10.5 (1.6) 11.7 (1.4) 1.2 (11%) 

Values (kg) are expressed as mean (standard deviation).  

 

 

Isometric and Isokinetic Strength 

For isokinetic strength at 180°/s there was no condition x time interaction (p=0.40) nor 

was there a main effect of condition (p=0.253) or time (p=0.975) (Table 8, Figure 8). For 

isokinetic strength at 60°/s there was no condition x time interaction (p=0.81) nor was there a 

main effect of condition (p=0.138) or time (p=0.562) (Table 8, Figure 8). With regard to 

isometric strength, there was no condition x time interaction (p=0.285) nor was there a main 

effect of condition (p=0.507) or time (p=0.963) (Table 8, Figure 8).   
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Table 7. Isometric and Isokinetic Strength 

 Control Experimental 

 Pre Post Pre Post 
Isokinetic 180°/sec 36.0 (10.6) 35.7 (11.7) 37.0 (10.3) 37.3 (11.2) 
Isokinetic 60°/sec 42.1 (14.3) 42.3 (14.4) 43.8 (13.5) 44.3 (14.2) 

Isometric at 60° 48.6 (17.2) 47.9 (15.6) 48.8 (16.9) 49.7 (16.1) 
All values (Nm) are expressed as mean (standard deviation) 

 

There were no differences observed from pre to post for either the control or 

experimental condition for isometric or isokinetic strength. The lack of improvement in isometric 

or isokinetic strength demonstrated in the present study may be largely attributed to the principle 

of specificity. Given that individuals trained with isotonic exercise it would be expected that 

isotonic (1RM) strength would increase to a greater extent than that of isometric or isokinetic 

strength. One set to volitional fatigue has previously been demonstrated to increase isometric 

strength of the knee extensors to the same extent as three sets (66), however, this may be 

different in the elbow flexors. To illustrate, a previous study found increases in isometric strength 

of the elbow flexors with 3 sets (32), suggesting that more repetitions may be necessary to 

increase isometric/isokinetic strength of the elbow flexors. This hypothesis is speculative, 

however, as no previous studies to our knowledge have compared isometric/isokinetic strength of 

the elbow flexors.  
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Figure 8. Isometric and Isokinetic Strength 

 

 

 

 

 

Values (Nm) are expressed as mean (standard deviation). Exp=experimental, con=control. 

 

When examining individual changes in torque (Figure 9) there did not appear to be any 

trend for the control or experimental condition for any of the tests. As depicted at both the group 

and individual level, there was an increase in torque production as the speed of the contraction 

reduced, ultimately resulting in the greatest torque production during the isometric test. The force 

velocity relationship illustrates that at higher velocities there is less time to apply torque, thus 

explaining why the lowest torque production was observed during the fastest isokinetic test.  
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Figure 9. Individual Changes in Isometric and Isokinetic Strength 

 
All values are expressed in nm. A, B and C illustrate individual pre to post changes. Figures D, E 
and F are presented as (post – pre) with circles representing individual changes and solid lines 
representing the group median.   
 
 
 
 
 

Volume 

There was no condition x time interaction for volume (p=0.94) nor were there main 

effects of condition (p=0.74) or time (p=0.88). The total volume completed by the control and 

experimental arms did not differ during the first 12 or last 12 sessions, nor were there differences 

in total exercise volume (Table 9, Figure 10).  
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Table 8. Exercise Volume (repetitions x load) 

 First 12 Sessions Last 12 Sessions Total 

Control  1834.3 (577.9) 1843.9 (642.2) 3678.3 (1183.9) 

Experimental 1812.6 (584.9) 1826.0 (740.1) 3638.7 (1297.8) 
All values are in kg and are expressed as mean (standard deviation). 

 

Figure 10. Exercise Volume 

 

 

 

 

 

 

 

Values (kg) are expressed as means and standard deviations.  

 

The attenuation of growth that was present in the experimental condition occurred despite 

performing the same volume of exercise and relative load as the control condition. It has 

previously been demonstrated that more volume does not always result in greater muscle growth 

(63) as the benefits gained from a resistance training protocol are undoubtedly finite. With the 

exclusion of studies implementing BFR, no previous study has demonstrated differential muscle 

growth involving two protocols implementing the identical protocol (i.e. volume, sets, relative 

load. Previous studies matching work and volume through the use of different relative loads and 

repetitions have demonstrated differences in muscle protein synthesis (41) demonstrating that 
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volume is not necessarily the most important determinant for the hypertrophic potential of an 

exercise protocol. Nonetheless, in addition to exercise volume, the present study employed the 

identical exercise protocol involving one set performed to volitional fatigue. 

Repetitions 

There was no condition x time interaction for repetitions (p=0.74) or main effect of 

condition (p=0.78), however there was a main effect of time (p=0.01) with repetitions completed 

decreasing from the first 12 sessions to the final 12 sessions (Table 10, Figure 11).  

 

Table 9. Repetitions 

 First 12 Sessions Last 12 Sessions* Total 

Control 195 (41) 171 (30) 366 (65) 

Experimental 194 (52) 167 (45) 362 (89) 
Values are in kg and are expressed as mean (standard deviation) *statistically different from the 
first 12 sessions 
 

Figure 11. Total Repetitions  

 

 

 

 

 

 

 

Values are expressed as means and standard deviations. 
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Unsurprisingly, both the control and experimental conditions performed nearly the 

identical number of repetitions over the course of the study (Table 10, Figure 11). When breaking 

down the number of repetitions comparing the first 12 visits against the last 12 visits, there were 

more repetitions completed in the last 12 sessions (Table 10). This can be explained by the 

retesting of 1RMs that were performed prior to training on visit 13. The increase in the load 

resulted in a decrease in the number of repetitions necessary to reach volitional fatigue. Given 

that the number of repetitions, relative load, volume, and fatiguing sets of exercise were all 

similar, the difference in muscle growth observed must be attributed to the application of post-

exercise BFR.  

Arm Circumference 

There was no condition x time interaction (p=0.27) nor was there a main effects of 

condition (p=0.47) or time (p=0.27) for arm circumference (Table 11, Figure 12).  

 

 

Table 10. Arm Circumference 

 First 12 Sessions Last 12 Sessions Total Average 

Control 29.1 (3.7) 29.1 (3.8) 30.2 (3.7) 

Experimental 28.8 (3.0) 291 (3.5) 30.0 (3.3) 
Values are in cm and are expressed as mean (standard deviation)  
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Figure 12. Arm Circumference 
 

 

 

 

 

 

 

 

Values (cm) are expressed as means and standard deviations 

 

The assessment of arm circumference was primarily used to test whether the muscle 

growth that was present was not due to edema. Since circumference stayed constant from the 

first 12 sessions to the last 12 sessions this would suggest that our measure of muscle size was 

not largely impacted by edema.  

Discomfort 

The median values over the first 12 and final 12 training sessions were calculated for 

each individual at all 5 time points (pre, post, 1, 2, 3 min). Each individual’s median values for 

the first 12 and last 12 sessions were then used to calculate the median discomfort at the group 

level. During the first 12 sessions, there were no differences in the median discomfort at pre 

(p=0.99) or immediately post-exercise (p=0.28), however the median discomfort was 

significantly greater in the experimental arm at 1 (p=0.002), 2 (p=0.002) and 3 (p=0.001) min 
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post-exercise (Table 12, Figure 13). The same results were observed for median values during 

the final 12 sessions of the study with no differences observed at pre (0.31) or immediately post-

exercise (p=0.52), however the median discomfort was significantly greater in the experimental 

arm at 1 (p=0.003), 2 (p=0.002) and 3 (p=0.002) min post-exercise (Table 12, Figure 13).  

 

Table 11. Borg (CR10+) Ratings of Discomfort 

 First 12 sessions  Last 12 sessions  
 Control Experimental Control Experimental 

Pre  0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 
Post 0.5 (0.3, 0.6) 0.5 (0.3, 0.7) 0.5 (0.3, 1.0) 0.5 (0.3, 1.5) 

1-min post 0.5 (0.4, 0.8) 1.2 (0.8, 2.0) * 0.5 (0.3, 1.0) 1.0 (0.7, 2.5) * 
2-min post  0.5 (0.1, 0.8) 2.0 (1.2, 3.2) * 0.5 (0.1, 1.0) 2.0 (0.9, 3.0) * 
3-min post  0.3 (0.0, 0.7) 2.5 (1.5, 3.5) * 0.3 (0.1, 1.0) 2.5 (1.2, 3.0) * 

 
All values are presented as median (25th percentile, 75th percentile) for all individuals across the 
first 12 and last 12 training sessions. *significantly different than control value at same time 
point 
 

Figure 13. Borg (CR10+) Ratings of Discomfort 

All values are presented as median (25th percentile, 75th percentile) for all individuals across the 
first 12 and last 12 training sessions. *significantly different than control value at same time 
point 
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The levels of discomfort following 3 minutes of post-exercise BFR in the current study 

(2.5) were similar to what has been observed using a higher restrictive pressure in the upper body 

(discomfort ranged from 3 to 4) (13). This similarity would be expected given both studies 

incorporated elbow flexion exercise using similar restrictive pressures (70% vs. 90% arterial 

occlusion). Additionally, Loenneke et al. observed similar ratings of discomfort when applying 

BFR in the absence of exercise. This was observed following 3 continuous minutes of BFR 

(discomfort = 2.5) (51) and following cycles of 5 minute inflations and 3 minute deflations 

(discomfort = 2.7) (48). Anecdotal reports from participants performing previous studies in our 

laboratory would suggest that discomfort is greater as the period of BFR is prolonged, and this 

discomfort is alleviated to some extent by further muscle contraction.  
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CHAPTER 5: CONCLUSION 

The main purpose of the study was to see if performing one set of high load resistance 

exercise could be augmented by applying blood flow restriction (BFR) for 3 minutes post-

exercise. Measures of isotonic (1RM), isometric and isokinetic strength were also analyzed. 

Hypotheses 

1.There will be no difference in muscle size and strength between the control and 

experimental conditions.  

This hypothesis did not appear to be supported by the data. While there were no 

significant differences between the experimental and control conditions at either the 50% or 70% 

sites, there was an interaction at the 60% site demonstrating muscle growth to be attenuated in 

the experimental condition. Additionally, when analyzing within subject responses between 

conditions, there appeared to be an attenuation of muscle growth across all sites in the 

experimental arm in comparison to the control conditions. Furthermore, retrospective sex 

comparisons demonstrated that, in comparison to the control condition, applying BFR post high 

load exercise appeared to be more detrimental in females when compared to males.
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2. There will be no difference in muscle strength between the control and experimental 

conditions  

This hypothesis was supported by the data given there were no differences in the control 

or experimental condition at any of the time points examined. Both conditions increased 

similarly from pre to mid and from mid to post 

 

Significance 

The application of BFR allows for individuals to increase muscle size through the use of 

low load protocols that would otherwise not result in muscle growth. While BFR is thought to 

work through the pooling of metabolites, previous studies have not been designed to tease out the 

importance of metabolic accumulation on muscle hypertrophy. All previous BFR studies have 

been used exclusively with multi-set resistance training protocols, thus allowing for metabolites 

to augment muscle activation of subsequent sets. By applying BFR at the conclusion of one set 

of high load training, this study may provide some insight that: 1) metabolites may not have 

anabolic properties per se, and may actually be detrimental for muscle growth when prolonged at 

the conclusion of high load exercise; 2) the immediate increase in blood flow occurring at the 

conclusion of exercise may be of great importance for inducing muscle growth; and/or 3) 

metabolites have anabolic properties but this was masked by the restriction of blood flow post-

exercise. 

Future Research 

Future studies could seek to determine the differences in intramuscular metabolites 

caused by restricting blood flow for 3 minutes post-exercise. Additionally, future studies could 
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seek to determine why the application of post-exercise BFR attenuated muscle growth, and 

further, why this appeared to occur predominantly in females. Finally, studies may seek to 

determine if the detrimental effects of applying BFR post high-load exercise are still evident 

when applied post low-load exercise. 
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