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                                                 ABSTRACT 

 Repeated exposure to stress is known to have a myriad of effects on the brain, 

contributing to the development of psychiatric disorders, such as anxiety, depression, and 

drug addiction. For example, rats undergoing repeated social stress develop increased 

cocaine self-administration. These effects of stress are not well-understood and are 

related to changes in the brain reward system. This study investigated the effects of 

repeated social stress on reward-seeking behavior via the acquisition and extinction of a 

discriminative stimulus (DS) task and on anxiety-like behavior in the elevated plus maze 

(EPM). Male rats underwent intermittent social defeat (4 sessions in 10 days) using the 

resident-intruder paradigm. Animals were tested in the DS task in between stress sessions 

for Experiment 1 and one month after the last session for Experiment 2. The EPM was 

conducted 3 days after the last stress session. In the DS task, stress did not change the 

acquisition of reward-seeking behavior in the days in between stress sessions, and Stress 

and Control groups responded similarly to reward-seeking cues. However, stress did 

affect reward-seeking behavior in the long term, as the Stress group averaged less 

responses during the first extinction trial one month after stress, indicating a faster 

extinction response. In addition, the Stress group spent more time in the open arms of the 

EPM than the Control group, exhibiting a higher tendency towards risk-taking behavior. 

These results suggest that social stress does not produce effects in the reward system in 

the short term, but does produce changes in the long term.  
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INTRODUCTION 

The Stress Response 

 The stress response is an evolutionary mechanism by which organisms respond to 

a variety of stimuli that can potentially disrupt homeostasis (Charmandari et al 2005). 

Organisms respond to stress with behavioral and physiological adaptations to defend 

against this threat to homeostasis. The first, fast-acting part of the stress response is 

known as the “fight-or-flight” response, which involves the release of epinephrine 

(adrenaline) from the adrenal medulla and norepinephrine from the sympathetic nervous 

system. These compounds cause an increase in heart rate, blood pressure, and blood 

glucose levels, potentially to help the organism escape from or fight the stressor. The 

delayed response involves the hypothalamic-pituitary-adrenal (HPA) axis. The 

hypothalamus is stimulated to produce corticotropin releasing hormone (CRH), which 

stimulates the production of adrenocorticotropic hormone (ACTH) by the pituitary gland, 

which stimulates the production of glucocorticoids by the adrenal cortex. 

Glucocorticoids, in contrast to the catecholamines epinephrine and norepinephrine, are 

lipophilic molecules and can thus cross the blood-brain barrier and cause long-term 

modulation of behavior in response to stress (Nelson and Kriegsfeld 2017). A summary of 

this mechanism is shown in Figure 1.  
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Figure 1. The hormonal stress response mediated by the Hypothalamic-Pituitary-Adrenal 

(HPA) axis. Stress induces the hypothalamus to produce corticotropin-releasing hormone 

(CRH), which stimulates the anterior pituitary gland to secrete adrenocorticotropin 

hormone (ACTH), which stimulates the adrenal gland to produce the “stress hormones” 

glucocorticoids (such as cortisol in humans). Importantly, glucocorticoids can cross the 

blood-brain barrier to modulate behavior (not shown in figure).  
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The Effects of Stress on the Brain 

 Stress has been shown to induce cellular and behavioral effects in both the short 

term and the long term that can be detrimental to an individual. Stress can be classified as 

acute when it occurs one time, or chronic when it occurs repeatedly. These different 

forms of stress are implemented by researchers to study the effects of stress on brain and 

behavior. Acute stress protocols usually involve a short-term single exposure to a 

moderate-severe stressor. This type of stress protocol is particularly useful in studying the 

reactivity of the HPA axis and modeling post-traumatic stress disorder (PTSD). Acute 

stress is shown to increase excitatory neural transmission via the effects of corticosterone 

(James et al 2016). In addition, severe acute stress induces PTSD-like behaviors, such as 

social avoidance, sleep disturbance, and fear generalization (Flandreau and Toth 2017).  

 Chronic stress is shown to induce effects in the short-term and the long-term that 

are distinct from those of acute stress. Chronic stress has been shown to induce dendritic 

atrophy in the prefrontal cortex (PFC) in rats (Cook and Wellman 2003). These cellular 

effects in the PFC are thought to explain the deficits in working memory, fear extinction, 

and cognitive flexibility that are associated with chronic stress (Holmes and Wellman 

2009). Chronic stress also induces depression-like symptoms, such as anhedonia and 

learned helplessness (Willner et al 1992; Song et al 2006). These effects of stress indicate 

that cellular modifications in the brain cause changes in behavior that leave individuals 

more susceptible to developing psychiatric disorders, such as PTSD, depression, and drug 

addiction.  
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Stress and The Reward System 

 The ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal 

cortex (PFC) are three of the major brain regions involved in the processing of reward. 

Over half of the neurons in the VTA release dopamine, and these neurons project into the 

NAc and the PFC. The dopaminergic connection between the VTA and the NAc has been 

extensively studied, as an increase in the activity of this pathway has been shown to be 

the main mechanism of action of drugs of abuse. Neurons within the NAc play a key role 

in mediating the discrimination of rewarding vs aversive stimuli. The PFC also modulates 

the NAc through glutamate transmission and is associated with executive function, such 

as goal-directed behaviors related to reward (Cooper et al 2017). This modulation of the 

limbic system by the PFC can be altered by pharmacological compounds and 

environmental stimuli (Del Arco and Mora 2009). This system is depicted in Figure 2. 

Figure 2. The brain’s reward system. Depicted in this figure are the locations of key brain 

regions in the dopaminergic  response to rewarding stimuli, including the medial 

prefrontal cortex (mPFC), the nucleus accumbens (NAc), the ventral tegmental area 

(VTA), the orbitofrontal cortex (OFC), the dorsomedial striatum (DMS), and the 

dorsolateral striatum (DLS).  
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  Stress has been shown to affect the neuronal circuitry associated with the 

processing of rewards. Chronic stress can induce alterations in mesolimbic dopamine 

transmission involved in reward processing that can last for weeks or months (Fitzpatrick 

et al 2018, Sinha 2009). In fact, social defeat stress has been shown to alter signaling 

between the VTA and NAc (Ch’ng et al 2018). Social defeat stress is also associated with 

hyperexcitabililty of mesolimbic dopaminergic neurons (Hollon et al 2015). These 

neuronal modifications to the brain’s reward system induce changes in behavior. In one 

sense, stress depresses behavior, leading to motivational deficits and anhedonia. For 

example, rats that have undergone social defeat stress show a loss of motivation to escape 

in the forced swim test (Hollis et al 2010) and a decreased preference for sweet sucrose 

solution, indicating anhedonia (Rygula et al 2005). On the other hand, some behaviors are 

enhanced by stress, such as those related to drug and reward-seeking. For example, 

rodents that have undergone chronic social stress protocols have been shown to self-

administer cocaine at higher rates and to relapse more quickly into drug-seeking after 

extinction of the behavior, indicating a role for stress in susceptibility to drug addiction 

(Covington and Miczek 2001, Peters et al 2009). 

Social Stress as an Animal Model of Susceptibility to Drug Abuse 

 Social stress has been shown to play a role in the development of certain 

psychiatric disorders in humans, including anxiety and depression. The term “social 

defeat” refers to an individual’s encounter with a conspecific in which they end up as the 

“loser”. Several animal models of social defeat have been developed using the natural 
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tendency towards aggression and territoriality in certain animals. A well-developed model 

is the resident-intruder paradigm in rodents, in which a resident male will attack and 

defeat a male intruder. After undergoing this defeat stress, rodents have been shown to 

show symptoms of anxiety, depression, and susceptibility to drug addiction. The most 

commonly-used timelines of social defeat stress include acute stress, in which the 

intruder is exposed to a single episode of stress, and chronic stress, in which the intruder 

is exposed to an episode of stress every day for a certain number of days (Hammels et al 

2015). Another variation used is intermittent stress, which is used in this study 

(Covington and Miczek 2001, Ferrer-Pérez et al 2019, Fanous et al 2010). Intermittent 

stress involves repeated exposures to the stress separated by days in which the intruder is 

not exposed to the stress.  

 Interestingly, chronic (continuous; every day) and intermittent (episodic) exposure 

to social stress produce different effects on behavior. Specifically, these two stress 

protocols produce opposite effects on drug-seeking behavior. Rats that have undergone 

chronic social defeat stress self-administer cocaine at lower rates (Miczek et al 2011). On 

the other hand, intermittent stress produces increased self-administration of cocaine 

(Covington and Miczek 2001, Miczek et al 2011). These studies highlight the importance 

of considering the schedule of stress episodes when studying the effects of stress.  
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AIM OF STUDY 

 Exploring the effects of stress on reward processing in rats will further our 

understanding of the mechanisms by which stress increases vulnerability to develop drug 

addiction. In this study, we aim to investigate the effects of repeated intermittent social 

defeat stress on reward-seeking behavior in both the short term and the long term using a 

discriminative stimulus (DS) task. We hypothesize that social stress produces changes in 

reward-seeking behavior. Additionally, as repeated exposure to stress has been associated 

with increased anxiety, we will evaluate anxiety-like behavior using the Elevated Plus 

Maze (EPM). Our hypothesis is that animals that have undergone social stress will 

exhibit higher anxiety-like behavior in the EPM.  

Figure 3. A depiction of the present study’s hypothesis that repeated stress episodes will 

alter reward processing, producing susceptibility to drug addiction.  
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METHODS 

Animals 

 Thirty-two male Long-Evans rats from 3-4 months of age were randomly split 

into two groups: Stress (n=16) and Control (n=16). Upon arrival, rats were double-

housed on a reverse light/dark cycle, with the lights being off from 9 am- 9 pm. Rats were 

allowed one week of habituation before handling and training began. One week before 

the beginning of the social defeat protocol, animals were housed individually. Rats were 

food restricted to 15 grams of food per animal per day before training in the reward-

seeking task in order for them to be motivated to perform for the food pellet reward. This 

protocol followed the rules of the Institutional Animal Care and Use Committee and was 

approved by the Institutional Review Board at the University of Mississippi (19-020). 

Intermittent Social Defeat Stress 

 The rats assigned to the Stress group underwent four sessions of social defeat 

stress (SDS), once every 3 days for 10 days. The SDS protocol was set up according to 

the Resident-Intruder paradigm (Tornatzky and Miczek 1993), as depicted in Figures 4 

and 5.   
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Figure 4. Illustration of the resident-intruder social defeat set-up.  

  

 A clear plastic chamber (H x L x W: 45×61×61 cm) was used to house the 

resident rats. The residents were larger than the intruders. They were housed with a 

female, and the cage bedding was not changed in order to help induce territoriality in the 

resident. The female was removed from the cage 15 min before each social defeat 

session. Then, a sliding clear plastic dividing wall was placed in the middle of the 

chamber. The intruder was then placed on the opposite side from the resident for 10 min, 

allowing for stressful sensory exposure, but no physical interaction. Then, the dividing 

wall was removed, and the resident and intruder were allowed to interact until a bite was 

witnessed, 6 attacks were witnessed, the intruder was in the supine position for 5 s, or 5 

min had elapsed. At this point, the dividing wall was reinserted, and the intruder rat 

remained in the chamber for an additional 10 min. During the 5 min of physical 

interaction, latency to first attack, number of bites, and amount of time the intruder spent 

in supine position were recorded. During this time, the Control rats were moved to 

another room and handled for 5 min. The timeline for the social defeat sessions in 

reference to the discriminative stimulus task and EPM is shown in Figure 5.  
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Figure 5. Timeline for social defeat sessions. Prior to the first social defeat session 

(SD1), Experiment 1 animals were trained in the DS task. Four total social defeat 

sessions were conducted (SD1-SD4). On the days in between social defeat, Experiment 1 

animals were tested in the DS task, reversing reward contingencies between the original 

protocol (R1) and a new protocol (R2) each day. The animals were tested in the Elevated 

Plus Maze 3 days after the last social defeat session (SD4). Experiment 2 animals were 

trained in the DS task beginning 30 days after SD4.  

Discriminative Stimulus Reward-Seeking Task 

Experiment 1 (n=8, Stress; n=8, Control). 

 The protocol for Experiment 1 is shown in Figure 6. 
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Figure 6. DS task protocol for Experiment 1. The rats had to poke in the lit center cue 

hole to start the trial, then either a fixed or flashing light appeared. The rats were first 

trained in Reversal 1, in which a nose poke in the fixed light (DS+) would result in a food 

pellet reward dropping into the food magazine, while poking in the flashing light (DS-) 

did not yield a reward. The rat would have to poke in the food magazine to end the trial. 

When the reward contingencies were switched to Reversal 2, a nose poke in the flashing 

light resulted in a food pellet dropping into the food magazine. A nose poke in the fixed 

light no longer yielded a reward. On each day, the animals completed a maximum of 100 

trials.  

 Rats were trained in the discriminative stimulus (DS) reward-seeking task in an 

operant conditioning chamber with three cue holes and a food magazine. They were 

trained in the first reversal, in which the fixed light was the DS+, until they poked <35% 
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of the time in the flashing light. They were then tested in this DS task on the days in 

between SDS, with reward contingencies being reversed each time. When the task was 

switched to Reversal 2, the fixed light was no longer rewarding (DS-), and the flashing 

light became the rewarding stimulus (DS+). For all of these trials, the number of nose 

pokes in the DS+ and the DS- were recorded. The amount of time it took for the rat to 

poke in the stimulus light (latency to cue) and the amount of time it took for the rat to 

retrieve the food pellet from the food magazine (latency to food) were also recorded.  

Experiment 2 (n=8, Stress; n=8, Control). 

 30 days after the last social defeat session, rats were trained in the DS task for an 

8-day acquisition period. They were placed in an operant chamber with two cue holes. A 

fixed or flashing light would appear in one of the cue holes. A nose poke in the fixed light 

(DS+) would result in a food pellet reward dropping into the food magazine, while 

poking in the flashing light (DS-) did not yield a reward. Next, the rats underwent a 5-day 

extinction period. During these sessions, pokes in neither fixed nor flashing lights were 

rewarded. For acquisition and extinction, the number of nose pokes in the DS+ and the 

DS- were recorded. This protocol is depicted in Figure 7. 
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Figure 7. DS task protocol for Experiment 2. During the acquisition period, rats would 

poke in the fixed light to obtain a food pellet. Nose pokes in the flashing light did not 

yield a reward. During the extinction period, the previously rewarding fixed light 

stimulus no longer produced a reward. 

Elevated Plus Maze 

 4 days after the last social defeat session, rats were evaluated on the Elevated Plus 

Maze (EPM) apparatus, as depicted in Figure 8.  
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Figure 8. A depiction of The Elevated Plus Maze apparatus. The EPM is a plus-shaped 

platform raised 76 cm off the ground. It contains two open arms that have no walls, along 

with two walled closed arms. The rats were placed in the center of the EPM facing the 

open arm and were able to move freely for 5 minutes. The amount of time spent in both 

the open and closed arms, along with the number of crosses from one arm to another, 

were recorded. The animal was counted as entering an arm when all four paws crossed 

the threshold into the arm.  

Data Analysis  

 Two-way ANOVAs with repeated measures were performed to analyze 

performance in the DS task. One-way ANOVAs and an independent Student t test were 

used to analyze EPM results.  
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RESULTS 

Discriminative Stimulus Reward-Seeking Task 

Experiment 1.  

Reversal 1 

Nose Pokes 

 The number of nose pokes in the DS+ and DS- were recorded as a percent of the 

total trials and are shown in Figure 9. The number of nose pokes in the DS+ did not differ 

significantly between the Control and Stress groups [DS+, Group, F(1,13)=0.09, p=0.76]. 

The number of nose pokes in the DS- also did not differ significantly between the Control 

and Stress groups [DS-, Group, F(1,13)=1.50, p=0.242]. There were significant 

differences across sessions [DS+, Time, F(6,78)=7.05, p<0.001; DS-, Time, 

F(6,78)=1.40, p=0.026], which shows that both groups of animals learned to discriminate 

between stimuli after reversals.  
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Figure 9. Social stress did not change animals’ response to rewarding (DS+) and non-

rewarding (DS-) cues on the days in between stress episodes (SD1-SD4) or up to 10 days 

later. Bars represent the mean ± SEM. Number of nose pokes in response to DS+ (top) 

and DS- (bottom) (50 trials each) when reward contingencies were reversed to the 

original protocol (Reversal 1) .   
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Latency to Cue 

 The latency to the cue, shown in Figure 10, did not differ between the Control and 

Stress groups for the DS+ or the DS- [Latency DS+, Group, F(1,13)= 0.62, p= 0.44; 

Latency DS-, Group, F(1,13)= 0.57, p= 0.46]. Differences in latencies to respond to the 

DS+ and DS- indicate that animals learned to discriminate between stimuli.  

Latency to Food 

 The latency to food, shown in Figure 10 did not differ significantly between 

Control and Stress groups [Latency food, Group, F(1,13)= 0.15, p= 0.70], showing no 

change in motivation in the stress group to retrieve the food pellet reward.  
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Figure 10. Social stress did not change animals’ response time to rewarding (DS+) or 

non-rewarding (DS-) cues or to food reward on the days in between stress episodes (SD1-

SD4) or up to 10 days later. Data represent the mean ± SEM. Latency to respond to DS+ 

and DS- (top) and to the food trough (bottom) when reward contingencies were reversed 

to the original protocol (Reversal 1).
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Reversal 2 

Nose Pokes 

 The number of nose pokes in the DS+ and DS- were recorded as a percent of the 

total trials and are shown in Figure 11. The number of nose pokes in the DS+ did not 

differ significantly between the Control and Stress groups [DS+, Group, F(1,13)=0.96, 

p=0.34]. The number of nose pokes in the DS- also did not differ significantly between 

the Control and Stress groups [DS-, Group, F(1,13)=0.01, p=0.98]. There were significant 

differences across sessions [DS+, Time, F(6,78)=3.65, p=0.003; DS-, Time, 

F(6,78)=7.54, p<0.001], which shows that both groups of animals learned to discriminate 

between stimuli after reversals. 
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Figure 11. Social stress did not change animals’ response to rewarding (DS+) and non-

rewarding (DS-) cues on the days in between stress episodes (SD1-SD4) or up to 10 days 

later. Bars represent the mean ± SEM. Number of nose pokes in response to DS+ (top) 

and DS– (bottom) (50 trials each) when reward contingencies were reversed to a new 

protocol (Reversal 2).  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Latency to Cue 

 The latency to the cue, shown in Figure 12,  did not differ between the Control 

and Stress groups for the DS+ or the DS- [Latency DS+, Group, F(1,13)= 0.83, p= 0.38; 

Latency DS-, Group, F(1,13)= 0.06, p= 0.80].  

Latency to Food 

 The latency to retrieve the food pellet, shown in Figure 12, did not differ 

significantly between Control and Stress groups [Latency food, Group, F (1,13)= 1.54, p= 

0.23]. 
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Figure 12. Social stress did not change animals’ response time to rewarding (DS+) or 

non-rewarding (DS-) cues or to food reward on the days in between stress episodes (SD1-

SD4) or up to 10 days later. Data represent the mean ± SEM. Latency to respond to DS+ 

and DS- (top) and to the food trough (bottom) when reward contingencies were reversed 

to a new protocol (Reversal 2). 
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Experiment 2. 

Nose Pokes 

 The total number of nose pokes in the DS+ and the DS- for Stress and Control 

groups were recorded during acquisition and extinction 30 days after stress and are 

shown in Figure 13. During acquisition, the number of nose pokes in the DS+ and DS- 

did not differ significantly between groups, but there was a trend towards a decreased 

response to the DS- by the Stress group [DS-, Group, F(1,13)= 4.44, p= 0.055]. There 

were differences in both groups across sessions, as the animals were learning the task. 

Pokes in the DS- for both groups decreased across sessions [DS-, Time, F(7,91)= 34.34, 

p< 0.001]. On the first day of extinction, the Stress group poked significantly less times 

in the previously rewarding DS+ than the Control group [E1, F(1,13)= 7.16, p= 0.019].  
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Figure 13. Social stress facilitates the extinction of reward-seeking in the long term 

during the acquisition (A1-A8) and extinction (E1-E5) of the DS task one month after the 

end of social stress. Left. Number of nose pokes in response to DS+ and DS-. Data 

represent the mean ± SEM. Right. DS+ responses during the first extinction session (E1) 

(each dot represents one animal). * p=0.019 compared to Control. 
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Elevated Plus Maze 

 The Elevated Plus Maze is traditionally used as a measure of anxiety-like 

behavior, with more time spent in the closed arms interpreted as higher anxiety behavior. 

The results from the Elevated Plus Maze are shown in Figure 14. The Stress group spent 

significantly more time in the open arm [t(30)=3.31, p=0.002] and less time in the closed 

arm [t(30)=3.21, p=0.003] than Controls. There was no significant difference between 

groups in motor activity, as measured by the number of crosses between arms 

[t(30)=0.65, p=0.520]. These results seem to indicate an anxiolytic effect of social defeat 

stress. A more likely explanation, however, is that the social defeat stress increased risk-

taking behavior.  
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Figure 14. Social stress changes performance in the EPM. Top. Mean time (s) spent in 

the open arm and closed arm. Bottom. Mean motor activity based on number of crosses 

between arms. Bars represent the mean ± SEM. * p<0.01 compared to Control.
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DISCUSSION 

 The present study shows that the intermittent exposure to social stress does not 

alter reward-seeking behavior in the short term, but does produce changes in the long 

term. Specifically, during the discriminative stimulus task in between stress sessions, 

Stress animals responded to the rewarding cue similarly to Control animals. However, 

one month after the last stress session, Stress animals responded less times than Control 

animals to the previously rewarding cue during the first day of extinction learning. In 

addition, Stress animals exhibited higher risk-taking behavior in the Elevated Plus Maze. 

Together, these results suggest that the intermittent exposure to social stress alters the 

function of the motivation and reward system in the long term. These changes may 

precede vulnerability to stress-related disorders, such as drug addiction. 

 As shown, both groups learned to discriminate between rewarding and non-

rewarding stimuli. During Experiment 1, rats from both groups responded more times to 

the DS+ and less times to the DS- across sessions. In addition, rats from both groups 

responded faster to the DS+ than to the DS-, indicating a learned increased salience for 

the DS+. Similarly, in Experiment 2, rats from both groups during acquisition sessions 

responded more times to the DS+ and less times to the DS- across sessions. During 

extinction learning, both groups responded less times to the previously rewarding 

stimulus. These results indicate that animals stop responding to a devalued cue. Overall, 

these results show that animals learned the reward-seeking task.  
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 On the days in between social stress, no differences were observed between Stress 

and Control groups. There was no change in the Stress group’s number of responses for 

the DS+ or the DS-, along with no change in the latency to cue or to food, indicating no 

observable change in the reward-seeking behavior in the short term. When the reward 

contingencies were reversed, the Stress group showed no change in number of responses 

in DS+ or DS- from controls. These results show that Stress animals are able to 

discriminate and are flexible to change their behavior when the reward contingency is 

changed. These results are in agreement with prior literature. In our previous study, we 

used the same stress protocol and a set-shifting task to evaluate cognitive flexibility. In 

that study, we found that stress did not impair cognitive flexibility, but did produce long-

term changes in salience attribution of rewarding cues (Sullivan et al 2019). The results 

of the present study indicate that stress does not alter reward processing in the short term.  

 Of note, social stress has been previously shown to produce short-term changes in 

the activity of areas of the brain in the dopamine pathway that are involved in attribution 

of salience. Specifically, one study found increased corticotropin releasing factor (CRF), 

indicating higher stress levels, and increased dopamine transmission in the ventral 

tegmental area (VTA) (Nikulina et al 1999). Unlike these studies, our study did not find 

short-term behavioral effects during social stress. Two considerations can be made in this 

regard. First, while these effects take place at the cellular level, they simply may not be 

expressed in behavior at this stage. Alternatively, there may be changes in behavior that 

are too subtle to be detected by the behavioral task used in this study.  For future study, a 

more powerful behavioral test may be necessary to reveal these changes.  
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 In the long term, 30 days after the end of social defeat stress, stress changed the 

extinction of the reward-seeking task. Stress animals responded less times to the 

previously rewarding DS+ during the first extinction trial, indicating that social stress has 

a facilitative effect on the extinction of the DS task. This finding that social stress has 

long-term effects on brain reward function is consistent with previous work showing 

long-term changes in vulnerability to drug addiction. However, we hypothesized a slower 

extinction response based on previous work showing that stress animals respond more 

times to a devaluated DS+, which is associated with slower extinction learning (Sinha 

2001).  

 One possible explanation for the unexpected faster extinction learning shown by 

the Stress group is that stress increases sensitivity to negative outcomes. Under this 

framework, stress may change brain reward function in the long term by modifying 

reward circuitry such that the experience of responding and not receiving a reward is 

more aversive to the animals that have undergone social stress (Koob 2013). An 

alternative explanation for the faster extinction response is that the Stress group stops 

responding due to learned helplessness. Learned helplessness is a sign of depression-like 

behavior in animal models. For example, in the forced swim test, an animal is placed in 

an inescapable container of water, and the latency to immobility is used as a measure of 

learned helplessness, with a shorter latency indicating increased learned helplessness 

(Hollis et al 2010). The correlation between depression and vulnerability to drug abuse is 

well-established (Deykin et al 1987). Thus, interpreting the decreased DS+ response in 

the Stress group as learned helplessness is also consistent with previous literature that 
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shows long-term stress-induced changes in vulnerability to drug addiction. Future study 

involving behavioral tests designed to measure aversive states and learned helplessness 

would be helpful to determine the mechanisms of action by which stress causes these 

long-term effects in the brain reward system. 

 Interestingly, during the first day of extinction learning, there are individual 

variations in the magnitude of the effects of stress, as seen in Figure 13. In fact, some 

individuals appear unaffected by stress (same responses as Controls). Previous work 

investigating the effects of social defeat stress on brain reward function shows the 

emergence of two distinct groups: one affected by stress, called the “susceptible” group, 

and one unaffected by stress, called the “resilient” group (Der-Avakian et al 2014). It is 

possible that the Stress animals shown in our study could also be separated into these two 

groups. Further studies investigating these individual differences, along with the neural 

correlates to susceptibility and resilience, will lead to a better understanding of the effects 

of stress on the brain.  

 We ran the Elevated Plus Maze to evaluate anxiety-like behavior and found that 

the Stress group spent significantly more time in the open arm than the Control group. 

This behavior of the Stress group did not support our initial hypothesis that social defeat 

stress would yield an anxiogenic effect on the EPM. Prior studies involving social defeat 

stress typically report decreased time spent in the open arms (Caldwell and Riccio 2010). 

However, these studies mostly use a chronic rather than intermittent schedule of stress, 

which causes different effects. An alternative interpretation to the traditional view of the 
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EPM, which involves associating increased time spent in the open arms with increased 

risk-taking behavior, has been used in many studies (Laviola et al 2003, Tillman and 

Wegener 2019, Toledo-Rodriguez and Sandi 2011, Zhou et al 2015). Therefore, the fact 

that the Stress group spent more time in the open arms can be explained as a stress-

induced increase in risk-taking behavior. Further study involving a task specifically 

developed to assess risk-taking behavior, such as the predator-odor risk-taking task, 

would be beneficial to support this explanation (Dent et al 2014).  

 In conclusion, social stress did not change reward-seeking behavior in the short 

term, but effects were observed one month after stress. The Stress group responded less 

times compared to the Control group to the previously rewarding cue during the first day 

of extinction learning, which suggests changes in the brain’s processing of negative 

outcomes. In addition, stress seemed to produce an increase in risk-taking behavior. 

Altogether, these results indicate a long-lasting change in the brain’s motivational and 

reward circuitry induced by social stress. Even though the results are statistically 

significant, the low number of subjects might be a limitation of this study. 
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