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ABSTRACT 

 

Plants produce biologically active compounds that humans have utilized for many 

agricultural applications.  Amyris elemifera was investigated due to the known 

bioactivity of its family, Rutaceae, and its use in medicines in tribes of the 

Bahamas.  Biotage® and TLC guided fractionation of the EtOAc, hexane, and 

MeOH extracts of the leaves of Amyris elemifera yielded bioactive compounds. 

Most significantly, a novel furanocoumarin, 8-(3-methylbut-2-enyloxy)-marmesin 

acetate (1), and its analog 8-(3-methylbut-2-enyloxy)-marmesin (2), were 

isolated.  The structures were identified via NMR and X-ray crystallography 

techniques; the X-ray crystal structure for 1 was reported for the first time, and 

the data confirmed an absolute configuration of S at the chiral C-2’ for both 

compounds, which had not been reported previously for 2.  Both were tested for 

activity against monocots, dicots, and fungi.  The compounds hindered growth of 

Lactuca sativa (lettuce) and Agrostis stolonifera. A Lemna paucicostata 

phytotoxicity bioassay reported IC50 values for 1 and 2 as 26.2μM and 102μM 

respectively, and 1 showed antifungal activity against Colletotrichum fragariae in 

a TLC bioautography.  The mechanism of phytotoxicity was shown to be 

membrane function related from the results of a cellular leakage assay.  In a 

comparison of bioactivity between 1 and limonene, 1 unexpectedly showed more 

inhibition on fungal and bacterial species tested. 
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Introduction 

 

As concerns about the health of the global environment rise, synthetic 

chemicals used in agriculture as herbicides, pesticides, fungicides, etc. have 

come under scrutiny regarding their environmental impact and have caused the 

implementation of stricter legislation governing which synthetic compounds can 

be utilized [1].  Synthetic products typically have more environmental influences 

due to the presence of unnatural carbon structures and halogens, which have 

significantly longer lifetimes and reactivity than the majority carbon, oxygen, and 

nitrogen rich structures of natural products. These long environmental lifetimes 

increase the potentially harmful effects on crops upon degradation, as the 

decomposed by-products usually retain toxicity [1].  Furthermore, the continued 

overuse of synthetic agricultural enhancers has led to an increased issue of 

resistant species, indicating that a major change is necessary in the mechanism 

of crop defense [2].  Natural products, or those produced by living organisms (in 

vivo), therefore seem to be the answer to the question of maintaining sustainable 

agriculture and fighting off species that would harm crops.   

     Utilization of natural products from plants often focuses on their secondary 

metabolites, which are more unique among different families/genera/species/etc. 

and are usually active specifically against other plants to enhance the success of 

the organism that produces them [3].  Primary metabolites in plants are common 
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amongst different classifications and are vital in any plants’ survival and proper 

growth, and are therefore less helpful in producing targeted herbicides, 

pesticides, fungicides, etc. because of the biological usefulness of such 

compounds [3].  Plant secondary metabolites are often phytotoxic, antifungal, and 

insecticidal due to the need for survival mechanisms against competitive 

organisms in their respective environments.  These fundamental characteristics 

of bioactive plant secondary metabolites guided the investigation outlined in this 

paper, of which the fundamental purpose was to isolate secondary metabolites 

that could potentially be used as defenses against crop inhibitors in agricultural 

applications.   

Plants with a plethora of secondary metabolites are often focused on in 

the search for crop defenses, since their range of active compounds is vast and 

holds many opportunities for finding a significant constituent.  A family of plants 

that is famous for its secondary metabolite diversity is the Rutaceae family, most 

notably consisting of the Citrus genus [4].  According to Nebo et al., the classes of 

compounds most likely to be useful in agricultural protection are alkaloids, 

limonoids, terpenoids, coumarins, and flavonoids—all of which have been 

commonly observed in members of the Rutaceae family [4].  One member of the 

Rutaceae family, Amyris elemifera, has been used to treat several ailments by 

several Bahamian ethnic groups on Abaco island [5].  According to Setzer et al. its 

healing effects on wounds, influenza, and general illnesses warranted 

investigation into the plant’s essential oils, revealing that the major constituent of 

the oil was limonene (45%), an extremely common monoterpene amongst 
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Rutaceae plants [5].  Monoterpenes are known to be very promising in agricultural 

defense applications, with thorough research over the extent of their herbicidal, 

fungicidal, insecticidal, and bactericidal activity [6].  Limonene has been 

extensively studied due to its healing properties in human health applications—it 

has been shown to completely dissolve cholesterol (i.e. in gall stones), alleviate 

heartburn, activate carcinogen-metabolizing enzymes, and inhibit tumor cell 

proliferation to an extent [7].  The structure of (S)-limonene is shown in Figure 1; 

since the S/D enantiomer is more bioactive than the R/L stereoisomer, the former 

was focused on for the purposes of this investigation [8].  This thesis included 

limonene in the investigation to perform a bioactivity comparison between the 

well-known essential oil component and the new furanocoumarin.  

 

 

 

 

 

 

 

 

Marei et al. outlines two potential mechanisms for limonene’s mechanism 

of action against fungi: inhibitory effects on cellulase and pectin methyl esterase 

(PME) [6].  Cellulase is used by pathogenic fungi to degrade the cell walls of its 

target, so inhibition of the enzyme eventually prevents pathogenesis from 

occurring [6].  PME regulates the methyl esterification of pectins, which are 

Figure 1. The structure of (S)-Limonene. 



4 
 

essential polysaccharides embedded in the cell walls of most terrestrial plants [6].  

Normal function of PME is necessary for maintaining a cells’ pH environment as 

well as significant processes in plant growth, like stem and root elongation [9].  

The demethylesterification reaction of PME on pectin polymers is shown in 

Figure 2 [10]. Furthermore, PME needs to be functioning properly in order to 

release MeOH (Figure 2) and oligogalacturonides (OG’s) that signal to the cell a 

pathogenic attack has occurred and immune responses should be activated [11].  

Therefore, pathogens and compounds that affect PME must inhibit its proper 

function and prevent MeOH and OG’s from being secreted in order to hinder the 

target’s ability to defend itself from the attack.  Generally, it is well substantiated 

that monoterpenes alter structure and/or function in cellular membranes due to 

their lipophilic characteristics—this could refer to either changing membrane 

permeability or interrupting cellular processes that take place across the 

membrane of the pathogen or victim  (i.e. respiration) [6].   
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Figure 2.  The reaction of Pectin methyl esterase (PME) on a general pectin polymer. 

Adapted from Reference #10: Salas-Tovar, Jesús A., et al. “Analytical Methods for 

Pectin Methylesterase Activity Determination: A Review.” Food Analytical Methods, vol. 

10, no. 11, 2017, pp. 3634–3646., doi:10.1007/s12161-017-0934-y. 

 

     Additionally, furanocoumarins, like the novel compound of interest in this 

investigation, have a general proposed mechanism for their bioactivity—though it 

is too complex to be entirely understood as of yet.  Most of the studied 

furanocoumarins are derivatives of psoralen (Figure 3), so the mechanism 

discussed may be slightly different to the newly isolated species, though extreme 

discrepancies are unlikely [12].   

 

 

 

Figure 3. The structure of psoralen, one of the most common furanocoumarins 

studied.  
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Briefly, furanocoumarins undergo a photoreaction with DNA to alter the 

transcription capabilities of cells and ultimately induce cell death [12].  The three 

general steps of the mechanism include an initial weak intermolecular interaction 

between pyrimidine bases and the furanocoumarin, formation of the pyrimidine-

furanocoumarin product, and then an additional pyrimidine addition to the 

remaining alkene site of the furanocoumarin [12].  These steps are summarized in 

Figure 4, showing a reaction between psoralen and the nitrogenous base 

thymine [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The mechanism of action that psoralen, undergoes in order to alter DNA 

transcription and produce the desired effect in the victim organism. Taken with 

permission from Reference 12: Scott, Barry R., et al. “Molecular and Genetic Basis of 

Furocoumarin Reactions.” Mutation Research/Reviews in Genetic Toxicology, vol. 39, 

no. 1, 1976, pp. 29–74., doi:10.1016/0165-1110(76)90012-9.  
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It is important to note that only photoactive furanocoumarins exhibit the full 

binding with pyrimidines, nucleosides, and nucleotides (step 2) and the formation 

of the dimer only occurs if the 4’,5 double bond of the furanocoumarin is the first 

to react with the substrate, due to the remaining ability of the 3,4 double bond to 

absorb UV energy and create the subsequent dimeric product [12].  The scope of 

this investigation did not include a thorough studying of the novel 

furanocoumarin’s photoactivity, though it is structurally similar to 8-

methoxypsoralen (Figure 5), which is very photoactive and typically has 

extensive effects on DNA transcription [12].        

 

 

 

 

 

Analogs are structurally similar compounds, and synthetic analogs are 

often used in lieu of the natural product to alleviate the tedious process of 

isolating the compound.  This thesis investigated a previously studied analog of 

the new furanocoumarin, 8-(3-methylbut-2-enyloxy)-marmesin, to compare the 

bioactivities and properties of the two analogs and determine which would be 

most useful in agricultural applications.  Both analogs were isolated naturally 

from the plant, but the marmesin acetate analog was significantly more abundant 

Figure 5. The structure of 8-methoxypsoralen, another highly active furanocoumarin. 
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in the extracts; consequently, the hydroxy analog was synthetically derived in a 

reaction from the acetate to make enough of the 8-(3-methylbut-2-enyloxy)-

marmesin for a thorough investigation.  The methods described below outline the 

isolation and structure elucidation of both analogs, as well as the inquiry into the 

bioactivity of both compounds using various bioassays. 
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Experimental Methods 

 

Instrumentation and General Methods.   

      All solvents used in the experiments were reagent grade and not further 

purified.  Thin-Layer chromatography (TLC) was performed on 250μm silica gel 

plates with a fluorescent indicator (Analtech, Newark, DE).  The compounds on 

the TLC plates were visualized using UV light at 254nm and 365nm, para-

anisaldehyde spray reagent, Dragendorff spray reagent (Sigma-Aldrich, St. 

Louis, MO), and an Iodine vapor tank.  Fractionation through column 

chromatography was carried out using a Biotage IsoleraTM Flash 

Chromatography system equipped with a dual-wavelength (254nm and 280nm) 

detector using silica gel SNAP Ultra columns (particle size 40-65μm) in varying 

ethyl acetate (EtOAc) and hexane gradients (Biotage Inc., Charlottesville, VA).  

Bruker NMR spectrometers (Billerica, MA) were used to record the H1 and C13 

NMR spectra and operated at 400MHz and 100MHz for H1NMR and C13NMR 

respectively.  High resolution mass spectra were recorded on a Jeol ACCU TOF 

4G LC mass spectrometer (Jeol, Tokyo, Japan) with a DART ion source 

(IonSense DART controller, Sangus, MA).  All relevant experimental spectra are 

found in either the Results and Discussion or Appendix section of this thesis.  

The optical rotations were obtained using an Autopol IV Automatic Polarimeter 

model 589-546 (Rudolph Research Analytical, Hackettstown, NJ).  An Optimelt 
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melting point instrument (Stanford Research System, Sunnyvale, CA) was used 

to measure melting points.   

Plant Material and Extraction.  

     The studied leaves of Amyris elemifera were collected in Miami-Dade County, 

FL, USA in April 2009.  Dr. Charles Burandt of the University of Mississippi 

School of Pharmacy identified the leaves, and a voucher specimen has been 

deposited in the University of Mississippi herbarium BUR 280703.  The leaves 

were ground, air-dried, and stored in plastic bottles at 25°C until they were 

extracted.  500g of the leaves were extracted with 2 Liters of hexane, EtOAc, and 

MeOH twice each at room temperature, yielding 10g, 49g, and 64g of the 

extracts respectively.  Each extract was tested for phytotoxicity, but only the 

EtOAc extract tested positively for phytotoxic activity.  TLC of the EtOAc extract 

showed a major UV active constituent and several minor components. 

Isolation and General Analysis of Compounds.   

      Part of the EtOAc extract (29g) was loaded onto a 340g SNAP Ultra Biotage 

column and fractionated using an EtOAc in hexane gradient (0-100%) elution.  

The Biotage instrument is used to run automated column chromatography, and it 

collects fractions based upon UV activity that it detects. As a compound elutes 

from the column (known by a sudden change in UV absorption), the sample is 

collected into test tubes until the detector senses a return to the base line UV 

absorption of the column and solvents.  This allows for easy separation of 

compounds in complex and large samples, like plant extracts. TLC was used to 
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analyze the fractions, and those that were similar were combined according to 

the TLC results to yield a total of 28 fractions.  The TLC technique relies on the 

fact that compounds and solvents with similar polarities are more likely to bind 

together than those with opposing polarities. Briefly, a sample is applied to a 

stationary phase (a silica plate, in this investigation) and the plate is placed into a 

solvent. The solvent runs up the stationary phase, and depending on its polarity, 

will separate certain compounds based on how well the compounds’ polarity 

matches the solvent’s. The final solvent composition (mix of two solvents) is 

chosen to optimize the separation of the constituents on the plate, which is 

usually determined through several trials of typical solvent mixtures (i.e. 50% 

EtOAc/Hex, 10% IPA/Hex, etc.) that have success with natural products’ 

separation in our lab. Comparing the TLC results of compounds in the same 

solvent will show whether or not the identity of the compounds could be identical; 

the compounds will move exactly the same distance up the plate, and will look 

the same in the visualization technique used on the plate, if they are the same.  

All fractions combined after TLC analysis were tested for phytotoxicity, and 

fractions 20 and 21 showed a major compound with high phytotoxicity and 

antifungal activity.  These two fractions were combined and further purified using 

a 50g SNAP Ultra Biotage column with a 20-60% EtOAc in hexane gradient 

elution.  Utilizing a gradient elution for collection of the compounds (versus 

isocratic runs for the purely analytical TLC’s) allows the increasing concentration 

of polar solvent (EtOAc in this case) to eventually out-compete the polar-polar 

interactions of the components and the polar silica stationary phase at a high 
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enough concentration. The major component was crystallized using EtOAC, 

dichloromethane (DCM), and hexane, which yielded white crystals that were 

determined to be 8-(3-methylbut-2-enyloxy)-marmesin acetate (1).  Fraction 24 

(56mg) of the EtOAc extract was run through a Florisil® column (8cm x 1.8cm) to 

remove chlorophyll using a 30% EtOAc/Hexane mobile phase and collecting 

fractions manually.  Chlorophyll is highly UV active, and therefore interferes with 

the ability to focus on compounds of interest.  Florisil® (magnesium silicate) is 

very successful as an adsorbent for lipids like chlorophyll, allowing for them to be 

separated from samples when they are run through a column packed with 

Florisil® [13].  The resulting fractions without chlorophyll were run on using 

Biotage flash chromatography with a 10g silica gel column and 30-80% 

EtOAc/Hexane gradient.  From the Biotage fractionation, 38mg of 8-(3-methylbut-

2-enyloxy)-marmesin (2), a colorless gum after evaporation of all solvent, was 

isolated. 

Quantification of 1 in the EtOAc Extract Using HPLC.  

      Liquid chromatography was performed on an Agilent 1260 Infinity HPLC 

system with quaternary pump and diode array detector.  A LUNA C-18 100A 

column (250 x 4.6mm, Phenomenex, USA) with silica guard column (10 x 3 mm) 

was used in the method run at 25°C.  This column utilizes an 18-carbon chain as 

the stationary phase (therefore is reverse phase, since C-18 is hydrophobic), 

allowing non-polar compounds to stick to the non-polar column and polar 

compounds to elute more quickly.  The mobile phase was also polar, at a 5-95% 

Acetonitrile (ACN) in 0.1% formic acid/water gradient run over 20 minutes at a 
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flow rate of 1.0 mL/min and injection volume of 5μL.  Two UV wavelengths, 

254nm and 280nm, were used to monitor the signals on the chromatogram.  A 

standard calibration curve (R2 = 1.0) was constructed of pure 1 at concentrations 

0.0312, 0.0625, 0.125, 0.25, 0.5, and 1 mg/mL in DCM.  The crude EtOAc extract 

at concentrations 0.5 and 1mg/mL were used for the quantification of 1 using the 

curve.   

X-Ray Crystallography of 1.  

     Data were collected by Dr. Frank R. Fronczek (Louisiana State University) at 

90 K with CuKα (λ = 1.54184 Å) radiation using a Bruker KappaAPEX II DUO 

diffractometer with microfocus source.  The absolute configuration of 1 was found 

from Flack parameter x = 0.05 (3) based on 1446 quotients. The orthorhombic 

space group of 1 was determined to be P212121. Experimental data showed a = 

7.5977 (12) Å, b = 12.622 (2) Å, c = 19.483 (3) Å, V = 1868.5(5) Å3, Z = 4, and µ 

= 0.80 mm-1.  Refinement yielded an R value of 0.028 using 3467 reflections, θ = 

3.5-69.3°, and 250 parameters.  A subsequent, higher resolution refinement was 

done based on data up to θmax = 39.3° using MoKα radiation.  The results from 

both refinements have been submitted to the Cambridge Crystallographic Data 

Centre with the deposition numbers CCDC 1866085 and 1866086.   

Base Hydrolysis of 1 to Yield 2.  

     After isolating 1, 200mg of it was dissolved in 10mL of MeOH and added to 

20mL of 10% aqueous KOH.  The solution was stirred at room temperature for 4 

hours.  Then, the mixture was diluted with 50mL water, acidified with 1M HCl, 
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extracted twice with 75mL DCM, and washed with 50mL water and 50mL 

saturated brine.  The resulting solution was dried over anhydrous Na2SO4 before 

evaporating the solvent.  The product, a viscous and colorless gum, was purified 

using Biotage flash chromatography—a 10g silica gel column with 80% 

EtOAc/Hexane mobile phase—to obtain the final product of pure 2, whose 

identity was confirmed through NMR and optical rotation data. 

Phytotoxicity Bioassay.   

     Extracts and purified components were submitted to this bioassay, which 

measures samples’ effect on seed germination and growth against Lactuca 

sativa (lettuce, a dicot) and Agrostis stolonifera (creeping bentgrass, a monocot) 

in a procedure developed by Dayan et al [14].  Seeds of both species are put in 

24-well plates, and samples are dissolved in a 10% acetone/DI water mixture 

before addition of 250μL of the sample/transfer solvent solution to the wells.  

Control wells were treated with the 10% acetone/DI water mixture only.  Acetone 

was used as the transfer solvent due to its well-proven lack of physical or 

chemical effect on the types of compounds normally tested in this assay [14]. 

Plates were sealed and incubated under continuous light conditions at 26°C and 

120 μmol s-1 m-2 average photosynthetically active radiation (PAR).  After 7 days 

(L. sativa) and 10 days (A. stolonifera) of incubation, germination and growth was 

ranked qualitatively on a scale of 0-5; 0 corresponds to no effect/no difference 

between the control and sample, while a rank of 5 indicates total inhibition of 

growth by the sample. 
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Lemna paucicostata Bioassay.   

     The purified compounds were analyzed against L. paucicostata to 

quantitatively determine phytotoxic activity of the analogs, which is determined by 

their effect on leaf growth and coloration.  In non-pyrogenic, polystyrene sterile 6-

well plates, 4950μL of Hoagland media (general purpose, nutrient rich media 

supporting a wide variety of plants) and 50μL of the sample (dissolved in an 

appropriate solvent) were mixed before adding two 3-frond (leaf) plants of L. 

paucicostata of the same approximate age and size to each well.  The plates 

were incubated for 7 days at 26C and 120 µmol s-1 m-2 average PAR.  Graphic 

templates of the plates were used for LemnaTec image analysis (LemnaTec, 

Würselen, Germany), with measurements taken on day 0, 7, and some 

intermittent days in between.  The plates were placed into the LemnaTec device, 

and the instrument provided automated leaf area and chlorophyll fluorescence 

data [15]. Measurements of frond number, total frond area, and color (indicating 

chlorotic or necrotic presence) were taken.  The comparison of leaf area and 

coloration between the treated and control plants yields the degree of 

phytotoxicity of the compounds. Each experiment was performed in triplicate. 

Cellular Leakage Test.   

     Compounds were analyzed with this test to determine if the toxicity included a 

membrane leakage mechanism of action, according to a modified method 

created by Duke and Kenyon [16].  In this assay, the amount of endogenous 

cellular electrolytes that leaked from the treated plant was measured to examine 



16 
 

membrane function. Cucumis sativus seeds were grown in a Conviron growth 

chamber for 6 days at 26°C and 173μmol s-1m-2 PAR. From C. sativus leaves, 

fifty disks with diameter 4mm were cut and placed in Petri dishes (6mm diameter) 

along with 5mL of 1mM 2-(4-morpholino) ethane sulfonic acid (MES) buffer that 

was 2% sucrose by weight.  The pH of the solution was altered to 6.5 using 1M 

NaOH.  Samples were dissolved in acetone and added to the Petri dishes at 

concentrations of 10, 100, and 1000μM.  After exposure to the test chemical, 

electrical conductivity readings were taken with a dip cell at 25°C and at times 0, 

1, 2, 4, 6, and 8 hours after exposure.  All Petri dishes were then covered with 

aluminum foil and left for 18 hours after the initial introduction of the sample, and 

then the conductivities were again recorded at the previously mentioned time 

intervals.  Then, after placing the dishes in 200 μmol s-1m-2 PAR light, 

conductivity was again measured at 0, 2, 4, 6, and 8 hours.  Many phytotoxic 

compounds have light-dependent (or light-intensified) electrolyte leakage, so this 

portion of the assay determines how light affects the efficacy of the phytotoxic 

samples [16]. The experiment was performed in triplicate before plotting the 

averaged percent conductivity change against the time after exposure to the test 

sample.  Cucumber leaf disks boiled in MES buffer for 8 minutes were used to 

measure a maximum potential membrane leakage of the solution. 

Bioautography Against Colletotrichum fragariae.  

     A culture of C. fragariae was acquired from Barbara J. Smith, USDA ARS in 

Poplarville, MS and was held at USDA ARS in University, MS until used.  The 

fungus was grown on potato dextrose agar (PDA, Difco, Detroit, MI) and 
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incubated under 55 μmol s-1m-2 light at 24°C with a 12-hour photocycle.  Conidia 

were extracted and collected according to the procedure established by Wedge 

et al. [17].  After running the sample compounds and extracts on silica gel TLC 

plates with varying solvent systems (mostly EtOAc and hexane mixtures), the 

plates were allowed to dry before they were sprayed with a suspension of the 

conidia at a concentration of 106 spores/mL.  The spores on the plates were set 

to incubate for 4 days in an enclosed, transparent box at 26°C under fluorescent 

lighting.  Areas on the TLC plate with no spore growth indicated the presence of 

antifungal constituents. 

Antimicrobial Bioassay.  

     Both 1 and (S)-Limonene were tested for antimicrobial activity against 

Candida albicans, Aspergillus fumigatus, Cryptococcus neformans, MRSA, E. 

coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and vancomycin-resistant 

enterococci (VRE) in a 96-well microplate bioassay.  Dissolved compounds were 

pipetted (10μL per well) into sterile, separate polystyrene microplate wells 

(Corning Costar Corp., Acton, MA).  All solvent was evaporated, then 200μL of 

0.5 MacFarland bacterial culture was added to each well.  Using a VWR Model 

2005 incubator (Sheldon Manufacturing, Inc., Cornelius, OR), the microplates 

were incubated at 29°C. Control wells (positive and negative), in which no test 

analyte was added, were included for each species.  In the preliminary assay, 

both analytes were dissolved in 100% MeOH so that the final concentration of 

analyte was 50μg/mL.  In the first assay, which was performed in duplicate, the 

percent inhibitions of each species by the analytes were compared to the positive 
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control ciprofloxacin; analytes with greater than 50% inhibition continued to the 

second assay.  In the secondary test, the analytes were tested at 20, 4, and 

0.8μg/mL. The 50% inhibition concentration, IC50, was determined for each 

species in the secondary assay.  This assay was performed by Marsha Wright at 

the National Center for Natural Products Research in the Thad Cochran 

Research Center.  
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Results and Discussion 

 

I. Isolation, Identification, and Analysis of 1 and 2. 

     After performing the separation techniques previously mentioned on the 

EtOAc plant extract, the TLC of fractions 20 and 21 shows that they shared the 

major bioactive component, as well as some minor components (Figure 6).  

 

    

 

 

 

 

 

 

Figure 6.  The TLC profiles of fractions 20 (left spot) and 21 (right spot) visualized with 
(a) 254nm UV light and (b) Dragendorff spray reagent (left) and p-anisaldehyde spray 
reagent (right) after running the plates in a 50% EtOAc/hexane solvent system.  Also, 
the TLC profile of the purified 1 (c), visualized with 254nm UV light after running the 
plate in a 40% EtOAc/hexane solvent system. 

 

The major component in Figure 6c was re-crystallized to produce white crystals 

that were determined to be 8-(3-methylbut-2-enyloxy)-marmesin acetate (1).  

(a) (b) (c) 
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Nuclear Magnetic Resonance (NMR) spectra and mass spectra (MS) were 

analyzed in order to determine the structure of 1 after its isolation into pure 

crystals (Figure 7), which were dissolved in chloroform to collect NMR data and 

DCM to collect MS data, respectively.  

 

 

 

 

 

 

 

Figure 7. The determined structure of 1, the novel furanocoumarin. 

 

     Figure 8 shows the data produced by the proton NMR (1HNMR), which gives 

peaks based upon the chemical environment of hydrogens.  The hydrogen that 

causes a certain peak gives a signal with information about hydrogens on an 

adjacent carbon to the carbon attached to the hydrogen producing the peak.  The 

data obtained from Figure 8 yielded the following results: 1H NMR (400 MHz, 

CDCl3) δ  1.53 (s, 3H,  5′-CH3), 1.59 (s, 3H,  4′-CH3), 1.72  (brs, 3H,  5′′-CH3), 

1.74 (brs, 3H,  4′′-CH3), 1.97 (s, 3H, OAc), 3.32 – 3.15 (m, 2H, 1′-CH2),  4.80 – 

4.65 (m, 2H, 1′′-CH2), 5.11 (dd, J = 9.5, 7.7 Hz, 1H, 2′-CH), 5.56 (t, J = 7.2, 1.4 
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Hz, 1H, 2′′-CH), 6.20 (d, J = 9.5 Hz, 1H, 3-CH), 6.94 (brs, J = 1.2 Hz, 1H, 5-CH), 

7.57 (d, J = 9.5 Hz, 1H, 4-CH).   

Figure 8.  H1NMR spectrum of pure 1 crystals. 

 

There were a few peaks in the 1HNMR spectrum that were not clearly 

distinguished as a triplet, quartet, etc. like the one in the inset in the middle of 

Figure 8.  Since there were those instances of unusual splitting patterns, the DQ 

COSY NMR spectrum (Figure 9) was analyzed to determine correlations 

between hydrogens that could explain the unusual spin-coupling occurrences.  

The DQ COSY spectrum depicts how hydrogens can interfere with one another’s 

signals, which would be a plausible cause for the uncommon peak appearances. 

These hydrogen-hydrogen correlations can be visualized in Figure 10, which 

takes the information in Figure 9 and illustrates how hydrogens in the actual 
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structure interfere with each other. Figure 9 shows the DQ COSY spectrum, 

where in order to find correlations between hydrogens, a diagonal is assumed to 

run from the bottom left to top right corner of the grid and the dots along the 

diagonal indicate where correlated hydrogens’ peaks meet in an (x,y) coordinate 

(found from following a straight line from each signal and finding the intersection 

on the diagonal). 

 

Figure 9. DQ COSY NMR spectrum of pure 1 crystals. 
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Figure 10. The COSY correlations concluded from the DQ COSY NMR spectrum of 

pure 1. 

 

Figure 10 shows that several hydrogens in close proximity with each other cause 

further splitting of the peaks, especially because the hydrogens on carbon 1’ 

(Figure 7) are not exactly chemically equivalent and therefore have different J-

coupling constants. Differences in J-coupling constants change the distance 

between the splits in signals, deviating the peak from a traditional triplet, doublet, 

etc. Therefore, instead of seeing the expected doublet from the two hydrogens 

on carbon 1’ (Figure 7), that doublet is further split into a multiplet due to the 

correlations seen in Figure 10.  

     The structure of 2 was also confirmed using NMR and MS (Appendix) and is 

shown in Figure 11.   
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Figure 11. The determined structure of 2, a previously isolated furanocoumarin and the 
hydroxy analog of 1. 

 

The NMR data for 2 had the same instances of unusual peak splitting as 1 and 

can be explained by the same correlations seen in Figure 10. The significant 

difference in the NMR spectra of 1 and 2 was the lack of a singlet from 1’s extra 

methyl group (1.97 ppm in Figure 8) in the spectrum of 2.  

     Quantification of 1 using HPLC produced the chromatogram in Figure 12, 

showing that 1 is the major constituent of the EtOAc extract.  A series of serial 

dilutions of pure 1 with concentrations 1, 0.5, 0.25, 0.125, 0.0625, and 0.03125 

mg/mL (using DCM as the solvent) were used to construct a calibration curve in 

order to quantify the amount of 1 per gram of crude EtOAc extract. The curve is 

included below, in Figure 13, and the area under the curve of 1 in Figure 12a 

(the large peak) was inserted into the equation in Figure 13 to determine the 
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concentration of 1 in the crude extract. That calculation indicates that the 

concentration of 1 per gram of crude EtOAc extract is 351mg. 

Figure 12.  HPLC-generated chromatogram of the crude EtOAc extract (a) and pure 1 

(b) at concentration 0.5mg/mL and detected at 254nm.  Analysis was run with 5μL 

injection volume and 1.0mL/min flow rate. 

 

 

      

 

 

 

 

Figure 13. Calibration curve generated from serial dilutions of 20-21 at concentrations 1, 

0.5, 0.25, 0.125, 0.0625, 0.03125 mg/mL. The area of the crude extract at 1mg/mL was 

plugged into the given equation as y in order to find x, the concentration of 20-21 per 

gram of crude EtOAc extract. 

 

y = 3532.9x + 30.269
R² = 1
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     Results from the X-ray crystallography of 1 show that the absolute 

stereochemistry at the C-2’ carbon of 1 is the S configuration (Figure 14).  

Stereochemistry refers to atoms’ arrangement in space around a chiral carbon, 

or within a chiral molecule.  Chiral carbons are those that are sp3 hybridized and 

have four different groups attached at each bonding site [18]. There is only one 

chiral carbon in 1 and 2, C2’ (Figure 14), and the stereochemistry of the carbon 

can influence the physical and chemical properties of the compound.  

 

 

 

 

 

 

 

 

 

Figure 14. The crystal structure of 1 from the X-ray data, which shows that the absolute 
stereochemistry at the C-2’ carbon is the S configuration. 

 

 

Since the stereochemistry of the C-2’ carbon is not changed during the base 

hydrolysis of 1, the synthetic KOH product also has the absolute stereochemistry 

of S at that carbon, which has not been previously reported for 2.  Optical rotation 

measurements indicate that the KOH product from 1 and isolated, naturally 

occurring 2 have the same value at [α]D (-)18.3 (c = 0.01, CHCl3).  Furthermore, 

the NMR data for both the synthetic and natural 2 are in agreement, which further 
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proves the compounds are identical.  Though the NMR data from 2 matches 

previously published findings, the initial reported optical rotation for the 

compound was [α]D (+) 126 (c = 0.2, CHCl3), indicating the need for further 

investigation into the optical rotations of 2 [19]. The measured optical rotation for 1 

was found to be [α]D (-) 37.8 (c = 0.01, CHCl3).  Further experiments outside of 

the scope of this investigation can be conducted to try to alter the 

stereochemistry of 1 to find its enantiomer, which would have the absolute 

configuration of R at carbon C2’. 

 

II. Bioactivity of Isolated Compounds.  

     The initial phytotoxicity bioassay (Table 1) showed that the crude EtOAc 

extract of the leaves was slightly inhibitory towards both species of plant studied.   

Table 1: Results of the Phytotoxicity Bioassay of A. elemifera leaves’ 

EtOAc Extract 

Sample ID Tested 

Concentration 

Solvent 

Used 

Day Lettuce Agrostis 

A. elemifera 

leaf 

(EtOAc 

extract) 
 

1 mg/mL 10% 

acetone in 

DI H2O 

7 2 2 

Table 1. The first phytotoxicity test results of the crude EtOAc extract. Rankings are 
based on a scale of 0-5, with 0 having no inhibitory effect and 5 having no seed 
germination. 
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Since the crude extract results showed promise, the investigation into the 

individual constituents continued. After isolation of 1 and 2, the same 

phytotoxicity bioassay was performed on the pure compounds, yielding the 

results in Table 2 below.   

Table 2: Results of the Phytotoxicity Bioassay of Pure 1 and 2 

  

Tested Concentration 

 (𝛍M) 

Day Lettuce 

(1) 

Agrostis 

(1) 

Lettuce 

(2) 

Agrostis 

(2) 

3  8 0 0 0 0 

10 8 0 1 0 0 

33 8 0 2 0 0 

100 8 0 3 1 0 

330 8 0 4 2 2 

1000 8 2 4 2 2 

Table 2. Results of the phytotoxicity bioassay of pure 1 and 2. Rankings are based on a 
scale of 0-5, with 0 having no inhibitory effect and 5 having zero seed germination.  
Solvent used was 10% acetone in DI water. 

 

Compound 1 showed more phytotoxicity than 2 in the case of the monocot A. 

stolonifera at concentrations of 10, 33, 100, 330, and 1000μM, but in regard to L. 

sativa, 2 proved to be more inhibitory by a small margin at 100 and 330μM. 
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  A plausible explanation for the difference in phytotoxicity could be attributed to 

the slight increase in lipophilic character in 1 versus 2, making it easier for 1 to 

enter the membrane of cells, disrupting normal growth of the plant.  This also 

points to the mechanism of phytotoxicity of the two compounds being membrane 

related, which is corroborated in the cellular leakage test discussed later in this 

section.   

The bioassay with Lemna pausicostata quantitatively describes the 

phytotoxicity of the compound tested by observing the effect of the compounds 

on leaves’ number and coloration.  Both 1 and 2 were tested at 30, 100, 300 and 

1000 µM, and the results can be summarized in Figures 15 and 16 below.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Results of the L. pausicostata assay for 1, showing that its IC50 for the 

species is 26.2μM.  Error bars represent +/- one standard error of the mean.    
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Figure 16. The L. pausicostata assay results for 2, indicating that its IC50 value is 
102μM. Error bars represent +/- one standard error of the mean. 

 

 

At all concentrations of 1 that were tested, inhibition occurred and bleaching of 

the leaves was observed (though no inhibition occurred at 10μM and below).  

Concentrations of 1 at 100μM and above caused total inhibition of growth, and 

the IC50 value of 1 was shown to be 26.2μM (Figure 15).  Comparatively, 2 was 

much less effective in its inhibition of plant growth (Figure 16), with no complete 

inhibition until a concentration of 330μM.  The IC50 value of 2 was much greater 

than 1 also, at 102μM, supporting the qualitative L. sativa and A. stolonifera 

phytotoxicity assay in the conclusion that 2 is not as successful as 1 at hindering 

plant growth.  The exact mechanism of action of inhibition cannot be determined 

from this experiment, but since bleaching occurred in the leaves treated by 1, it is 

likely that 1 interferes with either the synthesis of pigment or chloroplast 
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development in plant cells [20].  Due to the complicated structure of chloroplasts’ 

inner membranes, and the impermeability of molecules through the thylakoid 

membrane, it is more likely that 1 interferes with the development of chloroplasts 

rather than the synthesis of chlorophyll—since the pigment is made within the 

thylakoid membrane [21].  As discussed earlier, there is a high probability that 1 

interferes with cellular membrane function, and its structure could also induce 

obstruction of chloroplasts’ outer membrane performance. 

     The cellular leakage test was run to determine if the phytotoxic activity of 1 

was only membrane related, or if the process could be activated by light.  If the 

phytotoxic method of action involves disruption of the membrane, then 

electrolytic cellular components would be released into the solution, increasing 

the conductivity of the solution.  The results of the assay can be seen in Figure 

17, showing different concentrations of 1 and the positive control, acifluorfen.
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Figure 17.  The cellular leakage test results showing conductivity of the solution after 

treating cucumber leaf disks with pure 1 at concentrations 1, 10, 100, and 1000μM.  

Disks boiled in MES buffer represent the maximum possible conductivity (dotted line).  

The error bars represent +/- one standard error of the mean. 

 

From Figure 17, it can be seen that 1 causes slight membrane leakage in the 

dark, and the extent of leakage relied upon the concentration of the compound.  

After exposure to light at 18 hours, there is little change in the leakage value—

the most variation occurred in the 1000μM dose—which indicates that the 

phytotoxicity mechanism is not light dependent.  This is further corroborated by 

the positive control, acifluorfen, which is known to cause intense cellular leakage 

when exposed to light; since 1 does not produce leakage at all comparable to 

acifluorfen, the mechanism of 1 is most likely only membrane related. This result 

is slightly unusual because there is thorough research showing the tendency of 
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furanocoumarins, especially those deriving from psoralen, to have significant 

photosensitization [22]. The damage that psoralen derivatives cause once 

photoactivated is usually widespread across all important biological 

macromolecules (lipids, carbohydrates, nucleic acids, etc.), so it is unique that 1 

seems to only disrupt lipids and does not require light to do so [22].  

     In the antifungal bioautography, 1 proved to have antifungal activity against 

Colletotrichum species.  Colletotrichum fragariae is a cylindrical fungus that 

causes anthracnose crown rot (Figure 18) in crops such as strawberries, 

eventually resulting in the total death of the plant and severe economic loss [23].   

 

 

 

 

 

 

 

 

 

Figure 18. Strawberry affected by anthracnose crown rot, evident from the necrotic 

tissue and red and white marbling. Taken from Reference #23 (permission pending): 

Louws, Frank, et al. “Anthracnose Crown Rot of Strawberry.” NC State Extension 

Publications, NC State, 2014, content.ces.ncsu.edu/anthracnose-crown-rot-of-

strawberry. 

 

In the assay, 1 showed inhibition in the growth of the fungus on the TLC plate, 

which is shown in Figure 19 below. 
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Figure 19.  A picture of the bioautography TLC plate, showing the antifungal activity of 1 
(the white spot indicated by the arrow). 

 

Though 1 did show antifungal activity, it only did so at a minimum concentration 

of 1000μM, indicating that the compound did not have strong enough activity to 

warrant further investigation into this property, or a determination of its IC50.  

Additionally, 2 was studied in the same assay, but showed no fungicidal activity 

at any concentration.  However, further investigation into other fungal species is 

warranted for 1, since it could be more active and more useful against other 

agriculturally devastating fungi species.  Several studies have been conducted 

on the antifungal activity of furanocoumarins, and they are known for strongly 

suppressing pathogenic fungi growth in the event of an attack (as 

furanocoumarins are released by plants for defense) [24]. Therefore, a more 

thorough experiment involving several other fungal species is warranted in order 

to truly determine the fungicidal properties of 1.  
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III. Comparison of 1 to (S)-Limonene. 

 

     Both 1 and (S)-Limonene were submitted to the antibacterial bioassay to 

compare the new compound to the well-known bioactive limonene. The results of 

the antibacterial assays are summarized below, in Table 3.   

Table 3: Results of the Antibacterial Bioassay for 1 and (S)-Limonene 

Species 
Tested 

Initial 
Percent 
Inhibition (1) 

Determined 
IC50 Value (1) 

Initial 
Percent 
Inhibition 
(Limonene) 

Determined 
IC50 Value 
(Limonene) 

Candida 
albicans 

60% >20μg/mL 0 >20μg/mL 

Aspergillus 
fumigatus 

0 >20μg/mL 0 >20μg/mL 

Cryptococcus 
neformans 

0 >20μg/mL 0 >20μg/mL 

MRSA 0 >20μg/mL 0 >20μg/mL 

E. coli 0 >20μg/mL 0 >20μg/mL 

Pseudomonas 
aeruginosa 

0 >20μg/mL 0 >20μg/mL 

Klebsiella 
pneumoniae 

0 >20μg/mL 0 >20μg/mL 

VRE 0 >20μg/mL 0 >20μg/mL 
Table 3. The results of the antibacterial tests run on 1 and (S)-Limonene. Percent 

Inhibitions were determined qualitatively, and IC50 values were not calculated due to the 

lack of inhibition of the tested concentration, 20μg/mL.   

 

According to the data in Table 3, 1 only showed inhibition towards Candida 

albicans, a pathogenic yeast species.  Though the percent inhibition was high 

enough to warrant investigation into the IC50 value for 1, there was no further 

inhibition at concentrations lower than 20μg/mL, meaning that 1 did not have 

enough of an effect to be seriously considered as an antibacterial agent.  Though 

there was no effect on the other species in the first assay, the IC50 value exists, 
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and is known to be at least >20μg/mL.  Similarly, since (S)-Limonene showed no 

activity at all, its IC50 values for each species are just assumed to be >20μg/mL, 

also indicating that compound would not be a satisfactory antibacterial agent 

against the tested species.  This result is not what was expected, considering the 

studied effect of limonene on other bacterial species [25,26].  It is possible that 

limonene is active against species that were not tested in this investigation, and 

that it may have an effect at higher concentrations than were measured—though 

that would indicate it is still a poor contender for agricultural use.  A more 

thorough, wider scope comparison should be pursued between the two 

compounds to truly determine the benefit of one over the other regarding 

antibacterial activity.   

      Results from the antifungal assay of limonene show that the compound has 

no significant inhibition towards the growth of Colletotrichum fragariae (Figure 

20).  This result was also unexpected, since limonene has been proven to be 

significantly antifungal towards several species [6,27].  However, a wider 

investigation with other agriculturally significant species should be conducted for 

both compounds to more thoroughly compare their antifungal activity.   
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Figure 20.  A picture of the bioautography TLC plate with (S)-Limonene.  There is no 
obvious antifungal activity present on the plate. 

 

The purpose of the comparison between 1 and (S)-Limonene was to study the 

difference in biological properties between the major component of the EtOAc 

extract of the leaves (which can also be assumed to be one of the dominant 

compounds in the leaves in general) and the major component of the essential oil 

of the plant.  Though most plant essential oils have not been subjected to 

scrutinized investigations, there is evidence that many plants’ oils (acquired 

through steam distillation of the leaves) have varying bioactivity [28]. There are 

several studies that show a diverse selection of essential oils’ aptitude for 

insecticidal, fungicidal, and phytotoxic activity [28]. Furthermore, several 

experiments have shown that a wide spectrum of essential oils have significant 

antimicrobial properties [29]. This plethora of bioactivity can possibly be attributed 

to the complex mixture of compounds usually present in the essential oils.  

Steam distillation dominates the methods for essential oil extraction (93% of all 
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extraction is done by steam distillation), but it is a complicated process that 

requires specialized equipment and does not consistently produce significant 

yields [30].  The liquid-liquid extraction method used to isolate 1 is a much simpler 

process, so if 1 had shown greater success than (S)-Limonene in the bioassays, 

then steam distillation of Amyris elemifera’s essential oil would not be 

necessary—because 1 would have been more agriculturally beneficial than the 

essential oil. This also assumes that, since (S)-Limonene is the major component 

of the essential oil (45%), it accounts for the oil’s bioactivity; there are likely 

compounds in the oil that have higher specific activity than both (S)-Limonene 

and 1, but there may not be a significant enough amount to explore those other 

constituents.  However, since there were no truly conclusive results in the 

comparison of the two compounds (most likely attributed to the limited selection 

of plant, fungal, and microbial species used), further investigation into the benefit 

of the essential oil over the novel furanocoumarin is justified.   
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Conclusion. 

 

A novel furanocoumarin (1) was isolated using fractionation methods from 

the EtOAc extract of the leaves of Amyris elemifera, a plant in the family 

Rutaceae that is well-known for its bioactive properties.  After NMR and MS 

analysis of the pure 1, its structure was determined, at which point its status as a 

newly discovered compound was confirmed.  This investigation was therefore the 

first to report the bioactivity of 1, which was determined to be the major 

constituent of the EtOAc extract at 351mg of it per gram of extract.  Through 

several experiments, it was concluded that 1 showed both antifungal and 

phytotoxic activity against Colletotrichum fragariae (fungus) and the plants 

Lactuca sativa, Agrostis stolonifera, and Lemna paucicostata; the IC50 value of 

phytotoxicity was determined for the latter and was found to be 26.2μM.  The 

mechanism of phytotoxic action was indicated as membrane related, not light 

dependent, based upon a cellular leakage assay.  However, the exact 

mechanism is still unknown and requires further investigation to understand.  A 

comparison between 1 and (S)-Limonene, the major constituent of the plant’s 

essential oil, was done with an antibacterial and antifungal assay, since there 

have been previous investigations into the effects of limonene.  This comparison 

yielded unexpected results, where there was little activity shown by both 
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compounds in the antibacterial assay, and significantly greater antifungal activity 

by the novel furanocoumarin.   

Another constituent (2) was also isolated from the EtOAc extract, but NMR 

and MS data showed it was identical to a previously studied compound.  This 

compound was also submitted to the antifungal and phytotoxic assays, but it 

showed no significant activity. 
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