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ABSTRACT 

 

 Substituents are capable of affecting their molecules via induction, resonance, and field 

effects. Using the Hammett equation, the effect a range of substituents has on different properties 

of a molecule can be quantified.1 Hammett’s parameters have been correlated with the 

substituent effects on 1H NMR chemical shifts in different molecules, including experiments on 

substituted chalcones (1,3-diarylpropenones).2 The effect a substituent has on a molecule can 

also be observed using 13C NMR. The chemical shifts of carbons throughout the molecule may 

be affected by the substituent. This was shown to be true by Wilson and Zehr in para-substituted 

terphenyls.3 In order to determine how an alkyne bridge affected the ability of substituents to 

affect carbons throughout certain molecules, we observed substituent effects in para-substituted 

tolans.  

In previous work, substituents were found to affect the chemical shifts of every carbon in 

the molecule, but there was difficulty in distinguishing certain carbons from one another due to a 

close proximity in chemical shift.4 This phenomenon was observed in the 13C NMR spectra for 

acetyltolan, cyanotolan, and methyltolan. This uncertainty was attempted to be resolved using 

isotopic substitution. Deuterating one of the ambiguous carbons would theoretically cause this 

peak to essentially vanish on a 13C NMR spectrum, allowing one to determine that the identity of 

the remaining peak was the carbon that was not deuterated. The synthesis of methyltolan was 

attempted using multiple variations of the Sonogashira coupling procedure to test this 

hypothesis. Once both methyltolan and d5-methyltolan were synthesized, their resulting 13C 
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NMR spectra were compared to assign identities to every peak in the original 13C NMR spectrum 

of methyltolan. The deuterated carbon peaks disappeared in the 13C NMR spectrum of d5-methyl 

tolan, which allowed for the determination of the identity of each peak in the 13C NMR spectrum 

of methyltolan. This technique was found to be a promising method for determining the 

identities of ambiguous peaks on a 13C NMR spectrum.
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1. Introduction 

 1.1 Substituent Effects 

 
 Substituent effects have been studied heavily in the past and can be used to predict the 

effects that certain substituents will have on the reactivity of different functional groups. They 

affect their compounds via field effects, induction, and resonance. One of the most prominent 

attempts to study substituent effects was conducted by Louis Hammett, who described 

substituent effects via electron-donating or -withdrawing effects.1 He did so by comparing the 

effect of different substituents on the pKa of benzoic acid.1 The substituent constant, sigma (σ), is 

calculated from the log of the ratio of the substituted acid’s pKa to that of benzoic acid, also 

known as the Hammett equation.1  

log(K/K0) =  

K refers to the equilibrium constant of the substituted benzoic acid, K0 refers to that of the 

reference compound (benzoic acid), and  represents the reaction constant.5  

Sigma values can then be used to determine the effect of a range of substituents on 

certain processes. This can be accomplished by completing a regression analysis of different 

compounds with varying substituents. A greater slope of the regression line, or rho (), suggests 

that substituents have a greater effect on the process in question. Taft developed a more specific 

quantification of Hammett’s sigma constant using dual substituent parameters (DSPs).6 He 
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divided the substituent effect sigma into σR and σI, representing the effect of substituents on 

resonance and induction, respectively.6 Using these parameters, a dual regression analysis can be 

completed, giving the effect substituents have on both resonance and induction.  

Substituent effects on 13C NMR chemical shifts can be correlated with their effects on 

chemical processes, and many experiments showing these correlations have been conducted 

using both sigma values and DSPs. In the past, substituent effects on para-substituted terphenyls 

have been studied, which showed 13C NMR effects at the most distant carbons.3  

 

 

 

Figure 1: A para-substituted terphenyl. 

 

We focused on the 13C NMR spectra of para-substituted tolans to determine the effect a 

substituent would have on the most distant carbons. However, a problem that arises with the 

synthesis of para-substituted tolans is the inability to distinguish between several carbons due to 

their proximity in chemical shift.4 When the two nearly-coincident carbons are on different 

aromatic rings of a para-substituted tolan, this issue can potentially be overcome by deuterating 

one of the aromatic rings. Deuterating an aromatic carbon causes its 13C NMR peak to split into a 

small triplet and effectively disappear, allowing one to determine which peak from the 

compound’s original 13C NMR spectrum belongs to each carbon. This splitting occurs due to the 

three spin states found in deuterium, those being -1, 0, and 1. In addition to splitting into a triplet, 

deuterated 13CNMR signals are also less intense than hydrogenated carbon signals. This 

phenomenon occurs because of the ability of hydrogen to relax a carbon faster, allowing for the 
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carbon to absorb again quickly. Deuterium does not have this effect, meaning that deuterated 

carbon peaks absorb less and are lower in intensity than hydrogenated carbon peaks. Based on 

these principles, it was theorized that deuterating the unsubstituted aromatic ring of a para-

substituted tolan would allow the carbons with similar chemical shift values on each ring to be 

distinguished from one another. 

 

 

 

 

Figure 2: A para-substituted tolan. X = any substituent. Carbons 3 and 8 have indistinguishable 

chemical shifts for both methyltolan and acetyltolan. Deuterating the second aromatic ring 

should allow the two carbons to be distinguished via 13C NMR.  

 

There are several tolans which have multiple carbons appearing at or near the same 

chemical shift on their 13C NMR spectra. These include 4-methyltolan, 4-acetyltolan, and 4-

cyanotolan.4 Both methyltolan and acetyltolan have similar chemical shifts for carbons 3 and 8, 

while cyanotolan has indistinguishable carbons at C2 and C3.4 Each of these molecules’ 

ambiguous carbons could potentially be distinguished from one another by deuterating one of the 

carbons in question and not the other. For methyltolan and acetyltolan, this can be accomplished 

by using a perdeuterated aryl halide in the synthesis of the tolan, leading to a para-substituted 

tolan with one deuterated aromatic ring and one non-deuterated ring. For cyanotolan, a starting 

material with deuterium at C2 only must be used. We began by experimenting with methyltolan, 

with acetyltolan and cyanotolan to follow.
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1.2 Sonogashira Coupling Procedure 

 

For the synthesis of tolans, multiple variations of the Sonogashira coupling procedure 

were attempted. The general procedure involves the coupling of a terminal alkyne to an aryl 

halide using a palladium catalyst (Figure 3a).7 A copper co-catalyst has also been used 

historically, but there have been several successful copper-free Sonogashira couplings 

reported.8,9,10,11 In addition to the palladium catalyst, a base is used to help deprotonate the 

terminal alkyne. A copper-free version was used to synthesize both methyltolan and d5-

methyltolan.9 The copper-free mechanism involves two connected palladium cycles (Pd0 and 

PdII).12 The Pd0 cycle involves the formation of a Pd-aryl halide complex, which then reacts with 

the palladium bisacetylide formed in the PdII cycle to give the coupled product (Figure 3d).12 

Figure 3: Copper-free Sonogashira coupling procedure mechanism.12 
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2. Results and Discussion 

2.1 Synthesis of Methyltolan using Iodobenzene  

 

 

Scheme 1: Synthesis of methyltolan using iodobenzene.8 

 

The goal of this experiment was to synthesize methyltolan using a copper-free 

Sonogashira reaction. It involved using iodobenzene and 4-ethynyltoluene along with a 

palladium catalyst in a 1:1 ratio of water and sec-butylamine (Scheme 1).8 A 13C NMR spectrum 

was taken of the crude product (Figure 4), confirming that the desired product had been formed 

(Chemical shifts are given in Figure 5). However, a procedure that could synthesize methyltolan 

starting with bromobenzene was needed due to the fact that commercially-available d5-

bromobenzene would be used to synthesize the deuterated product. Therefore, the product was 

not further purified. 



 4 

 

Figure 4: 13C NMR spectrum of methyltolan (crude) synthesized using iodobenzene. 

 

 

 

 

 

Figure 5: 13C-NMR chemical shifts for methyltolan. 

 

 

 



 5 

 

After synthesizing methyltolan using iodobenzene, a method for synthesizing it with 

bromobenzene was needed. In order to accomplish this, the same procedure was used, 

substituting bromobenzene for iodobenzene. The 13C NMR spectrum of the crude product 

showed only starting materials (Figure 6A), so the reaction was conducted again, this time using 

heat. After being stirred and heated at 60 degrees C overnight, a 13C NMR was taken of the crude 

product (Figure 6B). The spectrum showed similar results as the previous experiment, indicating 

that the desired product was not formed. 

2.2 Attempted Synthesis of Methyltolan using Palladium and Copper Catalysts 

 

Scheme 2: Synthesis of methyltolan using both palladium and copper catalysts.13 

 

 In an effort to synthesize methyltolan starting from bromobenzene, a procedure using 

copper(I) iodide and bis(triphenylphosphine)-palladium(II) chloride as co-catalysts was used.13 

The starting materials were bromobenzene and 4-ethynyltoluene in nine parts toluene and one 

part diisopropylamine.13 After stirring overnight at room temperature, the crude product was 

isolated and thin layer chromatography (TLC) using hexanes as the developing solvent was used 

to determine if the desired product had formed. The TLC plate appeared to show the formation 

of a new spot in the product lane, so column chromatography was thought to be the best method 

of purification.  
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A) 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

Figure 6: 13C NMR spectra of attempted syntheses using bromobenzene. (A) 13C NMR spectrum 

for the reaction of bromobenzene and 4-ethynyltoluene at room temperature. (B) 13C NMR 

spectrum of the same reaction at 60℃. 
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However, the product would not dissolve in hexanes at room temperature, so it was 

theorized that recrystallization from hexanes might be possible. Recrystallization was attempted 

by dissolving the product in hot hexanes and then using gravity filtration to remove any 

impurities. The solution was then allowed to cool overnight, and upon examination the next 

morning, several crystals had formed. A 13C NMR spectrum was then taken of the pure product 

(Figure 7). However, this showed that the crystals were pure 4-ethynyltoluene, meaning that the 

isolated solid was primarily starting materials.  

 

Figure 7: 13C NMR spectrum of purified 4-ethynyltoluene. This was the starting material of the 

reaction, showing that the synthesis was unsuccessful. 
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2.3 Attempted Synthesis of Methyltolan using Copper-Free Sonogashira Procedure 

 

 

Scheme 3: Copper-free synthesis of methyltolan.9  

 

After failing to synthesize methyltolan using a copper co-catalyst, a copper-free 

procedure that was specific for aryl bromides was attempted (Scheme 3).9 DMF and piperidine 

were used along with 4-ethynyltoluene and bromobenzene, and the mixture was stirred at 60°C 

under argon.9 After the reaction was complete, the crude product was isolated. A 13C NMR 

spectrum of the crude product showed several impurities, but confirmed that the desired product 

had been synthesized. TLC using hexanes as the developing solvent showed two different spots 

for the starting material and product; however, they were very close in Rf value. The product was 

then further purified via column chromatography using hexanes as the eluent. 13C NMR analysis 

of the pure product (Figure 8) showed two extra peaks in the alkyne region as well as extra 

aromatic peaks, suggesting that the product still contained starting materials in addition to the 

desired product.  
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Figure 8: 13C NMR spectrum of methyltolan after column chromatography purification. Hexanes 

were used as the eluent. The spectrum still shows two excess alkyne peaks, suggesting that the 

starting material was still present.  

 

The product mixture was then attempted to be further purified using preparative TLC 

with hexanes as the developing solvent. The mixture was dissolved in DCM and then plated 

across the base of the TLC plate. After developing the plate, examination under UV light showed 

one broad band with an Rf value of 0.35. Based on the Rf values of the starting materials and 

product on the original TLC plate, it was theorized that the lower portion of the band would 

contain only the desired product. This lower portion was removed and a 13C NMR spectrum was 

taken (Figure 9). The spectrum still showed excess peaks in the alkyne region, although some of 
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the extra aromatic peaks were removed. It was then theorized that recrystallization could be used 

to purify the methyltolan, but a larger sample would be needed to do so.  

Figure 9: 13C NMR spectrum of methyltolan after preparative TLC purification.  

 

The same procedure was conducted again, with an increase in scale by a factor of five. 

After obtaining the crude product, recrystallization from hexanes was attempted. Once the 

mixture cooled overnight, no crystals formed. Recrystallization with methanol and water was 

then attempted but was unsuccessful. A small amount of hexanes (15 mL) was then used to 

recrystallize the product. Several small crystals appeared to form, but after vacuum filtration, 

nothing remained on the filter paper. Based on these findings, it was assumed that a smaller 
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amount of solvent and a greater amount of product would produce the best recrystallization 

results.  

 The same procedure for the synthesis of methyltolan was conducted again. 

Recrystallization was attempted with the crude product and 2 mL of hexanes. After dissolving 

the product in hot hexanes, the solution was filtered using a long-stem glass pipet packed with 

glass wool. The resulting solution was then allowed to cool and then placed in the freezer, and 

small crystals appeared overnight. However, the crystals and remaining solvent formed a 

coagulated substance, making it difficult to isolate the crystals. A small amount of the substance 

was then scraped onto filter paper to allow the solvent to evaporate. A 13C NMR DEPTQ 

spectrum was taken of the substance (Figure 11). Similar to those of previous experiments, this 

spectrum showed four peaks in the alkyne region. However, it also showed that these alkynes 

were not terminal, which indicated that 4-ethynyltoluene, the previously believed chief 

contaminant, was not present in the product mixture. Instead, it showed two extra alkyne peaks 

that were not terminal, suggesting that an alkyne-to-alkyne coupling byproduct (Figure 10) had 

formed.  

 

 

 

 

Figure 10: Proposed alkyne-to-alkyne coupling byproduct.  
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Figure 11: DEPTQ spectrum of methyl tolan after attempted recrystallization. All four alkyne 

peaks are shown to have an even number (zero) of hydrogens, meaning that the terminal alkyne 

of 4-ethynyltoluene could not be the main contaminant.  

 

In an effort to prevent the alkyne-to-alkyne product from forming, methyltolan was 

synthesized again, this time using a 10:1 ratio of aryl bromide to alkyne. After the crude product 

was obtained, a silver-impregnated column was used for further purification. The column 

material was prepared by mixing silver nitrate and silica in ethanol and then heating it in the 

oven to activate the silver. The silver-impregnated column was used so that any alkyne-to-alkyne 

coupling product that formed would be retarded by the silver in the column. The extra pi bonds 

present in the alkyne-to-alkyne coupled product would interact with the silver to a greater extent 

than the desired product would, causing the impurities to elute at a slower rate than the desired 
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product. After the product was run through the column, a 13C NMR spectrum was taken (Figure 

12). The spectrum showed that the excess alkyne peaks had been removed; however, two extra 

aromatic peaks remained. The two targeted ambiguous peaks were both near 131.5 ppm and 

correspond to carbons 3 and 8 of methyltolan.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12: 13C NMR spectrum of methyltolan. The peaks at 131.56 ppm and 131.51 ppm belong 

to carbons 3 and 8. 
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2.4 Synthesis of d5-methyltolan 

 

Scheme 4: The synthesis of d5-methyltolan.9 

 

Due to the fact that each carbon in methyltolan was present in the 13C NMR spectrum, d5-

methyl tolan was synthesized in an attempt to assign identities to each peak. d5-Bromobenzene 

and 4-ethynyltoluene were used as starting materials. The resulting crude product was then 

purified via column chromatography. The purified product showed all expected peaks along with 

two excess aromatic peaks at 129 and 132 ppm (Figure 13).  
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Figure 13: 13C NMR spectrum of d5-methyltolan. The peak at 131.56 ppm disappeared compared 

to the nondeuterated sample, meaning that this was the deuterated carbon, C8. The peaks at 129 

ppm and 132.41 ppm are extraneous.  

 

After comparing the spectra for methyltolan and d5-methyltolan (Figures 12 and 13), 

identities could be assigned to each peak on the 13C NMR spectrum for methyltolan.  The 

spectrum for d5-methyltolan showed an absence of four aromatic peaks when compared to the 

spectrum for methyltolan. Therefore, the deuterated carbons of d5-methyltolan (C8, C9, C10) as 

well as C7 were not present on the spectrum. These carbons were not present on the spectrum 

because of the three spin states present in the deuterium atom of each carbon as well as the 

inability of deuterium to quickly relax a carbon. The number of spin states of the deuterium 

atoms caused the signals of the aromatic ring carbons to split into triplets and effectively 
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disappear. Comparing the two spectra shows that the peak at 131.51 ppm was present in the 

spectrum for d5-methyltolan while the peak at 131.55 ppm disappeared. Based on these results, it 

was concluded that the peak at 131.51 ppm corresponded to carbon 3, which was not deuterated 

when d5-methyl tolan was synthesized. The peak at 131.55 ppm corresponded to carbon 8 since 

this carbon was deuterated and therefore would not be present in the spectrum for d5-methyl 

tolan.  
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2.5 Attempted Synthesis of Acetyltolan 

 

A) 

 

B) 

 

 

 

 

 

C) 

 

Scheme 5: Synthesis of d5-acetyltolan. (A): The synthesis of the protected d5-acetylene to be 

used in the synthesis of acetyltolan.10 (B): The deprotection of d5-acetylene.14 (C) The synthesis 

of acetyltolan using the deprotected d5-acetylene and p-iodoacetophenone.11 
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In order to synthesize acetyltolan, the starting material for the reaction, d5-

phenylacetylene, would need to be synthesized first. This would then be reacted with p-

iodoacetophenone to synthesize acetyltolan.11 Synthesizing d5-phenylacetylene involved treating 

trimethylsilylacetylene with d5-bromobenzene. Trimethylsilylacetylene was used so that only one 

terminal alkyne carbon would react with the aryl halide, meaning that the resulting product 

would need to be deprotected before using it to synthesize acetyltolan.  

The first attempt at synthesizing d5-phenylacetylene involved using a variation of the 

Sonogashira coupling procedure to couple d5-bromobenzene to trimethylsilylacetylene.10 The 

product was worked up after the reaction was allowed to stir overnight. The resulting material 

was a waxy, translucent yellow substance. After obtaining the crude product from this reaction, a 

13CNMR was taken. The spectrum showed no peaks in the aromatic region but only showed 

several hydrocarbon peaks. The reaction was attempted again resulting in the same outcome.  

2.6 Dual Substituent Parameter Analysis for the Series of para-substituted Tolans 

 

 

Table 1: 13C NMR chemical shifts for the series of para-substituted tolans. The data, aside from 

that of methyltolan, was obtained from previous research.4 

Substituent C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

CH3O 158.60 113.98 133.03 115.37 89.35 88.05 123.58 131.43 128.29 127.91 

NHOAc 137.82 119.30 132.41 118.88 89.03 89.03 123.26 131.40 128.33 128.17 

CH3 138.60 129.33 131.71 120.41 89.76 89.93 123.70 131.76 128.53 128.28 

H 128.24 128.32 131.57 123.20 89.32 89.32 123.20 131.57 128.32 128.24 

Cl 134.66 128.68 132.79 121.77 88.22 90.33 122.92 131.58 128.38 128.47 

OAc 136.19 128.26 131.70 128.20 88.59 92.70 122.64 131.70 128.43 128.80 

CN 111.44 132.00 132.00 128.21 87.69 93.75 122.19 131.76 128.48 129.10 

N2O 146.96 123.62 132.25 130.24 87.53 94.69 122.08 131.82 128.52 129.26 
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Table 2: The induction and resonance parameters for the series of para-substituted tolans. Both 

resonance and induction are shown to have an effect, even at the most distant carbons.  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

ρI 3.243 -4.702 1.365 7.206 -2.870 5.385 -1.714 0.0884 0.0629 1.112 

p 0.883 0.55 0.0017 0.00014 <0.0001 0.0035 0.0001 0.58 0.66 0.0013 

ρR -29.54 17.841 -1.804 17.133 -1.033 6.425 -1.307 0.3959 0.2060 1.244 

p 0.191 0.047 0.0003 <0.0001 0.0062 0.0011 0.0003 0.036 0.16 0.0005 

R2  0.0426 0.410 0.930 0.993 0.964 0.926 0.97 0.518 0.164 0.95 

p 0.385 0.12 0.0006 <0.0001 0.0001 0.0007 <0.0001 0.070 0.28 0.0003 

 

  

13CNMR chemical shift values for the series of para-substituted tolans were correlated 

with Charton’s σI and σR parameters.4,15 Each tolan used consists of three pi systems, those being 

a proximal substituted ring, a distal unsubstituted ring, and a triple bond linking the two rings. 

Based on Table 1, the strongest resonance effects are seen at the ortho and para positions on the 

substituted ring. The distant ring also shows moderate resonance effects. This suggests that the 

tolans are mostly planar and are able to transmit resonance effects throughout the entirety of the 

molecule. The induction parameters tend to be negative for carbons closer to either the 

substituent or the linking system, and positive for carbons that are further away from these areas. 

From the data in Table 1, it can be concluded that 13C chemical shifts experience substituent 

effects that are correlated with both induction and resonance parameters.  
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Figure 14: Graph of DSP analysis of the para-substituted tolan series. While the greatest 

correlations for resonance and induction are closer to the substituent, there were significant 

correlations shown for all carbons.  
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3. Future Work 

 

 Being able to obtain completely pure spectra of both methyltolan and d5-methyltolan 

would be helpful. Other ways of purifying these compounds should be explored. 

Recrystallization using different solvents or column chromatography using a longer stationary 

phase could be potential avenues to pursue. In addition to purifying methyltolan, distinguishing 

between the ambiguous carbons present in both acetyltolan and cyanotolan still needs to be 

accomplished. For acetyltolan, this could potentially be accomplished in a similar way to the 

methods used for methyltolan due to the fact that C3 and C8 are also indistinguishable on the 13C 

NMR spectrum of acetyltolan. The current synthetic process used for acetyltolan did not seem 

very promising, so different methods should be explored. For cyanotolan, the ambiguous carbons 

(C2 and C3) exist on the same ring. This means that a different approach than what was used for 

methyltolan and acetyltolan would have to be used in order to deuterate one carbon on the ring 

and leave the other alone.
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4. Conclusion 

 

 The process of using isotopic labeling to distinguish between ambiguous carbon signals 

was proven to be a valid research technique. Although both methyltolan and d5-methyltolan 

were unable to be completely purified, the results clearly showed differentiation between the 

ambiguous carbons in question. It would be useful to determine if this technique worked on other 

molecules, but for now it is a promising method for distinguishing between similar carbon 

signals.  
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5. Experimental 

5.1 Synthesis of Methyltolan 

 

 For the synthesis of methyltolan, 4-ethynyltoluene (254 mg, 2.20 mmol), bromobenzene 

(2.32 g, 15.0 mmol), piperidine (254 mg, 3.00 mmol), and 47 mg of bis(triphenylphosphine) 

palladium(II) chloride were added to a 25 mL round-bottom flask along with 3.7 mL of DMF.  

The reaction mixture was heated to 60°C and allowed to stir under argon overnight. The reaction 

was then diluted with 30 mL of diethyl ether and washed twice with 5% aqueous HCl, twice with 

water, and once with a 1:1 mixture of water and brine in a separatory funnel. The product was 

then dried with MgSO4, and the ether was removed via rotary evaporation. A crude product mass 

of 330 mg (1.72 mmol) remained. The product was then further purified using silver-

impregnated silica gel column chromatography and hexanes as the eluent. This resulted in 94 mg 

(0.49 mmol) of methyltolan, giving a 22% yield.  

5.2 Synthesis of d5-methyltolan 

 

 For the synthesis of d5-methyl tolan, 4-ethynyltoluene (140 mg, 1.2 mmol), d5-

bromobenzene (246 mg, 1.5 mmol), and piperidine (125 mg, 1.5 mmol) were added to a 10 mL 

round-bottom flask along with 30 mg of bis(triphyenylphosphine) palladium(II) chloride and 1.8 

mL of DMF. The reaction mixture turned from transparent yellow to dark brown after 

approximately 30 minutes of heating. The reaction was stirred under argon at 60°C overnight. 
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After stirring, the product was dissolved in diethyl ether and then washed twice with 5% aqueous 

HCl, twice with water, and once with a 1:1 mixture of water and brine in a separatory funnel. 

The resulting product was then dried with magnesium sulfate and the ether removed via rotary 

evaporation. The crude product (130 mg, 0.66 mmol) was a dark reddish-brown solid and a 55% 

yield was obtained. This was purified via column chromatography, giving a mass of 60 mg (0.3 

mmol) and a 25% yield. 

5.3 DSP Analysis of para-substituted Tolans 

 

 In order to complete the DSP analysis of the series of para-substituted tolans, the 

program R Studio was used. The 13C NMR values from the series of substituents for each carbon 

(Table 1) as well as Charton’s I and R values were uploaded into the software.15 A dual 

regression analysis was then conducted for each carbon. The slopes of the regression lines, I 

and R, were then determined for carbons 1-10. This data was then used to create the graph seen 

in Figure 13. 
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