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ABSTRACT 

Observational learning is a cognitive ability that allows individuals to acquire 

information or skills through watching others. Examples of observational learning can be seen in 

all major vertebrate groups and some invertebrates. Observational learning may confer a 

selective advantage to animals due to improvements in decision-making and increased 

behavioral flexibility. While studies of animals’ observational learning capabilities and the types 

of information acquired have been examined in many species, multiple types of observational 

learning have rarely been examined in non-rodent species in controlled laboratory experiments. 

Additionally, only recently have the neural mechanisms that support observational learning been 

examined.  I sought to expand our understanding of avian observational learning and explore the 

role of the cerebellum in information acquisition. Using zebra finches I tested three types of 

observational learning (stimulus enhancement, observational conditioning, and imitation). I 

found that female zebra finches selected males based on observations of the traits of the females 

paired with the males but not based on observation of simply whether the male was associated 

with a female. Zebra finches were found to be capable of learning about the threat value of a 

stimulus by witnessing conspecifics undergoing tone-shock fear conditioning. However, I found 

no evidence that spatial information could be acquired via observation. I worked toward the goal 

of determining a role of the avian cerebellum in fear conditioning. Lesions of the lateral 

cerebellar nuclei did not interfere with fear conditioning. As humans and rodents are capable of 

all of these types of observational learning and have cerebellar involvement in fear conditioning, 

these findings illustrate a lack of conservation in observational learning and the role of the 



iii 

 

cerebellum in specific tasks across vertebrate classes. The ecological relevance of the type of 

information required for survival and reproduction has likely driven the evolution of 

observational learning in vertebrates as zebra finch ecology makes it unlikely that acquiring 

spatial information from conspecifics would affect fitness. Conservation of cerebellar 

contributions to fear conditioning may be conserved but the specific circuits involved may differ.  
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CHAPTER 1: INTRODUCTION 

Observational learning is learning acquired by observing the behavior of another 

individual. Learning is generally accepted to have occurred when the observer’s behavior 

changes due to the information gained from the behavior of a demonstrator or model. 

Observational learning is a type of social learning and observers can use any sensory modality 

(e.g. olfaction, audition, written or spoken words in humans) to “observe” the demonstrator. It 

has been proposed that observational learning is a vital process in animals because it bridges the 

gap between species-specific (innate) behaviors and operant (trial and error) learning [1].  

Largely innate behaviors can be advantageous as they are highly reliable and do not 

depend on reinforcement or a learning process.  However, they lack a high degree of plasticity 

and may become obsolete in a changing environment [1]. Conversely, learning requires an 

individual to be exposed to a stimulus and experience the consequences of interacting with this 

stimulus in order to learn an appropriate behavioral response. This can be extremely time-

consuming and may lead to disastrous consequences, for example death or sickness from eating a 

novel food that is toxic or becoming a victim of predation [2-7]. Observational learning can 

provide more flexibility than innate behaviors and allow an individual to avoid many of the 

negative consequences associated with learning [1].  

Observational learning can still be costly (both in time and energy), and may still be error 

prone if the information acquired is outmoded in a changing environment [1, 8, 9]. However, 

natural selection should counterbalance poor models by selecting against individuals not 
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engaging in the most appropriate behaviors in the current environment. Thus, doing what others 

do should typically lead to positive outcomes [1, 10].  The advantages of acquiring relevant real-

time information, avoiding cost, and increasing flexibility may explain the prevalence of 

observational learning in animal species and its emergence in early development in most species 

[11].   

Although extensive research has examined the capability for and limitations of 

observational learning in particular species (for reviews, see [5, 8, 12-14]), only in the past two 

decades  has the examination of the neural mechanisms supporting this type of learning been 

performed  and only for a  limited number of species [13, 15-21]. A majority of these studies 

focus on the mirror neuron system (MNS) [16, 22-24]. The MNS is a group of mammalian brain 

regions containing neurons that respond both when an individual makes active movements and 

when the individual observes the same action conducted by a demonstrator, "mirroring" the 

behavior [22, 25]. The MNS has only been decisively and extensively demonstrated in 

primates; although some evidence may support an analogous MNS-type system in non-

primates including a passerine bird species and the laboratory rat [26]. Early theories 

proposed that the MNS might underlie unique primate abilities for observational learning, 

particularly that allowing action imitation [16]. However, macaque monkeys, the model 

organism for testing the function of the MNS system, do not imitate demonstrators [27]. This 

implies that the MNS, at least in the macaque, is not sufficient for expression of action 

imitation [28].  

Comparing the large number of species capable of observational learning to the 

limited number that possess an MNS and considering the fact that the only species 

conclusively shown to possess a MNS does not demonstrate observational action imitation, I 
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must propose that another brain region contributes to observational learning.  This region 

could be the cerebellum (CB) or cerebellar analogs in non-vertebrates [29, 30].  CB function 

was first examined by Pierre Flourens in 1825. He discovered that CB ablations resulted in 

impaired motor coordination [31, 32].  As a result, the CB had been viewed mainly as a 

postural control area.  More recent studies have indicated cerebellar involvement in 

numerous cognitive functions including language, spatial navigation, working memory, and 

implicit and explicit learning and memory [33-35], and, more importantly, in observational 

learning in rats and humans [18, 19, 21, 36]. In the observational learning studies in rats and 

humans, it was shown that ablation in rats or deactivation, via transcranial magnetic 

stimulation, in humans severely impairs the ability to acquire information from a 

demonstrator in spatial or procedural imitation tasks [19, 35, 37]. Furthermore, the structure 

and function of the CB is highly conserved [29, 38] and observational learning is widely 

distributed in the animal kingdom [for review, see 12]. Thus, I propose that observational 

learning of various types exists in Aves, that a role for the CB in observational learning of 

procedural tasks is conserved in Aves and mammals, and that the CB would also be involved 

in the ability to perform observational learning of other types of tasks.   

 Specifically, for my dissertation, I first tested the capabilities of a passerine bird, the 

zebra finch (Taeniopygia guttata), to perform three types of learning.  I then tested the ability of 

observers to acquire this learned information from demonstrators.  The type of observational 

learning in three tasks varied; requiring either stimulus enhancement, observational conditioning 

or mindful imitation, as will be defined shortly.  Additionally, I worked toward the goal of 

determining a role of the CB in observational learning in those tasks that were acquired via 

observational learning. 
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The importance of my work is that I devised ways to empirically test the different types 

of observational learning in an avian species via tasks that make cross-species comparisons 

possible. By examining which types of observational learning a species is capable of and the 

types of information that are acquired by different species, the adaptive significance of 

observational learning and its evolution may be determined. Additionally, I began an 

investigation into brain regions that may underlie observational learning in a bird. My studies 

make important contributions to the study of animal cognition and have applications to the study 

of human behavior.  

I. Principles and Types of Observational Learning  

Learning in animals is commonly divided into two broad categories, direct and 

observational learning, which are further divided into numerous subcategories. Direct learning 

categories are based on the type of learned association made directly by the individual [39].  In 

contrast, observational learning categories are based on what type of information has been 

acquired from a demonstrator [40].   

 Observational learning theory is derived from the research and proposals made by Albert 

Bandura. Bandura studied the cognitive and information-processing capabilities necessary to 

learn through observation [41-45]. There are three core concepts in Bandura’s social learning 

theory: 1. people (animals) can learn via observation of another individual; 2. learning does not 

always result in a behavioral change; and, 3. internal mental states of the observer are an 

essential component of this process [42, 44, 45].  He also discovered that numerous factors 

influence the efficacy of observational learning and specific steps necessary for learning to 

occur. First, the observer must be attentive to the demonstrator. Any distractions will negatively 

affect the learning process. Second, the observer must retain the information acquired. Third, the 
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observer must be capable of performing the behavior. Finally, motivation to imitate the behavior 

must be present or, although the information was learned, the behavior will not be displayed.  

 There are six categories of observational learning that are differentiated according to the 

role the demonstrator plays in generating the matching behavior in the observer [46].  In local 

enhancement, the demonstrator’s behavior increases the probability the observers will attend to 

or interact with the same stimulus. Stimulus enhancement, although similar, results in the 

observer's interaction with any stimuli of the same physical type (e.g. color, smell, shape). In 

observational conditioning, the demonstrator’s behavior acts as a unconditioned stimulus (US) 

eliciting a matched conditioned response (CR) in the observer. The demonstrator’s behavior may 

also act as a discriminative stimulus as in match-dependent behavior, or as a model for a non-

goal directed process (copying) or a goal-directed process (imitation).  

Imitation is distinct from the other non-imitative observational learning categories. In 

non-imitative observational learning, the animal is only learning about the environment (e.g. 

what foods are palpable, how to avoid a predator, etc.). In contrast, during imitation, the animal 

is learning about the behavior (e.g. the underlying purpose, the exact motor patterns)  by 

observing others [47]. Imitation is divided into three forms: kinesthetic, symbolic and mindful 

[48]. Kinesthetic imitation involves matching body movements and postures to those of the 

demonstrator. Symbolic imitation involves individuals making a mental representation of a past 

observed behavior for replication in the future when the demonstrator is no longer present. 

During mindful imitation, the individuals must recognize and encode the demonstrator’s 

behavior and intentions so they can reproduce the behavior and achieve the same goal as the 

demonstrator.     
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II. Observational Learning across Species 

Observational learning in nonhuman animals has been investigated for over a hundred 

years. Observational learning has been found in animals as diverse as cephalopods, insects, fish, 

herptiles, birds, rodents, cetaceans, and primates. Observational learning may affect numerous 

biologically significant decisions made by animals and animals may gain a survival advantage 

from learning information from a demonstrator [13]. Since solitary species have minimal contact 

between individuals and thus little opportunity for observational learning to occur, one might 

posit selection for observational learning would not occur in asocial species [1, 47]. Yet, 

observational learning has been clearly demonstrated in several  non-social species including the 

red-footed tortoise [49], common octopus [50], golden hamster [51] and several non-colonial 

insects [52]. This implies that observational learning is a highly conserved cognitive process and 

is not contingent on social group dynamics. Studies into observational learning are so prolific 

that for the purposes of this dissertation, I provide only a few examples illustrating this 

phenomenon across taxa (with a primary focus on avian species). The diversity of the types of 

information being learned is highlighted.   

Invertebrates 

The first publication of observational learning of which I am aware is Darwin’s bee 

studies [53], and since that time, observational learning has been examined has been studied and 

shown in cephalopods and arthropods. For example, when the common octopus is presented with 

two objects of different colors, they are more likely to attack the one they previously witnessed a 

conspecific attacking – a clear example of stimulus enhancement [50]. Several species of 

hymenoptera use the presence of a conspecific to identify feeding sites or novel food sources. 

[54-61]. These are examples of local enhancement observational learning. Foraging preferences 
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can also be acquired via stimulus enhancement. If allowed to view demonstrators preferentially 

foraging on green “nectar reward” flowers while avoiding orange “no nectar reward” flowers, 

naïve common eastern bumblebee workers will exhibit a significant preference for green unlike 

non-observer control bees [62]. In addition to foraging behaviors, predator avoidance may also 

be acquired via observational learning in insects. Damselfly larvae can gain the ability to 

recognize and respond to predation based on conspecific and heterospecific cues [63]. While 

olfactory cues from a pike predator do not elicit any response, when pike cues are combined with 

chemical cues from injured conspecifics, the larvae reduce feeding activity and movement. If the 

same individuals are subsequently exposed to just the olfactory cues from the pike, they will 

again change their behavior and become less active [63]. This may be an example of 

observational conditioning whereby the UR (reduced activity to be less conspicuous) to an US 

(the olfactory cues from injured conspecifics) become paired with a previous neutral stimulus 

(the pike cues) resulting in the pike’s presence eliciting the reduced activity [46, 47, 64].   

Fishes 

Fish species use observational learning in numerous ways. Blue-head wrasse learn mating 

sites by observation [65], and juvenile French grunts learn resting locations and migration paths 

along the reefs  [66]. Additionally, various species of fish learn to avoid a neutral stimulus that 

has been paired with an alarm substance secreted by the skin of an injured conspecific. This 

observationally learned and exhibited response to a previously neutral stimulus can then serve as 

a model to naïve individuals and induce a fear response in these individuals leading to 

observational conditioning [67, 68]. Mate-choice copying has been demonstrated in several fish 

species and has shown that females in several species, after observing a male interacting with or 
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mating with another female, will alter their preference for that male or males with similar 

characteristics (stimulus enhancement) [69-72]. 

Herptiles 

 Amphibians and reptile species have been largely ignored in studies of observational 

learning.   However, a recent study  in the red-footed tortoise supports observational learning in 

reptiles [49].  Given a detour problem where one of two fences blocked a food reward, tortoises 

that first watched a conspecific correctly navigate the course not only made the detour correctly 

but also utilized the same correct route as the demonstrator. In contrast, all non-observer tortoises 

failed to reach the food reward, even after numerous trials. In another example, blue spiny lizards 

learned food preferences from desert iguana. Both these species are principally insectivores and 

only the iguana will eat vegetation naturally.  However, when housed with an iguana and only 

provided with lettuce, the blue spiny lizards not only ate the lettuce they watched their cagemates 

eat, but also adopted the same postures and motor patterns for consumption. Even when 

mealworms were provided, 75% of the blue spiny lizards continued eating the lettuce [73].   

Mammals 

Observational learning is well known in mammals [18, 19, 35, 37, 42, 44, 45, 48, 74-

131]. The various types that have been shown are local enhancement [76-78, 80, 88, 90-93, 95, 

98-100, 103, 104], stimulus enhancement [107, 108], matched dependent [80, 128, 130], 

observational conditioning [81, 82, 87, 111, 112, 121], copying [85, 114, 115] and imitation [84, 

118, 123, 124, 127, 131].  One order of mammal that relies heavily on observational learning is 

Cetacea. In the wild, several dolphin species have been observed relaying information about how 

to obtain prey to naïve or inexperienced dolphins. Killer whale mothers will modify their 
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stranding behavior (a behavior used to capture seal pups on a breeding beach) in the presence of 

naïve juveniles, suggesting they are providing opportunities for the juveniles to view various 

stranding techniques to obtain seal pups [96, 97]. Atlantic spotted dolphin mothers engage in 

similar behaviors [132], chasing their fish prey for longer durations and making more referential 

body pointing movements in the presence of juveniles.  In addition to motor imitation, this group 

is capable of vocal learning and imitation – imitating the sounds of conspecifics as well as other 

species [101, 102, 106, 122, 133, 134].  

Aves 

Observational learning in birds has been demonstrated in at least sixteen families 

representing seven orders [135]. Observational learning studies conducted in the field have been 

mainly focused on foraging behavior – where, what and how to eat. A classic example was 

described by Fisher and Hinde in the late 1940s [136, 137]; blue tits in Britain were observed 

opening the silver tops of milk bottles to skim the cream settled on top of the milk. This behavior 

spread throughout Britain’s blue tit population much quicker than expected by trial and error 

learning. Initially researchers believed imitation of the behavior was occurring as naïve animals 

viewed their conspecific opening the tops; however, subsequent laboratory studies have shown 

that the acquisition of this behavior is based on stimulus or local enhancement [138].  

For numerous avian species, observational learning is important  in learning feeding site 

locations [139, 140], edible food items [141-144], prey hunting techniques [145, 146], food item 

manipulation [135, 147], and tool use [148, 149]. Learning may begin early in the bird’s 

development, using parents as role models, and may continue into adulthood by learning from 

conspecifics [150]. Most observationally learned behaviors in Aves are thought to be the result 
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of stimulus or local enhancement, and not true imitation (the copying of motor patterns) [12]; 

however, New Caledonian crows may imitate tool manufacture and use (an example of mindful 

imitation). Most tool use appears to be acquired via trial and error learning, but imitation of 

parents seems to influence the behavior as well [148, 151] leading to distinct tool designs among 

geographically separated populations without any obvious ecological constraint [149].  

Observational learning may be involved in migration. In some species, inexperienced 

birds may be guided by older, more experienced conspecifics along migration routes to 

appropriate seasonal habitats. Using observational learning, humans have been able to successful 

train naïve, hand-reared birds to use certain migration routes using a microlight aircraft as a 

demonstrator [152]. Nest building techniques do not appear to be acquired via observation in 

large number of species studied [153-155].  However, some evidence of observational learning is 

seen in construction techniques used by male bowerbirds to build their courtship arenas, and 

“dialects” of building types are seen across populations [156].  

Observational learning is used in recognition of predators [6, 157-159] and brood 

parasites [160, 161]. Alarm calls are fairly stereotyped within a species, but observational 

learning may be involved in teaching what response is most appropriate to a specific alarm call 

[6, 159, 161].  Additionally, observational learning may be responsible for the identification of 

new predator types. American crows were captured by researchers wearing a particular 

“dangerous” face mask and then housed in captivity and fed by researchers wearing different 

“neutral” face masks for one month before release. After release, the crows would use harsh 

vocalizations to scold and mob individuals wearing the "dangerous" mask. This effect not only 

persisted for years after release, but actually multiplied over the two year study as birds that had 

not experienced capture also began displaying threat responses toward “dangerous” masked 
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individuals [157, 158].  This suggests that observational learning or at least social facilitation 

may be used for the identification and recognition of a specific individual as a threat. 

Observational learning also appears to be extremely important in avian mate choice, 

primarily via sexual imprinting early in development [162]. An abundance of evidence from 

captive studies, and some support from field experiments, shows that sexual imprinting as a 

juvenile may last the duration of the bird’s life [163-169]. The importance of sexual imprinting 

may vary by species [170]. After maturity, birds may use public information acquired by 

observing the mate choices of  conspecifics to make mate choices [171]. Costs and benefits of 

this copying may differ between the sexes [172]. Although compelling evidence for mate choice 

copying exists in several species of polygynous birds, the results are more inconclusive for 

monogamous bird species [173].  

There have been two forms of imitative learning heavily investigated in avian species: 

vocal learning and motor imitation. Vocal learning has been demonstrated in three avian groups: 

psittacines (parrots), hummingbirds, and oscine songbirds [174-178].  Vocal learning occurs in 

two stages: the sensory learning stage in which the bird listens and memorizes the spectral and 

temporal qualities of a song or sound; and, the sensorimotor learning stage in which the bird 

begins vocalizing and practicing the song or song until it matches the memorized template [133, 

176, 179, 180]. Some species maintain the ability to acquire new songs throughout their lifetimes 

while others are limited to acquisition only during specific critical periods [133, 177, 178].  A 

few species not only mimic the sounds of their species, but can imitate the vocalizations of other 

birds, human speech and environmental noises [181]. While most experiments on vocal learning 

have been performed in the laboratory setting, evidence for song and sound imitation is found in 

wild populations [181]. Much like the tool usage of the New Caledonian crows, distinct song 
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dialects may form in specific geographical populations due to songs being passed from older 

tutors to juveniles [182-185]. 

Numerous studies on motor imitation have examined whether birds who watch 

demonstrators engaged in completing a task have a savings in time to learn the task compared to 

birds that did not watch a demonstrator. Studies conducted on several avian species, mainly 

concentrating on manipulating and removing obstacles to access rewards, have shown that the 

learning curve of observers is much faster than that of non-observers [186-189].  Motor imitation 

does not always require a learning period after observation. Pigeons viewing a demonstrator 

depressing a treadle either by foot or by beak pecking to obtain a food reward were found to use 

the same motor tactic when given access to the treadle without any additional training [189].  

This brief survey of observational learning in the different taxa clearly demonstrates the 

highly conserved nature of this type of learning and the diversity of information that may be 

transmitted from demonstrators to observers. By extension, the brain region that would underlie 

observational learning should be a region, as previously mentioned, that is highly conserved 

across taxa and could be responsible for tying together sensory representations of self and other, 

currently bodily states and movements, and action plans.  

III. The Cerebellum – Anatomy, Microcircuitry and Comparison across Vertebrates  

One of most conserved brain areas across vertebrate taxa is the cerebellum (CB).  All of 

the ~50,000 extant species of vertebrates, possessing hundreds of different mechanical designs 

and sensory systems, have a CB with similar cerebellar circuitry [38]. The CB’s conservation 

indicates its importance in coordinating multi-appendage motor movements, and may be 

indicative of its importance in aspects of cognition, especially observational learning. The CB, or 
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“little brain”, is located in the hindbrain.  Although it is roughly 10% of total brain volume, it 

contains between 50-70% of the neurons in the brain [190].  Early research concluded CB 

damage lead to deficits in the motor coordination and posture [31, 32]. Because of these studies 

and the CB’s extensive outputs to motor regions, the CB was viewed as strictly a motor structure 

for over a century. In the late 1960s, a novel theory proposed the CB may have a role in learning 

motor skills, especially those important for movement and posture [29].  Since then, 

experimenters, using several approaches at the molecular, cellular, and behavioral levels, have 

tested for a role of the CB in learning and memory processes. These studies have provided 

evidence that the CB functions in several types of learning and plays a role in the consolidation 

and maintenance of different types of memories including motor learning [191], classically-

conditioned eye-blink response [192-195], long-term habituation [196, 197], spatial learning 

[35], recognition memory [198, 199], reading [200], rhyming [201, 202], speech/language 

production [203],  and discrimination learning [34].    

Two major components comprise the CB: the cerebellar nuclei and the cerebellar cortex 

[204].The cell layers of the CB connect similarly throughout the CB and the CB is relatively 

simple in comparison to cerebral connections [204]. Input connections may be separated into two 

groups: mossy fiber inputs and climbing fiber inputs. Mossy fibers project from the pontine 

nuclei, the reticular formation, the vestibular nuclei and the spinal cord via excitatory (glutamate) 

projections onto the cerebellar nuclei and the granule cells within the cerebellar cortex [204]. 

The granule cells project toward the cortical surface and bifurcate in the molecular layer where 

each collateral, called parallel fibers, moves in opposite directions running parallel to the folia 

and make excitatory synapses with the Purkinje cells that project perpendicular to the folia. 
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Thousands of parallel fibers may synapse with each Purkinje cell and have summate to activate 

the cell [204].  

Climbing fibers arise solely from the inferior olivary nuclei of the medulla. These fibers 

synapse with the cerebellar nuclei and directly with the Purkinje cells causing a powerful 

excitement of the cell [204].  There is only one major climbing fiber input per Purkinje cell and 

each fiber only synapses with 1-10 Purkinje cells. It is thought that the inferior olivary nucleus 

plays a role in motor error detection and that when an error is detected, the powerful activation of 

the Purkinje cells, through the climbing fibers, inhibits the cerebellar nuclei and terminates the 

undesired component of the action [38].  

Learning in the CB appears to result from the plasticity of the synapse between the 

parallel fiber and the Purkinje cell [34]. When a Purkinje cell is excited by a climbing fiber, all 

synapses along the Purkinje’s dendrites that were recently excited by the parallel fibers 

undergoes long-term depression (LTD). If the climbing fiber functions to convey an error in 

signal, then LTD corrects the problem by inhibiting the synapses involved in the error creation 

and each synapse can be adjusted during learning to shape the correct cerebellar output [34]. The 

deep cerebellar nuclei are the sole output structures of the CB. Therefore, the lesioning of these 

nuclei is somewhat equivalent to the removal of the whole CB. In mammals, the lateral “dentate” 

nuclei receive inputs from the lateral hemisphere and cerebellar afferents that carry information 

from the cortex. These nuclei project to the contralateral red nucleus and ventrolateral thalamic 

nucleus (which in turn continues to the cerebral cortex) [204]. This system, collectively called 

the cerebrocerebellum, is believed to be responsible for all CB-facilitated learning, e.g. 

procedural learning [205]. The cerebellar nuclei in birds appear to be homologous to those in 

humans and maintain analogous, if not homologous, functional subunits though their 
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morphology and connectivity [206] but vary somewhat with only three, instead of four, 

recognizable cerebellar nuclei in most birds [207].  

IV. Cerebellar Involvement in Learning  

While the CB plays a prominent role in postural control, the CB is now more often 

recognized to play a role in feed-forward control (correction of error in a sequence based on 

predicted outcome of current environmental and internal state) of a variety of functions including 

various purely cognitive functions that do not necessitate motor output such as learning to 

differentially respond to different stimuli (discrimination learning) [34], recognizing familiar 

stimuli (recognition memory) [198, 199], and long-term habituation [196, 197]. For the purpose 

of this dissertation, I will review the involvement of the CB only in tasks similar to those I 

conducted (additional reviews are located within Chapters 3 and 4). 

A number of studies in fish [208], birds [209-211], rats [18-21, 37, 212], and primates 

(human and non-human) [18, 19, 36, 194, 200, 203, 213-216] have demonstrated that the CB has 

an essential role in certain types of learning for example, classical-conditioning of a fear 

response and procedural components of spatial navigation [19, 21, 33-37, 217, 218]. When motor 

learning is required, the CB appears to aid in the acquisition of new procedures [37]. 

Pharmacological inactivation by  of the CB using tetrodotoxin  or lidocaine has been shown to 

disrupt learning complex goal-directed behaviors and lesioning of the CB impedes motor 

sequence learning, but not conditional visuomotor learning (i.e. learning to associate stimuli with 

responses, recall the associations, and adapt them to different behavioral contexts) or spatial 

working memory (i.e. the ability to remember the location in which something is perceived and 

recall a series of visited locations) [18-21, 35-37, 212, 219]. However, CB inactivation following 

acquisition does not appear to hinder the performance of learned sequences, thus, the CB is 
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involved in learning motor sequences rather than simply performing actions. In human studies, 

CB activation appears during “motor thoughts” where the subject is instructed to imagine 

performing an action without generating overt movements [19]. There is also activation when an 

individual observes a demonstrator performing a goal-directed motor behavior (imitation) or 

non-goal-directed motor behavior (copying) to be copied by the observer, but not when watching 

meaningless actions not to be imitated [19]. Moreover, researchers have demonstrated that CB 

lesions in rats impair the learning of new procedures – both when learning is direct or via 

observation [37].  

V. Brain Regions for Observational Learning  

All forms of learning require neural networks for successful acquisition, retention, and 

recall of information, but not every part of the network is required for all three processes. Since 

observational learning is conserved and prevalent across all vertebrate taxa, it is reasonable to 

theorize the brain regions involved, especially in acquisition, should be conserved across 

vertebrates. In addition, the region(s) should be able to support learning, be connected to brain 

regions necessary for motor output, and have some involvement in sensory perception. The 

reason for this is that observational learning is more than just observing the actions of another; it 

mandates that the observer generate an image of his or herself performing that same action and 

realize the goal of the behaviors [19]. 

Despite the above requirements, the majority of studies investigating which brain regions 

are responsible for facilitating observational learning have revolved around the mirror neuron 

system (MNS), a collection of brain regions found almost exclusively in primates [16] that do 

not met the requirements necessary to play a primary role in observational learning. Neurons in 

this system have similar responses to watching a behavior being conducted as they do when the 
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individual is engaged in the behavior and are called “mirror neurons.” Activities of mirror 

neurons in the monkeys’ premotor cortex appear to be associated with goal-oriented movements 

(e.g. picking up an object), and not just simple movements (e.g. just contracting the hand into a 

grasp). Mirror neurons in the inferior parietal lobe appear to play a more complex role and may 

allow for understanding of the observed action behavior (i.e. they code for the goal) [16].   

Studies using human subjects have shown the presence of a MNS in regions that are 

homologous to the areas within the monkey MNS   Iacoboni et al. [102] examined brain activity 

in human subjects while they passively watched or actively imitated (which involved observation 

and performance) a particular sequence or temporal pattern of finger movements being 

demonstrated by a human hand. Results showed the pars opercularis of the left inferior frontal 

cortex (an area within Broca’s area) and the rostral posterior parietal cortex contained neurons 

with mirror properties [23]. 

 While evidence points to the MNS as the brain center for observational learning and 

action meaning, there are researchers who vehemently argue against their significance and even 

their existence [28, 220-224]. In humans, there are significant differences in neuronal pattern 

firing within the MNS if the motor act is executed first then observed (a condition which violates 

mirror neuron criteria). This led the authors to conclude that human mirror neurons do not exist, 

at least to the degree which was previously thought [220]. In addition, mirror neuron and MNS 

brain regions identified in primates are not present in other groups of vertebrates, and evidence 

for mirror neurons in homologous brain regions is minimal. There is some evidence supporting 

the existence of neurons that act like mirror neurons in some rodent species and an oscine bird 

species [15, 26] but they do not appear in brain regions homologous to those considered to be a 

part of the MNS in primates.  Thus, a MNS may not be critical for observational learning, a 
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phenomenon that exists across taxa. Instead, the MNS may be involved in recall of already 

performed behaviors (e.g. grasping objects, facial expressions, gestures, etc.) but not in the 

learning of motor sequences that may be later imitated [220] . The brain region that would 

underlie observational learning should be a region, as previously mentioned, that is conserved 

across taxa and that could be responsible for tying together representations of self and other, 

current bodily states, and action plans.  

The region that best fits these requirements and, therefore, may be responsible for the 

acquisition of observationally-learned information is the CB, one of the most conserved brain 

regions across vertebrates and which has analogues in several invertebrates studies [29]. A study 

investigating the neural unpinning of learning a sequential visuospatial task via observation 

yields support that the CB is a region involved in observational learning [20]. In a sequential 

visuospatial task, the observer must acquire both the sequence of items and the procedural rules 

of how to perform the task correctly. In a human study, demonstrators were positioned in front of 

a touch screen that had a grid of squares on the screen. One block was darkened, and starting 

from that square, the demonstrators had to touch adjacent squares to determine the rules of the 

task (e.g. first step in the sequence is horizontal, second is vertical, etc.) and ultimately acquire 

the correct sequence via corrective feedback. Observer subjects viewed actors detecting the 

correct sequence. The subject then had to perform the task by producing the old sequence they 

viewed and by producing a novel sequence (starting from a new darkened block) based on the 

rules learned during the observation. Reproducing the old sequence required knowledge of the 

observed sequence whereas the new sequence required the utilization of procedural 

competencies linked to the rules. Just prior to the observation or to the execution period, subjects 

received low-frequency repetitive transcranial magnetic stimulation (rTMS) on the cerebellum or 
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on the dorsolateral prefrontal cortex (dlPFC). rTMS causes over-stimulation of the neurons in a 

target area thereby deactivating them during treatment and for several minutes afterward. This 

allowed the researchers to distinguish the effects of regional brain deactivation on both the 

observation and the actual execution of the task. These brain regions were chosen because past 

evidence indicated they have distinctly different competencies - the CB in the acquisition of 

procedural components and the prefrontal cortex in declarative components of a task and 

visuospatial working memory.  

 It was discovered that when observational learning followed rTMS on the left lateral CB, 

deficits were present in detecting the new sequence but not in replicating the observed sequence. 

rTMS on the right dlPFC caused the impairments to be reversed [20].  These impairments on the 

task showed that without a fully functional CB, the human subject was able to learn the 

procedural rules observationally, but was unable to gain knowledge of the observed sequence 

(and then imitate the motor pattern); and, without a fully functional dlPFC, they were able to 

observationally acquire the motor sequence but not learn the procedural rules behind the 

sequence. These results support the theory that the CB involved in the acquisition phase of 

observational learning. The results also support a role for the dlPFC, a part of the MNS, in 

observational learning. The interplay may be that the CB acquires the appropriate procedural 

competencies for the task while prefrontal regions provide flexibility among already stored 

solutions of the task since it appears to be the site of procedural rules consolidation [21].  

 Similarly, it has been shown that suspending rats in small observer chambers over the 

Morris Water Maze (MWM) and allowing them to watch 200 trials performed by a companion 

rat significantly improves learning of the task [18-20, 37]. However, if a hemicerebellectomy is 

performed on observers prior to viewing the demonstrators, this effect is lost. In contrast, if a 
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hemicerebellectomy is performed after the viewing the demonstrators, the rats’ procedural 

abilities were comparable to unlesioned observers [37]. These results indicate that complex 

spatial information is acquired by the rats, but only if the cerebellum is intact, and indicates the 

CB is necessary for the acquisition of mindful or kinesthetic imitation in the rat.   

 Furthermore, by using the reliable sequential strategies used to find the target platform in 

the Morris water maze (MWM), researchers were able to investigate whether the acquisition of 

procedural skills have an organizational structure that may be dissected into simpler units and 

whether these units can be singularly acquired without the observation of preceding steps or 

whether the complete procedural sequences is required [212]. When a rat is placed in the MWM, 

it consistently exhibits different strategies in a set order when learning the maze [225]. First, the 

rat will engage in peripheral circling which is an instinctive strategy and does not require any 

learning. Next, the rat utilizes extended searching where it swims through the pool not just 

around the edge. As learning progresses, restricted searching comes into play as the rat only 

searches the quadrant in which the platform is located. When learning is completed and spatial 

memory is consolidated, finding without searching occurs with the rat swimming directly to the 

platform with absolutely no searching behaviors [226].  These strategies are always acquired 

from least to most effective in a procedural chain sequence. Since the steps are dependent on CB 

control [18-21, 35-37], it is possible to block the acquisition of new strategies while retaining 

any previously acquired strategies. Rats were allowed to observe the swimming patterns and 

behaviors associated with just one of the above strategies developed by their conspecifics and 

were lesioned post-observation. When the observers were placed in the maze, they did not copy 

the exact swimming trajectories of the demonstrator, but copied the strategy employed by the 

demonstrator and did not progress in the learning sequence past the observed point [212]. These 
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results indicate that single behavioral units may be acquired separately without the necessity of 

seeing the whole chain sequence, and further supports the CB as the facilitator of mindful or 

kinesthetic imitation. 

 VI. The Zebra Finch 

I conducted my experiments using a common laboratory bird, the estrildid zebra finch 

(Taeniopygia guttata) within the passerine order. Zebra finches are highly social birds, nesting in 

large charms of twenty to a thousand birds. They are sexually dimorphic in plumage coloration 

and behavior. Only the males sing.  Female choice is the predominant mode of sexual selection 

but male choice occurs. Once a pair-bond has been established, they remain socially (but not 

sexually) monogamous for life [227, 228].    

 The zebra finch is an appropriate model organism for investigating observational learning 

for two reasons. Firstly, zebra finches are the model organism for studying a rare type of 

observational learning, vocal learning [180, 229]. During song learning, young males acquire a 

song that is similar to, but not an exact copy of, the tutor’s song [229].  Within the song 

acquisition pathway neurons with mirror neuron-like properties were found [15]. These neurons 

appear to respond to hearing and performing the same song. However, these neurons are not 

responsible for the acquisition of learning. Activation does not occur during acquisition or post-

learning, and therefore, these neurons do not fit the exact definition of mirror neurons.  Recently, 

it has been shown that a portion of vocal learning is supported by the cerebellum [209, 211]. 

Secondly, observationally learning foraging [230, 231] and mate selection [14, 173, 232-235] has 

been demonstrated in this species.   
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CHAPTER 2: STIMULUS ENHANCEMENT LEARNING IN THE FEMALE ZEBRA 

FINCH AND ITS INFLUENCE ON MATE PREFERENCES 

FOREWORD 

 My first study involved an investigation of stimulus enhancement learning abilities in the 

female zebra finch by examining the acquisition and utilization of public information pertaining 

to male quality during mate selection. I predicted that observation of female demonstrators 

interacting with males would influence the formation and expression of mate preferences in the 

observer depending on certain environmental conditions. The results of this study will be 

submitted to Proceedings of the Royal Society of London B. 

ABSTRACT 

Mate selection is open to change based on public information acquired by the observation 

of another individual’s mate choices (non-independent mate choice). Two types of non-

independent mate choice have been proposed: mate choice copying (MCC) and mate quality bias 

(MQB). MQB should be the predominant form of choice copying in species with assortative 

mating wherein the pair members are of similar intrinsic quality. Presumably a copying female 

should re-assess her initial mate preference if there is a mismatch between the quality of that 

male and his female associate. In two experiments, I investigated MCC and MQB in the female 

zebra finch (Taeniopygia guttata) by conducting pre- and post-observational mate preference 

trials. Females did not alter their male preference after viewing him interacting with a randomly 

chosen female, suggesting that MCC does not influence mate choice. However, in the MQB 
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 Response duration and latency to respond to the tone were averaged across the five trials 

for each bird each day. Differences in learning curves between lesion and control groups were 

analyzed using two-way repeated-measures ANOVAs (trial blocks x treatment) followed by a 

test for a linear contrast when there were significant day effects, and differences in probe trials 

were analyzed using a paired t-test. Greenhouse-Geisser correction was used when appropriate. 

All statistical tests were conducted using SPSS 22 and differences were considered significant at 

an α level of 0.05. 

3. RESULTS 

(a) Lesion confirmation 

 The lesions hit the CBl at least unilaterally on 5 of the 8 subjects. White matter 

superficial to or surrounding CBl was hit on all other lesions thus connectivity with CBl was 

damaged in all subjects (Fig. 4.1).  

 

 

 

Figure 4.1. Photomicrograph of nissl-stained brain tissue showing the lesions to the CBl. Black 

arrows point to the position of the lesion.  
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 (b) Behavioral Results 

No significant differences were observed in flight response duration or latency to 

response between the sham control and CB-lesioned birds (duration: F (1, 11) = 1.03, p = 0.33; 

latency: F (1, 11) = 0.0001, p = 0.98). Both groups increased (duration: F (4,44) = 3.43, p = 0.02; 

linear contrast: F (1, 11) = 13.69, p = 0.004) and decreased latency ( F (2, 32) = 3.39, p = 0.01; 

linear contrast: F (1, 11) = 8.57, p = 0.01) indicating learning (Fig. 4.2). Follow-up pairwise 

comparisons with Bonferroni corrections for multiple comparisons showed that flight response 

duration was significantly higher on days 4 and 5 than on day 1 (p = 0.009; p = 0.006), and 

latency to response was significantly lower on days 4 and 5 than day 1 (p = 0.001; p = 0.005). 

This implies that about 15 paired stimuli were sufficient for the majority of birds to acquire the 

fear response. There was no difference in flight response duration or latency to respond between 

the treatment groups on probe trial1 (Fig. 4.3); however, the latency to response of the CB 

lesioned birds was faster on probe 2 than the sham control birds (t (14) = 2.12, p = 0.05; Fig. 4.4) 

while duration did not differ between the groups.  
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Figure 4.2.  Mean (±SE) flight duration and latency to response across trial blocks by group.  
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Figure 4.3.  Mean (±SE) flight duration and latency to response by group in males post-

conditioning on the CS-only probe (probe 1). 
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Figure 4.4.  Mean (±SE) flight duration and latency to response by group in males post-

conditioning on the CS-US probe (probe 2). The dashed line indicates the delivery time of the 1 

sec shock. * Significantly different than the control. 
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4. DISCUSSION 

 Birds were able to learn the CS-US association after CBl lesion at levels similar to sham 

control birds. This indicates that functional integrity of the avian CBl is not necessary for the 

acquisition of fear-related behaviors. However, lesioned birds displayed a faster latency to 

response on the CS-US probe (probe 2) which may indicate that lesioning has an effect on 

extinction rates, with CBl lesions inhibiting extinction at the same rate as non-lesioned birds. My 

results suggest that at least the avian CBl does not have a role in fear memory consolidation or in 

the performance of the avian flight response. 

 The placement of the lesion may be responsible for the lack of effect seen in this 

experiment. I chose to lesion the CBl because of its connections with higher cognitive and motor 

brain regions [305-309]. However, in studies on the rat, lesions to the interpositus nuclei were 

shown to create deficits in FC memory consolidation (although dentate lesioning was not 

conducted) [298, 299]. Perhaps lesions to the medial nuclei of the CB would impair avian FC. 

Future studies examining the role of the medial nuclei should be conducted using the protocols 

outlined in this study. This would potentially allow for investigation into the role of the avian CB 

in observational conditioning; however studies would first need to be conducted to ensure the 

medial nuclei are not a memory trace storage site. If the medial nuclei are involved in the storage 

of the memory similar to that proposed for the interpositus nuclei of the rat [298, 299] , lesioning 

after observational conditioning may erase the previously acquired memory making the link 

between the CB and observational conditioning impossible to determine.   

 Some other possible explanations for the failure of my lesions to produce any deficits in 

conditioning may be contributed to issues in the protocol. Mammalian studies have shown that 
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the CB is only involved in classical conditioning under certain constraints [17, 313-317] . One 

constraint is the interstimulus interval (i.e. the time between the CS and the US; ISI). Studies in 

rabbits and rats have shown that CB involvement occurs only in protocols with relatively short 

ISIs of under 5s [17, 313-315]. A second constraint is the complexity of the behavioral response. 

Results in mammalian studies suggest that the CB is involved only in associative learning tasks 

where simple responses (e.g. reflex reactions) are conditioned [316]. Lastly, the CB has been 

shown to be differentially involved in aversive and appetitive conditioning. In rabbits and rats, 

lesions to the CB interrupted aversive conditioning (e.g. eyeblink conditioning or tone-shock 

pairing), but did not disrupt appetitive conditioning (e.g. jaw movement conditioning with juice 

or tone-food pairing) [315, 317]. While these constraints were considered in the development of 

my protocol and steps were taken to forestall any issues based on these constraints, it is possible 

that the factors that influence CB involvement in classical conditioning vary by taxa (e.g. 

mammals versus birds).   Future studies examining possible taxonomic differences in these 

constraints may reveal how evolutionary conserved these pathways are in cognition.    
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CHAPTER 5: EXAMINING DIRECT AND OBSERVATIONAL LEARNING OF A 

NOVEL SPATIAL MAZE IN THE ZEBRA FINCH 

FOREWORD 

In Chapters 2 and 3, I showed that the zebra finches are capable of observational 

conditioning and learning via stimulus enhancement.  In this Chapter, I examined whether zebra 

finches were capable of mindful imitation in a spatial maze task. Mindful imitation is one of the 

most cognitively demanding forms of observational learning, demanding the individual 

recognize and encode the demonstrator’s behavior and intentions so they can reproduce the 

behavior and achieve the same goal as the demonstrator in the future [48]. To date, mindful 

imitation of spatial information has only been demonstrated in one non-human animal, the rat 

[18-20, 37, 212]. I predicted that zebra finch performance of a spatial maze task would be 

enhanced by prior observation of a conspecific learning and successfully navigating the maze. 

The results of this study will be submitted to the Journal of Experimental Psychology.  

ABSTRACT 

 While several maze types and tasks have been developed to examine spatial learning and 

memory in non-food-caching birds, one fundamental downfall emerges – a majority of these 

mazes and tasks employ modifications such as feeders that may confound interpretations of the 

data. Here we describe the development of a Morris water maze (MWM)-analogue for the zebra 

finch (Taeniopygia guttata) which like the MWM contains no proximal, spatially-contiguous 

cues. The birds, which were released from different starting locations within the maze, had to 
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locate the maze exit to escape a hot floor using only extra-maze cues positioned around the 

arena. In a series of three experiments, we examined direct and observational learning of the 

maze analogue. Data showed that the zebra finches were adept at learning the task under direct 

training protocols, but prior observation of a conspecific learning and successfully navigating the 

maze did not have an effect on post-observational maze performance.  

1. BACKGROUND 

 Most animals live in environments in which resources are not uniformly distributed. 

Therefore, the ability to acquire and retain pertinent information the environment may strongly 

affect their fitness and influence the evolution of learning. One type of learning heavily affected 

would be spatial learning. While there is significant debate over the definitions of spatial 

learning, for the purposes of this study, I will define spatial learning is the ability to use distal 

cues, as opposed to local cues, to successfully navigate to a target or goal. I refer to distal cues as 

stimuli not spatially contiguous with the target and local cues as those which are spatially 

contiguous with the goal [318].     

 The first experiments of spatial learning where conducted using rodents since spatial 

navigation tasks were naturalistic and easy for them to acquire [319-321]. This research led to 

numerous paradigms based on the premise of having an animal either learns to locate a particular 

goal or locate a target area to avoid an aversive stimulus. Various mazes have been developed to 

test spatial abilities, including the starburst maze, the spiral Battig maze, radial mazes, open-area 

mazes, runway mazes, and water mazes. While each of these mazes have made unique 

contributions to spatial learning research, the two main mazes used to assess spatial learning and 

memory are the radial arm mazes and the Morris water maze (MWM).  
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 These two main mazes developed initially for mammals have been adapted for birds 

[322, 323]; however, design flaws make it difficult to determine which strategies are being 

employed by the subjects. Two so-called radial maze analogues, based on the Olton-type radial 

maze have been developed [322-324]. Adaptations include in having to learn the location of 

baited versus non-baited feeders but the feeders are presented in an open space instead of having 

the bird walk down narrow arms (making this task arguably more of an open field task than a 

radial maze) [322] and upscaling the original maze design so birds may walk or fly through the 

radial tunnels to reach feeders at the end of the arms [323].  These radial arm-like mazes have a 

significant downfall in testing spatial cognition. Due to the regular geometry of the apparatus, the 

task can be solved successfully by repeating a definite egocentrically oriented response. Another 

type of open field maze was developed for testing spatial cognition where one baited and three 

empty feeders are placed in an aviary. The birds are then released from different starting points 

and have to use maze cues to find the feeder containing the food reward [324]. The authors claim 

this maze is similar to the MWM, but unlike the MWM, this maze is square, has only four 

possible goal positions (the MWM has numerous) and has a visible target location. The issue 

with the aforementioned tasks adapted for avian use is they contain goals that are clearly 

identifiable or an arena that is non-homogeneous and therefore it is difficult, if not impossible, to 

determine if the subjects are using local cues, egocentric or taxis strategies, or spatial memory.  

In order to test avian spatial learning and memory in the zebra finch, my lab developed a 

task analogous to the MWM, called the Day Escape Maze (DEM). The DEM consists of a clear 

cylinder with a hole cut into the side and a removable lid. Since the escape hole is not visible to 

the finch, the arena is homogeneous, and they location of the escape hole can be changed to 

several positions within the room, the DEM is closely in line with the MWM. The efficacy of the 
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MWM is due in large part to the water acting as a negative reinforcer and therefore motivating 

the subject to seek out and learn an escape strategy [225, 325].  In pilot studies, low levels of 

water resulted in the finches bathing and higher levels of water resulted in floating and cold 

stress as is sometimes seen in mice [326]. Replacing the water with ice also failed to be effective 

in motivating the finches. Finally, heat was tested as a motivator since it has been shown to be 

effective in both MWM and Barnes maze analogs in insects [226, 327-329].  Heat was successful 

in motivating the finches to locate the escape hole in the maze.  

 There is evidence that spatial tasks can be learned not only by actual execution of the task 

but also via observation of a demonstrator as they execute the task. This occurs via mindful 

imitation where the observer must recognize and encode the demonstrator’s behavior and 

intentions for the behavior (i.e. the goal) so they may reproduce the demonstrator’s behavior and 

achieve the same goal [47, 48]. For example, rats suspended in an observer chamber over a 

MWM and allowed to watch 200 trials performed by a companion rat significantly outperformed 

their naïve counterparts in learning of the task (as indicated by significantly faster escape 

latencies and significantly less distance traveled within the maze) [20]. While mindful imitation 

has been demonstrated in birds [189], their ability to acquire a spatial information via 

observation has not been tested.  

In the present study, I aimed to investigate whether the zebra finch could learn and 

successfully navigate a maze that lacked proximal cues or cues that were spatially-contiguous 

with the goal. For this study, I used a novel MWM-analog. In addition, I examined whether prior 

observation of conspecifics learning and successfully completing the task would have a 

subsequent effect on maze performance, indicating the task could be acquired through 

observational learning. 
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2. METHODS 

(a) Animals and Treatment 

 We used experimentally naïve males and females (6 – 12 months) age-matched within 

each experiment. Birds were housed in cages of 6-10 same-sex individuals on a 14:10 light:dark 

photoperiod at an ambient temperature of 21-24°C. Seed and water were provided ad libitum. All 

housing protocols and procedures performed in these experiments approved by the University of 

Mississippi IACUC (protocol #10-025).  

(b) Apparatus 

The DEM consisted of a clear cylinder (30cm in diameter and 15.2cm tall), made from 

extruded Plexiglas with a 5.4cm diameter escape hole cut 7 cm above the hotplate and a clear 

Plexiglas lid (Fig. 5.1). The floor of the maze was a ceramic tile heated uniformly by an electric 

hot plate maintained at ~50°C. The escape maze was elevated to raise it from the floor and bring 

it closer to the camera. The maze was placed within a flight cage (148.6 x 71.1 x 188.2cm) lined 

with black cloth so no external light, objects or the experimenters could be seen by the birds 

while in the maze. Four cues were attached to the black lining cloth ~10cm from the maze 

bottom at artificial compass points designated as north, south, east and west. These artificial 

compass points were used to divide the maze arena into 4 quadrants (northeast, northwest, 

southeast, and southwest). The escape hole was oriented to be in the northeast quadrant in all 

experiments. Two perches were attached to the flight cage 25cm from the cage top and on 

opposite ends equidistant from the wall. These perches were provided to allow the zebra finch to 

rest comfortably after escaping the maze. A camera and the observation deck (used to house 

observers while viewing conspecifics in the maze) were secured to the top of the aviary with the 

camera directly over the maze. 
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Figure 5.1. Cross-sectional diagram of the spatial maze and its position in the aviary.   
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 (c) General Methods 

During direct training, all birds completed blocks of four trials per day (the number of 

blocks varied by experiment). In all experiments, bird were released facing the outer wall at 

artificial cardinal points labeled north, south, east and west centered on the 4 maze quadrants. 

Each release point was used in random order across each block of four trials, but was the same 

order for each bird on that day. Birds were allowed a maximum of 120s to locate the escape hole 

and 60s of rest upon escape. If the bird was unable to locate the escape hole within 120s, latency 

was recorded as 120s, and the bird was gently guided toward the escape. The bird was then 

returned to a holding cage where they were individually housed between trials. All subjects in 

the group completed trial 1 before the second set began, and this cycle continued for the entire 

four-trial block. The intertrial interval for each bird was approximately 10-15 min. The paths 

taken by the birds within the maze were video recorded by a camera mounted on the ceiling and 

relayed to an image analyzer (Ethovision; Noldus Information Technology, Wageningen, The 

Netherlands). Three dependent measures were recorded: escape latency (s), distance traveled 

(cm), and velocity (m/s).  

Following direct training, a 120s probe trial (transfer test) was conducted to confirm 

learning. Probe trial procedures varied slightly by experiment and are described for each 

experiment. For analysis, only the first 30s of the probe trial was used since it was observed that 

past 30s the birds began frantically and aimlessly searching for a new escape.  

Observers were suspended in small cages above the spatial maze either individually 

(Exp.1) or in a group (Exp. 2 and 3). In all the experiments, all sides of the observation cage 

were opaque except the floor which was a metallic grid. This ensured that the female would not 
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be distracted by each other or by other stimuli in the aviary. Through the grid, the females 

watched as male demonstrators underwent direct learning of the maze. Video of the females’ 

behavior was recorded in Exp. 1 and examined to ensure the females were attending to the males 

in the maze. All females were found to attend to the male by directing their gaze to the maze 

below them.  The observation period and method of suspension varied slightly by experiment 

and is fully describe within each experiment.   

(d) Analysis 

For direct and observational learning, average latency to escape, distance traveled, and 

velocity were averaged across trials for each bird each day. One-way repeated measures 

ANOVAs or two-way repeated measures ANOVAs (trials blocks x treatment or gender) were 

used as appropriate. Post-hoc analyses were conducted using sequential Bonferroni correction. 

 For the probe trials, the amount of time spent and distance traveled in the cued quadrant 

(i.e. the quadrant that previously contained the escape hole) versus the average of the three 

uncued quadrants was transformed for analysis and distance data was corrected for velocity. T-

tests or one-way ANOVAs were used as appropriate. In the case of non-normally distributed 

data, Wilcoxon sign tests or Mann Whitney U tests were used.  

All statistical tests were conducted using SPSS 22 for Windows, employing two-tailed 

tests of probability and an alpha level of 0.05. 

3. EXPERIMENT 1 

It was my aim to determine if the zebra finch was capable of learning the novel complex 

spatial task and if spatial learning could occur through observation. I tested this using the DEM, 

a task based on the classic MWM. In my maze, the birds were required to escape from a hot-
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plate heated surface out of an escape hole using cues on walls. Observer birds watched as 

demonstrators learned the task. In rats, observation prior to being placed in the MWM 

significantly improves their performance [18-20, 35, 37], and thus, I expected the same positive 

effect on performance in my observers. 

(a) Direct and Observational Training   

Eight male demonstrators and 16 females were selected at random from the university 

aviary and were housed in groups of 8 same-sex individuals by group. Birds were run in two 

batches consisting of 4 male demonstrators, 4 observer females and 4 naïve females. Females 

were randomly assigned to either the observer or naïve treatment group. Each observer female 

was paired with a demonstrator male for the duration of the observation period. During the 

observation period, females were individually suspended directly over the spatial maze while 

their paired male ran his direct trials. Each observer female viewed 4 direct trials a day for 5 days 

(i.e. 20 trials). Naïve females were suspended in for an equated time but in an empty black-

clothed aviary. Following the observation period, all females underwent direct training in the 

spatial maze for 4 trials a day over 4 days (16 trials).  

 Immediately following their respective direct training, males and females received a 

probe trial in which the normal maze wall with an escape hole was replaced with a solid 

cylindrical maze wall and the cues on the aviary wall were rotated 180°. The bird was given 120 

sec to search for the escape after which the trial was terminated. Observer females did not view 

male probe trials.  
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(b) Results and Discussion  

Latency (F (1, 10) = 66.79, p < 0.001; Linear Contrast: F (1, 7) = 108.51, p < 0.001) and 

distance decreased across blocks (F (2, 12) = 15, p = 0.001; Linear Contrast: F (1, 7) = 25.76, p 

= 0.01) supporting learning of the task (Fig. 5.2) Velocity did not change across blocks 

suggesting latency differences are due to more efficient rather than faster escape. The proportion 

of total distance (t(7) = 3.04, p = 0.02) and total time (t(7) = 2.78, p = 0.03) spent in the 

previously cued quadrant was greater than the average of the other three quadrants, indicating 

males learned the location of the escape hole in relation to the spatial cues provided Fig. 5.3).  

For females, latency and distance traveled decreased across blocks while velocity did not 

(Fig. 5.2). This was true for both Observers and Naïves (Observer distance: F (3, 21) = 12.12, p 

< 0.001, Linear Contrast: F (1, 7) = 38.94, p < 0.001; latency: F (3, 21) = 50.68, p < 0.001, 

Linear Contrast: F (1, 7) = 131.86, p < 0.001; Naïves distance: F (3, 18) = 16.02, p < 0.001, 

Linear Contrast: F (1, 6) = 42.21, p = 0.001; latency: F (3, 18) = 33.68, p < 0.001, Linear 

Contrast: F (1, 6) = 63.63, p < 0.001) . Observers and Naïve learned to escape the maze with 

similar distance traveled (F (1, 13) = 1.07, p = 0.32), and latencies to escape (F (1, 13) = 0.04, p 

= 0.84), and had similar patterns of improvement across blocks for distance (F (2, 21) = 0.96, p = 

0.38), and latency (F (2, 24) = 0.56, p = 0.56). On the probe trial, both groups traveled 

significantly more in the previously correct quadrant than in the average of the other three 

quadrants (observers: Z = -2.10, p = 0.04; naïves: Z = -2.10, p = 0.04; Fig. 5.3) and there was no 

effect of treatment (U = 15, p = 0.15). For latency, Observers spent significantly more time in the 

previously correct than in the average of the other three quadrants (Z = -2.10, p = 0.04) but the 

Naïves did not (Z = -1.35, p = 0.18); and the difference between the groups was not significant 

(U = 12.5, p = 0.07).  Probe data indicates all females traveled significant more in the previously  
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Figure 5.2. The performance of males, observer females and naïve females during training trials 

for Experiment 1: A. distance traveled in the maze, B. latency to escape, and C. average speed 

(velocity) the bird traveled within the maze. (Data points are averages for blocks of four training 

trials. See text for results of statistical analysis.) 
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Figure 5.3. The performance of males, observer females and naïve females during probe trial for 

Experiment 1: A. portion of distance traveled in quadrants, and B. proportion of time spent in 

quadrants. *Significantly different from the average of other three quadrants . (See text for 

results of statistical analysis.)  
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correct than in the average of the other three quadrants indicating that maze learning had 

occurred but there was no difference between the Observers and Naïves. However, this was not 

true for latency, where the Naïves in contrast to the observers did not spent more time in the 

previously correct quadrant. Video analysis of traveling pathways implies this is probably 

because the naïve birds flew at the wall more often and their momentum propelled them into the 

adjacent quadrants. 

The males and the naïve females had similar experience (i.e. no prior exposure to the 

maze or the cues) before undergoing direct learning and therefore, their performance in the maze 

could be compared to determine if gender differences exist in maze learning.  Since there was 

also no effect in treatment between the observers and the naïve females, all the female data was 

combined and compared to the male’s maze performance. There was no significant interaction of 

trial-block with gender but there was a significant effect of gender on distance traveled within 

the maze. Specifically, females traveled a significantly shorter distance to find the escape hole (F 

(1, 21) = 8.53, p = 0.008; Fig. 5.2). There was no effect of gender on either escape latency (F (1, 

21) = 1.19, p = 0.29).  Comparison of probe trials showed that while within their groups, both the 

males and females traveled more and spent more time in the cued quadrant versus the average of 

the other three quadrants (Fig. 5.3), there was no difference in these measurements between the 

groups suggesting that females may be more efficient at escaping, but their spatial learning of the 

maze did not differ.  

The results indicate that zebra finches are capable of learning the novel Escape Maze 

through direct training, and that gender differences are only in the distance traveled to escape 

(females travel a shorter distance) and not in the time spent escaping. There was no effect of 
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prior observation on direct learning which implies observational learning did not provide a 

savings in learning under this protocol. 

4. EXPERIMENT 2 

In the first experiment, the observer females only watched 20 trials performed by their 

demonstrator male. While 20 trials is sufficient to learn the maze via direct training in the zebra 

finch, the results of Exp 1 indicated that it was not effective in learning the maze via observation. 

Similarly in rats, approximately 20 trials are required for learning to occur in the MWM [225]. 

Studies showing observational learning in the rat used 200 conspecific demonstrator trials [18-

20, 35, 37]. Thus, my use of 20 trials of observation in Exp 1 may have been insufficient for 

observational learning. Therefore, in Exp. 2, I used the same basic methods as in Exp. 1, but 

allowed the observers to view 200 demonstrator trials. 

(a) Direct and Observational Training   

Five male demonstrators and 12 females were selected at random from the university 

aviary and were housed in groups of 5 or 6 same-sex individuals by group. Females were 

randomly assigned to either the observer or naïve treatment group. For this experiment, a 6-

individual observation deck was constructed so all the observer females were able to view all 5 

males as they underwent direct training. Males received two 4-trial blocks per day, one in the 

morning (~9am) and another in the late afternoon (~3pm) for 5 days (40 trials total). Since the 

females viewed all 5 males, they viewed 200 trials over the 5 days.  Naïve females were 

suspended for the same amount of time in the observation deck and allowed to view the maze 

and cues (with no demonstrator present). After the observation period, all females underwent 

direct training in the spatial maze for 4 trials a day over 4 days (16 trials).  
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 Following their respective direct training, males and females received a probe trial in 

which the escape hole was removed by use of s solid cylindrical maze wall; however, in this 

probe, the cues were not rotated. Observer females did not view male probe trials. 

(b) Results and Discussion  

For the males, latency (F (1, 5) = 9.22, p = 0.024; Linear Contrast: F(1, 4) = 9.59, p = 

0.036)  and distance (F (2, 12) = 6.70, p = 0.026; Linear Contrast: F(1, 4) = 16.67, p = 0.015) 

decreased across blocks indicating learning of the task (Fig 5.4).  Velocity did not change across 

blocks. On the probe trial, the proportion of total distance (t(4) = 4.84, p = 0.008) and total time 

spent t(4) = 6.25, p = 0.003) in the previously cued quadrant was greater than the average of the 

other three quadrants, indicating males learned the location of the escape hole in relation to the 

spatial cues provided Fig. 5.5). 

For the females, latency and distance traveled decreased across blocks while velocity did 

not (Fig. 5.4). This was true for both Observers and Naïves (Observers distance: F (3, 15) = 

25.13, p < 0.001, Linear Contrast: F (1, 7) = 20.18, p = 0.006; latency: F (3, 21) = 100.20, p < 

0.001, Linear Contrast: F (1, 7) = 108.33, p < 0.001; Naïves distance: F (3, 15) = 5.91, p = 0.007, 

Linear Contrast: F (1, 5) = 4.86, p = 0.08; latency: F (3, 15) = 13.83, p < 0.001, Linear Contrast: 

F (1, 6) = 15.97, p = 0.01).  Surprisingly, there was trending main effect of treatment with the 

Naïves having a faster escape latency than the Observers (treatment: F (1, 10) = 4.44, p = 0.06); 

treatment x trial block: F (2, 15) = 6.99, p = 0.01). However, Observers and Naïves had similar 

patterns of improvement across blocks for distance traveled (treatment: F (1, 10) = 1.44, p = 

0.26); treatment x trial block: F (2, 13) = 3.69, p = 0.07) or traveling velocity (treatment: F (1, 

10) = 0.041, p = 0.84); treatment x trial block: F (2, 21) = 1.44, p = 0.34). 
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Figure 5.4. The performance of males, observer females and naïve females during training trials 

for Experiment 2: A. distance traveled in the maze, B. latency to escape, and C. average speed 

(velocity) the bird traveled within the maze. (Data points are averages for blocks of four training 

trials. See text for results of statistical analysis.)  
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Figure 5.5. The performance of males, observer females and naïve females during probe trial for 

Experiment 2: A. portion of distance traveled in quadrants, and B. proportion of time spent in 

quadrants. *Significantly different from the average of other three quadrants . (See text for 

results of statistical analysis.)  
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On the probe trial, Observers traveled significantly more in the previously correct 

quadrant than in the average of the other three quadrants (Z = -2.20, p = 0.03) but there was no 

difference between the quadrants for latency (Z = -0.32, p = 0.75). The Naïves spent significantly 

more time in the previously correct quadrant than in the average of the other three quadrants (Z = 

-2.20, p = 0.03) but the distance traveled between the quadrants was not significant but trending 

(Z = -1.78, p = 0.075). There no significant effect of treatment on probe latency (U = 17, p = 

0.94) or distance traveled (U = 9 p = 0.18). These results show that both groups traveled more in 

in the previously correct quadrant than in the average of the other three quadrants indicating 

maze learning occurred.  In contrast to Exp. 1, in this experiment, the Observers spent less time 

in the previously correct quadrant and video analysis showed that the observer females flew at 

the wall more often and their starting point for the flight was outside the previously correct 

quadrant. In addition, the momentum from their flight would propel them in to the adjacent 

quadrants. 

Due to the difference in training protocols between the males and females (males 

receiving 8 trials/day and the females 4 trials/day), gender comparisons were not examined. 

Consistent with Experiment 1, the results of this experiment indicate that zebra finches are 

capable of learning the maze through direct learning, but not observational learning. 

Interestingly, escape latency between Observers and Naïves differed, with the Naïves escaping 

faster. This may indicate that prior exposure to the maze and cues allowed the Naïves to better 

memorize the cues and aviary dimension prior to testing which conferred an advantage during 

training.   
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5. EXPERIMENT 3 

In the second experiment, the observer females again failed to acquire the escape 

procedure via observational learning. I posited that perhaps this was because the females only 

viewed 5 males as they performed 40 trials each. Since learning of the task only requires 16-20 

trials, it may be that these males progressed too rapidly since they received 8 trials and therefore 

the females did not receive ample observation time to learn. Unexpectedly, the naïve females 

who viewed the maze and cues without the presence of a demonstrator showed a slight 

advantage in maze performance. This may be because they were able to memorize the cues and 

dimensions of the aviary without distraction from the male demonstrators. Therefore, in Exp. 3, I 

used eight males that only received 4 trials per day (thereby extending the males’ learning 

portion for the observers) and I blocked the view of the maze and cues from the naïve females. 

(a) Direct and Observational Training   

Ten male demonstrators and 12 females were selected at random from the university 

aviary and were housed in groups of 6 or 10 same-sex individuals by group. Females were 

randomly assigned to either the observer or naïve treatment group. As in Exp. 2, a 6-individual 

observation deck was used so all the observer females were able to view all 10 males as they 

underwent direct training. Males were divided into 2 groups (a morning and afternoon group) 

and each received one 4-trial block per day. Since the females viewed all 10 males, they viewed 

200 trials over the 5 days.  Naïve females were suspended for the same amount of time in the 

observation deck in a plain black-clothed aviary.  Probe trials were conducted the same as Exp. 

2.  
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(b) Results and Discussion  

For the males, latency (F (4, 36) = 31.77, p < 0.001; Linear Contrast: F (1, 9) = 46.29, p 

< 0.001) and distance (F (4, 36) = 13.79, p < 0.001; Linear Contrast: F (1, 9) = 22.54, p = 0.01) 

decreased across blocks indicating learning of the task (Fig 5.6).  Velocity did not change across 

blocks. On the probe trial, males traveled more (t(9) = 6.47, p < 0.001) in the previously correct 

quadrant than the average of the other three quadrants but did not spent more time in the 

previously cued quadrant (t(9) = 1.52, p = 0.16; Fig. 5.7).  

On the pre-training probe, neither group of females traveled more or spent more time in 

the previously correct quadrant than the average of the other three quadrants nor was there any 

difference between the groups in these measurements. This indicated that observation alone was 

not enough for the females to learn the location of the escape hole. During the females’ training, 

there was a significant block effect across groups and each group demonstrated a reduction in 

latency and distance traveled but not velocity across trials (Observers distance: F (3, 15) = 12.19, 

p < 0.001, Linear Contrast: F (1, 5) = 14.19, p  = 0.013; latency: F (3, 15) = 8.37, p = 0.002, 

Linear Contrast: F (1, 5) = 8.09, p = 0.036; Naïves distance: F (3, 15) = 7.81, p = 0.002, Linear 

Contrast: F (1, 5) = 9.24, p = 0.029; latency: F (3, 15) = 9.39, p = 0.001, Linear Contrast: F (1, 5) 

= 9.16, p = 0.029) . There was no significant difference for the main effect of treatment 

(Observer versus Naïve) nor any trial-block x treatment effects for distance traveled in the maze 

(treatment: F (1, 10) = 2.43, p = 0.15); treatment x trial block: F (3, 30) = 1.34, p = 0.28) , 

latency to escape (treatment: F (1, 10) = 0.58, p = 0.47; treatment x trial block: F (3, 30) = 0.44, 

p = 0.73) or speed traveling (treatment: F (2, 10) = 1.07, p = 0.33); treatment x trial block: F (2, 

20) = 2.52, p = 0.08) within the maze.  
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Figure 5.6. The performance of males, observer females and naïve females during training trials 

for Experiment 3: A. distance traveled in the maze, B. latency to escape, and C. average speed 

(velocity) the bird traveled within the maze. (Data points are averages for blocks of four training 

trials. See text for results of statistical analysis.) 
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Figure 5.7. The performance of males, observer females and naïve females during probe trial for 

Experiment 3: A. portion of distance traveled in quadrants, and B. proportion of time spent in 

quadrants. *Significantly different from the average of other three quadrants . (See text for 

results of statistical analysis.)  
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On the post-training probe, both the observers and naïve females spent more time in the 

in the previously correct quadrant (Observers: t(5) = 2.82, p = 0.04; Naïves: t(5) = 2.62, p = 

0.047) but there was no effect of treatment between the two groups (F(1, 10) = 1.07, p  = 0.32). 

However, in distance traveled, neither group showed a significant preference for the cued 

quadrant although the observer group was trending (Observers: t(5) = 2.42, p = 0.06; Naïves: t(5) 

= 1.31, p = 0.25) and there was no difference between the groups (F(1, 10)=3.00, p =0.12). This 

implies that spatial learning was weak in both groups.  

 Due to the difference in direct learning protocols between the males and females 

(females were given a pre-training probe), gender comparisons were not conducted. The results 

of this experiment confirm that direct training is effective for learning the spatial maze. 

Additionally, the results show that prior observation of conspecifics learning and correctly 

navigating the maze does not confer an advantage in maze learning or performance under this 

protocol.  

6. DISCUSSION  

 I conducted an avian analog study of the MWM using a clear, cylindrical arena with an 

escape hole. It is important to note that my adaption of the MWM analog differed from the other 

avian spatial maze [322-324] as mine did not require pre-training the birds with food, lacked any 

proximal or spatial contiguous cues, and had a homogeneous arena. The results of my 

experiments indicated that zebra finches are capable of learning this complex spatial maze using 

only distal cues to guide them to the goal as is typical of mammals. Additionally, I found that 

there was no effect of gender on learning my spatial task, with males and females being capable 

of learning the task at the same speed.  
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 I was not able to demonstrate that the zebra finch was capable of learning complex spatial 

skills by observing conspecifics performing the task.  Observational learning of a spatial 

performance requires mindful imitation where the observer must learn and understand not only 

the motor behaviors of the demonstrator but also the goal the demonstrator is attempting to 

obtain. It is believed that during learning acquisition, the observer is extracting pertinent 

information from the demonstrator, encoding a mental representation of their behaviors and then 

storing this as a template to guide future behavior [47, 48, 330]. Repeated observations evoke the 

neural coding and the observed behavior is learned [331]. This hypothesis is supported by 

clinical and neuroimaging studies in humans [215, 332]. The fact that the zebra finches, unlike 

rats [18-20, 35, 37, 212] were incapable of learning spatial tasks through observation may imply 

they do not possess the cognitive abilities or neural networks required for encoding and 

replicating motor behaviors of a demonstrator, or more plausibly that the environmental demands 

on the species are different and therefore result in learning differences. It may be that 

observationally learned spatial information may not be as important for the survival of the zebra 

finch as it is for the rat, and necessitates the ability in the rat but not the finch.  

Unlike several lab mammals, avian species do not readily acquire tasks that are not 

ecologically relevant. Perhaps using different types of mazes or target goals will allow for 

observational learning of a spatial task to occur. For example, more spatially contiguous cues or 

mazes in which the target is a food reward may be useful in examining observationally-acquired 

spatial information in the zebra finch as these situations more closely resemble natural foraging 

behaviors or group movements in the finch. One particular maze that may be useful, and has 

been shown effective in the zebra finch is the four-feeder open area task. In this task, birds must 

use arena geometry and cues to navigate to a baited feeder [324]. Since there are only four 
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possible target locations and the goal is spatially contiguous, it may be slightly less cognitively 

demanding on the observer. Additionally, some evidence exists showing the zebra finch will 

alter food preferences and increase feeding amounts following the observation of a conspecific’s 

foraging and eating behaviors [230, 231, 333]. This may increase the ecological relevance of the 

maze and the spatial information may be acquired by observers more readily.  

 Finally, this study describes how to construct a novel maze and a protocol for training. 

The procedures described here may prove useful for several different kinds of neurobiological 

studies. These techniques have already been exploited in studies of CB function, 

pharmacological studies on the effects of estrogens on spatial memory, and in a study examining 

the effect of adrenergic receptor antagonists on spatial memory. These studies have revealed that 

CB inactivation via mechanical lesions to the nuclei creates deficits in maze acquisition, and that 

pharmacological manipulation can alter learning and performance of the maze.  

 The benefits of the present maze and procedure are: 1) the speed of training, 2) no pre-

training is required, 3) the apparatus fits within a compact space, 4) the experimental set up is 

easy to assemble and disassemble, and 5) the design is extremely cost-effective. The 

disadvantages are the inability to vary the motivation level or reinforcement magnitude so if a 

bird does not find the heat floored aversive, they may not attempt to escape the maze, and that 

the placement of the birds on a heated surface may cause stress responses which could interact 

with ablation of pharmacological manipulations. However, these disadvantages are shared by the 

MWM [225] which is still heavily used in studies on spatial learning. Most importantly, my 

procedure may allow for better ecologically correct comparisons on spatial learning between 

birds and mammals. This comparison is vital to our understanding of how the brain functions and 

has evolved to support spatial learning.  
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CHAPTER 6: GENERAL DISCUSSION 

1. SUMMARY 

In the preceding series of experiments, my aim was to establish which type of 

observational learning the zebra finch was capable of learning with the larger goal of examining 

the underlying brain regions that support avian observational learning. To achieve this aim, I 

conducted three experiments focusing on three types of observational learning (stimulus 

enhancement – Chapter 2; observational conditioning – Chapter 3; and, mindful imitation – 

Chapter 5) and one experiment looking at the role of the CB in fear conditioning acquisition. The 

first study (Chapter 2) investigated whether zebra finches are able to learn public information 

about male quality under two scenarios: mate choice copying (MCC) and mate quality bias 

(MQB). While I was unable to find support for MCC, I did find evidence of MQB in the socially 

monogamous zebra finch. This study suggests that MQB is a biologically relevant strategy 

employed by a monogamous species other than humans and may influence mate selection and 

therefore sexual selection in the zebra finch.  

 The second study (Chapter 3) examined the acquisition of fear conditioning (FC) in the 

zebra finch through both direct experience and observation. I found that zebra finches readily 

acquire an association between a tone and a shock via direct FC training. Additionally, prior 

observation of a conspecific undergoing conditioning confers an advantage to the observer which 

results in a savings in learning. These results suggested that zebra finches are capable of 

observational conditioning. In order to determine if observational conditioning could be used to 
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study the role of the CB in observational learning, I examine the CB role in the acquisition of FC 

(Chapter 4). This was necessary as FC is acquired rapidly and if CB inactivation did not block 

learning during FC trial performance, ascertaining the CB’s role in observational conditioning 

would be difficult. I found that lesions to the lateral cerebellar nuclei of the zebra finch did not 

produce differential deficits in fear conditioning acquisition.  

 My final study (Chapter 5) examined if the zebra finch could acquire spatial task 

information and learn to navigate an Escape Maze through observing conspecifics learning and 

ultimately successfully performing the task. While the zebra finches were capable of learning the 

task through performance, there was no evidence indicating that prior observation of the task 

conferred an advantage in subsequent maze performance. This implies that the zebra finch is not 

capable of mindful imitation in a spatial task.  

 Together the results from my three studies on observational learning show that zebra 

finches are capable of some but not all types of observational learning. These findings are 

interesting because of how they compare to learning in other taxa, particular mammalian species. 

In addition, they offer novel insights into avian observational learning and functional 

neuroanatomy. As such, they have important implications for observational learning evolution in 

vertebrates.  

2. CONCLUSION 

 It is important that studies examining which types of observational learning are possible 

in a single species (like my series of investigations in the zebra finch) continue and are extended 

to species in all taxa. Developing learning inventories for each species, will allow researchers to 

compare and contrast the types of observational learning that occur by species, will aid in the 
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development of better hypotheses to explain the selection for observational learning based on the 

environment and behavioral constraints, and ultimately allow us to understand the evolution of 

learning constraints. This in turn may allow for researchers to better pinpoint brain regions to test 

for their involvement in observational learning through inductive reasoning. This approach was 

successfully used in discovering the brain pathways used for vocal learning, the rarest form of 

observational learning. 

 Vocal learning is found in three distantly related groups of birds: parrots, passerines, and 

hummingbirds. By looking for similarities in brain regions that could support this form of 

learning, researchers were able to identify the cortical pathways and nuclei necessary for avian 

vocal learning [176, 180]. This research was then applied to mammalian species that also 

possessed vocal learning abilities. It was hypothesized that analog brain structures and pathways 

in the same homologous region of the brain (i.e. the cortex) would be present in mammals with 

vocal learning, and these regions were discovered [101, 176, 180]. Investigations into the brain 

regions for vocal learning were based and significantly aided by the comparative behavioral 

evidence complied by researchers looking at learning capabilities and limitations. This same 

technique could be used for the different types of observational learning.  

It is reasonable to posit that the more taxonomically distributed a particular type of 

learning is, the more likely the brain region responsible for the learning is highly conserved 

across species.  Conversely, the rarer the behavior, like vocal learning, the more specialized and 

less conserved the brain regions may be. Perhaps observational learning inventories, like the one 

described in this dissertation, will help elucidate some of the mysteries surrounding the evolution 

of observational learning in animals. 
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3. FUTURE DIRECTION 

  Using this work as a foundation, several directions for further investigation may 

be taken. I will outline a few for each line of my research. 

Mate Choice in the Zebra Finch 

 The effects of lesions on the acquisition of public information on potential mates and 

same-sex conspecifics have yet to be investigated. The CB receives input from almost every 

sensory system including vestibular and proprioceptive, visual, audition, somatosensation, and 

nociception [334] and has been shown to play a role in executive functions that require 

organization like planning and abstract reasoning in mammals [300]. As such, the CB may 

function in mate quality bias where the traits/qualities of multiple individuals, both male and 

female, must be compared. I believe this warrants further investigation. Additionally, studies into 

male choice and whether males use MQB are necessary to gain a complete understanding of the 

role of observational learning in zebra finch sexual selection.  

Fear Conditioning and Cerebellar Involvement 

 Lesions to the CBl did not have a pronounced effect on fear conditioning acquisition. 

Therefore, the role of the CB in observational conditioning was unable to be tested. This lack of 

effect may be due to the position or size of the lesion, or that in contrast to mammals, the CB 

does not play a role in avian FC (although the latter is unlikely). To determine if the CB is 

involved in FC acquisition, investigations into immediate early gene expression in the CB during 

FC should be conducted. If the CB is found to function in FC, lesion or temporary deactivation 

studies may pinpoint the exact nuclei and pathways involved in FC.  
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Spatial Maze 

Unlike the rodent and the human, the zebra finch was unable to acquire spatial 

information in our novel escape maze. This is likely because the task and/or the information 

being acquired is not biological relevant to the zebra finch. As previously mentioned in Chapter 

5, studies into the observational acquisition of spatial information in the zebra finch should be 

extended to different spatial mazes that contain more spatially contiguous cues or mazes which 

use food rewards as goals. Additionally, given that it has now been shown that the zebra finch 

can detect fear or threat reactions in conspecifics, it is now possible to determine if the stress 

reactions from demonstrators learning the maze may influence observer behavior and tease this 

apart from the spatial component of the maze. Studies should be conducted where, following the 

observation period, Observer and Naïve females are given an initial probe with the hotplate 

disengaged (and therefore not aversive). If Observers learned the fear portion but not the spatial 

component (i.e. the goal location), then they should show an increased reaction or more 

movement compared to their Naïve counterparts. 

4. CONCLUDING REMARKS 

 This dissertation provides several significant and novel results, and two novel procedures 

for testing cognition in birds. My MCC/MQB study (Chapter 2) is the first well-controlled study 

to show MQB in a non-human monogamous species. This result indicates that the zebra finch 

can identify morph traits associated with quality not just in potential mates, but also in same-sex 

conspecifics, and use this information to reduce errors in mate choice. It additionally lends 

support to the MQB hypothesis which predicts that species with monogamous mating systems 

will pay more attention to the quality of females interacting with a male than just the number of 
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females. My FC study (Chapter 3) was the first to demonstrate which responds to a threat 

stimulus with flight can be classically conditioned, and is the first well-controlled experiment to 

show observational conditioning in any avian species. This indicates that the zebra finch can 

learn to avoid the negative effects associated with threatening stimuli by watching conspecific 

reactions. Finally, I have provided the scientific community with two appropriate procedures and 

apparatuses to test FC and spatial memory in flighted birds.  

 Collectively, these studies show that zebra finches observationally learn certain 

information and what may determine which information is acquired may relate to the ecological 

relevance of the information. My results imply that observationally- acquiring information about 

mate selection and threatening stimuli, but not spatial information, confers a selective advantage 

for the finch. This in turn provides a more comprehensive understanding of zebra finch cognition 

and the driving factors behind the evolution of observational learning in this species.  
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