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ABSTRACT 

WILLIAM GREGORY CANNELLA, JR.: Characterizing the Vibrational Modes of 
Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy  

(Under the direction of Dr. Nathan Hammer) 

 
In this project, the vibrational characteristics/vibrational modes are explored via 

Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also 

known as gold nanoparticles (AuNPs). They remain of great interest in research areas such 

as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their 

unique size-dependent optical, chiroptical, and electronic properties. Vibrational 

spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the 

compounds strongly absorb light in the visible region of the electromagnetic spectrum, are 

generally considered weak scatterers, and give off large amounts of fluorescence. This 

combined with their black appearance, susceptibility to localized heating, and lack of 

topographical features makes these compounds challenging to study. These compounds 

possess unique structural compositions as they are composed of a number of covalently 

bonded gold atoms forming what is referred to as a gold core complex. This core complex 

is then surrounded by various gold-thiolate staple molecules such as monomeric (SR-Au-

SR), dimeric (SR-Au-SR-Au-SR), trimeric (SR-Au-SR-Au-SR-Au-SR), as well as 

bridging thiols. Furthermore, the core complex is also surrounded by various ligand groups. 

For the purposes of this study, the ligands of 2-Phenylethylthiol and tert-butylthiol were 

investigated. One of the biggest opportunities AuNPs provide, is the ability to undergo 

core-size conversions due to electronic and steric effects of the ligands and the interaction 

of Au-S bonds. Here, the gold thiolate molecule Au38(2-PET)24 undergoes a core-size 

reduction via etching with tert-butylthiol to produce Au30(S-tBu)18, coined “green-gold” 

by the Dass Group. Oftentimes, subtle spectral differences are observed between core-size 
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conversions; however, this study also explores the vibrational spectroscopic changes 

induced by ligand exchanges for a compound that has yet to be vibrationally studied 

elsewhere. 
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Chapter 1: Light & Spectroscopy 

1.1 Nature of Light Overview 

In order to understand the functionality of the electromagnetic spectrum as an 

analytical tool, one must understand the nature of light. Light is oftentimes referred to as a 

series of photons or a quanta packet or particle of light. A photon is the energy of light 

described as a single point, this is known as the wave function collapse. This description 

demonstrates that light behaves both as a wave and a particle depending on the experiment 

used to observe the phenomena.1 This is commonly referred to as wave-particle duality 

suggested by Max Plank, Louis de Broglie, Albert Einstein and other influential scientists.2 

Additionally, if light is confined into a single plane, plane polarized light will have an 

oscillating electric field as well as an oscillating magnetic field, both of which oscillate at 

90-degree angles from one another.1 The idea of electromagnetic waves was postulated by 

James Clerk Maxwell and later confirmed by Heinrich Rudolf Hertz.2 Maxwell postulated 

light behaved like an electromagnetic wave due to the speed of the electromagnetic wave 

predicted matching the measured speed of light.2 There are several characteristics of light 

that are extremely important in spectroscopy. Light can travel as single wavelengths, 

known as monochromatic light, and in multiple wavelengths, known as polychromatic 

light. The power or intensity of light is a measure of the energy in a given area per second.1 

Wavelength is the distance between the peaks of light oscillations, also known as a period 

in trigonometric terms. Lower wavelengths will indicate that the light is undergoing more 

frequent oscillations and is described as having a higher energy than light of less frequent 

oscillations; therefore, this light will appear as higher energy light on the electromagnetic 

spectrum than higher wavelength light. These more frequent oscillations, or lower 

wavelength light will be able to more easily induce higher quantum energy transitions such 
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as vibrational and electronic transitions than lower energy transitions such as translational 

and rotational.3-8 These properties are all interrelated and can be expressed in several 

equations denoted in Equation 1.1. 

𝐸 = ℎ𝜈 = %&
'

       (1.1) 

 

1.2 Generalities of Spectroscopy 
 
1.2.1 Characteristic Emissions & Quantum States 
 

Spectroscopy is a class of analytical techniques based on the interaction of light and 

matter. Using this, scientists can probe the differences in energy levels between quantum 

states. All atoms and molecules exist in discrete energy states; however, these states are 

dependent on the molecule’s configuration and conformation. By observing these quantum 

states, we can utilize quantum mechanics to rationalize the results and understand the 

unique properties of specific systems.3-8 This is why specific compounds yield 

characteristic absorption wavelengths and emission spectrums, allowing discrimination 

between different elements and compounds.  

The hierarchy of quantum states can be summarized as intermediates of the ground 

state and a series of excited states. The specific excitation gives rise to energy transitions 

characterized as translational, rotational, vibrational, and electronic transitions. These 

energy transitions parallel the energy increase witnessed in the electromagnetic spectrum, 

ranging from radio-waves to gamma radiation illustrated in Figure 1.1. 
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Figure 1.1 Visual aid for the wavelength relationship of the electromagnetic spectrum. 

 

1.2.2 The Interaction of Light & Matter 
 

Understanding the properties of light is just as important as understanding how 

these properties interact with matter. When light interacts with a molecule it can be 

absorbed, resulting in an overall increase in energy of the molecule. Furthermore, the light 

can be transmitted in which, there is no interaction with the molecule. Light can be 

reflected, causing some light to ‘bounce’ back depending on the refractive index of the 

material being studied. Refraction occurs as light passes through different mediums, 

changing the speed of that light due to the properties of the material; such as the image 

distortion we see in water. Additionally, waves of light can diffuse around objects that can 

allow for data collection such as diffraction patterns. Finally, light can undergo scattering. 

There are a variety of scattering processes that result in directional changes in light 

following collisions with small particles. These interactions allow for the use of a multitude 

of spectroscopic techniques such as: UV-Vis, Infrared analysis, Nuclear Magnetic 

Resonance, Phosphorescence, Atomic Absorption Spectroscopy, Atomic Emission 

Spectroscopy, X-Ray Fluorescence, and Raman Spectroscopy. There are additional 

variations on these techniques such as Fourier-Transform Infrared Radiation and Surface 

Enhanced Raman Spectroscopy (SERS) that alter data collection capabilities.  
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Chapter 2: Raman Spectroscopy  
 
2.1 Raman Spectroscopy Background 
 

The now known Raman effect was first hypothesized by Austrian physicist Adolf 

Smekal in 1923,9 and later discovered by C.V. Raman and K.S. Krishnan in 1928 and 

promptly named the Raman effect.10 This methodology mostly utilizes spontaneous Raman 

scattering, which occurs when the excited state induces a vibration in the molecule and 

relaxation to a lower vibration state a photon of different energy is emitted. This is known 

as both Stokes and Anti-Stokes shifts illustrated in Figure 2.1.3-8  

Figure 2.1 Vibrational energy level diagram illustrating the difference in vibrational 

excitation states of molecules via Stokes and Anti-Stokes shifts. 

 

Some other notable techniques utilize stimulated or resonant Raman scattering, which is 

essentially when the excited state aligns with the S1 state, the alternative of which is the 

creation of a virtual state. 

 

2.2 Light Scattering Phenomena 
 

To further understand Raman spectroscopic techniques, one must understand the 

variants of light scattering. There are several types of light scattering; these are usually 
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grouped into elastic and inelastic scattering. Elastic scattering occurs when the incident 

photon energy striking the molecule has the same photon energy after the collision. This 

type of scattering is most common in the form of Rayleigh or Mie scattering.1, 3-8 This 

means that the wavelength of scattered light is unchanged from the incident wavelength.3-

8 Furthermore, the scattering effect is impacted by the size of the particle.3-8 As such, this 

type of scattering is useful for determining the size and shape of colloids. Raman scattering 

can also be characterized as Inelastic scattering. Raman scattering is caused by the 

excitation of a molecule into a higher vibrational state, known as a virtual state.3-8 It is 

important to note that the listing as a virtual state occurs if the excitation energy is greater 

than vibrational transitions but less than necessary to achieve an electronic transition.3-8 

This is illustrated in Figure 2.2. 

 

 

 

 

 

 

 

Figure 2.2 Vibrational energy level diagram illustrating a Stokes Shift vibrational 

excitation via achieved virtual state.  

 
Since these ‘in-between’ states are not quantized, there is effectively an infinite number of 

achievable exited states for a molecule. This virtual state can be any form of low frequency 

modes such as vibrational or rotational and is independent of the incident wavelengths. The 

process of Raman scattering is nearly instantaneous as compared to the lifetime of 
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fluorescence which can be on the range of picoseconds to milliseconds and nanoseconds 

respectively.3-8, 11 The inelastic scattering of photons causes a change in the energy of the 

incident photon. This change is viewed as a difference in wavelength from the excitation 

and detected photons. This phenomenon is utilized in both IR and Raman spectroscopy.  

 

2.3 Raman Spectrometer Components & Functionality 

2.3.1 Vibrational Spectroscopy Selection Rules 
 

Raman Spectroscopy utilizes the phenomenon of inelastic light scattering to probe 

the low frequency modes of atoms and molecules by illuminating samples with a 

monochromatic light source followed by the collection of scattered light. This process is 

often considered complementary to IR Spectroscopy as some vibrations are IR active but 

not Raman active and vice versa. This is due to the difference of selection rules between 

IR and Raman. IR Spectroscopy requires a change in the dipole moment to be considered 

‘active’ while Raman Spectroscopy requires a molecule to undergo a net change in 

polarizability. This means a detectable change in electron distribution in response to the 

applied electric field must occur.12 These compounds are considered anisotropic while 

molecules that are not Raman active are considered isotropic. Oftentimes, a lower nuclear 

charge influence on the surrounding electrons, can cause a greater change in electron 

density.12 This can be done by increasing the bond distance and by inducing vibrations.12 

Generally speaking, larger molecules tend to have greater polarizability due to this 

increased distance of electrons from nuclear charge.12 These vibrational changes in 

polarizability are of principle interest for Raman spectroscopy.  
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2.3.2 Raman Spectrometer Data Collection 
 

The Raman spectrometer functions by shining a radiant source onto the sample, 

such as helium/neon (633 nm), argon ion (488 nm), krypton ion (532 nm), 

neodymium/yttrium aluminum garnet (Nd/YAG) (1064 nm), and 785 nm NIR diode 

lasers.13 Following this, the scattered light is collected and progresses through a 

monochromator, possibly with several gratings, to eliminate Rayleigh scattering and 

followed by a detector. A variety of detectors are used, ranging from photomultiplier tubes 

(PMTs), charge injection devices (CIDs), and charge-coupled devices (CCDs) which 

require cryogenic cooling.12 Following light scattering, wavelengths collected by the 

detector that are close to the incident wavelength are filtered out from the final spectrum. 

All other collected light is processed by a spectrometer, then radiation intensity is 

converted into an electrical signal via a transducer. The CCD is responsible for storing a 

photo generated charge in a 2D array and after a given time, the electrons stored are read 

and produce a signal, resulting in a very sensitive detector with a high signal to noise 

ratio.12-13 The spectrometer is responsible for separating out scattered light according to the 

individual wavelengths, and presents this data as a graph displaying an intensity - 

wavenumber relationship.12-13 Furthermore, on the sample level, the measuring of 

vibrations occurs by surface plasmon resonance. Surface plasmon resonance occurs when 

the interface of two surfaces are stimulated by a light source which induces oscillation of 

electron densities.3-8, 13 As such, these can only be generated in the presence of free 

electrons.12, 13 This is why metal is usually a useful surface, effectively inducing 

electromagnetic waves to the sample surface.13 
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2.3.3 Raman Spectroscopy Versatility & Stokes/Anti-Stokes Shift 
 

Raman Spectroscopy is a very versatile technique partly due to its qualitative and 

quantitative capabilities. The peaks are unique to the specific bond types of a molecule.13 

With knowledge of functional groups, spectral behaviors, and the available vibrational 

states, one can identify specific molecules as well as the type of vibration.3-8, 12, 13 

Additionally, the intensity of the Raman signal is directly proportional to the concentration 

of the sample.  

Despite the capabilities of Raman spectroscopy, it has some disadvantages. 

Compared to other light interactions such as fluorescence and phosphorescence, scattered 

light tends to be much weaker. As such, properly utilizing a Raman spectrometer becomes 

effectively amplifying or enhancing the intensity of Raman scattered light. When a photon 

collides with matter, an energy shift occurs, and the incident photon will either have more 

or less energy than the emitted photon in the inelastic scattering process. This phenomenon 

is referred to as Stokes and Anti-Stokes shifts respectively.13 Raman spectrometers most 

commonly measure Stokes shifts due to their higher intensity signals; however, anti-Stokes 

is often useful for fluorescent compounds.13 This occurs because Stokes shifts are more 

common than anti-Stokes, since anti-Stokes requires a molecule to be in a previously 

excited state, before the incident photon collision.13 This can be illustrated with a 

vibrational energy level diagram located in Figure 2.1. The difference in energy for Stokes 

and anti-Stokes correspond to vibrational energy transitions.  
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Chapter 3: Thiolated Gold Nanoparticles (AuNPs) 
 
3.1 AuNP Class Characteristics & Applications 
 

The first thiolate-protected cluster to be crystalized and studied was Au102(SR)44 by 

Jadzinsky et al. in 2007 and was found to have the presence of monomeric and dimeric 

staple units covering a densely packed gold core.14 Since then, the study of AuNPs has 

remained a field of interest for many research opportunities. These staple units play an 

important role in determining the structure of the Au core, and therefore the molecular 

properties.15 These can appear in a variety of forms such as monomeric (SR-Au-SR), 

dimeric (SR-Au-SR-Au-SR), and trimeric (SR-Au-SR-Au-SR-Au-SR).16 In addition to 

these staples, the gold core can also be surrounded by a plethora of structural motifs and 

various ligand types.16 The arrangement and structure of the ligand types impact the 

conformation and the number of gold atoms present within the gold core. This particular 

class of compounds have a variety of applications such as nanoelectronics, catalysts, drug 

delivery, and sensing.15 This is primarily due to the compounds unique size-dependent 

optical, chiroptical, and electronic properties.16 Because of these characteristics, it is useful 

to understand the binding properties of the Au-S interface and investigate the implications 

of changes in the gold core structure. Furthermore, AuNPs are heavily studied due to their 

atomic monodistpersity, molecular properties,17-18 stability from geometric19 and electronic 

shell closings20 therefore, it is also important to investigate the thiolate-fold interaction for 

self-assembled monomers (SAMs),21 gold nanoparticles and clusters,22 and gold-based 

molecular electronics.23 
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3.2 Vibrational Spectroscopy of AuNPs 
 
3.2.1 Raman Vibrational Spectroscopy of AuNPs 
 

Vibrational spectroscopy is very useful for studying gold clusters as it provides 

insight into the structure of the Au-S interface. There have been a variety of density 

functional theory (DFT) calculations in previous works investigating small thiolated 

clusters that have been used to predict different Far-IR and Raman spectra.24 Research 

performed by Tlahuice-Flores et al. mentions that the calculations predicted a “richer” 

spectrum for Raman as compared to the far-infrared spectrum.24 This makes Raman 

spectroscopy a promising technique on the frontier of vibrational spectroscopy of thiolate 

gold nanoparticles. There have been other promising Raman spectroscopy studies utilizing 

SERS to enhance the vibrational signals of gold clusters to further investigate their 

conformational properties. A previous study by Price and Whetten25 and Murray et al.26 

reported experimental Raman of benzenethiolate protected gold clusters at a time when the 

structure and size were unknown. Another study performed by Varnholt et al. in 2014, 

engaged in the systematic study of Far-IR spectra of 2-PET protected clusters,16 while a 

Heiz & co-workers investigated mid-IR spectra of [Au25(2-PET)18]0/-, Au38(2-PET)24, 

Au40(2-PET)24, and Au144(2-PET)60.27 Additionally, Varnholt et al. investigated the effect 

of stabilizing ligands on Au25(2-PET)18-2x (S-/rac-BINAS)x, Au25(CamS)18, and 

AunBINASm. For reference, BINAS refers to 1,1’-binaphthyl-2,2’-dithiol and CamS refers 

to 1R,4S-camphorthiol. They reported surface interactions of Au-S-C bending and Au-S 

radial vibrations that were impacted by the type and number of gold-thiolate binding 

ligands, therefore influencing the collected spectra.27 Additionally, an undergraduate in the 

Hammer Lab at the University of Mississippi, Lemuel Tsang, in 2017 investigated the 

vibrational modes of Au38(2-PET)24 using a temperature control stage at 0 and -100°C 
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temperatures along with various laser wavelengths and powers. He was able to elicit a 

vibrational response over a 100-1300 cm-1 range while Varnholt et al. focused on the 200-

400 cm-1 region due to the limitations of the rolling circle filter cutoff at 170 cm-1 on the 

Scattered Circular Polarization-Raman Optical Activity (SCP-ROA) instrument and 

disinterest in the ligand vibrational range.16 The measured spectra was considered 

nontrivial since gold nanoclusters are considered weak scatters and absorb strongly in the 

visible region, hence the use of a 532 nm laser to carry out this study.16 A light intensity of 

8 mW (milliwatts) was used while the sample was rotated at 3000 rpm to prevent excessive 

heating. They drew the conclusion that the type and number of thiolate ligands influence 

the spectrum and that there was a general shift to higher wavenumbers observed for more 

sterically demanding ligands.16 

3.2.2 IR Vibrational Spectroscopy of AuNPs 

There have been previous vibrational studies besides Raman Spectroscopy. 

Dolamic et al. studied gold clusters covered with 2-PET and characterized Au-S stretches 

around 300 cm-1 and below via far-infrared analysis.15 They reported slight shifting 

depending on the core size of the different clusters. The study analyzed 5 compounds 

Au144(2-PET)60, Au40(2-PET)24, Au38(2-PET)24, [Au25(2-PET)18] TOA, and [Au25(2-

PET)18]. For reference TOA refers to the tetraoctylammonium counterion. They reported 

results of bands at 321 and 284 cm-1 in the spectral range for expected Au-S vibrations and 

associated a band near 490 cm-1 indicative of phenylethylthiolate conformation coupled to 

a C-C-S bending mode.15 They also utilized calculations performed by Tlahuice-Flores et 

al. to assign the tangential Au(staple)-S(staple) vibrations and Au(core)-S(staple) modes.24  
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3.3 AuNP Core-Conversions 

In previous works it has been shown that the Au-S interface is relatively flexible.16 

This flexibility allows for the rearrangement of gold particles contained within the core as 

well as gold-thiol staple units. This staple rearrangement has been observed for various 

compounds such as Au67(SR)35 to Au36(SR)24 conversion as well as at elevated temperature 

conditions.28, 29 Additionally, adsorbed thiolates have been observed to “place-exchange” 

between different symmetry sites.30 This is an intriguing quality that allows the gold core 

of the compound to undergo core-conversions to different compositions and number of 

atoms. This occurs by reacting a starter molecule with a physiochemically different thiol 

to induce a core-size conversion.28 The ligand exchange and core-conversion can occur 

separately or simultaneously.28 Rambukwella et al. demonstrated that Au38(2-PET)24 is 

able to undergo a core-size reduction to Au30(S-tBu)18 via etching with tert-butylthiol with 

a Au36(SCH2CH2Ph)24-x(S-tBu)x intermediate.28 This reaction creates the compound 

coined “green-gold” by the Dass group due to its green appearance.28 

 

Figure 3.1 Visual depiction of the core-conversion process from Au38(2-PET)24 geometry 

to Au30(S-tBu)18 geometry via etching with tert-butylthiol at 80°C.  

Source: Milan Rambukwella, Luca Sementa, Alessandro Fortunelli, and Amala Dass, The 

Journal of Physical Chemistry C 2017 121 (27), 14929-14935 
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Core conversions can result for a variety of reasons such as strong steric or 

electronic effects. In this reaction, the tert-butyl group of exchanging ligands exerts a 

strong steric effect upon the gold core, causing the core-size reduction to 30 gold atoms.28 

For the purposes of this paper, our interest lies in Au30(S-tBu)18, first reported along with 

its crystal structure by the Dass group in 2013.31-33 Au30(S-tBu)18 has a sterically crowded 

thiolate ligand shell and similar core structures, such as Au21 and Au23, have been reported 

with similarly bulky thiolate ligands.28 The Dass group reported that the core size is 

governed by the thiolate ligand shell, for example only Au38 is stable with aliphatic and 

aliphatic-like ligands such as hexane thiol and phenylethane thiol, in contrast to that of the 

Au30 core which is stable with bulkier ligands such as tert-butylthiol.28  

 

3.4 Geometric & Energetic Comparison of Au38(2-PET)24 and Au30(S-tBu)18  

There are several discriminating factors between the Au38(2-PET)24 and Au30(S-

tBu)18 samples. The Au38(2-PET)24 sample contains an Au23 gold core while Au30(S-tBu)18 

sample contains a smaller Au20 gold core.28 Additionally, the Au-S interfaces also differ 

significantly. Au38(2-PET)24 contains three monomeric staple units and six dimeric staple 

units while Au30(S-tBu)24 contains four monomeric staple units, two trimeric staples, and 

2 bridging thiols.28 These differences alongside the ligand exchange from 2-

Phenylethelthiolate to tert-butylthiol and the core-conversion Au36 intermediate species 

cause differences in the formation energy of the nanomolecules. The formation energies 

were investigated by comparison of the various specie’s fragmentation energy, atomization 

energy, ligand shell separation, ionization potentials, electron affinities, and chemical 

hardness.  
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Rambukwella et al. noted that they expected to see similar covalent interactions 

since both ligands are considered aliphatic thiols; however, they reported that the S-H bond 

reaction energy in both the H-S-tBu and H-SCH2CH2Ph were “nearly identical” having 

values of 4.86 eV for Au38(2-PET)24 and 4.87 eV for Au30(S-tBu)18.28 This result indicates 

that the chemical-behavioral differences between the compounds can be attributed to 

geometric or electronic effects due to the larger steric hindrance of the S-tBu compound 

rather than Au-S covalent interactions.28, 40  

Rambukwella et al. reported that the formation energy was largest for Au38(2-

PET)24, and therefore most stable due to the relative Au-S bond length caused by steric 

hindrance. The Au-S bond length ranges for Au30(S-tBu)18 and Au38(2-PET)24 reported 

were 2.35-2.44 Å and 2.33-2.49 Å, respectively.28  

The atomization energy showed that Au30(S-tBu)18 has preferable stability when 

compared to Au38(2-PET)24 Au-Au first-neighbor distance, which have values of 2.91 Å 

and 2.95 Å respectively.28 It is also important to note that the staple units nearly detach due 

to steric hindrance in the Au36(S-tBu)24 configuration.28  

Ligand shell separation analysis revealed that Au38(2-PET)24 has a very large ligand 

separation value dependent upon residual S-S binding; however, it is dominated by 

additional repulsion interactions between organic residues such as p-p bonding and T-

Stacking of phenyl rings.28, 41  

Final comparisons indicated that Au38(2-PET)24 had higher ionization potential and 

electron affinities than Au30(S-tBu)18; however, Au30(S-tBu)18 demonstrated higher values 

than Au38(2-PET)24 for chemical hardness indicating that from an electrical standpoint, 

Au30(S-tBu)18 is the more stable species.28 
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Chapter 4: Raman Spectroscopic Comparison of Au38(2-PET)24 and Au30(S-
tBu)18  
 
4.1 Introduction 
 

Thiolate gold nanoparticles have a very interesting electronic structure which 

allows atom clusters to behave more as molecules than coordination compounds as they 

have discrete optical transitions. They also have other properties such as fluorescence, 

which is useful for applications in bionanotechnology, making them excellent markers of 

electromagnetic radiation, which can be adjusted by altering the cluster size and ligand 

type.34 Additionally, the protective shell of the gold-core can be altered for selective 

binding to enzyme and protein receptors, allowing their use as biosensors.35 Gold 

nanoparticles are essentially a subdomain of colloids and surfaces and as such, they have 

often been in the limelight as the model system for these classes.36 They possess unique 

properties, making them good heterogenous catalysts and for uses in size-dependent 

electrochemistry.36 Additionally, high chemical stability makes them good candidates for 

analyzing self-assembled monolayers, biolabeling, DNA melting, and other applications.36 

Gold nanoparticles of 2 to 3 nm in diameter have been considered reactive for conjugation 

with proteins and DNA as well as with antibody Fc fragments used to identify tagged 

proteins in electron micrographs.37 

Furthermore, these compounds have a variety of applications in the biomedical 

field. They are often referred to as Nobel-metal nanoclusters, such as Au and Ag, that 

behave in similar ways to that of a quantum dot, as they require a single light source for 

stimulation of “different-emissive nanoclusters”.38 Additionally, the wavelength of these 

clusters can be altered by changing the capping molecules and core size allowing for 

additional adaptability.38 Due to these properties, there has been extensive investigation of 

the localized surface plasmon resonances. These utilize the interaction of several 
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nanoparticles’ localized plasmon resonances and localized electromagnetic fields in 

coupled structures, allowing the detection of extremely small amounts of sample.36 This 

technique is known as SERS. This signal enhancement was not necessary for the spectral 

imaging of these compounds as demonstrated by Varnholt et al.16 and Lemuel Tsang’s 

spectral data.39 In this study, we utilize classical Raman spectroscopy to compare the 

vibrational modes of Au38(2-PET)24 and its core-size reduction from bi-icosahedron to bi-

cuboctahedron core geometry and ligand exchange to Au30(S-tBu)18 without the use of a 

temperature control stage for a previously, vibrationally unresearched nanoparticle 

cluster.28 

 

4.2 Methods  

For this project, two thiolated gold nanoparticles were investigated; Au38(2-PET)24 

and Au30(S-tBu)18. Both compounds were provided by Senthil Eswaramoorthy from the 

Dass group at the University of Mississippi and were characterized by UV-vis spectroscopy 

and MALDI spectrometry to confirm purity. Approximately 5 mg of sample was applied 

to a glass slide using dichloromethane. It is important to note that no methanol was used to 

lower the surface tension. The dichloromethane was then allowed to evaporate before any 

observations were made. All Raman spectroscopic data for this project was collected via a 

Horiba LabRAM HR Evolution. For both samples a 633 nm laser with an Ultra-Low 

Frequency (ULF) filter was used at 5% power, which translates to a power of 

approximately 699-736 µW, since 100% power often resulted in thermal degradation of 

the samples. A laser power measuring device, Laser Check by Coherent, was used to make 

these measurements. The Horiba’s spectroscopic range is capable of reaching extremely 

low wavenumbers (5 cm-1) utilizing the low frequency filter. A low of 100 cm-1 was 
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recorded for the Au38(2-PET)24 sample and a low of 50 cm-1 was collected for the Au30(S-

tBu)18 due to large amounts of fluorescence in these lower wavenumber regions. The 

majority of Au38(2-PET)24 spectra were collected with an acquisition time of 10 seconds 

and 20 accumulations without causing thermal degradation of the sample. The Au30(S-

tBu)18 sample spectra were collected using a maximum of 4 seconds of acquisition time for 

10 accumulations, since a 5-second acquisition time caused thermal degradation of the 

Au30(S-tBu)18 sample. It is important to note that no temperature control stage was used to 

acquire any data. Furthermore, a 600 gr/mm grating and 20x LWD objective was utilized 

to acquire all data. Prior to data collection for both samples, the Horiba Raman 

spectrometer was calibrated using the auto calibration feature with a fragment of silicon 

which has a characteristic peak at 520 cm-1. Once the samples were placed under the 

microscope, data was collected at varying focuses. The lack of topographical features 

makes it challenging to properly focus on the sample surface. This is the reason the 633 

nm laser was utilized over a 785 nm laser. It is also important to note that the spectrum 

proved extremely sensitive to focus, a characteristic also observed in Lemuel Tsang’s 

thesis.39 Wide wavenumber ranges of approximately 50-1300 cm-1 were collected for both 

the Au38(2-PET)24 and Au30(S-tBu)18 samples. Ranges exhibiting characteristic peaks were 

focused on; such as 175-375, 600-900, and 960-1060 cm-1 for Au38(2-PET)24 and 150-350, 

575-700, 900-1100, and 1100-1300 cm-1 for Au30(S-tBu)18.  
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4.3 Results & Discussion 

 

 

 

 

 

 

 

 

Figure 4.1 Raman spectrum of Au38(2-PET)24 under 20x magnification with 633 nm 

ULF excitation from 100-1250 cm-1. Notable Au-S characteristic peaks remain 

unresolved in the 200-400 cm-1 region. Other characteristic peaks appear at 540, 620, 

690, 760, 825, 1000, 1030, and 1210 cm-1. 

 

 

 

 

 

 

 

 

Figure 4.2 Raman spectrum of Au38(2-PET)24 under 20x magnification with 633 nm 

ULF excitation from 175-375 cm-1. Au-S stretches of the gold core commonly appear in 

this region, this region remains too unresolved to discriminate individual peaks. 
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 Figure 4.3 Raman spectrum of Au38(2-PET)24 under 20x magnification with 633 nm 

ULF excitation from 600-900 cm-1. Characteristic peaks appearing at 540, 620, 690, 760, 

and 825 cm-1. 

 

 

 

 

 

 

 

 

 

Figure 4.4 Raman spectrum of Au38(2-PET)24 under 20x magnification with 633 nm 

ULF excitation from 960-1060 cm-1. Characteristic ligand peak of phenylethylthiolate 

appears at 1000 cm-1 and is attributed to a combination of C-H ring bending and wagging 

modes due to assignment from previous works.16 
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Figure 4.5 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

from 50-1300 cm-1. We believe there has been no previous vibrational study performed 

on Au30(S-tBu)18, which appears to have characteristic peaks at 250, 636, 975, and 1220 

cm-1. 

 

 

 

 

 

 

 

 

Figure 4.6 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

excitation from 150-350 cm-1. This peak could be attributed to Au-S stretching, common 

for these compounds in this region. This sharp peak in 200 cm range is likely an 
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unresolved region of Au-S stretches; however, resolution of this region remains 

insufficient to differentiate the individual peaks.15, 16 

 

 

 

 

 

 

 

Figure 4.7 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

excitation from 575-700 cm-1. 

 
 

 

 

 

 

 

 

 

Figure 4.8 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

excitation from 900-1100 cm-1. 
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Figure 4.9 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

excitation from 1100-1300 cm-1.  

 

 

 

 

 

 

 

 

 

Figure 4.10 Raman spectral comparison of Au38(2-PET)24 and Au30(S-tBu)18 samples 

under 20x magnification with 633 nm ULF excitation from 100-1250 cm-1. 

After etching with tert-butylthiol, Au38(2-PET)24 undergoes a core-size reduction 

to an Au36(SCH2CH2Ph)24-x(S-tBu)x intermediate followed by conversion to bi-

cuboctahedron geometry, Au30(S-tBu)18. This new core-conversion structure was studied 
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for the first time via Raman spectroscopy and was found to have characteristic peaks in the 

200-300 cm-1 region, likely due to the various Au-S stretching modes. Though this region 

remains too unresolved to identify individual peaks, we observed that the spectral range 

for Au-S stretching modes of the Au30(S-tBu)18 sample is smaller than the previously 

assigned 200-400 cm-1 range of the Au-S stretching modes for Au38(2-PET)24.15, 16 These 

vibrations, consisting of Au-S-C bending, Au-S-C bending of monomeric and dimeric 

staples, symmetric stretching of monomeric staples, radial vibrations of outer sulfurs of 

dimeric staple units, radial vibration of central sulfurs of dimeric staple units, and tangential 

vibrations should appear at 178, 208, 257, 286, 316, and 357 cm-1 respectively, according 

to assignments from previous works.16 Furthermore, the low wavenumber peaks of Au30(S-

tBu)18,  supposedly associated with Au-S stretching modes, has a maximum intensity 

occurring at approximately 250 cm-1. This is in contrast to the Au-S stretching modes of 

Au38(2-PET)24 that occur around 280 cm-1 and are likely associated with radial vibrations 

of the central sulfur atom located on the long staples which have been previously 

assigned.16 Additionally, we observed some characteristic peaks on the Raman spectrum 

of the Au38(2-PET)24 sample around 1000 and 1210 cm-1 consistent with C-H ring bending 

and wagging modes of the ligand, 2-phenylethylthiol, also assigned in previous works.16 

Given that these are ligand-specific vibrations, when compared to the Au30(S-tBu)18 spectra 

illustrated in Figure 4.10, the absence of the 1000 cm-1 peak is expected. Despite the ligand 

exchange from 2-PET to tert-butylthiol, a similar peak to that of the 1210 cm-1 in Au38(2-

PET)24 was observed for the Au30(S-tBu)18 sample at approximately 1220 cm-1; however, 

this remains uncharacterized. Additionally, there was no peak detected at 1030 cm-1 for the 

Au30(S-tBu)18 sample.  
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4.4 Summary 
 

With this project we were able to successfully investigate the variance in the 

vibrational modes of Au38(2-PET)24 before and after conversion to a bi-cuboctahedron core 

geometry known as Au30(S-tBu)18/ “green-gold” via Raman spectroscopy. This shows the 

sensitivity of the spectrum to key changes in AuNP core structure and aids in the 

characterization of new vibrational modes for previously unobserved Au30(S-tBu)18. While 

the individual plasmon modes of both Au38(2-PET)24 and Au30(S-tBu)18 remain unresolved, 

a generalized shift in the 200-400 to 200-300 cm-1 regions was observed, suggesting 

Au30(S-tBu)18 allows for less Au-S stretching modes to develop, possibly due to steric 

hindrance. For future studies, a temperature control stage could be utilized to investigate 

AuNP vibrational modes for longer acquisitions and for a greater number of accumulations 

as well as higher laser powers. This is especially important for Au30(S-tBu)18 as the sample 

appeared more susceptible to localized heating than the Au38(2-PET)24 sample. Here we 

can see the comparative nature of spectra for thiolated gold nanoparticles undergoing a 

core-size reduction via ligand exchange pathways. Despite some of the masking of upper 

wavenumber region characteristics by fluorescence and lower wavenumber resolution, 

these spectral differences provide researchers with valuable insight into the molecular like 

properties of AuNPs undergoing core-conversions. Additional planned experiments were 

not possible due to the COVID-19 national disaster. 
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dChapter 5: Supplemental Information 

5.1 Experimental Setup & Methodologies 

One of the most important factors for collecting AuNP data is using a relatively 

freshly synthesized sample, whether for the Au38(2-PET)24 or Au30(S-tBu)18 samples. 

Figure 5.1, shown below, illustrates the difference in spectra obtained for an approximately 

7-year-old sample of Au30(S-tBu)18 (right) versus a less than 3-year-old sample of Au30(S-

tBu)18 (left). The spectral features are noticeably more pronounced in the newer sample 

despite using the same methodology to collect data.  

 

 

 

 

 

 

 

Figure 5.1 Raman spectrum of Au30(S-tBu)18 under 20x magnification with 633 nm ULF 

excitation from 50-1300 cm-1. This shows the comparison of a fresh 3-year-old sample 

(left) and a degraded 7-year-old sample (right). 

 

When preparing the samples with dichloromethane, the entirety of the synthesized 

sample was placed in approximately 1-3 mL of dichloromethane to ensure the maximum 

concentration of the sample. High concentrations are useful because the sample will need 

to be located on the slide under the Raman microscope, and larger particles can be found 

with ease. After allowing the dichloromethane to evaporate from the sample slide, locate 
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the particle on the glass slide utilizing a low power objective (10x), then proceed to collect 

data using a higher power objective (20x).  

Since the topographical features of these compounds are not well defined, focusing 

on the sample will require trial and error. Once an area of the sample is selected, short 

collection times should be used, such as an acquisition time of 4 seconds with 5-10 

accumulations. This will provide a general overview of the spectral features of the samples, 

and the signal to noise ratio can be adjusted by adjusting the focus. This collection provides 

more spectral information on the sample than the real-time-display feature. After obtaining 

spectra, continue to adjust the focus to maximize the samples spectral response/intensity 

and proceed to collect data with higher acquisition times and accumulations.  

A 633 nm laser was used over a 532 nm laser because the 532 nm, even at lower 

laser powers, resulted in degradation of the samples due to its higher energy. Additionally, 

the 633 nm was used over a 785 nm laser since the 785 nm starts to go outside of the visible 

spectrum of light. Therefore, it becomes more difficult to focus the light source on the 

sample as when the image is focused; the laser will be slightly out of focus and vice versa; 

however, proper focusing can be achieved through additional trial and error.  

Due to localized heating susceptibility, data could not be collected at 100% power 

with the 633 nm laser. 1% laser power was too low to elicit any kind of discernable spectral 

features for either of the samples. For this reason, 5% power was utilized to capture the 

spectral features of both the Au38(2-PET)24 and Au30(S-tBu)18 samples. For the sake of 

reproducibility, 5% power of the 633 nm He/Ne laser with the ULF filter installed 

translated to powers of approximately 699-736 µW. For the Au38(2-PET)24 sample, 5% 

laser power began to cause thermal degradation above an acquisition time of 10 seconds 

with 20 accumulations and above an acquisition time of 4 seconds with 10 accumulations 
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for the Au30(S-tBu)18 sample. Therefore, the Au30(S-tBu)18 sample appeared slightly more 

susceptible to thermal degradation that the Au38(2-PET)24 sample.  

A 600 gr/mm grating was utilized for all data collected in this project. Higher 

spectral resolutions could be obtained by recording excitement with the 633 nm laser over 

a smaller wavenumber range. Additionally, an 1800 gr/mm grating could be utilized to 

achieve higher spectral resolutions; unfortunately, these tests could not be performed due 

to the COVID-19 national disaster.  
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