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ABSTRACT 

Bacterial Load in Virtual Reality Headsets 

(Under the direction of Colin Jackson, Ph.D) 

 

Virtual reality technology is a rapidly growing field of computer science.  Virtual reality 

utilizes headsets which cover the user’s eyes, nose, and forehead.  In this study, I analyzed 

the potential for these headsets to become contaminated with bacteria.  The nosepieces and 

foreheads of two HTC Vive VR headsets of the Department of Computer Science of the 

University of Mississippi were sampled over the course of a seven-week Immersive Media 

(CSCI 447) course.  Serial dilutions were performed, and samples were plated on various 

culture media.  Following incubation, counts of bacteria were determined.  DNA was 

extracted from bacterial growth on plates from weeks 4, 5, 6, and 7 and the 16S rRNA gene 

was sequenced to identify bacterial contaminates present on the headsets.  Chief among these 

contaminates was Staphylococcus aureus.  Presumed Staphylococcus aureus colonies from 

mannitol salt agar plates were tested for resistance to the antibiotics penicillin, erythromycin, 

gentamycin, and tetracycline.  The results of these tests indicated that the Staphylococcus 

aureus strains isolated from the headsets possessed high levels of antibiotic resistance.  Other 

notable bacterial isolates included Moraxella osloensis, the bacteria responsible for foul 

odors in laundry and Micrococcus luteus, a communalistic bacterial species capable of 

causing opportunistic infections.  Other bacterial isolates were detected in variable amounts 

throughout the trial.  Results indicate that headsets pose a significant health hazard to users, 

especially those who are immunocompromised.  Increased sterilization techniques are 

necessary to ensure the health and safety of users. 
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Introduction: 

 Objects undergoing constant human interaction are colonized by many different 

strains of bacteria (Reynolds et al. 2007, Al-Ghamdi et al. 2011, Messima et al. 2011, Zakai 

et al. 2016).  These bacteria can include potential pathogens or indicator bacteria such as 

fecal coliforms, which have been detected in 7% of objects sampled from locations such as 

shopping centers, daycares, offices, playground, and movie theatres (Reynolds et al. 2007). 

Items that are touched by humans are even more contaminated, for example 97% of elevator 

buttons in residential and commercial buildings were found to be contaminated with mixed 

bacterial growth (Al-Ghamdi et al. 2011).  Chief among the bacterial isolates obtained were 

coagulase negative staphylococci and Gram-positive bacilli, and pathogens included 

Staphylococcus aureus, Pseudomonas spp. and various Gram-negative bacteria (Al-Ghamdi 

et al. 2011).  Bacteria from objects can be transferred to people’s hands and detected in their 

home or on personal belongings hours later (Reynolds et al. 2007).  Improper sanitation of 

these objects can lead to the spread of bacterial diseases and other infections (Shukla et al. 

2019), and 80% of all infections are spread through contact with other peoples’ hands or 

everyday objects (Reynolds et al. 2007).  Thus, it is clear that objects undergoing human 

interaction can become hosts for bacteria and sites of potential contamination.   

 In recent years, technology has become ubiquitous in everyday life for people in 

developed countries, with items such as cell phones, tablets, and laptop computers being in 

near constant use.  Technological items host bacteria, for example over 90% of cell phones 
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have been reported as being contaminated by bacteria, including potentially pathogenic 

Staphylococcus (Zakai et al. 2016). More specifically, 17% of cell phones have even been 

found to harbor Staphylococcus aureus (Zakai et al. 2016).  Even non-mobile technology that 

is not exposed to many different public settings has been found to be rife with bacteria.  Of 

30 computers sampled in a study by Messina et al. (2011), 15 publicly shared and 15 non-

shared, bacteria could be cultured from every keyboard, with counts ranging as high as 430 

colony forming units (CFUs) per key of a keyboard.  All but one keyboard harbored 

staphylococci, including S. aureus, which was much more commonly found on shared 

keyboards than on non-shared keyboards (Messina et al. 2011).  Al-Ghamdi et al. (2011) 

found that all keyboards and computer mice in an internet café were contaminated with 

mixed bacterial growth and shared technology, such as the keyboards of university libraries, 

typically harbor a far greater number of bacteria as compared to private technology 

(Anderson and Palombo 2009).  The reason for high rates of contamination in keyboards is 

two-fold: first, they are one of the most commonly touched public surfaces, and second, there 

is a stigma against cleaning keyboards, stemming from a fear of damaging the electronics 

(Marsden 2009).  Thus, technology in general is often highly contaminated with bacteria.     

 One of the newest advancements in technology is virtual reality (VR).  It is projected 

that by 2021, 57.1 million people in the United States will use VR headsets at least once a 

month, representing an over 100% increase in usage since 2017 (Petrock 2019).  VR allows 

users to immerse themselves in a computerized universe through the use of a headset that 

covers the eyes and most of the nose.  Most VR headsets follow a standard design, with a 

cloth or foam strip that contacts the forehead and cheeks and a plastic nosepiece that sits on 

the nose.  The internal component of the headset consists of two computer screens that, when 
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in use, are about 5 cm from the wearer’s eyes. Given the proximity of VR headsets to the 

user’s skin and the near ubiquitous presence of bacteria on objects subject to human use, it is 

reasonable to expect that VR headsets could be hosts for bacteria, although no studies have 

examined that concern. The close proximity of VR headsets to the nose also suggests that 

they could harbor S. aureus, as the nasal cavity is one the main locations colonized by such 

bacteria with 14% of people reported as persistent carriers of S. aureus, and another 69% as 

intermittent or occasional carriers (Eriksen et al. 1995).   

In this study, I set out to assess whether VR headsets, like other forms of technology, 

harbor bacteria.  I sampled headsets in a shared VR computer lab at the University of 

Mississippi and assessed whether there were increases in the amount of bacteria present 

following increased student use. 
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Methods: 

 Two HTC Vive VR headsets of the Department of Computer Science of the 

University of Mississippi were sampled over the course of a seven-week Immersive Media 

(CSCI 447) course.  The headsets were sterilized at the start of the study with a 70% ethanol 

solution.  The users of the headsets were instructed to maintain their current usage and 

sanitation processes. Their procedures included cleaning the headsets with specialized wipes, 

but they admitted that this was rarely done.  VR headset usage for each week was estimated 

based on the workload of the students and the observations of the Computer Science graduate 

students 

Once a week for seven weeks, 10 cm2 of the forehead and the nosepiece were 

sampled by swiping with a sterile cotton swab.  These swabs were placed in a 0.9% sterile 

saline solution and returned to the laboratory approximately 30 minutes after collection.  

There, samples were vortexed and hundred-fold serial dilutions performed to 10-6.  100 µL of 

each dilution was plated onto each of Tryptic-Soy Agar (TSA), Mannitol Salt Agar (MSA), 

and Eosin Methylene Blue Agar (EMB).  Plates were incubated at 36 °C for 48 hours, after 

which the number of colonies on each plate was counted.  After three weeks showing no 

growth of colonies on plates beyond the first dilution, the dilution procedure was adjusted 

and limited to 10-2.  Counts were expressed as number of colony forming units (CFU) per 

cm2.  
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 Colonies on MSA plates that resulted in a change of agar color from red to yellow 

were presumed to be Staphylococcus aureus.  Such colonies from weeks 4, 6, and 7 were 

transferred to fresh MSA plates and isolated. Those that continued to result in a color change 

on MSA were then assessed for antibiotic resistance using the disc diffusion approach. 

Colonies were re-plated to Mueller-Hinton Agar (MHA) and tested for resistance to 

tetracycline, penicillin, gentamycin, and erythromycin using BBL Sensi-Disc Antimicrobial 

Susceptibility Test Discs.  After incubation for 48 h at 36 °C , the diameter of growth 

inhibition around each disc was measured and compared to the known values for resistance.  

For erythromycin, a zone of 13 mm or less indicated resistance.  For gentamycin, the zone 

was 6 mm or less.  For penicillin the zone was 28 mm or less, and for tetracycline the zone 

was 14mm or less.   

 To get an overall assessment of the types of bacteria present, bacterial growth on the 

most general medium used (TSA) was processed for 16S rRNA gene sequencing. Colonies 

on TSA plates from weeks 4, 5, 6, and 7 were washed with 750 µL of sterile saline and 

transferred into 2 mL sterile tubes.  Tubes were centrifuged for 10 minutes at 8000xg to 

pellet the cells, and DNA extracted from each pellet using a MoBio Ultra Clean Microbial 

DNA Isolation Kit, following the manufacturer’s instructions. Agarose gel electrophoresis 

was used to confirm the presence of DNA. Bacterial DNA was amplified targeting the V4 

region of the 16S rRNA gene using dual-indexed barcoding and the primers and procedures 

of Kozich et al [2013]. Amplified fragments were sequenced through the Molecular and 

Genomics Core Facility at the University of Mississippi Medical Center.  Sequence data was 

processed in the bioinformatics software mothur and major bacterial phyla identified by 

comparisons to the Ribosomal Database Project (RDP) database.  For each sample, the 
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number of sequences in a phylum was divided by the total number of sequences and 

presented as a percentage.  For percentages of the total, each phylum’s sequences were added 

together across all the samples, and the result was divided by the total number of sequences 

in all the samples.  Sequences were grouped into operational taxonomic units (OTUs) based 

on 97% sequence similarity and representative DNA sequences of dominant OTUs used to 

identify that OTU by BLAST searches against the NCBI nucleotide database.  For each 

sample, the number of sequences recorded for an OTU was divided by the total number of 

sequences in that sample, and the result was presented as a percentage.  For the total 

percentages, the sum of a particular OTU’s sequences across all samples was divided by the 

total number of sequences for all OTUs.  OTU data was also presented as percentages of total 

samples from the nose and from the forehead to determine differences in sample composition 

vs. location.   
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Results: 

  Bacterial load increased over the course of the study, coinciding with 

increased usage of the VR headsets.  Weeks with increased levels of use showed increased 

counts of CFUs per cm2.  Weeks 5, 6, and 7 each had approximately 20 hours of student 

headset use, and displayed the highest number of CFUs/cm2 on both TSA and MSA plates 

(Figures 1, 2).  Total bacterial load on TSA plates (Figure 1) peaked at 860 CFUs/cm2 on 

Headset 1 in week 5, following 20 hours of use that week.  Bacterial counts on Headset 2 

peaked at 1190 CFUs/cm2 in week 6, also following 20 hours of use.  Headset 1 accumulated 

CFUs/cm2 more quickly than headset 2, showing much higher levels in weeks 1-5; however, 

CFUs/cm2 in Headset 1 decreased after week 5, although the headset was still used for 20 

hours in weeks 6 and 7.  Headset 2 collected CFUs/cm2 more slowly than Headset 1 did, but 

its count held steady after the peak in week 6, remaining high in week 7.  The peak for 

Headset 2 was much higher than that of Headset 1 (1190 vs 860 CFUs/cm2). There was no 

difference between samples taken from the nose or forehead part of the headset, in terms of 

CFU counts on TSA or MSA. Trends in growth on MSA plates (Figure 2) followed those 

seen on TSA plates, but counts were generally lower.  There was no growth on EMB plates 

for all sample dates.   
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A. 

 

B. 

 

Figure 1. Bacterial counts (CFU/cm2) on nose and forehead sections of Virtual Reality 

headsets as determined from growth on TSA plates over seven weeks of increased usage. 

Weeks are in chronological order with numbers indicating estimated hours of use for that 

week. Panels represent counts on VR Headset 1 (A) and 2 (B). 
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A. 

 

B. 

 

Figure 2. Bacterial counts (CFU/cm2) on nose and forehead sections of Virtual Reality 

headsets as determined from growth on MSA plates over seven weeks of increased usage. 

Weeks are in chronological order with numbers indicating estimated hours of use for that 

week. Panels represent counts on VR Headset 1 (A) and 2 (B). 
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 37 colonies of presumptive Staphylococcus aureus were transferred from MSA plates 

and assessed for antibiotic resistance (Figure 3). Many of these colonies showed high levels 

of resistance to erythromycin (27 or 81.8% of colonies resistant), penicillin (22 or 66.7% of 

colonies resistant), and tetracycline (24 or 72.7% of colonies resistant).  Only two colonies 

(6.1% of those tested) showed resistance to gentamycin (Figure 3).  These two colonies 

(colonies 36 and 37) were also resistant to the other three antibiotics. Only two colonies 

(colonies 11 and 24) were susceptible to all four antibiotics.   

 16S rRNA gene sequencing revealed that the most common phylum of bacteria that 

was cultured on TSA plates was the Firmicutes, representing 85% of the total sequences 

obtained.  Proteobacteria was the next most common phylum at 9 % of the total, followed by 

Actinobacteria (6% of the total). Sequences identified as 11 other bacterial phyla were also 

detected, although these represented very small percentages of the total (Table 1).  Though 

Firmicutes was the most common phylum in all samples, it ranged from as low as 61% in the 

sample from Headset 1, week 4, nose (1, 4, N).  This sample saw a large rise in 

Proteobacteria, which made up 39% of this sample.  Proteobacteria was found in higher 

levels on samples from the nosepieces, peaking at the aforementioned sample.  The highest 

incidence of Firmicutes occurred in the sample from 2, 7, N (99.96%).  Actinobacteria was 

much more common in samples taken from the foreheads of the headsets than in those from 

the nosepieces, spiking at 28% in sample 2, 4, F.    
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Figure 3: Antibiotic resistance as determined by disk diffusion on MHA plates with BBL 

Sensi-Disc Antimicrobial Susceptibility Test Discs of erythromycin, penicillin, gentamycin, 

and tetracycline.  Colonies were presumed Staphylococcus aureus from MSA plates from 

weeks 4, 6, and 7.  Filled squares indicate resistance.  
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Phylum Total % 1, 4, F 1, 4, N 1, 5, F 1, 5, N 1, 6, F 1, 7, F 1, 7, N 

Firmicutes 85.464 73.055 60.754 86.209 93.380 70.180 85.382 79.915 
Proteobacteria 8.678 7.690 38.892 0.078 5.848 20.257 0.025 19.760 
Actinobacteria 5.740 19.083 0.224 13.624 0.703 9.433 14.476 0.215 

Bacteria_unclassified 0.071 0.127 0.094 0.050 0.035 0.058 0.092 0.103 
Acidobacteria 0.015 0.024 0.012 0.017 0.000 0.019 0.005 0.003 

Verrucomicrobia 0.009 0.000 0.000 0.011 0.009 0.014 0.015 0.000 
Bacteroidetes 0.006 0.005 0.008 0.000 0.009 0.000 0.005 0.000 

Planctomycetes 0.006 0.005 0.004 0.006 0.009 0.000 0.000 0.003 
Armatimonadetes 0.003 0.005 0.008 0.006 0.000 0.000 0.000 0.000 

Deinococcus-
Thermus 

0.003 0.000 0.000 0.000 0.000 0.038 0.000 0.000 

Chloroflexi 0.003 0.005 0.004 0.000 0.009 0.000 0.000 0.000 
Ignavibacteriae 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Gemmatimonadetes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Nitrospirae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Spirochaetes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

        

Phylum 2, 4, F 2, 4, N 2, 5, F 2, 5, N 2, 6, F 2, 6, N 2, 7, F 2, 7, N 

Firmicutes 71.832 99.794 90.128 99.763 99.204 99.948 99.535 99.963 
Proteobacteria 0.158 0.117 0.120 0.124 0.049 0.031 0.199 0.019 
Actinobacteria 27.557 0.039 9.556 0.012 0.670 0.016 0.000 0.006 

Bacteria_unclassified 0.284 0.022 0.077 0.036 0.014 0.000 0.114 0.000 
Acidobacteria 0.063 0.011 0.077 0.006 0.007 0.000 0.047 0.000 

Verrucomicrobia 0.053 0.000 0.026 0.006 0.014 0.000 0.038 0.006 
Bacteroidetes 0.021 0.011 0.000 0.041 0.000 0.000 0.000 0.000 

Planctomycetes 0.011 0.000 0.009 0.012 0.021 0.005 0.009 0.006 
Armatimonadetes 0.011 0.006 0.000 0.000 0.014 0.000 0.000 0.000 

Deinococcus-
Thermus 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Chloroflexi 0.000 0.000 0.000 0.000 0.007 0.000 0.028 0.000 
Ignavibacteriae 0.011 0.000 0.000 0.000 0.000 0.000 0.009 0.000 

Gemmatimonadetes 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 
Nitrospirae 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 

Spirochaetes 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 
Table 1:  Bacterial phyla detected in mixed cultures of bacteria samples from Virtual Reality 

(VR) headsets and plated on to TSA. Column labels are in the format of Headset number (1, 

2), Week number (4, 5, 6, 7), and Forehead or Nose portion of the headset sampled (e.g. 1, 4, 

F is Headset 1, Week 4, Forehead).  Numbers indicates the percent of total 16S rRNA gene 

sequences recovered from cultures that grouped with that bacterial phylum. 
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Analysis of the 16S rRNA sequences of ten most abundant OTUs using NCBI Blast 

revealed that the most common representative sequence was Staphylococcus aureus 

(Firmicutes; accounting for 87% of the sequences of the ten most common OTU’s; Table 2).  

Other abundant OTUs were identified as Moraxella osloensis (Proteobacteria) and 

Micrococcus luteus (Actinobacteria), the second (7% of sequences) and third (3% of 

sequences) most abundant sequences respectively.  Rothia kristinae (Actinobacteria) was 

found in high abundance (26% of sequences in the sample) on the week 4, forehead sample 

from Headset 2, accounting for the increased percentage of Actinobacteria in that sample’s 

bacterial taxonomy.  This was the only sample in which this bacterium was found in any 

large amount.  Spikes of Kocuria rosea (Actinobacteria) were seen in headset 1, week 6, 

forehead (8%) and headset 1, week 7, forehead (6%).  Other bacteria were found in small 

amounts (Figure 5).  Nose samples had higher percentages of Moraxella osloensis 

(Proteobacteria, 12% of total sequences in nosepiece samples vs 1% of total sequences in 

forehead samples).  Forehead samples showed higher levels of Micrococcus luteus 

(Actinobacteria, 7% of total sequences in forehead samples vs. 0.06% of total sequences in 

nose samples).     
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Discussion: 

 In this study I examined the bacterial load of VR headsets in a Computer Science 

laboratory at the University of Mississippi.  One goal was to see if the load of bacteria on 

headset would increase with more student usage.  In addition, I set out to identify what 

species of bacteria were present on these headset, in order to determine whether they could 

pose a health hazard for users.  Finally, I performed antibiotic resistance tests on any 

presumed Staphylococcus aureus colonies to demonstrate the potential health risks should a 

user become infected. 

 As expected, CFUs per cm2 increased over the course of the study, which coincided 

with increased weekly usage of the VR headsets.  During the first four weeks, usage of the 

two headsets was minimal.  As a result, the headsets displayed relatively low CFUs/cm2.  

Usage for both headsets increased to 20 hours in week 5, and the mixed bacterial growth on 

TSA plates subsequently increased. The higher levels of counts (100’s of OTUs per cm2) on 

VR headsets that were observed in these weeks, were at or above counts reported for 

individual keys of computer keyboards (Messina et al. 2011).  However, there was no growth 

on EMB plates for all samples, which suggests an absence of fecal coliforms on the headsets.   

 MSA plates showed similar growth patterns to those of TSA plates.  MSA plates are 

selective for bacteria which can survive at high salt concentrations, such as staphylococci and 

other skin-associated bacteria.  The similarity of the growth patterns of samples on MSA and 

TSA plates (CFUs/cm2) suggests that the majority of bacteria present in the mixed bacterial 
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growth on TSA plates were also able to survive on MSA plates.  This suggestion is 

corroborated by 16S rRNA gene sequencing, which revealed that the most common phylum 

present in the TSA mixed bacterial growth from weeks 4, 5, 6, and 7 was Firmicutes.  Further 

analysis of these sequences revealed that the most common OTU in all of these samples was 

Staphylococcus aureus, a member of the Firmicutes phylum, which comprised up to 99% of 

the sequences obtained from several samples.   Staphylococcus aureus is a leading cause of 

soft tissue infection in humans (Naimi et al. 2003).  Community acquired Staphylococcus 

aureus infections normally present as erythematous, pyogenic skin in a normally healthy 

individual (Boucher and Corey 2008).  However, Staphylococcus aureus is also a major 

pathogen associated with conjunctivitis and keratitis.  These infections can be quite serious 

and can lead to a loss of visual acuity or even blindness (O’Callaghan 2018).   

 In recent years, community acquired Staphylococcus aureus has become increasingly 

resistant to antibiotics, especially beta-lactams (Fowler et al. 2005).  The results of antibiotic 

resistance tests performed in this study using disk diffusion with erythromycin, penicillin, 

gentamycin, and tetracycline, support this claim.  Strains of Staphylococcus aureus isolated 

from the two VR headsets showed high levels of resistance to erythromycin, penicillin, and 

tetracycline.  Only gentamycin was effective at stopping bacterial growth.  Both the high 

incidence and the antibiotic resistance of Staphylococcus aureus isolated from the VR 

headsets in this study make these headsets a potential source of dangerous community 

acquired Staphylococcus aureus infections. 

 In addition, 16S rRNA sequencing detected Moraxella osloensis (Proteobacteria) in 

all samples, with a highest occurrence in the sample from headset 1, week 4, nose.  Two 

other strains of Moraxella osloensis were also identified in the top ten dominant OTU’s 
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(OTUs 7, 10).  Moraxella osloensis was more commonly found on the nosepieces of the 

headsets than the foreheads (12% of total sequences in nosepiece samples vs 1% of total 

sequences in forehead samples).  This Gram negative bacterium has been known to cause 

opportunistic infections but is most commonly known for causing malodorous smells in 

laundry (Kubota et al. 2012).  The major component of this sweaty, dirty odor has been 

determined to be 4-methyl-3-hexenoic acid.    Though the mechanism is unclear, Moraxella 

osloensis produces 4-methyl-3-hexenoic acid at high levels when in the presence of soil, 

sebum, or sweat.  Thus, the prolonged presence of this bacteria on VR headsets could lead to 

the production of 4-methyl-3-hexenoic acid and result in foul-smelling odors.  While a 

minimal health concern, the presence of this bacteria could lead to an unpleasant experience 

for future users.   

 16S rRNA sequencing also detected Micrococcus luteus.  This bacterium was more 

commonly found on the foreheads of the headsets than the nosepieces.  Micrococcus luteus is 

a Gram positive bacteria commonly found in a commensal relationship with humans and are 

known to colonize the skin and mucosa.  Usually harmless, this bacterium occasionally 

causes opportunistic infections such as pneumonia, meningitis, or septic arthritis in 

immunocompromised individuals (Hetem et al. 2017).  Although this bacterial species poses 

a minor risk, it is still potentially dangerous should such an individual use a VR headset.    

 While Staphylococcus aureus remained the dominant OTU in each sample, other 

bacterial contaminants showed a fair amount of variability.  Notable are the spikes of bacteria 

such as Kocuria rosea and Rothia kristinae which appeared in some samples.  These spikes 

could be attributed to the fact that the users between the weeks were not always consistent. 

Students worked in teams in the lab, taking turns using the headsets and programming. 
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However, groups used the same headset each week, as the headsets were attached to 

computers to which their data was saved.  Spikes of specific bacterial contaminants could be 

attributed to a specific student whose skin was colonized by the bacteria.  For example, 

spikes of Kocuria rosea seen in the study could be attributed to one student whose forehead 

was colonized by this species. Kocuria rosea is a Gram positive, non-pathogenic commensal 

found on the skin and mucosal surfaces of many humans (Lee et al. 2013).  However, 

Kocuria rosea has been known to cause infection in immunocompromised patients, such as 

those undergoing cancer treatment (Altuntas et al. 2004).  It is important to note that the 

spikes of this bacteria appeared one week apart on the same location on headset 1.  This lends 

credence to the idea that the contamination could be due to a single student.   

 Another irregularity in the overall makeup of bacterial contaminants was the large 

increase of Rothia kristinae detected in the forehead sample from headset 2 in week 4.  This 

was an abnormally large spike, comprising 26% of the total bacterial sequences from that 

sample.  Rothia kristinae, like Kocuria rosea, is part of the normal human flora of the human 

oropharynx and upper respiratory tract.  Rothia species are gram positive bacteria commonly 

associated with dental caries and other dental diseases (Trivedi and Malhotra 2015).  Rothia 

kristinae has also been found to cause serious infections, primarily in immunocompromised 

patients but also occasionally in healthy individuals.  Risk factors for Rothia infection 

include hematological malignancies and neutropenia, as well as alcoholism, diabetes 

mellitus, and chronic hepatitis (Ramanan 2014).  As this bacterial contaminant was seen so 

rarely in the other samples, it is likely that the large spike seen in this sample was also due to 

a single student.   
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 The compositions of samples differed between the nosepieces and foreheads of the 

headsets.  Nosepiece samples showed slightly elevated levels of Staphylococcus aureus and 

much higher levels of all three strains of Moraxella osloensis. Forehead samples showed 

greater levels of Micrococcus luteus, Kocuria rosea, and Rothia kristinae.  These differences 

could be contributed to the difference in material between the two locations.  The nosepiece 

of the headsets was made of a hard, non-porous plastic, while the forehead was a porous 

foam face cushion.  Staphylococcus aureus and Moraxella osloensis are highly suited to 

surviving on most surfaces.  Staphylococcus aureus can survive up to 7 months on dry 

surfaces (Kramer et al. 2006).  Moraxella osloensis has a high tolerance to desiccation and 

UV exposure, allowing it to survive in environments unsuitable for other bacteria (Hetem et 

al. 2017).  In general, Gram negative bacteria such as Moraxella osleonsis, survive longer on 

dry surfaces (i.e. the nosepiece of a VR headset) than Gram positive bacteria such as Rothia 

kristinae or Kocuria rosea (Kramer et al. 2006).  This may explain why these Gram positive 

bacteria, excluding Staphylococcus aureus which has developed survival mechanisms, were 

found in low quantities on the nosepiece of the headsets.  However, as the forehead of the 

headset is lined with a porous foam, it may remain damp with sweat after prolonged use.  

This would allow for the survival of Gram positive bacteria for an extended period of time.  

High levels of Staphylococcus aureus were seen both in the nosepiece samples and in the 

forehead samples, indicating that it is capable of surviving well in both environments. 

 In conclusion, VR headsets subjected to extended use are colonized by high levels of 

bacterial contaminants, equivalent or exceeding those on computer keyboards.  The levels of 

these contaminants increase as usage increases.  Chief among the isolates in this study was 

Staphylococcus aureus, which can cause serious infections, even in previously healthy 
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individuals.  While the other bacteria isolated are known to be a part of the normal flora of 

most humans, they can still cause opportunistic infections in immunocompromised users or 

users with other risk factors.  Without proper sterilization techniques, VR headsets pose a 

potential health hazard for their users.  However, following sterilization with 70% ethanol in 

week 1, no bacteria were detected on the headsets.  Thus, sterilization with ethanol is an 

effective way of reducing the contamination and infection risk of VR headsets and should be 

recommended as a standard procedure.   
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