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ABSTRACT 

This study examined the acute and chronic effects of resistance exercise with and without blood 

flow restriction (BFR) on skeletal muscle.  Methods: The acute study examined changes in 

torque, muscle thickness (MTH), and surface electromyography (EMG) in response to resistance 

exercise with high load [70% 1RM,(7000)], low load [15% 1RM,(1500)], low load with 

moderate (BRF) [15% 1RM+40%BFR(1540)], or low load with greater BFR [15% 

1RM+80%BFR(1580)]. The chronic study investigated changes in MTH, strength, and 

endurance following 8-weeks. Acute results: Following exercise, the 7000 condition had lower 

(p<0.05) MTH [4.2(1.0) cm] compared to the 1500 [4.4 (1.1)cm], 1540 [4.4(1.1)cm], and 1580 

[4.5(1.0cm] conditions. This continued 15 minutes post. Immediately following exercise torque 

was (p<0.05) lower in the 1500 [31.8 (20) Nm], 1540 [28.3(16.9) Nm] and 1580 [29.5 (17) Nm] 

conditions compared to the 7000 condition [40 (19) Nm]. 15 minutes post, 1500 and 1540 

conditions demonstrated lower torque compared to the 7000 condition. For the first three 

repetitions of EMG the 7000 condition displayed greater amplitude compared to all low load 

conditions (p<0.001). For the last three repetitions percentage EMG was greater in the 7000 

compared to the 1580 condition. Chronic results: 1RM strength changes were greater in the 

7000 condition [2.09 (95% CI=1.35-2.83) kg] compared to all low load conditions. For isometric 

and isokinetic strength there were no changes. For endurance there was a main effect for time 

[mean pre to post change = 7.9 (4.3–11.6) repetitions]. At the 50% site, the mean change in MTH 

in the 7000 condition [0.16 (0.10-0.22) cm] was greater than all low load conditions. For the 

60% site, the mean change in MTH [0.15 (0.08-0.22)] was greater than all low load conditions. 
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For the 70% site there was a main effect for time [mean pre to post change = 0.09 (0.5–0.14 cm]. 

Conclusions: Very load loads produce a similar acute response regardless of pressure. This 

response was greater than that observed in the 7000 group. Very low loads produce skeletal 

muscle growth. However, this response is not as robust as that observed following high load 

training. 
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CHAPTER 1: INTRODUCTION 

  
Skeletal muscle is a highly malleable tissue, subject to growth and adaptation in response to 

contractile activity (Coffey & Hawley, 2007; Ozaki, Loenneke, Buckner, & Abe, 2016). 

Specifically, the performance of resistance exercise often results in skeletal muscle hypertrophy; 

a complex process involving the conversion of mechanical signals to molecular cascades. These 

molecular cascades result in the activation or repression of pathways that stimulate gene 

expression (Drummond et al., 2008) and a protein synthetic response (Phillips, Tipton, Aarsland, 

Wolf, & Wolfe, 1997). Typically, resistance exercise results in a rate of protein synthesis that is 

greater than the rate of degradation, resulting in the production of contractile proteins which are 

added to existing myofibers (i.e., hypertrophy). The exploitation of these pathways through 

various resistance training protocols will most often result in skeletal muscle growth. Although 

the stimuli for these molecular pathways are not fully understood, it is believed that both 

mechanical and metabolic mechanisms play a role in the stimulation of compensatory skeletal 

muscle growth (Ozaki et al., 2016). 

 

The past several years have greatly increased our understanding of skeletal muscle adaptations. 

For example, low load resistance training and low load resistance training in combination with 

blood flow restriction (BFR) have been shown to result in similar muscle hypertrophic changes 

when compared to traditional high load resistance training (Mitchell et al., 2012; Ogasawara, 

Loenneke, Thiebaud, & Abe, 2013). Recently, our laboratory has shown that maximally flexing 
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the elbow flexors throughout a range of motion (no external load) will result in similar skeletal 

muscle growth as traditional high load resistance training (Counts et al., 2016). Thus, contrary to 

textbook recommendations (Baechle & Earle, 2008), a variety of training loads (NO LOAD, low 

load, high load, low load + BFR) can be used to elicit a similar hypertrophic response in skeletal 

muscle. A recent review by Ozaki and colleagues (2016) discusses the potential of both 

metabolic and mechanical influence on skeletal muscle growth. For example, more traditional 

resistance exercise (i.e., 3-4 sets at or near 70% of one repetition maximum) is believed to rely 

primarily on mechanical mechanisms; whereas low load resistance exercise (i.e., 30% 1RM to 

failure) is believed to rely on both mechanical and metabolic mechanisms. Presumably, despite 

varying contribution from metabolic and mechanical stimuli, these protocols work through 

messengers to transduce this mechanical signal, resulting in the anabolic response. This response 

is thought to be multifaceted, involving: mechanical stretch; calcium flux, and changes in redox, 

as well as phosphorylation state within the muscle (Coffey & Hawley, 2007). However, despite 

our accumulating knowledge of skeletal muscle adaptation, many knowledge gaps still exist. On 

the forefront of this knowledge gap is blood blow restriction in combination with low load 

resistance training. Specifically, low load resistance training in combination with BFR has been 

shown to lead to similar adaptations as traditional high load resistance training (Laurentino et al., 

2012; Martin-Hernandez, Marin, Menendez, Ferrero, et al., 2013; Takarada, Sato, & Ishii, 2002; 

Takarada, Takazawa, & Ishii, 2000), promotes a muscle hypertrophic response when combined 

with low intensity aerobic exercise (Abe, Kearns, & Sato, 2006), and has been shown to 

attenuate atrophy during prolonged skeletal muscle disuse (Takarada, Takazawa, & Ishii, 2000). 

Nonetheless, recent evidence has suggested that the addition of BFR to low load resistance 

exercise may provide little additional benefit, when exercise is performed to failure. 
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Counts et al. (2016) found that the application of 40% or 90% of arterial occlusion pressure in 

combination with low load resistance exercise at 30% of 1RM resulted in similar increases in 

muscle size and strength following 8 weeks of training in the elbow flexors. This suggested that 

increasing the restrictive pressure did not add to the anabolic response of BFR exercise. 

However, this study lacked a control group to compare low load exercise without BFR. Kim et 

al. (2017) showed that low load resistance exercise (30% of 1RM) with the addition of 50% of 

arterial occlusion pressure resulted in similar muscle growth as traditional high load resistance 

exercise (70% 1RM).  More recently, it has been demonstrated that the acute skeletal muscle 

response to low load exercise at 30% of 1RM is not augmented by the application of BFR 

(Jessee et al., 2017).  Specifically, acute muscle swelling, acute torque decrements, and 

electromyography activity did not change across different arterial occlusion pressures (AOP) of 

0%, 10%, 20%, 30%, 50%, or 90% in a small group of trained individuals with fairly high levels 

of baseline strength. This lack of change in the acute response with the application of increasing 

pressures led us to question the efficacy of BFR as a tool for increasing skeletal muscle 

adaptation when exercise is performed to volitional failure. Specifically, does the addition of 

occlusion pressure provide any stimulus beyond that achieved through performing low load 

exercise to failure? And secondly, does the application of pressure become more important with 

very low training loads? In attempt to answer this question, we examined the acute response to 

very low load resistance exercise protocols (10, 15 or 20% of 1RM) with or without the 

application of BFR (Dankel et al., 2017). This may be an important application of BFR, as very 

low load resistance exercise may not produce a great level of fatigue on its own. Thus, 

metabolically induced motor unit recruitment or cell swelling mechanisms produced by BFR 
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may increase the robustness of this stimulus. The results of this study showed that, with very low 

loads (<20% 1RM), the application of BFR appeared to increase levels of fatigue as measured 

through acute torque decrements. These data suggest that BFR may have important applications, 

particularly when very low loads are utilized. This is supported by the results of Lixandrão et al. 

(2015) who found that that increasing the relative occlusion pressure from 40% to 80% 

augmented muscle growth when used with a 20% 1RM load, but had no greater effect when a 

40% load was used Thus, restrictive pressures may be more important at lower intensities (i.e., ≥ 

20% 1RM) that produce little fatigue on their own. 

 

The mechanisms through which BFR works are not completely understood; however, it is 

believed that muscle cell swelling, and metabolically induced changes in motor unit recruitment 

are two of the primary contributors (Loenneke, Fahs, Rossow, Abe, & Bemben, 2012; Loenneke, 

Fahs, Wilson, & Bemben, 2011; Pearson & Hussain, 2015). Of course, the downstream pathways 

(e.g., mTORC1) involved in protein synthesis (Gundermann et al., 2014), as well as changes in 

gene expression involved in muscle function and plasticity (Ellefsen et al., 2015) are likely the 

same. However, the addition of the restrictive cuff leads to venous pooling within the limb and 

may influence how the anabolic pathways are stimulated. Recently, the notion that the 

accumulation of metabolites can stimulate anabolic signaling has been challenged. Specifically, 

Dankel et al. (2016) showed that 6 weeks of high load resistance exercise, followed by 3 minutes 

of post-exercise BFR appeared to attenuate skeletal muscle growth in the biceps. Notably, 

relative to a control performing only high load exercise, females appeared to have an attenuation 

of growth, and males saw no additional benefit when trapping metabolites in the muscle 

following high load resistance exercise. Although this does not definitively prove that 
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metabolites are not important, it provides evidence that they do not directly stimulate anabolic-

signaling cascades. This leaves cell swelling and metabolically induced muscle activation as 

potential mechanisms through which BFR may exert its effects. The cell swelling hypothesis, 

proposed by Haussinger (1993), suggests that cellular hydration may act as an anabolic 

proliferative signal, resulting in a shift towards anabolism. However, much of the understanding 

of cell swelling is derived from research in hepatocyte cells, which demonstrated that blocking 

insulin-induced hepatocyte cell swelling resulted in a lack of anabolic response (Haussinger et 

al., 1993; Loenneke et al., 2012). The cell swelling mechanism helps to explain why BFR may 

attenuate skeletal muscle loss during periods of disuse and may ultimately play a role during all 

resistance type activities. However, much of this recommendation is still speculation, as this has 

not been definitively shown in human skeletal muscle.  Nonetheless, if this mechanism is 

important, it may be of increasing importance with lower loads, where mechanical mechanisms 

are less prominent. Regarding metabolic induced motor unit recruitment, the application of BFR 

appears to produce high levels of muscle activation as measured through integrated 

electromyography (Moore et al., 2004; Takarada et al., 2000). However, high levels of activation 

can similarly be achieved with low load resistance exercise without the application of BFR 

(Wernbom, Järrebring, Andreasson, & Augustsson, 2009). Of course, it appears that BFR may 

decrease the number of repetitions necessary to reach failure (Farup et al., 2015); which, 

interestingly, may be the only unique contribution of BFR on skeletal muscle adaptation 

combined with low load resistance exercise. 

 

Low load exercise performed to volitional failure appears to elicit a similar skeletal muscle 

response as low load exercise with the addition of BFR. Thus, it is not presently clear if there is a 
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point at which BFR is absolutely necessary to elicit an anabolic skeletal muscle response. 

Meaning, is there a point where the exercise load is too low to elicit an anabolic response without 

the application of BFR? Our recent acute work seems to suggest that there may be a point where 

the training load becomes too low to elicit a robust response, making it difficult to reach failure 

within a reasonable amount of time. This may occur when the load is too low or when an 

individual has a low level of baseline strength (relative exercise load becomes very low)(Dankel 

et al., 2017). Based on the current evidence, it appears that metabolically induced motor unit 

activation and cell swelling may be the sole mechanisms through which BFR exerts its effects. If 

this is true, BFR may be able to augment the response to very low load resistance training 

programs, which on their own may not present an anabolic stimulus.  

 

Purpose 

The purpose of this study was to compare the acute skeletal muscle response (i.e., acute muscle 

swelling, acute torque decrements and muscle activity) following a variety of resistance training 

protocols (i.e. different combinations of arterial occlusion pressure and load) in the upper body. 

In addition, long-term adaptations of skeletal muscle size, strength and endurance were examined 

following 8 weeks of these various resistance-training protocols.  

 

Research Question (Acute) 

Will the acute skeletal muscle response differ between traditional high load resistance exercise 

and very low load resistance exercise with and without the application of different blood flow 

restriction pressures? 

Hypothesis 
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1. It was hypothesized that, acute changes in torque and muscle thickness would be similar 

across all resistance exercise protocols (15% 1RM; 15% 1RM + 40% AOP; 15% 1RM + 

80% AOP; 70% 1RM). 

2. It was hypothesized that electromyography amplitude, as measured through EMG would 

be higher in the high load resistance condition (70% 1RM) compared to all other 

conditions. 

3. Research Question (Chronic) 

Will the chronic skeletal muscle adaptations differ between traditional high load resistance 

exercise and very low load resistance exercise with and without the application of different 

blood flow restriction pressures? 

Hypothesis (Chronic) 

4. It was hypothesized that similar skeletal muscle growth would be observed amongst all 

resistance exercise conditions across the 8 week period. 

5. It was hypothesized that isometric and isotonic strength adaptations would be greatest in 

the traditional high load training condition (70% 1RM), with strength adaptations being 

similar between all low load conditions (regardless of AOP). 

6. It was hypothesized that muscular endurance would change similarly across exercise 

protocols.  

 

Significance 

Resistance exercise in combination with BFR allows less dependence on the external load lifted, 

providing a safe alternative through which low-load resistance training may be used as a means 

to elicit marked increases in muscle size and strength. As such, BFR appears to provide a useful 
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alternative for clinical populations, which may include: individuals recovering from injury (Ohta 

et al., 2003), individuals coming off bed rest (Cook, Brown, Deruisseau, Kanaley, & Ploutz-

Snyder, 2010) or those limited by other musculoskeletal disorders, in whom the ability to 

perform traditional resistance exercise may be limited (Ohta et al., 2003). In addition to this, 

BFR has also shown to promote beneficial adaptations in healthy populations. Specifically, BFR 

has shown to improve strength in college athletes when added to their existing resistance-training 

program (Luebbers, Fry, Kriley, & Butler, 2014; Yamanaka, Farley, & Caputo, 2012) and 

stimulates muscle growth and strength in healthy, non-resistance trained individuals (Martin-

Hernandez, Marin, Menendez, Ferrero, et al., 2013; Martin-Hernandez, Marin, Menendez, 

Loenneke, et al., 2013). However, the BFR literature has reached a contingency, as it has become 

unclear if the application of BFR actually augments the response to low load resistance exercise 

when performed to failure. Specifically, the recent work of our laboratory has shown that the 

application of pressure does not augment the acute response to resistance exercise performed at 

30% of 1RM, but does appears to impact the acute responses at very low loads (<20% 1RM). 

Thus, it is currently unknown if there are any situations where the application of BFR would be 

absolutely necessary to elicit an anabolic response. This study will help to determine the efficacy 

of the addition of BFR to very low load resistance exercise.        

 

Assumptions 

1. Participants are honest during screening procedures, making them eligible for 

participation in this study. 

2. Participants will follow pre-testing instructions (e.g., no exercise 24 hours prior to visit, 

no caffeine 8 hours prior, not food 2 hours prior, etc.…). 
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3. Participants will give a maximal effort during all muscular strength testing and training 

sessions.  

4. Participants will maintain their current level of outside physical activity and current level 

of diet for the duration of the study.  

Delimitations 

1. The findings of our acute study may only be applicable to resistance trained men and 

women between the ages of 18-35. 

2. The findings of our chronic study are only applicable to non-resistance trained men and 

women between the ages of 18-35. 

3. Participants will be recruited through convenience-based sampling and will not represent 

a true random sample. 

Limitations 

1. The design allows the possibility of some cross-over occurrence on strength measures. 

However, since all limbs will be training, we believe this influence will be minimized. 

2. We are inferring muscle cell swelling and chronic changes in muscle size from 

ultrasound muscle thickness measures. However, we are not able to actually measure if 

this fluid shift is occurring into the muscle cells or just into the interstitial space. 

3. We are inferring muscle activation from EMG amplitude, as opposed to more 

sophisticated techniques (such as decomposition). Thus, we can get an idea of muscle 

activation; however, we cannot determine actual motor unit activation. 

Operational Definitions 
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1. Blood flow restriction (BFR) resistance exercise – Resistance exercise performed with 

the application of a pneumatic cuff to the most proximal portion of the limb, with the 

intention of limiting arterial blood flow and blocking venous return. 

2. One repetition maximum (1RM) – The most weight an individual can lift once 

throughout a complete range of motion on a given exercise. 

3. Maximal voluntary contraction (MVC) – The peak torque produced by a muscle as it 

contracts while pulling against an immovable object. 

4. Muscle Thickness (MTH) - An estimate of muscle size, derived through a one-

dimensional B-mode ultrasound image. MTH is measured as the distance from the 

muscle-bone interface to the muscle-fat interface.    

5. Muscle Swelling – An acute increase in muscle thickness as measured through B-mode 

ultrasound, expressed as the change in muscle thickness from before to after an exercise 

bout. 

6. Electromyography (EMG) – A technique that uses surface electrodes, along with data 

acquisition hardware/software, to record signals of electrical activity from skeletal 

muscle.
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CHAPTER 2: LITERATURE REVIEW 

 

1. Skeletal Muscle Adaptation 

Skeletal muscle is a highly malleable tissue, subject to growth and adaptation in response to 

contractile activity (Coffey & Hawley, 2007).  In most cases, the performance of resistance 

exercise is used to elicit changes in muscle size and strength. For example, the performance of 

resistance exercise often results in skeletal muscle hypertrophy; a complex process involving the 

conversion of mechanical signals to molecular cascades. These molecular cascades then augment 

gene expression (Drummond et al., 2008) and protein synthesis (Phillips et al., 1997). Typically, 

resistance exercise results in a rate of protein synthesis that is greater than the rate of breakdown, 

resulting in the production of contractile proteins which are added to existing myofibers (i.e., 

hypertrophy). Simultaneous to hypertrophic adaptations, strength adaptations are also often 

achieved through resistance exercise. Interestingly the mechanisms behind strength adaptation 

are not well understood, but are believed to be highly influenced by how closely the strength test 

mimics the intensity and movements of the exercises performed in the resistance exercise 

program (i.e. specificity of the movement and intensity) (Buckner et al., 2017), and appears to be 

explained largely by neural adaptations (Gabriel, Kamen, & Frost, 2006).  The literature has 

demonstrated that muscle growth can be achieved through a variety of modalities and intensities; 

whereas, strength is highly reliant on exercise intensity and specificity of the movement. 

Nonetheless, a variety of modalities and intensities have been utilized throughout the literature 

with the goal of augmenting muscle size and strength (Ozaki et al., 2016).
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High-loads, low loads and low loads with the application of BFR are most commonly utilized 

within the resistance training literature and have been shown to result in similar changes in 

skeletal muscle size. Mitchell et al. (2012) showed that 10 weeks of low load resistance training 

resulted in a similar muscle hypertrophic response as traditional high load resistance training in 

the lower body. Similarly, Ogasawara et al. (2013) showed that 6-weeks of low-load bench press 

training to fatigue resulted in muscle hypertrophy similar to high-load bench press training. In 

addition to these, low load resistance exercise with the application of BFR also results in a 

comparable growth response. Low load exercise with BFR is a unique form of resistance 

exercise, where a pneumatic cuff is applied to the most proximal portion of the arms or legs with 

the intention of restricting arterial blood flow to the muscles and limiting venous return. This 

technique decreases the number of repetitions to volitional failure compared to regular low load 

training, presumably through a reduction in oxygen, and an accumilation of metabolites 

(Loenneke, Balapur, Thrower, Barnes, & Pujol, 2012). Interestingly, considering the 

effectiveness of low load exercise performed to failure, it is not presently clear if there is a point 

at which BFR is absolutely necessary to elicit an anabolic skeletal muscle response.  As 

previously mentioned, recent acute work from our laboratory seems to suggest that there may be 

a point where the training load becomes too low for the individual to reach failure within a 

reasonable time. Dankel et al. (2017) showed that the application of BFR to very low loads 

(<20%1RM) appeared to increase levels of fatigue as measured through acute torque decrements, 

suggesting that blood flow restriction may have important applications when very low loads are 

used. Although it appears that BFR may be important when very low loads are used, additional 

research is necessary to better understand the potential utility of BFR with intensities less than 

20% of 1RM.  
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Regarding strength, low load resistance training typically results in less robust changes in 

maximal strength measured by a 1RM when compared to traditional high load resistance training  

(Mitchell et al., 2012; Ogasawara et al., 2013). However, when strength is measured using a test 

to which both groups are “naive” (i.e., train dynamic and test isometric), differences in strength 

become less apparent (Martin-Hernandez et al., 2013; Mitchell et al., 2012; Ward & Fisk, 1964). 

The majority of the literature seems to suggest that strength will improve most on a skill or 

movement that closely resembles the training protocol. As such, low load resistance training will 

not produce robust increases in maximal strength unless the program also includes periodic 

practice of a 1RM. This was illustrated by Morton et al. (2016), who found that multiple 

exposures to a 1RM during a low load resistance training program can largely abolish the 

difference in 1RM strength typically observed between high load and low load training 

modalities. This was also observed by Kim et al. (2017) who found that performing a 1RM 

assessment every 2-weeks during an 8-week training study provided enough practice to largely 

negate the strength differences typically observed between high load exercise and low load 

exercise with the addition of BFR. 

     

 

2. Mechanisms of Skeletal Muscle Growth 

Although the mechanisms of growth are not completely understood, it has been suggested that 

mechanical and metabolic contributions are likely playing a role in exercise-induced muscle 

hypertrophy. Indeed, much of the early work performed was on cardiac muscle (as opposed to 

skeletal muscle); however, recent advances have greatly increased our understanding of skeletal 
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muscle adaptation.  In short, muscle contraction stimulates transient increases in the quantity of 

messenger RNA (mRNA), which appears to peak 3-12 hours following exercise, returning near 

baseline within a 24-hour period (Bickel et al., 2005; Coffey & Hawley, 2007). This increase in 

mRNA is accompanied by a subsequent increase in protein synthesis (Coffey & Hawley, 2007). 

Thus, repeated stimulations over time results in an increase in skeletal muscle size (hypertrophy). 

The early work of Goldberg (1968) used animal models to identify the capacity of skeletal 

muscle to increase in size in response to overload, showing that compensatory hypertrophy of 

skeletal muscle is accompanied by increased incorporation of labeled amino acids into proteins. 

Although this study employed a rodent model, using synergistic ablation in hypophysectomized 

rats, it was the first study to observe the incorporation of labeled amino acids into skeletal 

muscle proteins. This has since been observed in human models (Burd et al., 2010; Phillips et al., 

1997). With resistance exercise, mechanical signals trigger secondary messengers, to signal a 

molecular cascade, which involves both primary and secondary messengers. The precise 

mechanism that transduces the mechanical signal of skeletal muscle contraction remains poorly 

understood. This response is thought to be multifaceted, involving: mechanical stretch; calcium 

flux, and changes in redox, as well as phosphorylation state within the muscle (Coffey & 

Hawley, 2007).  Although, it is not fully understood how mechanoreceptors, neuronal 

mechanisms, and biochemical events interact as primary messengers for anabolic processes, 

there are several candidates, which may play a role in the anabolic process.  

 
Cell Swelling Hypothesis 

Cell swelling is one of the hypothesized mechanisms through which resistance exercise is 

believed to exert its effects. It has been suggested that amino acids are taken up into cells by 

sodium-ion dependent transport systems, converting an electrochemical gradient into an 
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osmotically active amino acid gradient, which ultimately causes a fluid shift of water into the cell 

(Haussinger et al., 1993). This hypothesis comes from the work of Haussinger (Haussinger & 

Gerok, 1994; Haussinger et al., 1993), which was conducted primarily in liver cells. Haussinger 

suggests that cellular swelling may act as an anabolic signal. More specifically, cell swelling is 

believed to work through the activation of different mitogen activated protein kinases, which 

may stimulate protein synthesis through s6 kinase, and modulate gene expression through 

various pathways (Haussinger et al., 1993). Although cell swelling is only a hypothesized 

mechanism of skeletal muscle growth, it is a repeatable phenomenon which has been examined 

across a variety for resistance training protocols (Buckner et al., 2016; Counts et al., 2016) and is 

believed to play a role in the anabolic process observed with resistance exercise.   

 

Our research group and others have previously noted similar acute muscle swelling in the upper 

body (Buckner et al., 2017; Counts et al., 2016; Yasuda, Loenneke, Thiebaud, & Abe, 2012), as 

well as across a variety of protocols in the lower body (Loenneke et al., 2016). Notably, this 

acute response is highly repeatable and (in line with the hypotheses of Haussinger (1993)), is 

believed to be an indicator of anabolic potential. To provide some support, Yasuda et al. (2012) 

observed that concentric exercise in combination with BFR resulted in both a greater acute 

muscle swelling response and greater increase in muscle size over a 6-week period compared to 

a group performing eccentric exercise in combination with BFR. Authors suggest that the greater 

growth response may be explained by the greater degree of acute swelling seen with the exercise 

protocol. It is not currently known if the observed swelling response was necessary to induce a 

hypertrophic stimulus. Notably, there were also differences in EMG amplitude between the 

groups. Nonetheless, it appears that the majority of resistance training protocols that produce 
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growth are accompanied by some level of acute swelling. For example, high load (Counts et al., 

2016), low load, low load with BFR (Buckner et al., 2016; Counts et al., 2016) and NO-LOAD 

(Counts et al., 2016) exercise have all been shown to elicit an acute swelling response. In 

addition, our laboratory has observed the acute swelling response across several exercise bouts in 

a given training week, finding that a muscle appears to swell to a similar degree with each 

exercise bout when taken to volitional fatigue (Buckner et al., 2017). Although it is not known if 

the response itself is anabolic, it may provide important information on the robustness of an 

acute exercise bout.    

 

Swelling and BFR 

Although swelling is not a unique mechanism to BFR exercise, BFR by itself may cause a fluid 

shift into the muscle. For example, Kubota et al. (2011) showed that repetitive restriction of 

blood flow using an arbitrary pressure of 50 mmHg applied to the lower extremity reduced 

muscular weakness caused by chronic unloading. This same research group has also showed that 

BFR by itself attenuated decreases in strength to a greater degree than isometric training, which 

suggests that venous pooling may play a therapeutic role during periods of unloading (Kubota, 

Sakuraba, Sawaki, Sumide, & Tamura, 2008).  Similarly, Takarada et al. (2000) found that the 

application of high pressures post ACL surgery attenuated muscle disuse atrophy relative to a 

control group in a small sample of individuals. However, this is not a universal finding, as 

Iversen et al. (2016) did not observe an attenuation of atrophy 14 days following ACL 

reconstruction surgery when using BFR combined with muscle contractions. Although 

speculative, it seems plausible that Iversen et al.’s (2016) findings may be explained by their 

utilization of an athletic sample. Meaning, athletes (who are more likely to have hypertrophied 
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muscles) may experience a return to baseline levels of muscle mass. If true, the application of 

BFR may help with the loss of baseline levels (the level of muscle and individual has following 

development without contributions from compensatory hypertrophy), of muscle mass, while not 

providing enough of a stimulus to maintain the mass of a hypertrophied muscle. The swelling 

phenomenon is supported by the findings of Loenneke et al. (2012) who showed that a protocol 

of inflations and deflations in the lower body resulted in an acute increase in muscle thickness 

and a decrease in plasma volume.  This work demonstrated that the increase in muscle thickness 

was likely indicative if a fluid shift into the muscle since the increase in muscle thickness was 

maintained post-deflation.  Although applying pressure by itself may not provide a robust 

anabolic stimulus for skeletal muscle growth, these data provide some evidence that this may be 

an important mechanism for maintaining baseline levels of muscle mass when there is an 

absence of skeletal muscle contraction.    

 

Muscle Activation 

It is believed that high levels of muscle activation may be necessary for a maximal hypertrophic 

response. Similar muscle protein synthetic responses have been observed independent of the 

exercise load (Burd et al., 2010; Fry et al., 2010), which are supported by similar long-term 

hypertrophic adaptations across various exercise intensities (Ozaki et al., 2016). This is likely as 

result of high levels of activation across exercise protocols, despite varying external loads. For 

example, integrated electromyography has been shown to increase with low load exercise and 

low load exercise with BFR (Moore et al., 2004; Takarada et al., 2000). High levels of activation 

achieved during lower intensities are likely a function of fatigue. Specifically, muscular activity 

that results in muscular fatigue appears to be compensated for by an increase in motor unit 
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activation, including the activation of higher threshold motor units that innervate more type II 

muscle fibers (Loscher, Cresswell, & Thorstensson, 1996). Moritani et al. (1992) examined 

motor unit recruitment and lactate concentrations during intermittent isometric contractions of 

hand grip muscles with or without blood flow. Authors found that there was an increase in motor 

unit recruitment and firing rate while under arterial occlusion, suggesting that the metabolic state 

may have played an important role in this increased recruitment (Moritani et al., 1992). Other 

studies have observed similar increases in muscle activation, (Moore et al., 2004; Takarada, 

Nakamura, et al., 2000; Takarada et al., 2000) attributing such increases to reduced oxygen and 

metabolic accumulation within the working muscle.   

 

Training to failure 

Training to failure has recently been suggested to be the best way to ensure a maximal 

hypertrophic stimulus within a resistance training program (Dankel et al., 2017). This is likely 

due to high levels of motor unit recruitment observed across different exercise intensities when 

resistance exercise is performed to volitional failure (Moritani et al., 1992). As such, low load 

exercise without BFR has been shown to result in similar muscle growth as high load and low 

load + BFR alternatives (Ozaki et al., 2016). This may question the utility of BFR; however, it is 

important to note that low load exercise without BFR would require significantly more 

repetitions in order to stimulate a similar increase in myofibril muscle protein synthesis 

(Wernbom, Augustsson, & Thomee, 2006; Wernbom et al., 2009). In addition, acute work from 

our research group seems to suggest that there may be a point where the training load becomes 

too low to reach failure. This may occur when the load is too low or when an individual has a 

low level of baseline strength. Thus, training with very low loads may require BFR in order to 
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achieve high levels of muscle activation and elicit an anabolic response. Nevertheless, training to 

(or near) volitional failure appears important to ensure a high level of muscle activation is 

achieved. 

 

Metabolites 

Metabolites are likely playing some role in skeletal muscle adaptation during resistance exercise.  

Although their role is not completely understood, metabolites likely play an important role with 

regards to increasing muscle activation during low load exercise (Loenneke et al., 2011; Moritani 

et al., 1992). Specifically, metabolites are believed to increase muscle activation through the 

stimulation of group III and group IV afferents, which may inhibit the alpha motor neurons 

supplying slow-twitch fibers, resulting in an increased fast-twitch fiber recruitment (Yasuda et 

al., 2010). In addition, metabolites have also been hypothesized to act as anabolic signals 

themselves (Ozaki et al., 2016; Pierce, Clark, Ploutz-Snyder, & Kanaley, 2006). For example, 

Pierce et al. (2006) has suggested that a lack of blood flow in conjunction with muscle 

contraction may stimulate adaptation through growth hormone. Although changes in growth 

hormone being mechanistically important does not seem likely, metabolites have remained a 

primary hypothesized mechanism to explain the benefits of BFR. However, Dankel et al. (2016) 

demonstrated that trapping metabolites within the muscle following a resistance exercise bout 

provided no anabolic benefits over a 6-week period. Notably, relative to a control performing 

only high load exercise, females appeared to have an attenuation of growth, and males saw no 

additional benefit when trapping metabolites in the muscle following high load resistance 

exercise. Although this one study cannot definitively prove that metabolites are not important, it 

provides evidence that metabolites may not directly stimulate anabolic-signaling cascades.    
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3. Muscle strength 

What is strength? 

Attempts to measure the force producing capabilities of the musculature are often assessed 

through different performance measures. Specifically, isometric (Mitchell et al., 2012), isokinetic 

(Martin-Hernandez et al., 2013) and 1RM tests (Martin-Hernandez et al., 2013; Mitchell et al., 

2012; Ogasawara et al., 2013) are all used to assess strength adaptation. We have recently 

challenged how we think about strength adaptation, as it appears that strength is a highly specific 

adaptation, explained primarily by the specificity of a movement (Buckner et al., 2017). In our 

recent perspective, we make a case for taking multiple measures of strength to assess “strength” 

adaptation to a resistance training, particularly when comparing different resistance training 

protocols/programs (Buckner et al., 2017). To illustrate, low load resistance training results in 

similar muscle hypertrophic changes as traditional high load resistance training, with less robust 

changes typically observed with maximal strength measured by a 1RM (Mitchell et al., 2012; 

Ogasawara et al., 2013).  However, when strength is measured using a test to which both groups 

are “naive” (i.e. train dynamic and test isometric), differences in strength become less apparent 

(Martin-Hernandez et al., 2013; Mitchell et al., 2012; Ward & Fisk, 1964). This demonstrates 

how important the concept of specificity is when examining changes in strength. Moreover, it 

helps to illustrate how fundamental the concept of specificity is in facilitating a “strength” 

adaptation. We would suggest that strength would increase the most when the training 

procedures closely resemble the testing procedures. This was illustrated by Morton et al. (2016) 

who showed that including 1RM practice into a low load resistance training program largely 

eliminated the strength difference that is typically observed between high load and low load 
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resistance exercise. In addition, Hernandez et al. (2013) found comparable increases in isokinetic 

peak torque at 60° and 180°/sec between 5 weeks of traditional high load resistance exercise or 5 

weeks of low load resistance exercise with BFR; with greater increases observed in 1RM 

strength for the high load training group. This suggests that the group that trained near a 1RM 

performed better at the 1RM test, which may be due to specificity and the fact that the low load 

training group had never been exposed to lifting maximally through a range of motion.   

 

Mechanisms of strength 

Classically, strength is believed to be a function of neural and hypertrophic adaptations (Moritani 

& deVries, 1979). However, our research group has recently challenged the causative 

relationship between the change in muscle size and the change seen in strength (Buckner et al., 

2016), suggesting that these are separate and unrelated adaptations. If correct, the model 

proposed by Moritani and Devries (1979), would be invalid. The increase in strength following 

resistance exercise is likely a function of neural adaptations, and/or changes at the muscle level 

that do not result in a change in muscle size. For example, alterations in agonist-antagonist co-

activation, increases in motor unit firing rates, and changes in descending drive to the motor 

neurons may explain a large portion of increases in strength observed with resistance exercise 

(Gabriel et al., 2006). However, even studies investigating neural adaptations provide conflicting 

results, as Jenkins et al. (2016) observed similar changes in voluntary activation between high-

load and low-load resistance exercise, despite divergent strength adaptations. This illustrates that 

divergent neural adaptations assessed through twitch interpolation may not explain a large 

portion (if any) of the strength differences observed following high load or low load resistance 
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exercise. We would suggest that there is an evolving and limited understanding of the 

mechanisms that explain resistance exercise induced strength adaptations.       

 

4. Time course of skeletal muscle growth 
 
The time course of skeletal muscle growth is currently an area of contention. The early and 

influential work of Moritani and Devries (1979) suggested that skeletal muscle growth is a rather 

slow process. Specifically, authors suggest that strength adaptation is explained by neural 

adaptations for the first 3-5 weeks, with hypertrophy becoming a prominent mechanism in the 

later portions of a resistance training program.  Although there are likely issues with using 

muscle size to explain strength, the majority of recent work has suggested that muscle growth 

may occur relatively early in a resistance  training program (Counts et al., 2016; DeFreitas, Beck, 

Stock, Dillon, & Kasishke, 2011; Stock et al., 2017). Defreitas et al. (2011) conducted an 8 week 

resistance training study, where measurements of both muscle size and strength were taken 

weekly throughout the resistance training program. Although both measures (muscle size and 

strength) appeared to increase throughout the study period, authors used muscle quality to 

confirm that actual skeletal muscle growth had occurred. Thus, growth was considered real when 

muscle quality has exceeded the ratio (muscle strength/muscle size) seen at baseline. Once again, 

the time course of skeletal muscle growth was limited by the assumption that muscle size and 

strength are intrinsically linked. Inspired by the work of Defreitas and colleagues, Damas et al. 

(2015) suggested that it was not possible to differentiate between edema induced muscle 

swelling and actual skeletal muscle growth during the early portions of a resistance training 

program. In their work (Damas et al., 2015), they observed an increase in echo intensity during 

the early portions of a resistance training program. The authors suggest that an increase in echo 
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intensity is indicative of swelling, rendering an inability to differentiate between skeletal muscle 

growth and edema induced increases in muscle size. However, the work of Buckner et al. (2017) 

showed that swelling/edema does not appear to accumulate over time, suggesting that swelling 

does not likely contribute greatly to changes in muscle size beyond what occurs following the 

first exposure to resistance exercise. Specifically, authors suggest that a baseline shift occurs 

following the first resistance training session (degree of about 1 cm), and that anything beyond 

this baseline shift is likely real growth. This is supported by the letter written by Defreitas et al. 

(2016) in response to criticism by Damas and colleagues. In his original work, Defreitas 

suggested that skeletal muscle growth can be measured with confidence by week 3. However, in 

his letter, Defreitas suggests that real growth likely occurred by week 1. In addition, several more 

recent studies (Abe, DeHoyos, Pollock, & Garzarella, 2000; Alway, Grumbt, Stray-Gundersen, 

& Gonyea, 1992; Dankel et al., 2016; Ikai & Fukunaga, 1970; R. Ogasawara, Thiebaud, 

Loenneke, Loftin, & Abe, 2012) have reported skeletal muscle growth at earlier time points than 

what has been proposed by the original model presented by Moritani and Devries (1979). The 

discrepancies between the early work of Moritani and Devries other studies may be due to the 

crude techniques employed to measure muscle size. Specifically, authors used circumference and 

skinfold measures to calculate muscle size, as opposed to more sophisticated imaging (i.e., 

ultrasound; CT scan) techniques (Moritani & deVries, 1979). Thus, we would suggest that it is 

likely that measureable skeletal muscle growth can occur as early as one week into a resistance 

training program. 

 

Confirming growth with swelling 
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The recent work of Buckner et al. (2017) proposed a technique to confirm skeletal muscle 

growth, although this has not yet been experimentally tested. Specifically, authors suggest that 

the acute swelling response itself can be exploited to confirm that skeletal muscle growth has 

occurred. This implementation of such a technique is quite simple. In short, the acute swelling 

response should be stimulated during the first and last measurement period. In doing so, the 

change in baseline (non-swollen) muscle thickness values can be compared to the changes in 

“swollen” muscle thickness values. If there is a similar change between the two time points real 

growth has likely occurred. In addition, Buckner et al. (2017) has suggested that the swelling 

response itself may demonstrate that real growth (as opposed to swelling or edema as suggested 

by Damas et al (2015) has occurred. Specifically, authors suggest that since a muscle can only 

swell a finite amount (i.e., a swollen muscle cannot elicit a swelling response) that the acute 

swelling response itself may help to indicate the presence of previous swelling within the 

muscle. In other words, stimulating a swelling response on the final visit may serve as a 

confirmation that real skeletal muscle growth has occurred.   

 

5. The application of blood flow restriction 

Relative pressure and cuff size 

Although there are no official standards through which to apply BFR, recent methodological 

studies have provided some guidance on how to apply, and what factors should be considered 

when applying the blood flow restriction stimulus. Early research on tourniquet application has 

suggested that pressures should be applied relative to the width of the cuff, as well as the size of 

the limb in which the cuff is applied (Crenshaw, Hargens, Gershuni, & Rydevik, 1988; McEwen, 

Kelly, Jardanowski, & Inkpen, 2002; Shaw & Murray, 1982). Similar findings have been shown 
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within the BFR literature. For example, Loenneke et al. (Loenneke, et al., 2012) compared 

arterial occlusion pressures between a 13.5 cm and 5 cm wide cuff in the lower body, finding 

that the wide cuff occluded blood flow at a lower pressure compared to the narrow cuff. In 

addition, results showed that limb circumference explained the greatest amount of variance in 

arterial occlusion pressure following regression analysis. Similar to this, Jesse et al. (2016) 

examined differences in arterial occlusion pressure across three different size cuffs in the upper 

body (5 cm, 10 cm, 12 cm), finding (similar to findings in the lower body) that greatest variance 

was explained by limb circumference and that there was an inverse relationship between cuff 

width and arterial occlusion pressure. These findings suggest that the restrictive pressure should 

be applied relative to the cuff width and limb size of the individual.  

 

Cuff Material 

In addition to cuff size, it has also been suggested that the cuff type (material of cuff/type of 

equipment) may influence the stimulus when applying BFR. For example, Buckner et al. (2016) 

found that there was over a 100 mmHg difference in arterial occlusion pressure between nylon 

and elastic cuffs [nylon 139 (14) mmHg vs. elastic 246 (71) mmHg] in the upper body. However, 

despite these drastic differences the acute swelling and fatigue response to exercise were similar 

when pressures were applied relative to each cuffs respective arterial occlusion pressure. 

Similarly, Loenneke et al. (2014) examined the influence of cuff type in the lower body, finding 

that there were no differences in the repetitions to fatigue or perceptual response between 

different type cuffs (nylon vs. elastic) when the pressure was made relative to the arterial 

occlusion pressure of the cuff used. These studies demonstrate the importance of applying the 

pressure as a percentage of arterial occlusion pressure measured with the cuff of interest. 
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However, if individuals are not able to measure arterial occlusion pressures, the cuff type (or 

material) should be taken into consideration.  

   

Although a relative pressure is recommended, it is not uncommon for the same restrictive 

pressure to be applied to all individuals within a study (Christopher A Fahs, Loenneke, Rossow, 

Tiebaud, & Bemben, 2012). As discussed, cuff size, limb circumference and cuff material all 

have an influence on the stimulus an individual is receiving when the cuff is inflated to an 

arbitrary pressure. To illustrate, Fujita et al. (2007) and Gundermann et al. (2012) both applied 

BFR using an arbitrary pressure of 200 mmHg. However, these studies cannot necessarily be 

compared since Fujita utilized a 5cm cuff; whereas, Gundermann used an 11 cm wide cuff. In 

addition, these are further confounded by the fact that Gundermann utilized a nylon cuff whereas 

Fujita utilized a nylon cuff. Such methodological issues are common within the BFR literature. 

However, recent methodological advances have shown that applying a restrictive stimulus 

relative to the individual and the cuff used appears to correct many of these issues and helps do 

deliver a more universal stimulus across individuals (Buckner et al., 2016; Loenneke et al., 

2014).       

 

Safety of BFR 

The application of BFR appears to be a safe stimulus across a variety of populations when 

applied correctly (Loenneke, Wilson, Wilson, Pujol, & Bemben, 2011). Perhaps the greatest 

concern, regarding safety and BFR is an increased risk of blood clot, particularly as complete 

vascular occlusion can cause the formation of a thrombus even after reperfusion (Blaisdell, 

2002).  Within the BFR literature, Clark et al. (2011) found that a single bout of low load 
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exercise with blood flow restriction increased fibrinolytic activity without altering selected 

markers of coagulation or inflammation in healthy individuals. Additionally, Fry et al. (2010) 

found that an acute bout of low load exercise with BFR did not augment D-dimer protein content 

in the blood. This is further supported by a pilot study by Madarame et al. (2013) examining the 

hemostatic and inflammatory responses to blood flow restriction exercise in individuals with 

ischemic heart disease, which found that the application of BFR did not augment the hemostatic 

or inflammatory response to low load training. Although limited, the current evidence seems to 

suggest that there is not an increase in coagulation activity following acute or prolonged 

appropriate use of BFR. 

Another common concern with blood flow restricted exercise, is the amount of muscle damage 

occurring, relative to more traditional protocols. Although muscle soreness is commonly 

experienced following BFR exercise (Cuthbertson et al., 2005; Thiebaud et al., 2014; Thiebaud, 

Yasuda, Loenneke, & Abe, 2013), there does not appear to be prolonged swelling (Thiebaud et 

al., 2013; Umbel et al., 2009; Wilson, Lowery, Joy, Loenneke, & Naimo, 2013) or prolonged 

decrements in torque (Loenneke et al., 2013; Thiebaud et al., 2013; Umbel et al., 2009) 

following blood flow restricted exercise. In addition, there appears to be little to no change in 

blood biomarkers following BFR exercise protocols (Clark et al., 2011; Cuthbertson et al., 2005; 

Madarame et al., 2013; Takarada, Nakamura, et al., 2000). Together, these data would suggest 

that the damage response to BFR exercise is minimal.
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CHAPTER 3: METHODOLOGY 

Study 1 – Acute Study 

Participants 

The aims of study 1 were: 1) to examine if the acute muscle response following resistance 

exercise at very low loads (15% 1RM) is improved with BFR; and 2) determine how this 

compares to that observed with high load resistance exercise (70% 1RM). In order to answer this 

research question, 10 males and 10 females between the ages of 18-35 were recruited for this 

study. Resistance trained males and females were recruited through word of mouth, fliers posted 

on campus, and class announcements. Resistance trained individuals were recruited in order to 

examine the acute response without being confounded by potential muscle damage from the 

resistance training protocols. 
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Inclusion Criteria Exclusion Criteria 

Between the ages of 18-35 years. Outside the age range of 18-35 years. 

Resistance trained in biceps curls for at least 
6 months, with a frequency of 2x/week 

Not resistance trained in the biceps curl 

Participants should be ambulatory and have 
no disabilities or hemodynamic disorders 
preventing them from sustaining short bouts 
of limb compression. 
 

Regular use of tobacco products (cigarettes, 
cigars, chew/snuff, etc.). 

No orthopedic problems preventing strength 
testing/exercise. 

Having more than one risk factor for 
thromboembolisms (Motykie et al., 2000)  
2000):  
 
a. Diagnosed Crohns or Inflammatory Bowel 
Disease; 
b. Past fracture of a hip, pelvis, or femur; 
c. Major surgery within the last 6 months; 
d. Varicose veins; or 
e. Family history of deep vein thrombosis or 
pulmonary embolism. 

 
 
 

Body Mass index between < 30 kg/m2 

Non-smokers or those who had quit ≥6 
months prior to participation. 

BMI ³ 30 kg/m2 

On hypertensive medication 

 

Study design 

Participants reported to the laboratory on five separate occasions. If the participant consented and 

did not meet any exclusion criteria, their standing height, and body mass were measured. Arterial 
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occlusion pressure was also determined in both arms (visit 1). To illustrate, in random order, 

participants had a 5 cm nylon cuff placed at the top of each arm (one at a time). Pressure was 

increased by inflating the cuff until there is a cessation of blood flow to the distal portion of the 

limb as detected by a Doppler probe. The cuff was then removed and participants rested for 5 

minutes at which point the cuff was put on the next arm to undergo the same procedure. 

Following this, the participant performed a 1RM test to measure elbow flexion strength in both 

arms. Next, participants underwent one set of familiarization to BFR exercise in each arm 

performed to a metronome followed by familiarization with dynamometer strength testing. 

Although not part of the present dissertation, the lower body (legs) also underwent the same 

procedures as the upper body in sequence. Although these measures are not relevant to the 

present dissertation, they are briefly mentioned as they have some influence on the number and 

length of visits. This first visit will last approximately 90-120 minutes.   

 

For visits 2, 3, 4, and 5 (each approximately 5 days apart from one another) participants 

completed one of the four possible conditions per visit either in the upper body (and lower body) 

for a total of 4 conditions (plus an additional 4 in the lower body). Conditions consisted of four 

sets of elbow flexion exercise to failure using a traditional high load (70% 1RM), very low load 

(15% 1RM), very low load with moderate BFR (40%), or very low load with greater BFR (80%). 

Arterial occlusion pressure was measured prior to each exercise bout. Torque and muscle 

thickness were measured prior to exercise as well as immediately post, and 15 minutes post 

exercise. Further, electromyographic (EMG) amplitude was measured throughout the 4 sets of 

exercise. The difference between visits 2, 3, and 4 was be the limbs used and the conditions 

applied. Each visit lasted approximately 90 minutes, with 2 randomized conditions completed 
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during each visit (randomization of a total of 8 conditions collectively from upper and lower 

body). 

 

Specific Procedures 

1) Consent Form and Questionnaires: 

Informed consent was obtained prior to completion of all questionnaires and any testing. 

Participants were also asked to complete a Physical Activity Readiness Questionnaire (PAR-Q).  

If participants qualified for this study after these assessments they completed all of the 

procedures listed below.  

  

2) Height/Body Mass: 

Participant height and body mass were measured using a stadiometer and a digital scale.    

 

3) Arterial occlusion determination:  

Participants were standing while we applied a narrow, nylon (5 cm wide) blood pressure cuff to 

the upper most portion of the participants arm to measure the inflation pressure at which blood 

flow to their wrist is no longer present.  We began the inflation at 50 mmHg and then slowly 

increased it until we no longer could detect the participants pulse while the cuff is inflated. The 

cuff was then deflated and removed. Following this, the opposite arm underwent the same 

procedure to determine arterial occlusion pressure. The arterial occlusion pressure measurement 

was completed prior to each exercise condition.  

 

4) One Repetition Maximum (1-RM): 
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The strength of the participants’ elbow flexors was tested using a dumbbell. We assessed the 

1RM of both arms (1-RM; the heaviest weight that can be lifted one time with good form). 

Participants were supervised by trained personnel during all strength testing.   

 

5) Standardized Exercise Training: 

For visits 2, 3, 4, and 5 participants exercised one limb with either a traditional high load (70% 

1RM), or a very low load combined with no, moderate, or high restriction pressure. Participants 

completed a total of 4 different conditions over visits 2-5. For the high load exercise, the protocol 

consisted of 4 sets of elbow flexion exercise performed to failure. For low load training, exercise 

was performed until volitional failure or until 90 repetitions were completed, whichever occurred 

first.  In the high load condition sets were separated by 90s rest and in the   other conditions, sets 

were separated by 30 second rest periods.  

 

6) Isometric Torque: 

Isometric torque was tested on a dynamometer (Biodex Quickset System 4). The chair was 

adjusted for each individual, with the settings recorded to ensure the same testing conditions for 

each experimental visit. For testing, participants were asked to flex their arm against an 

immovable object as hard as possible to determine their isometric strength. All isometric testing 

was performed at 60° of elbow flexion. Each contraction lasted approximately 3-8 seconds.  

 

7) EMG Amplitude:  

Surface electromyography (EMG) for the biceps brachii was measured during exercise visits.  

Biceps brachii electrodes were placed on the line between the medial acromion (shoulder area) 
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and the antecubital fossa (elbow joint) at a distance of 1/3 from the antecubital fossa. A reference 

electrode was placed on the 7th cervical vertebrae (bony part of back of neck). The skin was 

prepared for electrode placement by lightly shaving the electrode placement area to remove 

excess body hair, using a roughing pad to remove dead skin, and then cleaning area with a sterile 

alcohol wipe. Electrodes were placed in accordance with the Seniam guidelines for EMG 

(Hermens et al., 1999).   

 

8) Muscle Thickness:  

Ultrasound measurements of muscle thickness was made on the anterior aspect of the 

participant’s upper arm at 70 % of the distance from the acromion process to the olecranon 

process. Muscle thickness was measured as the distance between the muscle-bone and muscle-

adipose interface. The probe was coated with gel and held lightly against their skin. This 

measurement was made before exercise, immediately after and 15 minutes after exercise.  
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Study 2 – Chronic Study 

Participants 

The aim of study 2 was to determine differences in muscle growth in the upper body (elbow 

flexors) in response to 8 weeks of resistance exercise under four specific conditions: (1) low load 

resistance training (15% 1RM), (2) low load resistance training in combination with low levels 

of BFR (15% 1RM + 40% arterial occlusion pressure), (3) low load resistance training in 

combination with high levels of BFR (15% 1RM + 80% arterial occlusion pressure), and (4) 

traditional high load resistance training (70% 1RM, 8-12RM). In order to answer this research 

question, a total of 42 untrained (21 individuals per group), healthy men and women (ages 18-

35) will report to the laboratory for a total of 22 visits.   

 
Inclusion Criteria Exclusion Criteria 

Between the ages of 18-35 years. Outside the age range of 18-35 years. 

Not resistance trained in biceps curls for at 
least 6 months, with a frequency of 2x/week 

Resistance trained in the biceps curl 

Participants should be ambulatory and have 
no disabilities or hemodynamic disorders 
preventing them from sustaining short bouts 
of limb compression. 
 

Regular use of tobacco products (cigarettes, 
cigars, chew/snuff, etc.). 

No orthopedic problems preventing strength 
testing/exercise. 

Having more than one risk factor for 
thromboembolisms (Motykie et al., 
2000): 
 
a. Diagnosed Crohns or Inflammatory Bowel 
Disease; 
b. Past fracture of a hip, pelvis, or femur; 
c. Major surgery within the last 6 months; 
d. Varicose veins; or 
e. Family history of deep vein thrombosis or 
pulmonary embolism. 
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Non-smokers or those who had quit ≥6 
months prior to participation. 

Body Mass Index > 30 

Body Mass index between < 30 On hypertensive medication 

 

Study design 

Participants had both of their arms assigned to a condition in a random counter-balanced fashion 

so that each arm completed 1 of the following 4 conditions: (1) very low load training; (2) very 

low load training with low levels of BFR; (3) very low load training with high levels of BFR 

pressure; and (4) traditional high load resistance training. Although not a part of the present 

dissertation, the legs were also randomized into one of the previously mentioned conditions 

(undergoing the same procedures as in the upper body for testing and training). However, since 

the lower body was not part of the present dissertation, it will only be mentioned in the context 

of study design and the duration of visits.  On the initial pre visit, we determined if the 

participant meets the inclusion criteria, and if so, they proceeded to complete an informed 

consent document, PAR-Q, and have their height and body mass measured. Participants then had 

their muscle thickness measured in their arms. Next, participants were familiarized with the 

unilateral elbow flexion exercise by practicing the movement with no external load.  On the 

second pre visit, participants were tested for their unilateral one repetition maximum (1RM) test 

in both arms followed by a test of muscular endurance on each arm. In addition, participants 

were familiarized with isokinetic and isometric testing in the upper body. A third pre visit, was 

be completed, during which individuals performed isokinetic and isometric testing for each arm. 
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Finally, participants completed strength and performance testing in the lower body (not relevant 

to the present dissertation). The following week, the participants began the eight-week training 

protocol consisting of two training sessions per week with at least 24h separating each visit. Both 

arms trained each day in a counter-balanced fashion (Although not part of the present 

dissertation, the legs were also training during each visit). Measures of muscle thickness was 

taken at the midpoint of the training study (beginning of week 4). Finally, in order to implement 

the aforementioned swelling technique to confirm skeletal muscle growth, muscle thickness 

measures were taken before and after exercise on the first, middle (visit 9) and on visit 15. At 

least 48 hours following the last training session, post measurements were taken over three 

separate days, similar to the pre-visits.  

 
Specific Procedures 

 
1) Very Low Load Training: 

 
Very low load training consisted of unilateral elbow flexion exercise completed to volitional 

failure at 15% 1RM or 90 reps per set, whichever occurs first. Each participant completed four 

sets with 30s of rest between sets.  Ninety repetitions represents 3 minutes of continuous exercise 

and we chose this based off of previous acute data showing that with increased time under 

tension there is an increase in mitochondrial and sarcoplasmic muscle protein synthesis as 

opposed to myofibrillar protein synthesis (Burd et al., 2012). Thus, the 3 minute cut-off is 

intended to limit a transition into primarily oxidative energy production. The concentric and 

eccentric portions of the lift were 1s each for a total of a 2s repetition.  

 

2) Very Low Load Training with BFR: 
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The same protocol used for very low load training was employed with the addition of a cuff at 

the top of the limb which was inflated to 40% or 80% of the individual’s resting arterial 

occlusion pressure. The cuff remained inflated for the duration of the protocol including rest 

periods. A 5 cm wide nylon cuff was used. The cuff was deflated and removed upon completion 

of the final set. 

 

3) High Load Resistance Training: 

The high load resistance training condition consisted of unilateral elbow flexion and knee 

extension exercise. Participants attempted to complete 4 sets of 8-12 repetitions at 70% 1RM 

with 90s of rest between sets.  The concentric and eccentric portions of the lift were each set for 

1s for a total of a 2s repetitions. The load was progressed if participants completed at least 12 

repetitions across all 4 sets of exercise, to ensure they are maintaining approximately 70% of 

their 1RM.  

 

4) Exercise	Progression	

Given the large volume of exercise associated with the low load protocols, we gradually 

increased the number of sets performed for all exercise conditions. Specifically, all groups 

performed 1 set of exercise on the first training session, 2 sets of exercise on the second training 

session, 3 sets of exercise on the third and fourth exercise sessions and 4 sets for all training 

sessions thereafter.  

 

5) Muscle Thickness 
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B-mode ultrasound (GE Healthcare NextGen LOGIQ e, Little Chalfont, Buckinghamshire, UK) 

was used to measure the distance between the muscle-bone and muscle-adipose interface. Three 

different measurement locations were taken on the anterior upper arm of both arms at 50%, 60% 

and 70% the distance from the acromion process to the lateral epicondyle. An additional 

measurement was also taken at the 60% site of the posterior right arm to serve as a within subject 

control, given that the triceps were not directly trained. Muscle thickness measurements were 

taken at the first pre and post visits as well as the midpoint of training by the same tester with 2 

images taken and stored on an external drive to be analyzed later. During analysis, the tester was 

blinded to each condition.  

 

6) Acute muscle swelling 

In order to use swelling as a confirmatory measure of skeletal muscle growth, the acute swelling 

response was measured at the 70% muscle thickness site before and after training (on each arm) 

during visit 1, visit 9, and visit 15. Following the muscle thickness procedures outlined above, 

muscle thickness measures were taken on each arm prior to and immediately after the completion 

of all 4 sets of exercise.   

  

7) One repetition maximum  

We tested the unilateral strength of the participant’s arms using the elbow flexion exercise. We 

assessed the 1RM on both arms (1-RM; the heaviest weight they can lift one time with good 

form). Participants performed each attempt with their back against the wall. To ensure the full 

range of motion was completed, the investigator handed the participant the weight while the arm 
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is fully extended.  Participants were supervised by trained personnel during all strength testing. 

Participants completed 1RM testing on the second pre visit and the second post visit.   

 

8) Isokinetic and Isometric Strength: 

Isokinetic and isometric maximal voluntary contractions (MVC) was tested on a dynamometer 

(Biodex Quickset System 4). Each participant was seated in the dynamometer with the chair 

adjusted for each individual and the settings were recorded to ensure the same testing conditions 

for both the pre and post measures. For isokinetic testing, the participant were given 2 attempts at 

60 and 180°/s, with 60s of rest between each attempt. Next, the participant completed two 3-8s 

isometric MVC’s at 60° of elbow flexion with 60s rest between attempts. Participants were 

provided with visual feedback for the duration of the MVC.  This was done on each arm. Testing 

was completed on the third pre visit and the third post training visit. 

 

9) Muscle Endurance: 

The participants completed as many repetitions as possible on the elbow flexion exercise using 

42.5% of their pre-test 1RM, to a metronome of 1 second for the concentric and 1 second for the 

eccentric portion of the lift; totaling 2s per repetition. The test was terminated if they were not 

able to keep pace to the metronome or could not lift the load through a full range of motion. The 

last successful repetition completed was used for analysis. Participants rested for 5 minutes 

between each arm. Endurance testing took place during the second pre visit and second post 

training visit. 

 

10) Arterial Occlusion:  
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Upon arrival for their scheduled training session, if the participant had an arm randomized into a 

BFR condition, arterial occlusion was determined. Participants were standing with a 5cm 

(Hokanson, Bellevue, WA, USA) cuff placed at the top of the arm.  The pressure was determined 

by placing an MD6 Doppler probe (Hokanson, Bellevue, WA, USA) at the radial or artery to 

detect a pulse. The pressure cuff was then inflated and was increased by 1 mmHg increments 

until a pulse is no longer present. The pressure to the nearest 1 mmHg at which blood flow is 

ceased was deemed the arterial occlusion pressure. This occurred prior to start of each training 

session to account for any variation in the arterial occlusion pressure that might happen over 

multiple visits. This pressure was then set to 40% of the resting arterial occlusion pressure for the 

low pressure condition and 80% of the resting arterial occlusion pressure for the high pressure 

condition.  

 
 

STATISTICAL ANALYSIS 

Acute Statistics 

Using the SPSS 24.0 statistical software package (SPSS Inc., Chicago, IL), a 4x3 (condition x 

time) repeated measure ANOVA was used to determine any differences in muscle thickness and 

torque between conditions in the upper body. To determine any differences in EMG amplitude 

for the first three and last three repetitions for each of the exercise sets across conditions, two 

separate 4x4 (condition x reps) repeated measures ANOVA were used. If there were interactions, 

we ran one-way ANOVAs across time within each condition, as well as across conditions within 

each time point. Statistical significance for all tests will be set at an alpha level of 0.05. 

 

Chronic Statistics 
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In order to examine changes in all strength and muscle thickness values across time between 

groups, while accounting for our within/between subject design, all strength and muscle 

thickness measures were analyzed using a linear mixed model approach. Prior to analysis, two 

models were examined for each variable. In one model, the variance structure was set as 

compound symmetry. In the second model, the variance structure was set as unstructured, with 

random effects and individual intercepts for each participant. Akaike’s Information Criterion 

(AIC) and Schwaiz’s Bayesian Criterion (BIC) values were compared to determine the most 

appropriate model. For triceps (control) muscle thickness, a repeated measured analysis of 

variance (ANOVA) was used to examined changes in muscle thickness across time.  If there was 

an interaction (p < 0.05) we examined simple effects. Otherwise, main effects of time and 

condition were examined.



	 42	

CHAPTER IV: RESULTS 

 

Acute Results 
 

Demographics 
 
A total of 22 resistance-trained males (n = 12) and females (n = 10) [mean (SD); age 22 (2) 

years; height: 174.7 (10.4) cm; body mass: 76 (17) kg; RA 1RM: 20.1 (8.9) kg; LA 1RM: 19.7 

(8.9) kg] were recruited to participate in this study. 

 

Repetitions 

For repetitions there was a condition x set interaction (p<0.001). For set 1, the 1500 condition 

completed more repetitions than the 1580 [mean difference 14.5(23),p=0.009] and 7000 [mean 

difference 78.4 (9), p<0.001] conditions. In addition, the 1540 condition completed more 

repetitions during the first set compared to the 1580 [mean difference 9.9 (15),p=0.005] and 

7000 [mean difference = 73.8(14.5), p<0.001] conditions. During the first set, the 1580 condition 

also completed more repetitions compared to the 7000 condition [mean difference 63.9 (22), 

p<0.001]. During the second set, the 7000 condition completed less repetitions than the 1500 

[mean difference = 49 (29.5), p <0.001] ,1540 [mean difference = 48.4 (30.4), p <0.001] and 

1580 [mean difference = 24 (24.8), p <0.001] conditions. In addition, the 1580 condition 

completed less repetition than the 1500 [mean difference 24(24.3), p <0.001] and 1540 

conditions [mean difference = 24.0 (22.9) during set 2. During the third set, the 1580 condition 

performed less repetitions compared to the 1500 [mean difference = 23 (22.5), p < 0.001)] and 
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1540 conditions [mean difference = 17 (20.6), p < 0.001). The 1580 condition also performed 

more repetitions compared to the 7000 condition during the third set [mean difference = 17.5 

(23.9), p < 0.001). During the fourth set, the 1580 condition performed less repetitions compared 

to the 1500 [mean difference = 20.1 (15.4), p < 0.001)] and 1540 conditions [mean difference = 

16.5 (22.3), p = 0.002). The 1580 condition also performed more repetitions compared to the 

7000 condition during the fourth set [mean difference = 18.0 (27.6), p < 0.001). The 7000 

condition completed less repetitions than all low load conditions across all sets (p < 0.001)(Table 

1). 

 

Table 1: Repetitions for each condition across sets 
 Set1 Set2 Set3 Set4 Time 
1500 87(7)a

 54(30)a
 45(31)a

 42(32)a
 1 v 2,3,4; 2 v 3,4; 3 v 4 

1540 82(14)a
 54(31)a

 39(29)a
 38(31)a

 1 v 2,3,4; 2 v 3,4 
1580 72(21)b

 30(26)b
 22(25)b

 22(28)b
 1 v 2,3,4; 2 v 3,4 

7000 8(2)c
 5(2)c

 5(3)c
 4(1)c

 1 v 2,3,4; 2 v 4 
Letters indicate conditions within a given set were not significantly different (p>0.05). In 

additions, the “Time” column displays significant differences (p < 0.05) across sets within each 
condition. 

 

Muscle Thickness 

For muscle thickness, there was a group x time interaction (p<0.001). At baseline, there were 

statistically significant differences between the 1500 [3.8 (0.97cm)] and 7000 [3.9 (1.0cm)] 

condition (p = 0.029), as well as the 1500 [3.8 (0.97cm)] and 1540 [3.9 (1.0cm)] conditions. 

Immediately following exercise, the 7000 condition had lower muscle thickness values [4.2 (1.0) 

cm] compared to the 1500 [4.4 (1.1) cm, p = 0.001], 1540 [4.4(1.1) cm, p = 0.001], and 1580 

[4.5 (1.0) cm, p = 0.001] conditions. There were no significant differences between any of the 

low load conditions at this time point. This continued 15 minutes post exercise, with the high 

load condition having lower muscle thickness values [4.1(1.0) cm], compared to 1500 [4.2 (1.0) 
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cm, p = 0.019], 1540 [4.3 (1.0) cm, p=0.003] and 1580 [4.3 (1.0) cm, p<0.001] conditions. There 

were no significant differences between any of the low load conditions at this time point. For all 

conditions, muscle thickness increased from pre to post exercise (p<0.001), remaining elevated 

above baseline 15 minutes post exercise (p<0.001, Figure 1, table 2).       

 

 

Table 2: Acute Muscle Thickness Values 

 1500 1540 1580 7000 
Pre 3.8 (0.9)a 4 (1.0)b 3.9 (1.0)a,b 4 (1.1)b 

0 Min Post 4.4 (1.1)a* 4.5 (1.1)a* 4.5 (1.0)a* 4.2 (1.1)b* 

15 Min Post 4.3 (1.1)a* 4.3 (1.1)a* 4.4 (1.1)a* 4.2 (1.1)b* 

Mean (SD) values for muscle thickness before exercise (pre), immediately following exercise (0 
Min Post) and 15 min following exercise (15 Min Post). There was a group x time interaction (p 

< 0.001). For a given time point (i.e., pre, 0 Min Post, 15 Min Post) conditions with the same 
letter indicates similar muscle thickness at that time point. An asterisks* denotes a given value is 

significantly different from pre (p < 0.05) within a given condition. 
  
 
Figure 1: Acute Change in Muscle Thickness 
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Figure 1 displays acute changes in muscle thickness relative to pre-values for 0 min post exercise 
and 15 min post exercise. 

 

Isometric Torque 

For Isometric torque, there was a condition x time interaction (p<0.001). Immediately following 

exercise torque values were significantly lower in the 1500 [31.8 (20) Nm, p=0.004], 1540 

[28.3(16.9) Nm, p<0.001] and 1580 [29.5 (17) Nm, p=0.002] conditions compared to the 7000 

condition [40 (19) Nm]. There were no significant differences between any of the low load 

conditions at this time point. At 15 minutes post exercise, 1500 [39.9 (23) Nm, p= 0.007) and 

1540 [38.6(18) Nm, p= 0.001] conditions demonstrated lower torque values compared to the 

7000 [47 (23) Nm] condition.  There were no other significant differences between conditions at 

this time point. For all conditions, torque decreased immediately following exercise (p<0.001), 

increasing towards baseline, but remaining depressed 15 minutes following the exercise bout 

(p<0.001) (Figure 2, table 3). 

Table 3: Acute Isometric Torque Values  

  1500 1540 1580 7000 
Pre 51.5 (25) 51.5 (25) 55.9 (25) 54.9 (26) 

0 Min Post 31.8 (21)a 28.4 (17)a 29.5 (17)a 40 (19)b 

15 Min Post 40 (23)a 38.7 (19)a 44.4 (24)a 47.6 (24)b 

Mean (SD) values for isometric torque values before exercise (pre), immediately following 
exercise (0 Min Post) and 15 min following exercise (15 Min Post). There was a group x time 
interaction (p < 0.001). For a given time point (i.e., pre, 0 Min Post, 15 Min Post) conditions 
with the same letter indicates similar isometric torque values at that time point. Within each 
condition, all time points are significantly different from one another (p < 0.001).    
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Figure 2: Acute Change in Isometric Torque 

 

Figure 2 displays acute changes isometric torque relative to pre-values for 0 min post exercise 
and 15 min post exercise. 
Electromyography 

Two individuals failed to complete repetitions on at least one set of exercise and were excluded 

from analysis of EMG. Thus, 20 individuals were included in the final analysis. For the first 

three repetitions, there was a condition x set interaction (p<0.001). Follow up analysis showed 

that the high load condition tended to display greater EMG amplitude compared to all low load 

conditions across all sets (p<0.001, Table 4). In addition, the 1580 condition displayed greater 

activation compared to the 1500 condition during the first set. For the 1500 and 1540 conditions, 

there was a general trend for increased muscle activation across the first 3 sets, with muscle 

activation remaining similar between sets 3 and 4 (p<0.05). The 1580 condition displayed 

increased activation from sets 1 to sets 2, with activation remaining similar thereafter (p<0.001) 
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Within the 7000 condition activation was only significantly different between sets 1 and sets 4 (p 

=0.04, table 2).  

 
 
Table 4: EMG First 3 Repetitions 

 Set1 Set2 Set3 Set4 Across Sets: 
1500 33(16)a 45(19)a 48(18)a 48(17)a 1v2, 1v3, 1v4, 2v3 
1540 28(11)a,b 41(14)a 45(15)a 46(13)a 1v2, 1v3, 1v4, 2v3, 2v4 
1580 24(11)b 41(12)a 42(13)a 46(18)a 1v2, 1v3, 1v4  
7000 71(34)c 67(26)b 66(27)b 65(27)b NA 

EMG amplitude for the fisrt three repetitions across sets for each condition. Conditions with the 
same letter indicates similar EMG amplitude during a given set. Within each condition, 

significant differences (p < 0.001) are indicated in the right most column. 
  

For the last three repetition There was no condition x set interaction (p = 0.35), however, there 

were main effects of condition (p = 0.03) and set (p= 0.001) Percentage EMG amplitude (relative 

to an isometric MVC) was greater in the high load condition compared to the 1580 condition 

(p=0.007).  There were no other significant differences between conditions. Across sets, relative 

EMG amplitude was greater in set 1 [66.7(21.8)] compared to set 4 [62.9(21.400] (p=0.032), in 

set 2 [69.1 (24.4)] compared to set 3 [64.2(20.2)] and in set 2 [69.1(24.4)] compared to set 4 

[62.9(21.400] (p<0.001). EMG values across sets for conditions are displayed in table 5.    

 
 
Table 5: EMG Last3 repetitions 

 Set1a,b Set2a Set3b,c Set4c  
1500a,b 65(30) 66(28) 62(24) 61(22)  
1540a,b 62(23) 67(27) 64(20) 62(24)  
1580a 58(27) 63(39) 56(33) 54(32)  
7000b 81(31) 77(30) 73(25) 73(27)  

EMG amplitude for the last three repetitions across sets for each condition. Conditions with the 
same letter indicates similar EMG within those conditions (p > 0.05). Sets with the same letter 
indicates similar EMG across those sets (p > 0.05).    
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Chronic Results 

Demographics 

All data are displayed as means (95%CI), with the exception of repetitions, which are displayed 

as means (SD). A total of 40 individuals (males=20; [mean (95% CI) Age 21.8 (20.5, 23) yrs; 

Height: 178.3 (175, 181) cm; Body mass: 75.8 (71.2, 80.3) kg; BMI: 23.8 (22.6, 25.1)]) 

(females=20; [mean (95% CI) Age: 21.2 (20.2, 22.2) yrs; Height: 164.8 (162.2, 167.4) cm; Body 

mass: 61 (57.3, 64.6) kg; BMI: 22.2 (20.9, 23.6)]) completed the study. Participant 

characteristics are displayed in table 6. 

Table 6: Chronic Study Demographics 
 Male (n=20) Female (n=20) 

Age 21.8 (20.5, 23) 21.2 (20.2, 22.2) 
Height (cm) 178.3 (175, 181) 164.8 (162.2, 167.4) 

Body Mass (kg) 75.8 (71.2, 80.3) 61 (57.3, 64.6) 
BMI (kg/m2) 23.8 (22.6, 25.1) 22.2 (20.9, 23.6) 

All values are presented as means (95% CI) 

 

Repetitions 

Repetitions for each condition across weeks are displayed in table 7. 

Table 7: Repetitions for Conditions Across Weeks 
 Week 1 Week 2  Week 3 Week 4  Week 5  Week 6  Week 7  Week 8  
1500 244 (27) 455 (106) 622 (146) 644 (131) 665 (99) 701 (44) 691 (76) 685 (100) 
1540 218 (40) 399 (120) 541 (176) 573 (160) 576 (140) 625 (136) 638 (118) 644 (144) 
1580 163 (45) 250 (120) 356 (182) 341 (157) 391 (185) 390 (196) 406 (209) 461 (204) 
7000 34 (9) 60 (14) 74 (20) 82 (19) 85 (23) 93 (25) 100 (26) 105 (32) 

Total repetitions displayed as means (SD) 
 
 
1RM Strength 

It was determined that the compound symmetry variance structure was most appropriate for the 

analysis of 1RM data. There was a condition x time interaction (p = 0.003). Follow up test 

showed that the change in strength was greater in the high load condition [2.09 (95% CI = 1.35-
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2.83)kg,] compared to the 1500 condition [0.537 (95% CI = 0.219-1.294)kg, p = 0.004], 1540 

[0.269 (95% CI = 0.449-0.99)kg, p = 0.001], and 1580 conditions [0.55 (95% CI = 0.182-

1.294)kg, p = 0.004]. There were no statistically significant increases in strength for any of the 

low load conditions (1500, 1540 and 1580) from pre to post training (p > 0.05) (Table 8). 

However, strength did increase in the high load condition (p < 0.001). The pre-post change in 

1RM strength is displayed in figure 3. Additionally, 1RM strength values are displayed in figure 

4.  

 

Table 8: Mean change (95% CI) for 1RM strength across conditions 
  95% CI For Difference 

Condition  Mean Change (kg) Lower Upper 
1500 0.53 -0.21 1.29 
1540 0.26 -0.44 0.99 
1580 0.55 -0.18 1.29 
7000 2.09 1.35 2.82 
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Figure 3: Change in 1RM Strength 

  

Mean change (95% CI) for 1RM strength across conditions. There was a condition x time 
interaction (p = 0.003). An asterisks* indicates significantly different from 1500, 1540 and 1580 
conditions. # indicates a significant change within a condition.   

 

 

 

 

 

 

 

 

 

 

-1 

-0.5 

0

0.5

1

1.5

2

2.5

3

1500 1540 1580 7000

C
ha

ng
e 

in
 k

g

Condition

Change in One Repetition Maximum Strength
#*



	 51	

 

Figure 4: One-Repetition Maximum Strength 

 

Mean values (95% CI) for 1RM strength across conditions. There was a condition x time 
interaction (p = 0.003). An asterisks* indicates significantly different from 1500, 1540 and 1580 
conditions. # indicates a significant change within a condition. 
 

 
Isometric Strength 
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interaction (p = 0.207). In addition, there were no main effects for time (p= 0.456) or condition 

(p = 0.470). Mean change scores are displayed in table 9. In addition, isometric strength change 

scores are displayed in figure 5 and values are displayed in figure 6. 
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Table 9: Mean change (95% CI) for isometric strength across conditions 
  95% CI For Difference 
 Mean Change (Nm) Lower Upper 

1500 0.453 -2.829 3.735 
1540 -0.638 -3.76 2.484 
1580 -0.875 -4.074 2.324 
7000 3.475 0.276 6.674 

 

 

Figure 5: Change in Isometric Strength 

 

Mean change (95% CI) for isometric strength across conditions 
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Figure 6: Isometric Strength 

 

Mean values (95% CI) for isometric strength across conditions pre and post training intervention. 
 

Isokinetic Strength 

60°/sec 

It was determined that the unstructured variance approach was most appropriate for the analysis 

of isokinetic data at 60°/sec. For isokinetic strength at 60°/sec there was no condition x time 

interaction (p = 0.704). In addition, there were no main effects for time (p= 0.649) or condition 

(p = 0.954). Isokinetic strength change scores are displayed in table 10 and figure 7. 

Additionally, values at each time point are displayed in figure 8. 
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Table 10: Mean change (95% CI) for isokinetic strength 60°/sec across conditions 

  95% CI For Difference 
 Mean Change (Nm) Lower Upper 

1500 -0.832 -3.289 1.625 
1540 -1.12 -3.491 1.252 
1580 0.032 -2.403 2.466 
7000 0.276 -2.198 2.75 

 

 

Figure 7: Change in Isokinetic Strength 60°/sec 

 

Mean change (95% CI) for isokinetic strength 60°/sec across conditions 
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Figure 8: Isokinetic Strength 60°/sec 

 

Mean values (95% CI) for isokinetic strength 60°/sec across conditions pre and post training 
intervention. 
 

180°/sec 

It was determined that the unstructured variance approach was most appropriate for the analysis 

of isokinetic data at 180°/sec. There was no condition x time interaction (p = 0.739). In addition, 

there were no main effects for time (p= 0.951) or condition (p = 0.792). Isokinetic strength 

change scores are displayed in table 11 and figure 9. Additionally, values at each time point are 

displayed in figure 10. 
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Table 11: Mean change (95% CI) for isokinetic strength 180°/sec across conditions 

 
  95% CI For Difference 
 Mean Change (Nm) Lower Upper 

1500 -0.165 -2.522 2.192 
1540 -0.513 -2.803 1.776 
1580 0.748 -1.58 3.076 
7000 0.161 -2.178 2.5 

 

 

Figure 9: Change in Isokinetic Strength 180°/sec 

 

Mean change (95% CI) for isokinetic strength 180°/sec across conditions 
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Figure 10: Isokinetic Strength 180°/sec 

 

Mean values (95% CI) for isokinetic strength 180°/sec across conditions pre and post training 
intervention. 
 

Muscular Endurance 

It was determined that the unstructured variance approach was most appropriate for the analysis 

of muscular endurance data. For muscular endurance, there was no condition x time interaction 

(p = 0.375). In addition, there was no main effect for condition (p = 0.914). However, there was 

a main effect for time (p < 0.001). The number of repetitions performed increased from pre to 

post-training [Mean change = 7.9 (4.3 – 11.6) repetitions, p <0.001]. Results are visually 

displayed in figure 11 and provided in table 12. 
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Figure 11: Muscular Endurance 

 

Repetitions completes for muscular endurance pre and post intervention. The Asterisks* denotes 
a main effect for time (p < 0.001) 
 

Table 12: Muscular Endurance Repetitions Pre and Post 
 1500 1540 1580 7000 
Pre 23 (21-26) 23 (21-26) 23(20-25) 22 (18-27) 
Post 31 (25-36) 30 (25-35) 33 (27-38) 31 (26-36) 

Repetitions pre and post training across conditions. Data are presented as means (95%CI).  
 

  

Muscle Thickness 

For all muscle thickness sites, it was determined that the unstructured variance approach was 

most appropriate. 
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For the 50% site, there was a condition x time interaction (p = 0.004). The mean change in 

muscle thickness from pre to post training in the 7000 condition was greater than that observed 

in the 1500 [mean difference = 0.09 (0.01 - 0.18), p = 0.022], 1540 [mean difference = 0.11 (-

0.03 - 0.20), p = 0.005] and 1580 [mean difference = 0.09 (0.12 - 0.17), p = 0.024] conditions. 

Similarly, the mean change in muscle thickness from mid to post training in the 7000 condition 

[0.11 (0.058 - 0.162)] was greater than that observed in the 1500 [mean difference = -0.14 (0.07 - 

0.22), p < 0.001], 1540 [mean difference = 0.10 (0.03 - 0.17), p = 0.003] and 1580 [mean 

difference = 0.09 (-0.28 - 0.16), p = 0.007] conditions. There were no differences between 

conditions in the change in muscle thickness from the pre to mid time points (p > 0.05). Muscle 

thickness mean differences scores are provided in table 13. In addition, muscle thickness values 

at each time point are displayed in figure 12. 

Table 13: 50% Site: Mean differences (95% CI) for changes in Muscle Thickness  
 Pre vs. Mid  Mid vs. Post Pre vs. Post 

1500 0.104 (0.041-0.167)*a -0.038' (-0.092 - 0.015)a 0.066 (0.003 - 0.128)*a 

1540 0.043 (-0.043 - 0.103)a 0.001 (-0.05 - 0.052)a 0.044 (-0.016 - 0.103)a 

1580 0.058 (-0.003 - 0.12)a 0.011 (-0.041 - 0.063)a 0.069 (0.008 - 0.13)*a 

7000 0.053 (-0.009 - 0.115)a 0.11 (0.058 - 0.162)*b 0.163 (0.101 - 0.225)*b 
An asterisks* denotes a significant change within each condition. For a given time point (i.e., pre 
vs. mid, mid vs. post) conditions with the same letter indicates a similar change in muscle 
thickness.    
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Figure 12: Biceps 50% Site 

 
Mean values (95% CI) for muscle thickness values at the 50% site across conditions for pre mid 
and post training intervention. 

 
 

Biceps 60% Site  

For the 60% site, there was a condition x time interaction (p = 0.014). The mean change in 

muscle thickness from pre to post training in the 7000 condition was greater than that observed 

in the 1500 [mean difference = 0.10 (0.01 - 0.18) cm, p = 0.026], 1540 [mean difference = 0.09 

(0.004 - 0.17) cm, p = 0.04] and 1580 [mean difference = 0.09 (0.01 - 0.18) cm, p = 0.025] 

conditions. Similarly, the mean change in muscle thickness from mid to post training in the 7000 

condition was greater than that observed in the 1500 [mean difference = 0.09 (0.02 - 0.16)] cm, p 

= 0.006], 1540 [mean difference = 0.11 (-0.05 - 0.18) cm, p = 0.001] and 1580 [mean difference 

= 0.11 (0.04 - 0.17) cm, p = 0.001] conditions. There were no differences between conditions in 

the change in muscle thickness from the pre to mid time points (p > 0.05).  Muscle thickness 
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mean differences scores are provided in table 14. In addition, muscle thickness values at each 

time point are displayed in figure 13. 

 

Table 14: 60% Site: Mean differences (95% CI) for changes in Muscle Thickness  
 Pre vs. Mid  Mid vs. Post Pre vs. Post 

1500 0.048 (-0.012-0.108)a 0.002 (-0.046 - 0.05)a 0.05 (-0.02 - 0.12)a 

1540 0.083 (0.026 - 0.141)*a -0.023 (-0.069 - 0.023)a 0.061 (-0.006 - 0.127)a 

1580 0.068 (0.01 - 0.127)*a -0.016 (-0.064 - 0.031)a 0.052 (-0.017 - 0.12)a 

7000 0.055 (-0.003 - 0.113)a 0.096 (0.048 - 0.144)*b 0.151 (0.082 - 0.22)*b 

An asterisks* denotes a significant change within each condition. For a given time point (i.e., pre 
vs. mid, mid vs. post) conditions with the same letter indicates a similar change in muscle 

thickness. 
 

Figure 13: Biceps 60% Site 

 

Mean values (95% CI) for muscle thickness values at the 60% site across conditions for pre mid 
and post training intervention. 
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For the 70% site, there was no condition x time interaction (p = 0.308). In addition there was no 

main effect for condition (p = 0.958). However, there was a main effect for time (p = 0.001). 

Muscle thickness increased from pre-testing to the midpoint [mean change = 0.06 (0.01– 0.10) 

cm, p = 0.005] and remained elevated above baseline at post-testing [mean change = 0.09 (0.5 – 

0.14 cm, p < 0.001]. Muscle size also increased from the midpoint to the post-testing time point 

[mean change = 0.03 (0.003 – 0.06) cm, p < 0.035]. Muscle thickness values across conditions 

are provided in table 15, and collapsed across conditions in figure 14.  

Table 15: 70% Site: Mean Values (95% CI) for Muscle Thickness   
 1500 1540 1580 7000 
Pre 3.26 (3.05- 3.42) 3.24 (3.04 - 3.45) 3.24 (3.03 - 3.45) 3.21 (3.01 - 3.42) 
Mid  3.31 (3.11 - 3.50) 3.32 (3.12 - 3.51) 3.31 (3.12 - 3.51) 3.28 (3.08 - 3.47) 
Post 3.33 (3.12 - 3.54) 3.32 (3.11 - 3.52) 3.35 (3.15 - 3.56) 3.35 (3.14 - 3.56) 

 

Figure 14: Biceps 70% Site 

 

Mean values (95% CI) for muscle thickness values at the 70% site across conditions for pre mid 
and post training intervention. 
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Triceps 60% Site  

For the triceps 60% site, there was not main effect of time (p = 0.092). Triceps muscle thickness 

remained constant from pre [3.113 (2.871 – 3.354) cm] to mid [3.083 (2.857 – 3.309) cm] to post 

training [3.062 (2.830 – 3.293) cm]. Results are displayed in figure 15.  

Figure 15: Triceps 60% Site  

 

Mean values (95% CI) for muscle thickness at the 60% site  of the triceps collapsed across 
conditions for pre mid and post training intervention. 

 

 

Acute Swelling 

It was determined that the compound symmetry variance approach was most appropriate for the 

analysis of muscle swelling data. For the change in acute swelling there was a condition x time 
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less in the high load condition compared to all low load conditions across all time point 

comparisons (p<0.05). In addition, the change in the swelling response from pre to mid was 

significant (p < 0.05) for all conditions. From pre to post, the change in the swelling response 

was significant (p < 0.05) for the 1540, 1580 and 7000 conditions. The change in muscle 

thickness from mid to post was not significant for any condition (P > 0.05). Acute changes in 

muscle thickness for each condition for pre, mid and post are displayed in table 16. Table 17 

displays the changes in the acute swelling response between the respective time points (pre vs. 

mid, pre vs. post and mid vs. post).  

Table 16: Change in muscle thickness following an acute training bout  
 Pre Mid Post 

1500 0.352 (0.286-0.418) 0.434 (0.368-0.500) 0.380 (0.314-0.446) 
1540 0.339 (0.276-0.403) 0.441 (0.378-0.504) 0.438 (0.375-0.501) 
1580 0.360 (0.295-0.424) 0.512 (0.447-0.576) 0.496 (0.431-0.560) 
7000 0.141 (0.076-0.205) 0.361 (0.297-0.426) 0.363 (0.298-0.427) 

Values are displayed across conditions for pre, mid and post training study. All values are 
presented as means (95% CI) 
 
 
 
Table 17: The change in the acute muscle swelling response 

 Pre vs. Mid Pre vs. Post Mid vs. Post 
1500 0.082 (0.00-0.164)a* .028 (-0.054-0.110)a -0.054 (-0.136-0.028)a 

1540 0.102 (0.024-0.180)a* 0.099 (0.020-0.177)a* -0.003 (-0.082-0.075)a 

1580 0.152 (0.072-0.232)a,b* 0.136 (0.056-0.216)a,b* -0.016 (-0.096-0.064)a 

7000 0.220 (0.140-0.300)b* 0.222 (0.142-0.302)b* 0.002 (-0.078-0.082)a 

The change in the acute muscle swelling response from “pre to mid”, “pre to post” and “mid to 
post” training study. Values are displayed across all conditions. The same letter indicates that 

conditions within a given time points were not different from one another (p > 0.05). In addition, 
an asterisks* indicates that the change between time points within each condition was significant 

(p > 0.05). All values are presented as means (95% CI)
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CHAPTER V: DISCUSSION 
Acute Study 

The primary findings of the acute portion of the study were as follows: 1) Blood flow restriction 

(BFR) decreased the number of repetitions performed in the low load conditions, with high 

pressure completing less repetitions compared to low pressure;  2) All groups displayed an acute 

muscle swelling response (low loads producing greatest change), with the swelling being greatest 

immediately post exercise, decreasing towards baseline 15 minutes post exercise; 3) Torque 

decreased in all groups from pre to post exercise (low loads producing greatest change), 

increasing towards baseline 15 minutes post; and 4) EMG amplitude  (relative to an isometric 

MVC) was greatest in the high load condition compared to the very low load conditions.  

 

Fatigue and Electromyography 

In the present study, we observed greater torque decrements in all low load conditions 

(regardless of pressure) compared to the traditional high load condition.  The torque decrements 

observed were of a greater magnitude than what has previously been reported, with decreases of 

40, 46 and 48% observed for the 1500, 1540 and 1580 conditions respectively. This is nearly 

twice the 26% decrease that was observed in the traditional high load condition. The decrements 

in the present study were also greater than those observed by Dankel et al. (2017), who found 

decreases of 15% and 20% for 1540 and 1580 conditions respectively when exercise was not 

performed to volitional failure (performed 1 set of 30 repetitions followed by 3 sets of 15). 

Considering that changes in isometric torque are considered a surrogate for fatigue, it is not 
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surprising that the torque decrements were so large in the low load conditions. For example, the 

amount of fatigue necessary to render an individual incapable of overcoming a load of 15% 1RM 

is much greater than the level of fatigue needed to render them incapable of overcoming a load 

of 70% of 1RM.  Taken into consideration with the EMG data, it seems likely that the protocol 

was able to increase motor unit recruitment despite the low load used, with no differences noted 

with or without the application of restrictive pressure. This is similar to the findings of Kacin and 

Strazar (2011) who observed similar EMG activity between legs exercising at 15% MVC with or 

without the application of ischemic pressure. Authors suggests that “differences in muscle 

activation between ischemic and control exercise disappear when exercises are performed at 

maximal efforts”(Kacin & Strazar, 2011). Fahs et. al (2015) noted lower EMG amplitude when 

comparing blood flow restricted and free flow unilateral knee extension exercise. However, 

differences were subtle (~10% difference) compared to those observed between low load and 

traditional resistance exercise. Thus, performing exercise to volitional failure may be particularly 

important when employing loads as low as 15% 1RM. This may alter recruitment patterns, 

facilitating the involvement of higher threshold motor units which may not be involved without 

the presence of fatigue (Fallentin, Jorgensen, & Simonsen, 1993). When more fibers are stressed, 

this may act as a signal for molecular events leading to a hypertrophic response. The present 

study also observed higher relative EMG amplitudes (~54 - 67% MVC during the last three 

repetitions of each set) compared to those observed by Dankel et al.(2017) whilst employing 

loads of 15% 1RM not to volitional failure (~36-43% of MVC during the last 3 repetitions of 

each set). It appears that higher level of EMG amplitude can be accomplished with lower loads if 

individuals train to failure/fatigue; however, these values are still lower than those observed with 

high load resistance training. 
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Acute Changes in Muscle Thickness 

Haussinger (1993) has been suggested that cellular hydration may act as an anabolic proliferative 

signal, resulting in a shift towards anabolism. Although much of the understanding of cell 

swelling is derived from research in hepatocyte cells (Haussinger et al., 1993; Loenneke et al., 

2012), it is still postulated as a mechanism to explain why BFR may attenuate skeletal muscle 

loss during periods of disuse and may ultimately play a role during all resistance type activities 

(Loenneke et al., 2012). Although it is unclear if cell swelling is a “mechanism” for muscle 

growth, a similar swelling response has been documented following a number of resistance 

training protocols. If not anabolic on its own, the presence of a swelling response may be 

indicative that a sufficient stimulus was achieved with the resistance training protocol.  Our lab 

has observed a remarkably similar acute swelling response across a number of different 

resistance exercise protocols in the upper (Buckner et al., 2016, Counts et al., 2016) and lower 

body (Loenneke et al., 2016). Dankel et al. (2017) noted subtle differences in the acute swelling 

response, with acute swelling tending to be greater with increasing pressure and intensity when 

comparing the responses to 10, 15 and 20% 1RM with moderate (40% AOP) and high (80% 

AOP) restrictive pressures. The acute swelling response in the present study was greater than 

values previously observe in the literature for the low load training groups. Specifically, we 

observed acute changes of 0.55 (0.22) cm, 0.51 (0.19) cm, and 0.56 (0.20) cm immediately 

following exercise for the 1500, 1540 and 1580 training groups respectively. Following 

traditional high load resistance training we observed a more typical acute swelling response of 

0.27 (0.14) cm. We believe this larger swelling response is likely driven by the volume or work 
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performed in the very low load conditions. Specifically, many of the participants were 

performing several sets of exercise for a duration of 3 min. 

  

Repetitions 

Blood flow restriction decreases the number of repetitions to volitional failure compared to 

regular low load training, presumably through a reduction in oxygen, and an accumilation of 

metabolites (Loenneke et al., 2012). For example, Jessee et al. (2017) found that higher pressures 

typically resulted in fewer repetition completed compared to lower pressures when employing a 

standardized exercise protocol (30 repetitions on set 1, followed by 3 sets of 15) with 30% of 

1RM. Nonetheless, across a wide range of restrictive pressures (0%, 10%, 20%, 30%, 50%, or 

90% AOP) all groups appeared to reach volitional failure as demonstrated by individuals’ 

inability to perform all of the goal repetitions. When implementing this same protocol with lower 

loads (10, 15 or 20% of 1RM) together with moderate (40% AOP) or high (80% AOP) restrictive 

pressure, our research group found that individuals in the 15% 1RM condition completed all 

repetitions regardless of the pressure applied. These results suggest that a standardized exercise 

protocol may not be appropriate when using very low loads since volitional failure appears 

necessary for achieving a similar stimulus across individuals (Dankel et al., 2017). For example, 

It has been demonstrated that females are more resistant to fatigue than males (Clark, Collier, 

Manini, & Ploutz-Snyder, 2005), and that endurance athletes are more fatigue-resistant than 

weight-trained individuals (Richens & Cleather, 2014). Thus when performing an arbitrary 

number of repetitions, an individual’s ability to reach failure may be dependent on their local 

muscular endurance. The present results also brought into question the ability to reach volitional 

failure when using such light loads. The present study found that the majority of individuals, 
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regardless of pressure, reached volitional failure by the first or second set of exercise with 15% 

of their 1RM. There were only 6, 5, and 3 individuals to complete all repetitions during the final 

set for the 1500, 1540 and 1580 conditions respectively. Although BFR does not appear to 

augment the acute muscular response to very low loads, it does decrease the repetitions 

necessary to reach volitional failure.     

 

Chronic Study 

 

1RM strength 

Increases in 1RM strength were only observed in the high load training condition in the present 

study. These strength adaptations occurred despite muscle growth in all conditions, albeit growth 

was typically less in all low load conditions. Previous literature examining strength adaptations 

between high load and low load resistance exercise have often observed greater 1RM strength 

increases in high load training conditions, despite similar increases in muscle size (Martin-

Hernandez et al., 2013; Ogasawara et al., 2013). Mitchell et al. (2012) found that low load 

training (30% 1RM) increased dynamic muscle strength but not to the same extent as a condition 

that had repeated practice lifting a heavy load (80% 1RM). In a follow up study, Morton et al. 

(2016) found that strength differences could be largely eliminated through practice of a 1RM 

every three weeks throughout the duration of the study. Thus, when allowing the participants to 

practice the strength test periodically, the differences in dynamic strength between low loads and 

high loads were eliminated in each of the simple machine based strength skills (i.e., machine 

guided shoulder press, machine guided knee extension, and leg press). However, when assessing 

strength in a more complex skill (barbell bench press 1RM) the strength differences between 
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loading schemes was not completely abolished. This suggests that specificity is important for the 

acquirement of strength, and that a greater volume of practice is necessary as the complexity of 

the skill increases. The results of the present study suggest that loads as low as 15% of 1RM do 

not facilitate adaptations in 1RM strength. This is similar to the findings of Kacin and Strazar 

(2011), who observed increases in muscle size with no change in performance measures when 

examining adaptations to 4 weeks of knee extension exercise performed at 15% of MVC with the 

application of restrictive pressure. Conversely, Lixandrao (2015) observed increases in knee 

extension 1RM strength following 12 weeks of lower body resistance exercise performed with 

20% 1RM with moderate (40% AOP) and high (80% AOP) restrictive pressures; however, 

strength increases were not as great as those observed in a group training with 80% 1RM. Holm 

et al. (2008) observed increases in 1RM strength following 12 weeks of unilateral knee extension 

exercise performed using 15.5% of 1RM.  However, the observed increase (19 ±	2%) was much 

less that that observed in the contralateral leg performing traditional high load (70% 1RM) 

resistance exercise (36 ±	5%). In addition, investigators assessed 1RM strength on 4 separate 

occasions over the course of the study. Thus, the 1RM strength adaptations observed by Holm et 

al. (2008) may be explained through their practice of the 1RM test itself as opposed to an 

adaptation facilitated through the training program. Altogether, it appears that lower loads are 

capable of augmenting 1RM strength; however, the lower the loads become the less likely it 

appears that strength adaptations will be observed.  

 

Isometric and Isokinetic Strength 

Our laboratory group has previously suggested that multiple strength tests (i.e., isometric, 

isokinetic) should be utilized in order to better capture any strength adaptation that may result 
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from a resistance training program (Buckner et al., 2017). This suggestion was largely influenced 

by our observations that low load training did not always result in similar strength adaptations as 

high load training, despite similar muscle growth. Naturally, our thinking on this has evolved as 

we have come to suspect that exercise induced increases in muscle size play little role with 

exercise induced increases in muscle strength (Buckner et al., 2016) Results of the present study 

would support this assertion. Specifically, no measures of isometric or isokinetic strength were 

augmented in any of the training groups. Likewise, 1RM strength increased in the high load 

training group, who’s training largely resembled the 1RM strength assessment. Although 

strength mechanisms are poorly understood, it has been previously demonstrated that isometric 

and isokinetic strength measures can increase following isotonic training programs. However, 

others have questioned the assertion that there is a “generality” of strength adaptation. 

Specifically, Baker et al. (1994) examined the relationship between isometric and dynamic 

measures of muscular function to determine the existence of “generality or specificity”. Authors 

noted moderate correlations between dynamic and isometric strength at baseline of a resistance 

training program (r = 0.57 – 0.61), but found that the changes in strength measures following a 

heavy resistance training program were unrelated (r = 0.12 to 0.15) (Baker et al., 1994). 

Although their study design and analysis were not adequate to draw definitive conclusions on 

strength adaptation, authors suggested that “a generality of muscular function does not occur 

across differing testing conditions and it would appear imprudent to extrapolate the results of one 

form of testing to another”. This suggestion is more properly illustrated by Rasch and Morehouse 

(1957), whom found that strength in the elbow flexors increased more when participants were 

tested in a position (erect vs. supine) and manner (dynamic vs. modified Martin technique) more 

similar to how they had trained. They ultimately concluded that strength adaptations likely 
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reflect the acquisition of skill. We believe that this lack of a “generic” strength highlights the 

importance of specificity when training for a desired strength outcome. Although we have 

previously suggested that multiple strength assessments may better capture strength adaptation 

following a resistance training protocol (Buckner et al., 2017), it seems that these changes may 

just be reflecting skill acquisition resulting from more than one exposure to the test coupled with 

some a potential crossover of strength adaptation from the training program itself. Results of the 

present study suggest that 2 exposures in combination with our training protocols was not a 

sufficient enough stimulus to augment strength outcomes on these tests (i.e., isometric and 

isokinetic testing). In addition, the movement patters of biceps curls performed with heavy and 

very low loads appear to facilitate no skill acquisition for maximal isometric or isokinetic 

strength. Overall, it seems the farther a performance or strength task deviates from the training 

program, the more difficult it is to estimate what adaptations will be observed. In addition, 

strength increases that are believed to be indicative of “generality” appear largely dependent on 

the number of exposures an individual has performing that specific strength skill.  

  

Mechanisms of Strength Adaptation 

Although the widely accepted model of strength adaptation would suggest that strength is driven 

by both neural and hypertrophic adaptations (Moritani & deVries, 1979), mechanisms of strength 

adaptation remain largely elusive. For example, our research group has examined statistically 

equivalent strength adaptations between a group performing a one-repetition maximum attempt 

twice a week for 8-weeks and a group performing traditional high load training (8-12 repetition 

maximum) to volitional failure in the knee extension and chest press (machine) exercises 

(Mattocks et al., 2017). Interestingly, the model proposed by Moritani and Devries (Moritani & 
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deVries, 1979) can very seldom explain strength adaptations observed following a resistance 

training protocol. For example, this model would suggest that trained individuals would require 

muscle growth for continued strength adaptation, which does not appear to be the case (Dankel et 

al., 2017; Zourdos et al., 2015). It seems that the increase in strength following resistance 

exercise is likely a function of neural adaptations, and/or changes at the muscle level that do not 

result in a change in muscle size (i.e., changes in composition of the myosin motors, pattern of 

calcium release, and/or changes in components involved in the excitation contraction coupling 

process). As previously stated, alterations in agonist-antagonist co-activation, increases in motor 

unit firing rates, and changes in descending drive to the motor neurons may explain a large 

portion of increases in strength observed with resistance exercise (Gabriel et al., 2006). 

However, even studies investigating neural adaptations provide conflicting results. Jenkins et al. 

(2016), observed similar changes in voluntary activation between high-load and low-load 

resistance exercise, which would predict similar strength adaptations. However, high load 

training still elicited greater increases in 1RM strength compared to the low load condition. This 

illustrates that divergent neural adaptations assessed through twitch interpolation may not 

explain a large portion (if any) of the strength differences observed following high load or low 

load resistance exercise. Although the exact mechanisms of strength are presently unknown, our 

results reiterate the importance of specificity for strength adaptation and underscore the need for 

future work aimed to better understand mechanisms of strength adaption.       

 

Skeletal Muscle Growth 

In the present study, all conditions increased muscle thickness. However, the overall growth 

response appeared most robust in the 7000 condition compared to all low load conditions. The 
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1540 and 1580 conditions increased muscle size at the 50% site; however, these changes were 

not as great as those observed in the 7000 condition. In addition, only the high load condition 

observed increases in muscle thickness at the 60% site from pre to post. Despite these 

differences, all groups increased muscle similarly at the 70% site. Although high-loads, low 

loads and low loads with the application of BFR are have been shown to result in similar changes 

in skeletal muscle size (Mitchell et al., 2012; Ogasawara et al., 2013), results of the present study 

would suggest that loads as low as 15% of 1RM may not be as effective as high loads at 

producing a homogenous growth response across the muscle. This is similar to the findings of 

Holm et al. (2008), whom compared muscle size adaptations following 12 weeks of either 

unilateral knee extension performed at 15.5% (10 sets of 36 repetitions) or 70% (10 sets of 8 

repetitions) of 1RM, finding that increases in quadriceps muscle cross-sectional area were much 

greater in the high load (70% 1RM, increase of 7.4 ±	1.4%) training group compared to the 

lower load (15.5% 1RM increase of 2.6 ±	0.8%) training group. Interestingly, Lixandrão et al. 

(2015) compared muscle size and strength adaptations across a variety of intensities and 

pressures and found that intensities as low as 20% 1RM with moderate pressure applied (40% 

AOP) produced no muscle growth. Authors observed greater increases in muscle size with 

increasing exercise intensity (20% 1RM < 40% < 80%), with higher pressures (80% AOP) 

appearing more important for growth when lower loads are used (20% 1RM). For example, 

authors found that increasing the relative occlusion pressure from 40% to 80% of augmented 

muscle growth when using a load of 20% 1RM load, but had no greater effect when a 40% load 

was used (Lixandrao et al., 2015).  Authors ultimately suggested that “occlusion pressures seem 

secondary to exercise intensity”. However, it is important to note that Lixandrão et al. (2015) 

used a standardized exercise protocol (2-3 sets of 15 repetitions) that did not induce failure like 



	 75	

the present study, or produce a high level of fatigue as seen in the Holm investigation (2008). 

Had all individuals performed exercise to volitional failure, it seems reasonable to suggest that 

investigators may have observed a more homogeneous growth response across conditions. 

Nonetheless, authors provided some evidence regarding the potential importance of restrictive 

pressure when lower loads are used. In contrast, Counts et al.(2016) found that the application of 

40% or 90% of arterial occlusion pressure in combination with low load resistance exercise at 

30% of 1RM resulted in similar increases in muscle size and strength following 8 weeks of 

training in the elbow flexors. Although the difference in exercise load could explain why 

Lixandrão et al.(2015) found pressure to be important with lower loads, it seems that the 

conservative exercise protocol employed (similar to the previous suggestion) by Lixandrão et 

al.(2015) may ultimately explain the lack of hypertrophy observed in their 20% 1RM condition 

with moderate pressure applied (40% AOP). In the present study, the level of pressure applied 

did not appear to augment any of the adaptations observed following 8-weeks of training. This 

would suggest that BFR alone cannot make up for the lack of stimulus provided by loads of 15% 

1RM (when training to failure). Further, the only apparent benefit of BFR was a reduction in the 

number of repetitions performed to volitional failure.   

 

Hypertrophy as a Mechanism for Strength Adaptation 

Muscle growth was observed in all conditions in the present study, despite a complete lack of 

strength adaptation in all low load training groups. Such findings defy convention, which would 

suggest that muscle growth is a mechanism for strength adaptation (Moritani & deVries, 1979). 

However, based on the lack of direct evidence that exercise induced increases in muscle size 

contribute to increases in muscle strength adaptation, our laboratory group has suggested that 
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these are separate and unrelated adaptations (Buckner et al., 2016). Previous literature has 

demonstrated that low-load alternatives to traditional resistance exercise often result in similar 

skeletal muscle growth as traditional high load training with divergent results found with 

strength (Martin-Hernandez et al., 2013; Mitchell et al., 2012; Ogasawara et al., 2013). When 

interpreting these studies it is perplexing that similar muscle growth does not result in similar 

strength adaptation. However, if these adaptations are considered as separate and unrelated, the 

large majority of the literature becomes easier to explain. This also brings in to question what the 

role of skeletal muscle hypertrophy is. Although compensatory skeletal muscle hypertrophy may 

serve some physiological purpose, it does not appear that is plays a role in strength adaptation. 

Morehouse may have been correct in 1963 when he suggested that “It has not been proved that 

hypertrophy is necessarily a desirable reaction”, explaining that  “some students are of the 

opinion that it may be simply a by-produce of training, perhaps a noxious one (Morehouse & 

Miller, 1963).” Thus, skeletal muscle hypertrophy may simply be a by-product of resistance 

exercise and serve no underlying purpose.  

 

Given the lack of direct evidence that exercise induced skeletal muscle growth is important for 

strength adaptation, our research group has begun to design studies designed to examine the 

influence that skeletal muscle growth has on strength. We have observed that a group performing 

a one-repetition strength test twice a week (designed to increase only muscle strength) increased 

strength similarly to a group performing traditional resistance exercise (designed to increase 

muscle size and strength) twice a week. Of note, the increase in muscle size in the traditional 

resistance training group had no additive effect on strength adaptation (Mattocks et al., 2017). 

This same phenomenon has also been demonstrated in a small cohort of trained individuals 
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following 3-weeks of daily strength practice or traditional resistance exercise in combination 

with the strength practice (Dankel et al., 2016). The results of the present study further contribute 

to this body of literature demonstrating that increases in muscle size and increases in strength do 

not appear dependent on one another over an 8 week period. A criticism of all these studies is the 

duration over which adaptations are observed (i.e, 8 weeks or 3 weeks). Although this is a 

limitation, it is important to acknowledge that the original study that established muscle growth 

as a mechanism for strength adaptation was only 8 weeks in duration. Considering this, we 

believe these studies provide strong evidence against the long perpetuated mechanism of skeletal 

muscle growth for strength adaptation (Moritani & deVries, 1979).  

 

Acute Swelling response 

The acute swelling response showed that very low loads can produce a much greater swelling 

response compared to high load exercise. However, we were most interested in how the swelling 

response itself changes across time within each condition. Our results showed that a similar acute 

swelling response was observed across time (from mid to post) within each condition, providing 

some indication that there was not a large presence of swelling prior to taking measurements of 

muscle thickness. The changes in acute swelling observed between the pre to mid and pre to post 

time points were different only because participants performed one set of exercise during their 

initial visit instead of the complete protocol (4 sets of exercise). Although gradually increasing 

the protocol was not the original design, we decided this was the best approach given the amount 

of volume performed in the low load conditions. We have previously suggested that the acute 

swelling response itself can be exploited to confirm that skeletal muscle growth has occurred 

(Buckner et al., 2017). Results of this dissertation suggest that the acute swelling response can 
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likely be used to detect the presence of baseline swelling; however, our results (both acute and 

chronic) are contra to Buckner et al.’s (2017) hypothesis that the acute swelling response 

observed following traditional high load resistance training is a muscles maximal capacity for a 

swelling response. Meaning (for example) the swelling response observed with high loads can be 

exceeded with a lower load protocol (i.e., 15% 1RM to failure). These results suggest that the 

swelling response to a given protocol appears fairly repeatable across time and can possibly be 

used to detect the presence of baseline swelling.    

 

Local Muscular Endurance 

In the present study, we observed a similar increase in local muscular endurance across all 

groups, with the adaptations in low load conditions not influenced by the addition of restrictive 

pressure. Despite the low load training groups performing a much greater number of repetitions 

during each training visits, the testing load chosen (42.5% 1RM) did not cater to “specificity” of 

either group. Schoenfeld et al. (2015) found that low load training (25–35 repetitions to muscle 

failure) resulted in improvements in bench press muscular endurance; whereas high load training 

(8–12 repetitions to muscular failure) saw no improvements. Schoenfeld et al. (2015)  

hypothesized that divergent adaptions at the muscle fiber level may underlie these differences; 

however, the endurance catered to specificity of the low load group, which may better explain 

these findings (i.e., low load group trained at 30-50% 1RM and endurance test was performed 

with 50% 1RM). In addition, Schoenfeld (2015) used the baseline 1RM for the pre-endurance 

test and the post 1RM for the post endurance test. In the present study, we used the same load for 

pre and post endurance testing. Thus, these findings would suggest that endurance adaptations in 

the 7000 condition may result from the training load being a lower relative percentage during 
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post-testing; whereas adaptations in the low load conditions are likely a result from 

mitochondrial or other local adaptations (Burd et al., 2012). Much like other non-specific 

performance measures, we would suggest that the farther the task deviates from the training 

program, the more difficult it is to estimate what adaptations will be observed. 
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CHAPTER VI: CONCLUSIONS 

 
The purpose of this study was to compare the acute skeletal muscle response (i.e., acute muscle 

swelling, acute torque decrements and muscle activity) following a variety of resistance training 

protocols (i.e., different combinations of arterial occlusion pressure and load) in the upper body. 

In addition, this study sought to examine long-term adaptations of skeletal muscle size, strength 

and endurance following 8 weeks of these various resistance-training protocols. Results of the 

present study shed important light regarding the efficacy of BFR when very low exercise loads 

are used. Primarily, it appears that very load loads (15%1RM) produce similar decreases in 

torque, and similar acute increases in muscle thickness when performed to volitional failure 

regardless of applied restrictive pressure. In addition, high pressures decreased the number of 

repetitions performed to volitional fatigue. Results of the present study also showed that acute 

changes in muscle thickness and torque are much greater than those observed in the high load 

training group, or previous investigations examining low loads. Interestingly, our chronic date 

demonstrated that loads of 15% (regardless of pressure applied) produce skeletal muscle growth. 

However, this response is not as robust as that observed following high load resistance training. 

In addition, training loads of 15% (with or without the application of BFR) do not produce 

increases in measures of strength. 
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   Research Question (Acute) 

Will the acute skeletal muscle response differ between traditional high load resistance exercise 

and very low load resistance exercise with and without the application of different blood flow 

restriction pressures? 

Hypothesis 

1. It was hypothesized that, acute changes in torque and muscle thickness would be 

similar across all resistance exercise protocols (15% 1RM; 15% 1RM + 40% AOP; 

15% 1RM + 80% AOP; 70% 1RM). 

This hypothesis was not supported, as all low load conditions displayed significantly 

greater reductions in isometric torque compared to the high load condition. 

 

2. It was hypothesized that electromyography amplitude, as measured through EMG 

would be higher in the high load resistance condition (70% 1RM) compared to all 

other conditions. 

This hypothesis was supported as the high load condition displayed greater EMG 

amplitude compared to all low load conditions. 

3. Research Question (Chronic) 

Will the chronic skeletal muscle adaptations differ between traditional high load resistance 

exercise and very low load resistance exercise with and without the application of different 

blood flow restriction pressures? 

Hypothesis (Chronic) 

4. It was hypothesized that similar skeletal muscle growth would be observed across all 

resistance exercise conditions across the 8 week period. 
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This hypothesis was partially supported, as similar muscle growth was observed across 

all conditions at the 70% site of the biceps. However, the high load condition displayed 

greater skeletal muscle growth than all low load conditions at the 50 and 60% sites. 

 

5. It was hypothesized that isometric and isotonic strength adaptations would be 

greatest in the traditional high load training condition (70% 1RM), with strength 

adaptations being similar between all low load conditions (regardless of AOP). 

This hypothesis was partially supported in that the high load condition was the only 

condition to observe changes in 1RM strength. This hypothesis was not supported in that 

no changes in isometric or isokinetic strength were observed in any condition.  

 

6. It was hypothesized that muscular endurance would change similarly across 

exercise protocols.  

This hypothesis was supported as all training conditions displayed similar changes in 

local muscle endurance following the 8 weeks of training. 
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Significance 
 
Results of the present study may have implications for clinical populations, which may include: 

individuals recovering from injury (Ohta et al., 2003), individuals coming off bed rest (Cook et 

al., 2010) or those limited by other musculoskeletal disorders, in whom the ability to perform 

traditional resistance exercise may be limited (Ohta et al., 2003). Although loads of 15% 1RM 

are incredibly light, they do appear to stimulate a growth response. It is important to note that 

this response was not as robust as that observed following traditional high load training. Thus, 

higher loads may be preferential if the primary goal is to maximize muscle growth and strength 

adaptation.  Perhaps more importantly, the present study provided some indication that BFR 

cannot augment muscle size and strength adaptations induced by a given training load. Rather, 

BFR decreases the volume of work necessary to reach momentary failure. This study sought to 

determine the efficacy of the addition of blood flow restriction to very low load resistance 

exercise, and there appears to be very little benefit to using BFR in combination with very low 

loads. In addition to this, our results shed further light on the relationship between changes in 

muscle size and changes in strength following training. Specifically, we observed changes in 

muscle size across very low load conditions, with no change in any strength measure. This adds 

to a growing body of literature demonstrating the independence of muscle size and strength 

adaptations, while also demonstrating that muscle growth can occur independent of the external 

load an individual must overcome (Ozaki et al., 2016).  
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Future Research 
 

Although loads of 15% 1RM do not appear to produce a robust muscle growth response, changes 

in muscle size were still observed. Further, it doesn’t appear that BFR augments this response. It 

seems reasonable to suggest that intensities as low as 15% 1RM have the most application in 

clinical populations who are unable to lift heavier loads. However, the goal with such 

populations is likely a prevention of atrophy as opposed to an actual growth response. Future 

research should explore the application of very low loads for atrophy prevention during bed rest 

or rehabilitation. In addition, future research should continue to explore the role of skeletal 

muscle hypertrophy for strength adaptation. The present findings provide further evidence that 
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