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Abstract 

 Given the rising global energy demands, alternative renewable energy sources are currently 

being investigated. The most appealing renewable energy source is solar energy, and dye-

sensitized solar cells (DSSCs) in particular are an attractive technology. DSSCs have traditionally 

utilized iodide/triiodide as the redox mediator couple, which exhibits high efficiencies and fast 

regeneration of the oxidized dye with little recombination. Recently, the use of alternative redox 

couples based on transition metal complexes has been studied as a promising substitute due to the 

tunable design of these complexes. In this study, tridentate tris(pyrazolyl)borate and 

tris(pyrazolyl)methane ligands with first-row transition metals were designed and synthesized to 

function as viable redox shuttles in DSSCs. Electrochemical studies of these complexes exhibit 

reversible redox couples within the desired parameters for DSSCs. The synthesized first-row 

transition metal tris(pyrazolyl)borate complexes demonstrate electrochemical reversibility, but 

lack the desired solubility in acetonitrile. Due to the minimal solubility of the Tp complexes, the 

study shifts focus to Tpm complexes for this DSSC application. Indeed, the [Fe(Tpm)2]3+/2+ system 

exhibits both electrochemical reversibility and the desired solubility in acetonitrile, making it a 

promising redox shuttle candidate. Future work to test the [Fe(Tpm)2]3+/2+ system in a DSSC is 

needed to determine the viability of this redox shuttle in a working device. Overall, this study 

illustrates that the synthesized iron Tpm complexes could be a viable alternative to the traditional 

I–/I3– electron mediator, but further testing is necessary to establish the efficiency.  
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1. Introduction 

1.1: Global Energy Demands 

 There has been an exponential rise in the consumption of energy on a global scale since 

the early 1900’s. In the United States alone, the sources of energy have shifted from the renewable 

resource of wood to fossil fuels, such as petroleum, coal, and natural gas. The transition to fossil 

fuels is illustrated in Figure 1 for the United States over a 234-year period. While various forms 

of energy sources are combating this growing energy demand, the majority of the energy needs 

are met with fossil fuels. In particular, the fossil fuels of coal, petroleum, and natural gas have 

accounted for 87% of the total U.S. energy consumption over the past decade.1 

 

Figure 1. Total energy consumption in the United States from 1775-2009.1 
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The trend seen in both global and domestic energy consumption is a positive trend for 

economic growth and technological advancement. However, there are several problems correlated 

with our unprecedented energy consumption. The primary sources of energy that we utilize are 

fossil fuels, which are nonrenewable resources that have a limited quantity and require millions of 

years to replenish in the Earth’s crust. Fossil fuels provide for a robust and growing capitalistic, 

global economy. These factors are contributing to the depletion of nonrenewable resources. In 

addition, the amount of these fuels is challenging to know. Ultimately, the supply of these 

resources will be depleted entirely. Over the past decade several studies have predicted that fossil 

fuel reserves will be diminished relatively shortly with depletion times of 35, 107, and 37 years 

for oil, coal and gas, respectively.2 

The extinction of fossil fuels that provide for the majority of global energy needs would 

ruin the current global economy. The continual combustion of fossil fuels for energy usage releases 

carbon dioxide (CO2) into the atmosphere. Carbon dioxide is a greenhouse gas, a gas that traps 

heat in the atmosphere, causing global temperatures to rise. The elevated levels of carbon dioxide 

pose a direct relationship with global temperature levels. Elevated greenhouse gases are a leading 

factor for the increase of 0.85 (±0.2) oC in global mean surface temperature (GMST) from 1880 to 

2012.3 Elevated temperatures will influence several negative consequences, such as the melting of 

ice caps resulting in a rise in global sea level. Sea levels have changed over time, depending on 

global temperature and glaciation. At several points in history, there have been consistent rises in 

the sea level followed by a rapid drop in the sea level. Most of these low sea level periods have 

coincided with mass extinctions of marine organisms.10 Over time, sea levels and atmospheric gas 

levels have shown to rise and decline leading to these mass extinctions, yet the rate at which 

atmospheric carbon dioxide is currently rising is a profound concern. These issues associated with 
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high nonrenewable energy consumption levels need to be scrutinized and altered to provide a safe 

and sustainable future.  

1.2: A solution to the rising energy demands 

 A plausible solution to address our rising energy consumption is to utilize renewable 

resources that both minimize the consumption of fossil fuels and reduce the negative effects 

imposed on the environment. Renewable energy is derived from sources that are not limited, like 

fossil fuels, and provide a limitless potential if unleashed. Hence, renewable resources are an 

attractive alternative solution given the minimal environmental effects, and sheer abundance of 

supply. Since the 1970s, there has been an increased focus on the area of renewable resources to 

supplement our growing energy concerns. In 2014, a study conducted by BP (British Petroleum) 

estimated that the global renewable energy share of energy consumption was approximately 9%, 

yet fossil fuels still accounted for 87% of energy consumption.4 The major types of renewable 

energy sources are biomass, hydropower, geothermal, wind, and solar. The three primarily studied 

and implemented areas consist of hydropower, wind, and solar energy.  

 Hydropower energy is a renewable resource that taps into moving water sources, rivers, 

and lakes, while maximizing the force of water to produce mechanical energy. In the United States 

alone, hydroelectricity accounts for approximately 6.6% of total US utility-scale electricity 

generation.5 Water sources are abundant throughout the world offering a level of feasibility that 

fossil fuels fail to permit. However, the source of hydroelectric power must be located on or near 

a water source to benefit from this field. Hence, this resource is limited in the availability of a 

moving water source capable of forcing water through a change in elevation to yield electricity, or 

energy. Another downside to hydroelectric power is the extraneous modification to the water 

source that negatively transforms the aquatic environment.5 Hydroelectric energy sources have 
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maximized and will continue to meet some of our energy needs, yet fail to meet global demand 

alone. 

 Another renewable resource currently utilized is wind energy. Wind energy is of 

importance given the clean energy it provides without the combustion of fossil fuels that result in 

atmospheric carbon dioxide. Wind turbines can be constructed and installed on farms or ranches 

of the world to harness wind energy to create electricity in a cost-effective manner.6 The majority 

of wind turbines are installed in rural areas, which requires the development of transmission lines 

to carry the electricity over a large distance to reach urban centers. Another disadvantage is the 

associated hazard and negative costs inflicted on local organisms, such as birds that fly into the 

apparatus.6  

 The other common renewable resource that can be utilized in a non-environmentally taxing 

method is solar energy. Solar energy is an attractive alternative to achieve energy without fossil 

fuels given its unmatched abundance and clean footprint on the Earth. Solar energy is the most 

superior renewable energy source based on availability, cost effectiveness, accessibility, and 

capacity. On a daily basis, the sun emits energy at the rate of 3.8 x1023 kW, where 1.8 x 1014 kW 

is intercepted by the Earth.7 In the United States alone, photovoltaic (PV) panels covering 0.6% of 

the total area could supply enough electricity to power the entire United States.8 Solar energy has 

an advantage over wind and hydropower sources in that availability is not restricted to a specific 

location, thus location can be rural or urban. Solar energy harvesting mechanisms, such as solar 

panels, can be installed on top of buildings, or even the windows themselves permitting 

practically.8 Another advantage of solar energy over wind or hydropower energy is the minimal 

consequences inflicted on the animal biosphere located in area. Solar energy offers unmatched 

potential if accessed appropriately and harvested in a cost-effective manner to provide the world 
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with an energy source that can generate the required electrical energy demands in an 

environmentally friendly manner.  

1.3: Dye-Sensitized Solar Cells 

 Dye-sensitized solar cells (DSSCs) are photoelectrochemical solar devices that offer a 

plausible alternative to the current unstable consumption of fossil fuels for global energy 

necessities. DSSCs are attractive given their low cost, high light-to-electricity conversion 

efficiencies, and their minimized environmental footprint. A DSSC consists of four common 

components: a photoanode, a sensitizer dye, a cathode, and redox shuttle. The photoanode is a 

semiconducting porous metal oxide with high surface area, typically nanocrystalline titanium 

oxide (TiO2). On the backside of the semiconducting metal oxide is a transparent conductive oxide 

(TCO), while the dye is absorbed onto the TiO2 surface that is in contact with the redox shuttle 

solution. The redox shuttle serves to regenerate the ground state sensitizer completing the electrical 

circuit between sensitized TiO2 and the counter electrode; the traditional redox shuttle consists of 

iodide/triiodide redox pair (I3-/I-).12 A general schematic of a dye-sensitized solar cell is shown in 

Figure 2.  

 

Figure 2. A general schematic for a DSSC.20  
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 Development of a highly efficient DSSC requires an ideal sensitizer dye with a lowest 

unoccupied molecular orbital (LUMO) that has a more negative reduction potential than the 

semiconductor’s conduction band and a highest occupied molecular orbital (HOMO) that has a 

more positive reduction potential than the redox couple.20 The harnessing of sunlight for electrical 

power is a result of the excitation of the sensitizer within the DSSC. When incident light strikes 

the DSSC, the light will travel through the TCO layer reaching the photoanode with adsorbed dye 

resulting in the excitation of an electron. The excited electron is injected into the semiconducting 

porous metal oxide, and the oxidized dye is regenerated by the redox couple. The injected electron 

will flow through the semiconductor band to an external circuit reaching the counter electrode 

(CE) or cathode. Electron transfer at the cathode regenerates the oxidized redox shuttle to complete 

the circuit. However, unproductive back electron transfer, or recombination, of the injected 

electron with the oxidized sensitizers or with the oxidized form of the redox couple can also occur 

during this process. These two electron transfer reactions (shown by the red arrows in Figure 2) 

are undesirable as it reduces the efficiency of the DSSC.20  

1.4: Recent shift to Transition Metal Redox Shuttles  

 One of the most efficient redox mediators employed thus far has been I3-/I-, due to the fact 

that I- allows for fast regeneration of the oxidized dye while minimizing recombination losses.9 

However, this redox mediator is a two-electron system. The first step involves electron transfer 

from I- to regenerate the reduced form of the redox shuttle forming the radical, I2•-. Hence, the 

second step must regenerate I- and I3- for continued electron transfer.25 The formation of this 

intermediate step is energetically unfavorable compared to a one-electron redox systems. This has 

given rise to alternative one-electron redox couples for DSSCs.  
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 Recent studies have investigated the use of metal organic redox mediators in place of the 

I3-/I- redox couple. A prominent advantage to these systems is their adjustable molecular ligands 

for fine-tuning the redox potential. Thus, these one-electron redox shuttles must be designed to 

pair appropriately with the LUMO and HOMO levels of the sensitizer dye.20 The tunability and 

variation of these redox shuttles has been heavily researched over the past couple of decades, 

resulting in several examples of more efficient redox systems for DSSCs.  

1.5: Previous Studies of Redox Shuttles 

 Redox shuttles play a critical role in completing the circuit by transferring an electron 

collected at the counter electrode to the oxidized dye at the photoanode in dye-sensitized solar 

cells. Several transition metal-based redox shuttles have been implemented for this role such as 

[Co(bpy)3]3+/2+, which has yielded power conversion efficiencies as high as 13%.15 

Poly(pyrazolyl)borate complexes were first studied by Trofimenko and extensive investigations 

on the unsubstituted and the 3,5-dimethyl ligand have occurred from 1971-1993.18,21 Some twenty-

five years later, poly(pyrazolyl)borate compounds have been investigated as alternative redox 

shuttles in quantum dot-sensitized solar cells (QDSSCs). These Mn poly(pyrazolyl)borates 

displayed lower recombination at the TiO2 than the most efficient redox shuttle, [Co(bpy)3]3+/2+.20 

The [Mn(Tp)2]1+/0 redox mediator used in this study in shown in Figure 3. Consequently, the 

downfall of these poly(pyrazolyl)borate redox mediators revolved around their low solubility 

which limited the sustained photocurrent that was possible. A previous study investigated the 

electrochemical properties of iron(II)-bis[tris(pyrazolyl)methane] in CH3CN, which exhibited a 

chemically reversible oxidation at 0.69 V vs. Fc+/0.19 However, this study did not examine this 

complex as a redox shuttle in a DSSC.  
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Figure 3. Manganese tris(pyrazolyl)borate redox shuttle complex investigated by Morris et al.12 

1.6: The Rationale of this Study 

 Poly(pyrazolyl)borate ligands have been studied extensively over the past four decades 

following Trofimenko’s initial publication on this class of compounds.21 These ligands have been 

utilized as an exceptional chelating agent for first-row transition metals. The coordinating ability 

of the poly(pyrazolyl)borate ion is a consequence of favorable electronic and geometric factors.21 

The tris(pyrazolyl)borate ion is highly tunable and can be prepared with a wide range of different 

R groups at different positions as shown in Figure 4.15 Tris(pyrazolyl)borate ligands have been 

employed in numerous capacities, including oxidative alkane C-H bond functionalization16 and 

metalloenzyme model complexes.17 These anionic tridentate ligands have C3v symmetry and bind 

metal ions in a facial orientation, often enforcing octahedral geometries with notable exceptions 

involving derivatives with bulky substituents at the 3-position of each donor.  Many studies have 

focused on substitutions at the 3- and 5-positions of each pyrazole ring with various R groups such 

as alkyl, aryl, and halide groups as well as fused rings.18 However, relatively few investigations 

have been reported involving the effects of substituents at the 4-position of the pyrazole donors. 

Trofimenko concluded that the 4-position of the Tp ligand can be fine-tuned, as the 4-position of 

the pyrazole is remote from the metal; however, added substituents can be used to increase or 
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decrease the overall electron density of the ligand via their electron-donating or -withdrawing 

properties, respectively.18  

 

Figure 4. Structure of tris(pyrazolyl)borate (Tp) with variable R groups at the 3-, 4-, and 5- 

positions.15 

 Morris and coworkers recently employed manganese bis[hydrotris(pyrazolyl)borate] as a 

redox shuttle, utilizing the Mn(III/II) couple, in QDSSCs.12 However, high photocurrent was not 

sustainable due in large part to the poor solubility of the compound, presumably the neutral Mn(II) 

species in particular, which limits mass transport. Mn(III)/(II) poly(pyrazolyl)borates have been 

examined due to their kinetic barrier from a high-to-low spin transition resulting in a lower 

heterogeneous electron transfer rate that reduces recombination.20 Poly(pyrazolyl)borate 

complexes have more positive reduction potentials than [Co(bpy)3]3+/2+ establishing the viability 

of Mn poly(pyrazolyl)borates as promising redox mediators with higher solubilities. In this 

context, we sought to develop new redox shuttles based on tris(pyrazolyl)borate compounds for 

dye-sensitized solar cells. We reasoned that adding alkyl substituents to the pyrazole donors would 

enhance solubility in organic solvents such as acetonitrile. Herein we report first-row transition 

metal compounds of manganese(II), iron(II), cobalt(II), and nickel(II) of bishydrotris(3,5-

dimethyl-4-ethylpyrazolyl)borate. These compounds were characterized and compared to 
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analogous compounds supported by unsubstituted tris(pyrazolyl)borate as well as those of the less 

substituted tris(3,5-dimethylpyrazolyl) borate to quantify the impact on properties such as redox 

potentials and solubility upon substitution at the 4 position. 

 Schultz and coworkers recently determined coupled electron-transfer and spin-exchange 

reactions of metal-bis[tris(pyrazolyl)methane] complexes.19 They reported similarities in the 

electrochemical, magnetic, and spectroscopic properties of these Tpm complexes in comparison 

to the corresponding Tp complexes with the only major difference being that the M(III/II) potential 

difference of ~1 V more positive for [M(Tpm)2]3+/2+ derivatives than for the [M(Tp)2]1+/0 couples 

due, in large part, to the net charge differences. A key discovery in this study is the integrity of 

[Fe(Tpm)2]2+ complex is maintained in acetonitrile, while this complex undergoes ligand 

dissociation in DMF.19 This property is of necessary concern for the application of this redox 

shuttle in DSSCs. The tridentate ligand for the iron complex synthesized in this study is shown in 

Figure 5. Given the electrochemically reversible redox couple, increases in the reduction potential, 

and the solubility in acetonitrile, we predict that we can produce an efficient redox mediator using 

this ligand framework.  

 

Figure 5. Structure of tris(pyrazolyl)methane (tpm), the neutral tridentate ligand coordinated to 

the iron complex synthesized in this study.  
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2. Experimental Procedures 

2.1: Materials and Methods 

 Unless otherwise noted, all synthetic manipulations were performed under nitrogen 

atmosphere utilizing standard Schlenk techniques or in an MBraun glovebox. Dichloromethane, 

and tetrahydrofuran were dried with a Pure Process Technology solvent purification system. 

Compounds iodoethane, potassium borohydride, and iron (II) chloride tetrahydrate were purchased 

from Sigma Aldrich. Anhydrous metal salts nickel (II) chloride hexahydrate and cobalt (II) 

chloride hexahydrate, were purchased from VWR Life Science and Beantown Chemical, 

respectively. The acetylacetonate precursor 2,4-pentanedione was purchased from Alfa Aesar. All 

other chemicals were reagent or ACS grade, purchased from commercial vendors, and used 

without further purification. 1H NMR spectra were obtained with using a Bruker 300 spectrometer 

operating at 300MHz. Spectra were calibrated to residual protiated solvent peaks; chemical shifts 

are reported in ppm. High Resolution Electrospray ionization mass spectrometry (ESI-MS) spectra 

were obtained with a Waters SYNAPT HDMS Q-TOF mass spectrometer. IR spectra were 

obtained on an Agilent Technologies Cary 600 series FTIR spectrometer as a KBR pellet. UV-

visible spectra were recorded on an Agilent/Hewlett-Packard 8453 UV-Visible Spectrophotometer 

with diode-array detector. 

2.2: Synthetic Route for tris(pyrazolyl)borate ligand 

 The overall synthetic route for the tridentate ligand used in this study, tris(3,5-dimethyl-4-

ethylpyrazolyl) borate (TpMe24Et), is shown in Figure 6.  
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Figure 6. Synthetic route for (TpMe24Et). 

2.3: Synthesis of Tp ligand 

Sodium Acetylacetonate (1) 

To generate the first ligand precursor, Acetylacetone (30.9 mL, 0.3 mol) was slowly added 

dropwise to a solution of NaOH (8 g, 0.2 mol) in methanol/water (4:1; 50 mL). During the whole 

process, the mixture was stirred at room temperature so that the temperature of the reaction system 

remained constant. Once the reaction was finished, the products were washed three times with ice-

cooled methanol after filtration in vacuum and then placed in a vacuum drying oven to give the 

product as a white solid (19.2 g) in 94% yield.  

 

 

• 
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3-Ethylpentane-2,4-dione (2) 

The sodium pentane-2,4-dione (3.2 g, 26.0 mmol) was then mixed with ethyl iodide (66.6 mL, 832 

mmol) and 2-butanone (12 mL) in a pressure vessel and heated at 80-85oC for 3 days under 

vacuum. Water (120 mL) and toluene (160 mL) was added to the mixture and the colored toluene 

layer was separated. The toluene and excess ethyl iodide were removed in vacuo. Crude Yield: 

2.01 g (60%). 

3,5-dimethyl-4-ethylpyrazole (3) 

Hydrazine monohydrate (7.3 g, 0.146 mol) was added dropwise to a solution of 3-ethyl-2,4-

pentanedione (18.71 g, 0.146 mol) in ethanol (100 mL). This reaction was mildly exothermic and 

stirred vigorously for one hour. Removal of solvent under vacuum yielded a yellow crystalline 

product. Yield: 15.68 g (88%). 1H NMR (CD2Cl2): δ 10.16 (NH, s, 1H), 2.21 (3,5-CH3, t, 6H), 

2.37 (-CH2Me, q, 2H), 1.06 (CH2CH3, t, 3H). 

Potassium tris(3,5-dimethyl-4-ethylpyrazolyl) borate (4) 

3,5-dimethyl-4-ethylpyrazole (4 g, 32.2 mmol) and KBH4 (0.288 g, 5.34 mmol) were placed in a 

50 mL round-bottomed flask under nitrogen. The temperature was steadily increased to 175 oC 

and maintained overnight while stirred, after which time hydrogen evolution had ceased. Majority 

of the excess pyrazole was distilled off by attaching a short path distillation the round bottom flask. 

The final traces of pyrazole were removed by sublimation onto a dry ice/acetone probe under 

vacuum to leave pure potassium tris(3,5-dimethyl-4-ethylpyrazolyl)borate. Yield: 1.8 g (79%). IR 

(KBr) 2239 cm-1 (B-H). 1H NMR (d6-acetone): δ 2.37 (q, 6H, CH2CH3), 2.19 (s, 9H, CH3), 2.19 

(s, 9H, CH3), 1.06 (t, 9H, CH2CH3). 
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2.4: Synthesis of transition metal tris(pyrazolyl)borate complexes 

Nickel(II) bishydrotris(3,5-dimethyl-4-ethylpyrazolyl) borate 

A mixture of potassium tris(3,5-dimethyl-4-ethylpyrazolyl) borate (0.1 g, 0.237 mmol) and 

NiCl2•6H2O (0.0286 g, 0.119 mmol) were placed in a 50 mL round-bottomed flask in methanol 

(7.5 mL) under nitrogen. This reaction stirred overnight at room temperature. The mixture was 

evaporated to dryness in vacuo. Yield 0.048 g (83%). The product was confirmed with HR-MS. 

IR (KBr) 2508 cm-1 (B-H). 

Cobalt(II) bishydrotris(3,5-dimethyl-4-ethylpyrazolyl) borate 

A mixture of potassium tris(3,5-dimethyl-4-ethylpyrazolyl) borate (0.1 g, 0.237 mmol) and 

CoCl2•6H2O (0.0282 g, 0.119 mmol) were placed in a 50 mL round-bottomed flask in methanol 

(7.5 mL) under nitrogen. This reaction stirred overnight at room temperature. The mixture was 

evaporated to dryness in vacuo. Yield 0.048 g (84%). The product was confirmed with HR-MS. 

IR (KBr) 2507 cm-1 (B-H).  

Iron(II) bishydrotris(3,5-dimethyl-4-ethylpyrazolyl) borate 

A mixture of potassium tris(3,5-dimethyl-4-ethylpyrazolyl)borate (0.1 g, 0.237 mmol) and 

FeCl2•4H2O (0.0236 g. 0.119 mmol) were placed in a 50 mL round-bottomed flask in methanol 

(7.5 mL) under nitrogen. This reaction stirred overnight at room temperature. The mixture was 

evaporated to dryness in vacuo. Yield 0.0457 g (80%). The product was confirmed with HR-MS. 

IR (KBr) 2512 cm-1 (B-H). 
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Manganese(II) bishydrotris(3,5-dimethyl-4-ethylpyrazolyl) borate 

A mixture of potassium tris(3,5-dimethyl-4-ethylpyrazolyl)borate (0.1 g, 0.237 mmol) and MnCl2 

(0.0149 g. 0.119 mmol) were placed in a 50 mL round-bottomed flask in methanol (7.5 mL) under 

nitrogen. This reaction stirred overnight at room temperature. The mixture was evaporated to 

dryness in vacuo. Yield 0.0439 g (77%). The product was confirmed with HR-MS. 

2.5: Synthetic Route for tris(pyrazolyl)methane ligand 

The overall synthetic route for the second tridentate ligand used in this study, tris(pyrazolyl) 

methane (Tpm), is shown in Figure 7. 

 

Figure 7. Synthetic route for Tpm.  

2.6 Synthesis of Tpm 

Tris(1-pyrazoyl)methane 

Distilled water (73.5 mL) was added to a 250 mL round bottom flask containing a mixture of 

pyrazole (4.0 g, 73.5 mmol) and tetra-n-butylammonium bromide (1.175 g, 3.675 mmol). With 

vigorous stirring, sodium carbonate (46.75 g, 0.45 mol) was added gradually to the reaction 

mixture; constant stirring increases the efficiency of the reaction1. After cooling to near room 
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temperature, chloroform (36.75 mL) was added and the flask was equipped with a reflux 

condenser. This mixture was heated at gentle reflux for 3 days over which time it became a pale-

yellow emulsion. The mixture was allowed to cool to r.t. and filtered through a Buchner funnel to 

remove the excess base. To the filtrate was added diethyl ether (125 mL) and H2O (75 mL). The 

organic layer was separated and the aqueous layer extracted with diethyl ether (200 mL). The 

combined organic layers were then washed with saturated brine solution (50 mL). The organic 

layer was treated with decolorizing charcoal and dried over sodium sulfate. The mixture was 

filtered and the solvent removed by rotary evaporation. The resulting pale-yellow solid (3.15 g, 

63%) was then dried under vacuum. 1H-NMR (acetone-d6):  8.73 (s, 1H, HC), 7.86 (d, 3H, 3-H 

(pz)), 7.62 (d, 3H, 5-H (pz)), 6.40 (d of d, 3-H, 4-H (pz)). 

2.7: Synthesis of [Fe(tpm)2]2+/3+ 

The synthesis of the iron(II) complex was accomplished by stirring tris(1-pyrazoyl)methane, 

(0.250 g, 1.167 mmol) and iron(II) chloride (0.0739 g, 0.584 mmol) in methanol (20 mL). The 

mixture was stirred overnight at room temperature under nitrogen atmosphere resulting in a red-

violet precipitate. The precipitate was dried under vacuum, then dissolved in anhydrous 

acetonitrile and crystallized with slow diffusion diethyl ether crystallization at room temperature 

yielding microcrystalline violet-red crystals. Yield: 0.223 g (79%).  The product was confirmed 

with HR-MS. The cyclic voltammetry data matched the spectra reported in literature.19 
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3. Results and Discussion 

3.1: Synthesis of Tp Ligand 

 Synthesis of the tridentate ligand was accomplished in four steps. In summary, a -diketone 

was reacted with sodium hydroxide to yield an electrophilic complex for alkylation. The alkylating 

agent, ethyl iodide, will be able to act as a nucleophile to alkylate the -diketone at the 4-position. 

After successful alkylation, the -diketone reacts with hydrazine to form the substituted 3,5-

dimethyl-4-ethylpyrazole. This reaction first forms an acid catalyzed imine on one of the carbonyl 

groups, followed by a second attack on the other carbonyl group to form a second imine group. 

This diamine compound gets deprotonated to yield the final substituted pyrazole. The final step 

consists of reacting the pyrazole with potassium borohydride giving the alkylated Tp ligand.  

 Production of the ligand gave reasonable yields ranging from 60 to 94%. Throughout the 

synthesis, there were NMR instrumentation utilized to ensure proper products were being 

synthesized from the previous precursor. The NMR data for these steps is shown in the Supporting 

Information.  

3.2: Synthesis of Transition Metal Tp Complexes 

 Furthermore, the synthesized ligand can now react with first-row transition metals to 

achieve the final desired complex under study. The ligand was stirred in a solution containing 

degassed methanol with a hydrated metal chloride. To ensure complete metalation to the Tp ligand, 

the reaction was carried out overnight at room temperature. Due to the possibility of oxidizing the 

M2+ to the M3+, all reactions were carried out under a nitrogen atmosphere. Complete 

characterization of the complexes was achieved – high-resolution mass spectrometry (HRMS), 
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Fourier Transform-Infrared (FT-IR) spectroscopy, UV-Visible spectroscopy, cyclic voltammetry 

(CV), and solubility properties. 

3.3: Characterization of Transition Metal Tp Complexes 

 The first-row transition metals under study were manganese, iron, cobalt, and nickel. The 

last three of which were characterized completely. Synthesis of these complexes were confirmed 

with HR-MS. Further analysis was done with FT-IR highlighting the shift in the borohydride (B-

H) bond found within all the complexes. FT-IR for these complexes is shown in Figures 8, 9, and 

10 for the Fe, Co, and Ni complexes, respectively. Borohydride shifts were found to be 2512, 2507, 

and 2508 cm-1 for Fe, Co, and Ni complexes, respectively. These values are consistent with known 

literature values of these transition metals with the unsubstituted Tp and 3,5-dimethyl-Tp 

complexes as shown in Table 3.11   

 

Figure 8. FT-IR of Fe(II) (TpMe24Et)2.  
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Figure 9. FT-IR of Co(II) (TpMe24Et)2.  

 

Figure 10. FT-IR of Ni(II) (TpMe24Et)2. 
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Table 2. FTIR Data from Metal-Bis[tris(pyrazolyl)borate] complexes. Tp = 

tris(pyrazolyl)borate,11 Tp* = tris(3,5-dimethylpyrazolyl)borate,11 and TpMe24Et = tris(3,5-

dimethyl-4-ethylpyrazolyl)borate. 

 Another characterization technique utilized was Ultraviolet-Visible spectroscopy which 

can give quantitative analysis using Beer’s Law. UV-Vis spectra for these complexes is shown in 

Figures 11, 12, and 13 for the Fe, Co, and Ni complexes, respectively. These UV-Vis peaks are 

shown in comparison to other first-row transition metal Tp complexes in Table 3. The iron 

complex was consistent with the literature, yet the other complex peaks shifted or were not 

present.26 
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Figure 11. UV-Vis spectra for Fe(II) (TpMe24Et)2.  

 

Figure 12. UV-Vis spectra for Co(II) (TpMe24Et)2. 
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Figure 13. UV-Vis spectra for Ni(II) (TpMe24Et)2. 

 

Table 3. UV-visible spectral data from Metal-Bis[tris(pyrazolyl)borate] complexes. Tp = 

tris(pyrazolyl)borate, Tp* = tris(3,5-dimethylpyrazolyl) borate, and TpMe24Et = tris(3,5-dimethyl-

4-ethylpyrazolyl) borate. 
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 Ultimately, cyclic voltammetry is of key concern for redox shuttles as the potential must 

operate within certain parameters for use as a redox shuttle in DSSCs. Cyclic voltammetry works 

by cycling the potential of a working electrode and measuring the resulting current. For an 

inorganic complex to function as a redox shuttle in DSSCs, there must be a reversible oxidization 

between the M2+ and M3+. Cyclic voltammetry was performed with a typical three-electrode setup using 

a CH Instruments 600E Series Potentiostat. The electrochemical cell was equipped with a glassy carbon 

disk working electrode, a platinum wire counter electrode, and a silver wire quasi-reference electrode. 

Dichloromethane (DCM) solutions containing 0.1 M Bu4NPF6 as the supporting electrolyte were used in 

the metal Tp complex studies. The CVs for the Fe, Co, and Ni complexes are shown in Figure 14, 

15, and 16, respectively. The redox couples are summarized in Table 4.   

 

Figure 14. Cyclic voltammetry of a 1 mM solution of Fe(II) (TpMe24Et)2 and 0.1M TBAPF6 as a 

supporting electrolyte in dry DCM at 100 mV/s. Potential was referenced against ferrocene (Fc+/0). 
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Figure 15. Cyclic voltammetry of a 1 mM solution of Co(II) (TpMe24Et)2 and 0.1M TBAPF6 as a 

supporting electrolyte in dry DCM at 100 mV/s. Potential was referenced against ferrocene (Fc+/0). 

 

Figure 16. Cyclic voltammetry of a 1 mM solution of Ni(II) (TpMe24Et)2 and 0.1M TBAPF6 as a 

supporting electrolyte in dry DCM at 100 mV/s. Potential was referenced against ferrocene (Fc+/0). 
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Table 4. Electrochemical data for Metal-Bis[tris(3,5-dimethyl-4-ethylpyazolyl)borate] Redox 

Couples. 

 Lastly, another parameter required for DSSC redox shuttle is a solubility of 0.25mM in 

organic polar solvents, such as acetonitrile. Therefore, this study was able to quantify the solubility 

of Ni(II) (TpMe24Et)2 complexes for applicable use in DSSCs. Transition metal tris(pyrazolyl)borate 

complexes have little to no information regarding their max solubilities in organic solvents. Hence, 

this study was able to quantify the max solubilities in solvents, such as toluene, dichloromethane, 

tetrahydrofuran, and acetonitrile. The solubility found in hexanes and acetonitrile, two complexes 

on opposite ends of the polarity index provide little to no solubility. However, in solvents with a 

moderate polarity index of 2.4-4.0 yield substantially higher solubilities comparatively. Accurate 

molar solubilities were determined analytically by generating a saturated solution of each complex 

in anhydrous dichloromethane. The saturated solution was passed through a filter to remove any 

undissolved complex and weighed before evaporating the solution to dryness to determine the 

amount of each complex. The weights of each component were then used to determine the molarity 

of each saturation solution. The maximum solubilities associated with saturated solutions at room 

temperature for the studied tris(pyrazolyl)borate complexes are summarized in Table 5 below. The 
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solubilities of these transition metal Tp complexes with varying substituents are sparingly soluble 

in organic solvents with solubilities ranging from 5.6 mM to 15.9 mM, far below the necessary 

solubility for DSSCs.  

 

Table 5. Solubility data for Nickel Tp complexes in anhydrous dichloromethane (DCM). Tp = 

tris(pyrazolyl)borate, Tp* = tris(3,5-dimethylpyrazolyl) borate, and TpMe24Et = tris(3,5-dimethyl-

4-ethylpyrazolyl) borate. 

 The majority of transition metal redox shuttles in DSSCs have neutral ligands like 2,2’-

bipyridine, as seen in [Co(bpy)3]3+/2+. Hence the overall charge is 2+ providing higher solubility 

in organic solvents such as acetonitrile. While the Tp ligand is anionic resulting in an overall 

neutral complex with lower solubility in common DSSC solvents. Additional ethyl and methyl 

groups on the tunable Tp ligand does not increase the solubility as hypothesized. This was 

experimentally shown that more alkyl chains on the Tp ligand result in lower solubilities as 

summarized in Table 5. Since the solubility of Tp complexes does not increase with alkylations, 

we transitioned to the study of tris(pyrazolyl)methane (Tpm) as a viable neutral ligand for redox 

shuttles with desired solubilities. Tpm is similar to Tp, as it is a tridentate facial ligand with the 

exception of a C-H bridgehead rather than a B-H bridgehead. The remainder of the study focuses 
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on the same first-row transition metals for use as redox shuttles in DSSC with the unsubstituted 

Tpm ligand.  

3.4: Synthesis of Tpm Ligand 

 The synthesis of the tridentate ligand was accomplished in an effective manner. In 

summary, pyrazole was reacted with tetra-n-butylammonium bromide and sodium carbonate in 

2:1 water/methanol. This reaction required a 3-day reflux period followed by several extractions 

to ensure any by-product was removed. Production of this ligand gave a moderate yield of 63%. 

Throughout the synthesis, there were routine NMR checks to confirm the presence of the Tpm 

ligand. The NMR data for this ligand is shown in the Supporting Information.  

3.5: Synthesis of Transition Metal Tpm Complexes 

 Furthermore, the synthesized ligand was then reacted with first-row transition metals to 

achieve the final desired complexes under study. The ligand was stirred in a solution containing 

degassed methanol with first-row transition metal chlorides. To ensure complete metalation of the 

Tpm ligand, the reactions were carried out overnight at room temperature. Due to the possibility 

of oxidizing the M2+ to the M3+, all reactions were carried out under a nitrogen atmosphere. Partial 

characterization of these complexes was achieved – HRMS, CV, and solubility properties.  

3.6: Characterization of Transition Metal Tpm Complexes 

 The first-row transition metals under study are manganese, iron, cobalt, and nickel. 

However, only the iron complex was redox-active within the parameters required of DSSCs. The 

electrochemical properties of iron(II)-bis[tris(pyrazolyl)methane] matched literature values.19 

Cyclic voltammetry was performed in the same setup as stated for the Tp complexes with the 

exception of acetonitrile as the supporting electrolyte. The iron3+/2+ redox couple in acetonitrile 
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exhibits a chemically reversible oxidation at 1.1 V vs. Ag/AgCl and 0.69 V vs. Fc+/0. The redox 

potential of this [Fe(Tpm)2]3+/2+ is within the desired parameter of 0.6-1.5 V vs. Fc+/0, with a key 

interest on remaining close to the minimum redox potential. The solubility of [Fe(Tpm)2]3+/2+ 

exceeded the 0.25 M for application in DSSCs. Given the reversible oxidation seen at 0.69 V vs. 

Fc+/0 and higher solubility, this complex could potentially yield efficiencies similar to 

[Co(bpy)3]3+/2+.  
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4. Conclusion 

This study presents the synthesis of a tridentate tris(pyrazolyl)borate ligand to be used in first-row 

transition metal complexes as potential redox shuttles in DSSCs. The synthesis of the Tp ligand 

and metalation of this ligand were accomplished effectively. Electrochemical studies proved the 

viable electrochemical reversibility, yet the solubility with three tunable positions on the ligand 

did not yield appropriate solubilities for DSSC application. Therefore, the study explored the 

synthesis of a tris(pyrazolyl)methane ligand to be used in the generation of an iron complex for 

use as a redox shuttle in a DSSC. The synthesis of the Tpm ligand and metalation of this ligand 

were achieved successfully as well. Electrochemical studies indicate that the iron complex displays 

a reversible redox couple and solubility in acetonitrile exceeding 0.25 M as needed for the DSSC 

application. Given the reversibility, solubility, and potentially lower recombination than 

[Co(bpy)3]3+/2+, these properties support the hypothesis that this complex could operate efficiently 

as a redox shuttle. More electrochemical tests must be conducted to determine the usefulness of 

this potential redox mediator for DSSCs. Furthermore, pairing this complex to a particular dye and 

testing in a DSSC must be achieved to determine the maximum efficiency. Additionally, this 

ligand was unsubstituted; therefore, further analysis of the addition of electron-donating and -

withdrawing groups to optimize the complex’s properties and redox potential can be explored.  
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6. Supporting Information 

 

Figure 17. 1H NMR (CDCl3) of 3,5-dimethyl-4-ethylpyrazole. 
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Figure 18 & 19. 1H NMR (CDCl3) and FT-IR of Potassium tris(3,5-dimethyl-4-ethylpyrazolyl) 

borate. 
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Figure 20. 1H NMR (acetone-d6) of Tris(pyrazolyl)methane.  
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