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ABSTRACT 

The use of natural supplements alongside prescribed medications is on the 

increase. Thus, it is important to analyze different properties of herbal supplements that 

can be implicated in eliciting herb-drug interactions. The herb Momordica charnatia is 

used throughout the world for its antidiabetic properties, and the herb Phyllanthus 

amarus is used in tropical and subtropical areas of the world for its hepatoprotective 

properties. Pregnane X Receptor (PXR) activation capabilities of these herbs was 

measured using a reporter gene assay. Additionally, Cytochrome P450 (CYP) isoform 

induction potential for CYP1A2, CYP3A4, CYP2B6, and CYP2C9 was determined 

through an enzymatic assay in hepatic cell line. M. charantia and P. amarus both 

increased PXR activity levels by a factor greater than two. Additionally, all four CYP 

isoforms were significantly induced by the herbs. These results indicate that when 

consumed concomitantly with conventional medicines both herbs may pose a risk of 

eliciting herb-drug interactions.   Further studies in more advanced models are warranted 

to determine the clinical relevance of these in vitro findings.   
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1. INTRODUCTION 

In 2012, a national survey was conducted in which it was revealed that greater 

than 30% of US adults used some form of complementary and alternative medicine 

(CAM)7. CAM includes but is not limited to acupuncture, meditation, Ayurveda, herbal 

medicine, and dietary supplements37. Natural products, classified as a dietary supplement 

that was not a vitamin or mineral, were found to be the most utilized CAM at 17.7%7. A 

separate study found that patients with chronic diseases as well as those who use over the 

counter drugs had an increased likelihood of using herbal supplements28. 

 Presently, the FDA’s regulation of herbal supplements is not as strict as the 

regulation of drugs. Herbal supplements are not required by law to meet the FDA’s safety 

requirements before they are marketed to the general public6. Therefore, the FDA is only 

legally able to act against companies once a product has reached the public and has been 

shown to induce illness or cause harm. Because of the prevalence of supplement usage 

alongside allopathic methods, it is critical to analyze the interactions between drugs and 

herbal supplements. One well-known example of an herb that demonstrates several herb-

drug interactions is St. John’s wort (Hypericum perforatum). This herb is commonly used 

in dietary supplements for treating anxiety and depression31. However, its use is 

associated with a reduction in the effectiveness of 
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the anti-coagulant drug warfarin as well as oral contraceptive pills through the induction 

of cytochrome P450 (CYP) enzymes3,26. By evaluating the effect of different supplements 

on the drug metabolizing enzymes and the pharmacokinetics of conventional drugs and 

disseminating this information to the general public, both consumers and practitioners 

can be more aware of the potential threats seemingly harmless herbs may pose to one’s 

dosing regimen.  

Two herbal supplements namely Phyllanthus amarus (P. amarus) and Momordica 

charantia (M. charantia) were selected for this study and evaluating their influence on 

the activity of major drug metabolizing enzyme CYP450 isoforms was the primary focus 

of this study. Pregnane X receptor (PXR) is a nuclear receptor that acts as a transcription 

factor and regulates the expression of genes responsible for drug metabolizing enzymes 

and transporters. Activation of PXR has been found to be responsible for clinically 

relevant pharmacological drug interactions due to an increase in the activity of major 

drug metabolizing enzymes such as CYP3A4 and CYP2C9 that results into enhanced 

clearance of drugs making them less effective15. Previous studies have shown that both 

herbal supplements, P. amarus and M. charantia, have a significant effect on the 

induction of PXR activity levels when tested at 60 µg/mL12. It is important to determine 

whether these results are indicative of either herb’s capability to induce the activity of 

drug metabolizing enzymes known to mediate herb-drug interactions. This will help in 

predicting the potential of these herbs to pose a risk of herb-drug interaction if they are 

consumed along with the prescription drugs for a long time (chronic exposure) or 

consumed in high quantities (acute exposure). 
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P. amarus, commonly known as ‘Carry Me Seed’, is popularly used as traditional 

medicine in tropical and subtropical parts of the world such as the Amazon, India, and 

Malaysia. It is used in ayurvedic medicine to confront an array of conditions associated 

with the stomach, kidney, spleen, and liver27. Additionally, P. amarus has been known to 

display hepatoprotective properties. Enogieru et al. (2015) found that in adult wistar rats 

the presence of P. amarus and the amount of liver damage suffered due to acetaminophen 

intake were negatively correlated.  

M. charantia also known as bitter melon, is consumed as a culinary item for its 

multitude of nutritious properties such as a high concentration of carotenoids19. 

Additionally, it is used alongside or instead of western medication for its perceived 

antidiabetic properties in parts of East Asia, East Africa, India, and South America18.  

Drugs and herbal supplements can be referred to as xenobiotics, defined by 

Dictionary.com as “a chemical or substance that is foreign to an organism or biological 

system.” The majority of xenobiotic metabolism occurs within the liver. The protein 

pregnane x receptor (PXR) has been highlighted alongside constitutive androstane 

receptor (CAR) as a xenobiotic sensing receptor present in the liver20. Because of the 

large, hydrophobic, and flexible ligand-binding domain, PXR is capable of being 

activated by a multitude of compounds leading to this being a major pathway of 

xenobiotic metabolism38.  It serves as a transcription factor for a large number of CYP 

enzymes including CYP2C9, CYP3A4, CYP2B633. PXR is activated following the 

binding of a ligand. Once the ligand activates PXR, the expression of CYP enzymes is 

induced21.   
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According to Horn and Hansten (2007), CYP enzymes are aggregated mainly in 

the liver and serve to synthesize molecules such as cholesterol and steroid hormones. 

Additionally, it has been shown that these enzymes serve to metabolize medications as 

well as autogenous toxins, and they are thought to be the leading mechanism through 

which pharmacokinetic interactions occur16.  These enzymes belong to the superfamily of 

monooxygenases and are of utmost importance during phase I of xenobiotic 

metabolism13. During this stage, the enzymes’ heme prosthetic group oxidizes 

hydrophobic compounds preparing the molecule for excretion32.  

CYP3A4, which aggregates in the small intestine in addition to the liver, is known 

as the CYP enzyme that metabolizes over 50% of drugs on the market34.  If a product 

tested were to inhibit this cytochrome, then it would increase plasma concentrations of 

drugs normally metabolized by said cytochrome17. On the other hand, if the product 

tested were to induce the cytochrome, then plasma concentrations of the drug would 

decrease. This would cause the drug to become less effective, thus requiring higher 

dosages to be prescribed.  These same processes could occur with the inhibition or 

induction of other key isoforms involved in drug metabolism such as CYP2B6, CYP2C9, 

and CYP1A2.  

Rifampicin, a drug used in the treatment of tuberculosis, is a well-known example 

of a CYP enzyme inducer4. Through the activation of PXR, it has been found to induce a 

variety of cytochromes including CYP2B6, CYP3A4, and CYP2C9. For these reasons, it 

was used as a positive control during this study. According to the World Health 

Organization, people with HIV are 16-27 times more likely to develop tuberculosis than 

those without HIV. With Rifampicin being a first-line drug in the treatment of 
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tuberculosis, many studies have been performed to determine its drug-drug interactions 

with antiretroviral treatment (ART)35. 

 An ART commonly used in the treatment of HIV is nevirapine, a non-nucleoside 

reverse transcriptase inhibitor (NNRTI)22. This drug is mainly metabolized through 

CYP3A4 with a small amount of metabolism by CYP2B6. Rifampicin induces CYP3A4 

to a greater extent than CYP2B6, and it has been shown that when used concomitantly 

with rifampicin, the plasma concentration levels of antiretroviral drug nevirapine undergo 

a significant reduction22. In one study, 21% to 38% of HIV/tuberculosis co-infected 

patients being treated with both rifampicin and nevirapine showed subtherapeutic 

nevirapine plasma concentration levels29. Additionally, rifampicin has been shown to 

increase clearance times of the blood thinner warfarin11. Three times higher dosage of the 

immunosuppressive drug cyclosporine is required when used concomitantly with 

rifampicin due to the subtherapeutic levels of regular dosage under these conditions.  

There are over fifty CYP enzyme isoforms, but most xenobiotics are metabolized 

through CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2C8, CYP2C19, CYP2B6, and 

CYP2E19. This study was carried out to determine the effects of P. amarus and M. 

charantia on four major enzymes namely : CYP3A4, CYP1A2, CYP2B6, and CYP2C9 

which are responsible for the metabolism of a number of commonly consumed 

prescription drugs such as antiretroviral, anticoagulant, contraceptive, antidiabetic, and 

cardiovascular drugs.  
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2. MATERIALS AND METHODS 

2.1 Materials 

1. Cell Culture Medium  

a. This medium contained one packet of DMEM/F12 and 1% Pen-Strep 

purchased from Gibco as well as 2.4 g of sodium bicarbonate from Fisher. 

There was an addition of 10% fetal bovine serum (FBS) which was 

purchased from Atlanta Biologicals.  

2. No Serum Medium  

a. It was prepared in the same manner as the culture medium with the 

exception of the addition of FBS.  

3. Transfection Medium 

a. It was prepared in the same manner as the culture medium but contained 

2.5% FBS.  

4. Human hepatocellular carcinoma cells (HepG2)  

a. Purchased from the American Type Culture Collection (ATCC). As 

mentioned previously, the majority of xenobiotic metabolism occurs in the 

liver, thus it was most appropriate to use a liver cell line.  

5. 0.25% Trypsin   

a. 2.5 g Trypsin purchased from Gibco was combined with 0.3 g disodium 

salt EDTA and 1.0 g glucose both purchased from Sigma-Aldrich. 8.0 g of 
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b. NaCl, 0.4 g of KCl, and 0.58 g sodium bicarbonate (all purchased from 

Fisher) were also added into the mixture.  

6. Matrigel 

a. Purchased from Corning 

7. M. charantia extract (methanolic extract) 

8. P. amarus extract (methanolic extract) 

9. 10 mM Rifampicin  (Sigma -Aldrich) 

10. DMSO (Fisher) 

11. Promega P450-Glo Assay kits were used to detect the induction of CYP1A2, 

CYP3A4, CYP2B6, and CYP2C9 enzymatic activities. 

2.2 Maintenance of Cells 

HepG2 cells were retrieved from liquid nitrogen storage and thawed in a 37℃ 

water bath for about 1 minute. The outside of the vial containing the cells was disinfected 

using 70% ethanol, and then cells were transferred to a centrifuge tube. 9 mL of 

prewarmed culture medium was added to the 1 mL of cells in the centrifuge tube. Cells 

were centrifuged at 1000 rpm for 5 minutes. Once finished, the supernatant was 

discarded, and the cells were resuspended in 10 mL of culture medium and transferred to 

a culture dish pre-coated with Matrigel. The dish was incubated in a cell culture incubator 

at 37℃ in an atmosphere of 5% CO2 and 95% humidity. Twenty four hours later, the 

culture medium was replaced with fresh medium and cells were incubated further. Once 

the cells were confluent (about 4 to 5 days later) cells were trypsinized, resuspended in 

culture medium and plated in a 50 mL culture dish containing Matrigel. They were 

incubated at 37℃ with 5% CO2. Cells were subcultured twice a week once they reached 
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around 70% confluency in order to maintain integrity. Confluency was estimated by 

observing cells under a microscope. Subculturing consisted of five steps. The old culture 

medium was first removed from the culture dish. Cells were then dislodged from the 

Matrigel using 0.25% trypsin.  Once the trypsin was aspirated from the culture dish, cells 

were incubated in 37℃ until completely detached from the culture dish. While the cells 

were incubating, a new culture dish coated with Matrigel was filled with fresh culture 

medium. Finally, the cells were resuspended in culture medium, aliquoted, and added into 

a new culture dish containing Matrigel and fresh culture medium. Cells were incubated 

either for three to four days before the next subculture or until needed for use. 

2.3 Preparation of Plasmid DNA (PXR and PCR-5) 

 LB medium was made at a pH of 7.5 using 10 g of tryptone, 5 g of yeast, and 5 g 

of NaCl dissolved in 950 ml of Nanopure water. Medium was autoclaved at 121 ℃ for 15 

minutes and stored at 4℃. 10 mg/ml Ampicillin was added to LB medium to make LBA 

medium. LBA agar plates were made by adding 3.75 g of Bactoagar to 250 ml of LB 

medium. This solution was autoclaved at 121 ℃ for 15 minutes, cooled down to 45℃, 

and then 2.5 mL of 5 mg/ml ampicillin were added. Agar was poured into petri dishes 

and once solidified stored at 4℃. Ca2+ DH5-∂ cells were thawed and mixed. 100 ul of cell 

was placed in a 12 x 75 mm chilled snap cap tube. 10 ng of plasmid DNA was added to 

the tube, and cells with plasmid were incubated on ice for 30 minutes. Cells were then 

heat-shocked for 1 minute at 37℃ and placed on ice for 2 minutes. 900 ul of LB medium 

was added to the tube which was then shaken for four hours at 225 rpm. Transformed 

cells were then diluted and 100 ul of each dilution was spread on LBA plates which were 

incubated overnight at 37℃. Using a sterile inoculum loop, a colony was transferred 
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from the agar plate to a snap-cap tube that contained 4 ml LBA medium. This was done 

at least three times using different colonies. Overnight, the tubes were shaken at 37℃ at 

165 rpm. The tube with the greatest turbidity had l ml transferred to 3 sterile 1L flasks 

that contained 400 ml LBA medium. Flasks were shaken overnight at 180 rpm at 37℃. 

Each flask’s content was then centrifuged at 37 ℃ at 3000 rpm for 30 minutes in a 500 

ml plastic bottle. The pellet was retained.  

Isolation of plasmid DNA from the pellet of transformed E. Coli was carried out 

using a Qiagen Plasmid Purification Kit according to the instructions provided with the 

kit (www.qiagen.com/handbook" www.qiagen.com/handbook). Plasmid DNA was stored 

at 4oC and used for transfecting HepG2 cells. 

2.4 Plant Extracts Preparation 

The dried powders of leaves of M. charantia and the whole plant (root stem and 

leaves) of P. amarus from the National Center for Natural Products Research repository 

were extracted in methanol four times over a 24-hour time period in room temperature. 

Methanolic solutions were evaporated to complete dryness using a speed vacuum system. 

This yielded dried extracts. Extracts were then transferred to clean containers and stored 

in tightly closed glass vials. Solutions were prepared in DMSO to a concentration of 20 

mg/mL for the bioassays described below for PXR and CYPs activities. 

2.5 Transfection of Cells 

 HepG2 cells were subcultured into a new plate the day before beginning the 

assay. Cells were subcultured in a manner that ensured confluency the next day. On the 

first day of the assay, cells were transfected with human PXR (hPXR) and the luciferase 

reporter plasmid PCR512,23. First, the cells were trypsinized and placed in a 15 mL 
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centrifuge tube with 10 mL culture medium. 10 µL of the solution was placed in a cell 

counter slide. The slide was placed in an automated cell-counter in order to determine the 

cell concentration/mL.  Equation 1 was then used to determine the quantity of medium 

containing cells that would be needed for even distribution of about 50,000 cells/well in a 

96-well plate.  The calculated volume was then transferred to a new centrifuge tube. This 

solution was centrifuged for 5 minutes at 1000 rpm. The medium was then removed and 

replaced with 7 mL of DMEM/F12 medium (NS medium). Cells were resuspended in the 

medium, and the solution was centrifuged again for 5 minutes at 1000 rpm. The 

supernatant was removed, and the pellet was resuspended in 450 µL of transfection 

medium. 25 µg of hPXR and 25 µg of PCR5 were added to this solution. 

 After mixing, the solution was kept under the hood at room temperature for five 

minutes. The mixture was then transferred to an electroporation cuvette and transfected at 

180V for 70 msec using one pulse on an electroporator. The cuvette was then left 

untouched for 8 minutes under the hood. A transfer pipette was used to remove the foam 

from the cuvette, and the cells were mixed with the predetermined volume of culture 

medium needed for a full 96-well plate. A volume of 190 µL of the cell suspension was 

pipetted into each well of the sterile, white-bottomed polystyrene 96-well plate. In a 

sterile, clear polystyrene 96-well plate 200 µL of cell suspension was placed in 3 wells to 

watch for contamination during the rest of the week. Each plate was incubated at 37°C 

for 24 hours.  

2.7 Sample Addition 

A. PXR induction assay 
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During the second day of the assay, the positive control (Rifampicin), negative 

control (DMSO), Phyllanthus amarus (PA), and Momordica charantia (MC) extracts 

were added into the wells at varying concentrations based on a predetermined template. 

In the wells of a sterile, clear polystyrene plate, samples of PA and MC were serially 

diluted (3 fold) with no serum media. The five concentrations were 60, 20, 6.6, and 2.2, 

and 0.6 µg/mL. A 6% DMSO + NS medium solution was made and used for the dilution 

of the 20, 6.6, and 2.2, and 0.6 µg/mL samples. Each concentration was made in a 

different well. In the same plate, 30 µM of Rifampicin was made. The 96-well white-

bottomed polystyrene plate containing the transfected cells was retrieved from the 

incubator, and samples were added directly to the medium of their predetermined well. 

Each plate was again incubated for 24 hours at 37°C. 

B. CYP induction assay 

During the second and third days of the assay, the positive control (Rifampicin), 

negative control (DMSO), Phyllanthus amarus (PA), and Momordica charantia (MC) 

extracts were added into the wells at varying concentrations based on a predetermined 

template. In a sterile, clear polystyrene plate, the four concentrations of PA and MC 

samples were generated. The three concentrations were 30, 10, and 3.3 µg/mL. A 6% 

DMSO + NS medium solution was made and used for the dilution of the 10, 3.3, and 1.1 

µg/mL samples. Each concentration was made in a different well. In the same plate, 30 

µM of Rifampicin was made. Before adding the herbs and the controls, the medium was 

removed from each well without disrupting the cells and was replaced with 190 µL of 

serum medium.  10 µL of the samples, Rifampicin, and 6% DMSO were added to their 
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preset well. The clear control plate was checked for any signs of contamination. Each 

plate was incubated at 37°C for 24 hours.  

2.8 PXR induction assay data procurement  

 After transfection of cells and one day of sample addition, results were procured 

through the measurement of luminescence. Once the 24-hour incubation period was over, 

the medium was aspirated from each well and replaced with 40 µL of luciferase mix to 

each well. The plate was immediately placed in a Spectramax M5 plate reader for 

luminescence reading. Fold induction in the luciferase activity of sample treated cells was 

then calculated in comparison to DMSO-treated cells (vehicle control). 

2.8 CYP Induction assay data procurement  

After transfection of cells and two days of sample addition, results were procured 

through the measurement of luminescence. Preparation of the wells was dependent upon 

the enzyme that was being tested. For CYP3A4 and CYP2C9, the medium was removed 

from the well, and the well was washed one time with 100 µL of PBS.  In the CYP3A4 

wells, 50 µL of 2.5% luciferin PFBE + culture medium was added to each well. CYP2C9 

wells had 50 µL of 2.0% luciferin H + culture medium added to them. The plate was then 

incubated for 3 hours at 37°C. 40 µL of in house luciferase mix was added to each well 

after the incubation period, and the plate was read using a Spectramax M5 plate reader. 

Fold increase in luciferase activity was then calculated in sample treated cells in 

comparison to DMSO-treated cells (vehicle control).  

 For CYP2B6 and CYP1A2 enzymes, a 3 mM salicylamide solution in PBS was 

prepared. Once the salicylamide solution was prepared, the medium was removed from 

the wells. Wells were then washed two times with 50 µL of PBS. 50 µL 0.1% luciferin 
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2B6 + salicylamide solution was added into each of the CYP2B6 wells.  In the CYP1A2 

wells, 50 µL of  0.1% luciferin 1A2 +salicylamide solution was added. The cells being 

tested for CYP2B6 activity were incubated for 2 hours whereas those testing for the 

CYP1A2 activity were incubated for 1 hour. Once the incubation period for both 

enzymes was finished, 0.1% d-cysteine + luciferase mixture was made. 50 µL of this 

mixture was added into each well, and the plate was read using a Spectramax M5 plate 

reader. Fold increase in luciferase activity was then calculated in sample treated cells in 

comparison to DMSO-treated cells (vehicle control).  

2.9 Statistical Methods 

 GraphPad Prism 8 was used. One-way ANOVA was utilized in the analyzation of 

data. This was followed by Dunnett’s multiple comparison tests. Results were considered 

statistically significant if p < 0.05. 

 

 

 

 

 

 

 

Figure 1: Diagrammatic representation of a Reporter Gene Assay (Karen Cohrt, 2018) 

Equation 1:𝐯𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐜𝐞𝐥𝐥𝐬 𝐧𝐞𝐞𝐝𝐞𝐝 (𝐦𝐋) = 

𝟐.𝟓×𝟏𝟎𝟓

𝐦𝐋
(𝐭𝐨𝐭𝐚𝐥 𝐯𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐦𝐞𝐝𝐢𝐚 (𝐦𝐋)𝐧𝐞𝐞𝐝𝐞𝐝 𝐩𝐞𝐫 𝐰𝐡𝐢𝐭𝐞−𝐛𝐨𝐭𝐭𝐨𝐦𝐞𝐝 𝐩𝐥𝐚𝐭𝐞)

𝐂𝐞𝐥𝐥 𝐜𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐢𝐨𝐧 

𝐦𝐋
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Key 

* = p < .05 

** = p <.01 

*** = p < .001 

**** = p < .0001 

Key 

* = p < .05 

** = p <.01 

*** = p < .001 

**** = p < .0001 

3. RESULTS AND DISCUSSION 

 

 

 

  

 

 

 

 

 

 

Figure 2: PXR activation by M. charantia methanolic extract. Values were determined using a luciferase 

gene assay in HepG2 cells. Rifampicin was the positive control. Data represents the mean ± SD.  

 

 

 

 

 

 

 

 

 

 

Figure 3: PXR activation by P. amarus methanolic extract. Values were determined using a luciferase gene 

assay in HepG2 cells. Rifampicin was the positive control. Data represents the mean ± SD.  
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 Table 1: Comparison of PXR activation between M. charantia and P. amarus  

           

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Increase in CYP3A4 enzyme activity by M. charantia methanolic extract in HepG2 cells. 

Rifampicin was the positive control. Data represents the mean ± SD.  

 

 

 

 

 

 

Test concentration M. charnatia P. amarus 

60 µg/mL 3.48 ± 1.65 3.44 ± 1.80 

20 µg/mL 2.28 ± 0.56 2.67 ± 1.41 

6.6 µg/mL 1.58 ± 0.13 1.84 ± 0.71 

3.3 µg/mL 1.24 ± 0.02 1.23 ± 0.30 

0.6 µg/mL 1.17 ± 0.11 0.93 ± 0.12 



2 
 

C
o

n
tr

o
l 
(V

e
h

ic
le

)

R
if

a
m

p
ic

in
e
 3

0
 

M

M
. 
c
h

a
ra

n
t i

a
 3

0


g
/m

l 

M
. 
c
h

a
ra

n
t i

a
 1

0


g
/m

l 

M
. 
c
h

a
ra

n
t i

a
 3


g
/m

l 
0

5

1 0

1 5

2 0

2 5

C
Y

P
 e

n
z

y
m

a
ti

c
 a

c
ti

v
it

y

 (
fo

ld
 i

n
d

u
c

ti
o

n
)

*

* * * *

B C Y P 2 C 9

Key 

* = p < .05 

** = p <.01 

*** = p < .001 

**** = p < .0001 

Key 

* = p < .05 

** = p <.01 

*** = p < .001 

**** = p < .0001 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Increase in CYP2C9 activity by M. charantia methanolic extract. Rifampicin was the positive 

control. Data represents the mean ± SD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Increase in CYP2B6 activity by M. charantia methanolic extract in HepG2 cells. Rifampicin was 

the positive control. Data represents the mean ± SD.  
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Figure 7: Increase in CYP1A2 activity by M. charantia methanolic extract in HepG2 cells. Rifampicin was 

the positive control for enzyme expression. Data represents the mean ± SD.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Increase in CYP3A4 activity by P. amarus methanolic extract in HepG2 cells. Rifampicin was 

the positive control. Data represents the mean ± SD.  
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Figure 9: Increase in CYP2C9 activity by P. amarus methanolic extract  in HepG2 cells. Rifampicin was the positive 

control. Data represents the mean ± SD. 

Figure 10: Increase in CYP2B6 activity by P. amarus methanolic extract in HepG2 cells. Rifampicin was the positive control. 

Data represents the mean ± SD. 
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Figure 10: Increase in CYP1A2 activity by P. amarus methanolic extract in HepG2 cells. Rifampicin was 

the positive control. Data represents the mean ± SD.   

Figure 11: M. charantia 

(Sayat Arslanlioglu, 2008) 

 

Figure 12: P. amarus 

(Jim Conrad, 2019) 
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Table 2: CYP3A4 fold induction comparison between M. charantia and P. amarus 

 

Table 3: CYP2C9 fold induction comparison between M. charantia and P. amarus  

Test concentration M. charantia P. amarus 

30 µg/ml 14.97 ± 5.27 8.39 ± 1.69 

10 µg/ml 6.47 ± 2.02 2.67 ± 0.11 

3 µg/ml 2.55 ± 1.03 2.55 ± 0.42 

 

Table 4: CYP2B6 fold induction comparison between M. charantia and P. amarus  

Test concentration M. charantia P. amarus 

30 µg/ml 6.82 ± 3.68 4.81 ± 1.04 

10 µg/ml 5.06 ± 2.02 3.30 ± 0.85 

3 µg/ml 1.61 ± 0.11 2.36 ± 0.68 

 

Table 5: CYP1A2 fold induction comparison between M. charantia and P. amarus  

Test concentration M. charantia P. amarus 

30 µg/ml 8.47 ± 3.87 7.89 ± 1.71 

10 µg/ml 4.81 ± 3.22 5.54 ± 1.42 

3 µg/ml 1.27 ± 0.16 2.45± 1.09 

 

  

Test concentration M. charantia P. amarus 

30 µg/ml 4.09 ± 0.72 3.14 ± 0.41 

10 µg/ml 4.06 ± 0.28 1.91 ± 0.35 

3 µg/ml 2.51 ± 0.02 1.41 ± 0.21 
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Increase in the activity of major CYP enzymes has been implicated in affecting 

the pharmacokinetics of several drugs which are the substrates of CYP isoforms. Herbs 

such as St. John’s wort and foods such as grapefruit juice are examples of naturally 

occurring substances that can cause the reduction in drug-efficacy and/or produce life-

threatening side effects when taken concomitantly with a variety of prescription drugs 

due to pharmacokinetic interactions25. In areas of the world with low access to medicinal 

solutions to diabetes, M. charantia has been said to be the most popular anti-diabetic 

herbal alternative18. P. amarus is used in various Asian countries as a treatment for 

hepatitis and jaundice14. It is also used as a liver tonic for maintenance of a healthy liver. 

Because of the widespread prevalence and use of these herbs, it is important to determine 

the likelihood for pharmacokinetic drug interactions if these herbs are concomitantly 

consumed with the prescription drugs.  

 In vitro studies utilizing human hepatocellular carcinoma cells were performed to 

analyze the PXR modulation and CYP induction capabilities of the two herbs. The results 

from a reporter gene assay to determine the modulation of PXR indicated that both herbs 

activated the PXR and increased its transcriptional activity at a level greater than two-

fold compared to vehicle control. These results are consistent with the results of an earlier 

study performed by Fasinu et al (2017). Increased PXR activity levels have been linked 

with the induction of cytochrome P450 enzymes23. Due to this positive correlation, M. 

charantia and P. amarus were tested for their CYP induction capabilities. When 

analyzing CYP induction capabilities, M. charantia showed significant induction of all 

four CYP enzymes. At all three concentration levels, M. charantia significantly induced 

CYP3A4 implying that this herb is most likely to impact that pharmacokinetics of drugs 
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that utilize this pathway. P. amarus also significantly induced all four CYPs. At 30 µg/ml 

and 10 µg/ml, M. charantia induced all four enzymes at a greater strength than P. 

amarus.  

 Both herbs significantly induced CYP3A4 similarly to St. John’s wort which has 

been shown to reduce the effectiveness of drugs that are substrates of CYP3A4 such as 

alprazolam24. It is likely that drugs taken concomitantly with the tested herbal 

supplements could experience a reduction in efficacy and in turn will need dosage 

alterations to maintain desired treatment levels. However, these two herbs have also 

demonstrated CYP inhibition properties as reported earlier by Fasinu et al (2017). P. 

amarus had inhibitory effects on all four enzymes tested in this study while M. charantia 

did not inhibit CYP2B6.  

A natural product with known CYP inhibitory effects is grapefruit juice2. Inhibitory 

effects are immediate and lead to an increase in drugs plasma concentration levels. In 

future studies, it is important to find out whether the inhibitory effects of the tested 

samples are reversible or not. This is important because the mechanism through which 

determines the length of the impact on the pharmacokinetics of other drugs. For example, 

grapefruit juice is partially irreversible thus the effects are relatively long-lasting2. It has 

been reported that when a drug is taken 12 hours after grapefruit juice ingestion, the rate 

that the drug enters systemic circulation doubles30.  

This capability of M. charantia and P. amarus to both inhibit and induce CYP 

isoforms is not contradictory. Conventional medicines are generated as isolated 

chemicals with a specific biochemical target in mind. Conversely, natural supplements 

have a unique composition of phytochemicals, thus enabling the herbs to impact different 
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biochemical targets and/or the same biochemical target in opposite manners15. In cases 

similar to that of M. charnatia and P. amarus, the net effect of the induction and 

inhibition of the same CYP isoform may be neutral and may not be significant enough to 

pose a clinically relevant risk. In vitro studies such as the one performed are only 

predictive of herb-drug interactions that can occur. In order to establish the final 

outcome, more advanced studies are warranted to establish an overall physiological 

effect.     

  
Figure 13: Herb-drug interaction through induction or inhibition of CYP 

450 Enzymes (Hogle et al, 2018) 

Source reference ….. 
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4. CONCLUSION 

There is a lack of literature analyzing the impact of two herbs, M. charnatia and P. 

amarus, on the ability to induce different CYP isoforms. In this study, PXR activity 

levels and CYP induction capabilities were analyzed as a predictor of herb-drug 

interaction capabilities. Both M. charnatia and P. amarus were found to increase PXR 

activity levels and induce CYP3A4, CYP1A2, CYP2B6, and CYP 2C9. This shows the 

potential of M. charnatia and P. amarus to alter drug pharmacokinetics.  The in vitro 

studies performed are only predictive. Therefore, for a better understanding of the 

biochemical processes that will occur, further studies such as in vivo animal studies are 

recommended.   
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