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ABSTRACT 

 

Biological invasions can cause significant changes to the environment in which they 

occur. One of the main changes that is caused is how invasive species can disrupt mutualisms 

between native species in ecosystems. The mutualism between mycorrhizal fungi and plants is 

one of the most important mutualisms that a plant forms. This mutualism is very important 

because it is the source of many nutrients that the plant needs. This study took place in a Scots 

pine (Pinus sylvestris) plantation in northeastern Poland, and aimed to determine the effects of 

plant and beetle invaders on ectomycorrhizal (ECM) fungi and roots associated with the pine. 

Soil was collected from under Scots pine trees at sites that were invaded by beetles (Phaenops 

cyanea), Quercus rubra, Robinia pseudoacacia, Q. rubra and R. pseudoacacia together, and 

control (uninvaded) sites. In the lab, pine root length and ECM colonization intensity were 

quantified, and ECM fungi were identified using Sanger sequencing of colonized pine root tips. 

Twenty-eight different ECM fungal OTUs were found, but none of the individual OTUs, genera, 

or families were frequent enough to perform statistical tests of effects of site types. When 

focusing on the OTUs, Laccaria_1 was the most abundant and Cortinarius_1 was the most 

frequent. When focusing on each genus, Laccaria was the most abundant and Tomentella, 

Russula, and Lactarius were the most frequent. When focusing on each family, Russulacae was 

the most abundant and Thelephoraceae was the most frequent being found in four different 

samples. The presence of beetles did not affect any of the root or ECM colonization variables. 

When ignoring the beetles, instead only focusing on whether the site was invaded by R. 

pseudoacacia, Q. rubra, or both,  total pine root length was dramatically reduced in sites that 

contained both plant invaders and there was a similar trend towards reduction of total ECM 

colonization. Although the exact mechanism for how the invaders affect the native plants is 
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unknown, it is possible that the invaders affect the native plant in many different ways that could 

lead to an overall change in reduced soil resources, reduced pine growth and even native pine 

tree death.  
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INTRODUCTION 

 

Biological invasions can have a strong impact on ecosystems. However, a complete 

understanding of the processes that occur during these impacts of invasion is still lacking. It is 

possible that mutualisms involving introduced species can have a direct detrimental effect on 

native species, such as the mycorrhizal mutualism between soil fungi and plants (Richardson et 

al. 2000). This symbiosis benefits both the plants and fungi by providing each with something 

they need. Fungi found on plant roots provide the plant with minerals, mainly phosphorus (P) 

and nitrogen (N), to help nourish and grow the plant. The plant, in return, provides the fungi with 

photosynthates, products made by photosynthesis, which allow the fungi to grow (Smith, S. E. et 

al. 2010). In this study, we investigated how plant and insect invaders may affect the mycorrhizal 

fungi of Scots pine (Pinus sylvestris) in plantations of northeastern Poland. 

Insect invasion is one type of invasion that is very well known, but their effects on 

mycorrhizal mutualisms have only recently been studied and still not completely understood. 

There are two main ways that insects affect native trees: they can cause physical harm to the tree 

(for example by feeding on them and by creating holes or burrows in the leaves, bark, or roots), 

or chemically alter the trees in some way (Karst et al 2015). It is unclear what the mechanism is, 

but when beetles attack trees, it changes the physiology of the tree and that can cascade down 

into the soil and affect the root interaction that the plant has with fungi (Treu et al. 2014). These 

cascading effects are most probably mediated by the disruption of below‐ground mutualists, 

ectomycorrhizal (ECM) fungi (Karst et al. 2015). 

The invasion of native plant communities by exotic plants is one of the leading forms of 

invasion. Plant invasions are frequently studied, but less is known about how the invasive species 



 

2 

may disrupt native mutualisms. In some cases, the invading plant releases chemicals from its 

roots that may hinder the beneficial relationships some native plant species have with soil fungi 

(Roberts et al. 2001). One plant that is known for invading native plants and disrupting 

mycorrhizal mutualisms is the garlic mustard (Alliaria petiolata). One of the ways that the garlic 

mustard invades native plants is by putting out chemicals from its roots that actually kill or harm 

the native mycorrhizal fungi of other plants (Carlson et al. 2014). There are native plants that are 

dependent on mycorrhizal fungi and the garlic mustard plant comes in and exudes these 

chemicals from its roots, which hurts the mycorrhizal fungi of these other plants. This action 

harms those plants as well, which creates a chain reaction, affecting the mycorrhizal fungi in the 

entire ecosystem. Although studies are still being completed, many studies have shown that 

Garlic mustard plants have been tied to decreased native herbaceous species richness in invaded 

forests (NYIS 2019).  

Scots pine is the most widely distributed pine in the world, ranging from Scotland east 

across much of northern Asia and from above the Arctic Circle in Scandinavia to the 

Mediterranean. These trees have a great economical, social, and ecological importance (Helber et 

al. 2011). They are usually planted in plantations for lumber production. Scots pine plantations 

are often invaded by non-native plants and insects, such as beetles (Skilling 2020). Scots pine, 

like other members of the Pinaceae, rely heavily on mutualisms with diverse ECM fungi, for 

their growth and survival. 

This study took place in a Scots pine plantation in northeastern Poland, and aimed to 

determine the effects of both beetle and plant invasion on roots and ECM fungi associated with 

Scots pine. In prior years before this study took place, invasion of Scots pine plantations was 

observed by researchers that showed invasions by both beetles (Phaenops cyanea), which bore 
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into the bark causing damage to the tree, and by two non-native plants, Quercus rubra (hereafter, 

“Quercus”) and Robinia pseudoacacia (hereafter, “Robinia”). A collaboration of students and 

faculty from the University of Mississippi and Bialystok University of Technology collected soil 

samples containing roots and ECM fungi from Scots pine trees at a plantation site near the city of 

Bialystok, in stands invaded by beetles, stands invaded by one or both plant species, and 

uninvaded control stands. For my Honors thesis project, I completed sequencing of ECM fungal 

DNA, processed fungal DNA sequence data, and analyzed the data to investigate how the 

invaders may have affected the roots and ectomycorrhizal fungi of Scots pine.  

 

METHODS     

Field sampling 

Scots pine roots were sampled on 12 July 2017 in a plantation site near Bialystok, 

Poland, where an open field had been vegetated with Scots Pine trees 60-65 years prior. We 

sampled seven Scots pine plantation sites that varied in their history of invasion by plants and 

beetles including two control uninvaded sites, sites invaded by Robinia, Quercus, or both, and 

beetle-invaded sites (Table 1.1).  

Transect lines (30 m long, 10 m apart) were established at each site in an orientation 

perpendicular to a stand edge. Along each transect, soil was collected from under the nearest 

Scots Pine tree, approximately every 10 m, with the first sample being 10 m from the boundary 

of the forest. Three samples were taken from each site except for site five where five samples 

were taken from under beetle-invaded trees in site 5a and two samples were taken from under 

control (uninvaded) trees in site 5b. Altogether, 22 individual tree rhizosphere soil samples were 

sampled over the transects. Beneath each tree, a small shovel was used to collect soil samples (30 
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cm diameter x 15 cm wide x 50 mm deep). Litter in the forest primarily consisted of several 

centimeters of dead pine needles and hardwood leaves, which was removed before sampling 

occurred. Soil samples were brought back to the laboratory in insulated coolers, stored at 4 °C, 

and processed within 1-7 days of collection.  

 

Table 1.1: Scots pine (P. sylvestris) plantation sites, including Site Type (invasion history), 

Polish forestry map codes, and geographic coordinates  

SITE SITE TYPE 

FORREST 

MAP CODE LATITUDE LONGITUDE 

1a Quercus 134a N 53o10’04.54” E 23o10’18.73” 

1b Control 134c N 53o10’06.46” E 23o10’25.05” 

2 Robinia 139a N 53o10’01.3” E 23o10’33.9” 

3 Quercus  140c N 53o09’57.07” E 23o10’28.85” 

4 Quercus and Robinia  139b N 53o10’04.38” E 23o10’45.45” 

5a Beetles  264d N 53o14’58.4” E 23o13’48.8” 

5b Control 264a N 53o14’37.3” E 23o13’27.5” 

 

 

Initial Laboratory Processing of Root Samples    

On 13 July 2017 through 19 July 2017 the lab work for ECM morphotyping and DNA 

extraction took place at Bialystok University of Technology. Roots were hand-washed over a 2 
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mm sieve to remove rhizosphere soil. Using a dissecting microscope, the number of root tips 

with apparent ECM colonization (based on thickness and morphology) was counted, and each 

root tip was classified into a morphotype based on characteristics such as color, texture, 

branching patterns, and emanating hyphae or rhizomorphs.  

Two ECM root tips from each morphotype from each sample were collected, and DNA 

extraction was performed immediately. DNA was extracted from root tips from each sample 

using components of a Sigma Extract-N-Amp extraction kit (Sigma-Aldrich, St. Louis, MO, USA). 

10 μL of the Sigma Extraction Buffer was added to each root tip, which was heated to 65 °C for 

10 min, 95 °C for 10 min, and then received 30 μL of Sigma Neutralization Solution and 60 μL 

PCR-grade water. DNA extracts were frozen at −20 °C, shipped frozen to the University of 

Mississippi, and stored at −20 °C for approximately two months until PCR was performed.  

PCR and Sanger sequencing of fungal DNA 

To facilitate Sanger sequencing of ECM fungal species colonizing root samples, the 

Internal Transcribed Spacer (ITS) region of the fungal nuclear genome was amplified using the 

fungal-specific combination of forward and reverse primers, ITS1-F and ITS4 (White et al. 

1990). Amplification reactions for each sample consisted of 2.2 μL PCR-grade water, 4 μL of 2X 

RedTaq Premix (Apex Bioresearch Products, Inc., San Diego, CA, USA), 0.4 μL of each primer 

(10 μM stock concentration), and 1 μL of DNA extract for a total of 8 μL per reaction. 

Amplification occurred in sterile 96-well PCR plates that were sealed with a sterile silicone 

sealing mat, centrifuged briefly, and amplified under the following conditions: initial 

denaturation for 3 min at 94 °C; 30 cycles of denaturation for 45 s at 94 °C, annealing for 45 s at 

53 °C and extension for 60 s per cycle at 72 °C; and a final extension of 10 min at 72 °C. 
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Amplification success was checked on a 1% agarose gel with SYBR Safe DNA gel stain 

(Molecular Probes, Eugene, OR, USA). Excess primer and unincorporated nucleotides were 

removed enzymatically using ExoSAP-IT (USB Corporation, Cleveland, OH, USA) by adding 

0.25 μL ExoSAP-IT and 4.75 μL sterile PCR-grade water to 5 μL of the PCR product. Reactions 

were incubated at 37 °C for 45 min, then 80 °C for 20 min, and finally 4 °C for at least 5 min. 

 Sequencing was performed using the forward primer ITS5 (Gardes et al. 1993) and the 

Big Dye Terminator Sequencing Kit (v3.1, Invitrogen Corp., Grand Island, NY, USA). Each Big 

Dye reaction contained 0.4 μL Big Dye Reaction Premix, 1.8 μL Big Dye 5× sequencing buffer, 

0.5 μL of the forward primer at 10 μM concentration, 6.3 μL of PCR-grade water, and 1 μL of 

the cleaned PCR product. Amplification conditions were 96 °C for 1 min; followed by 45 cycles 

of 95 °C for 20 s, 52 °C for 20 s, and 60 °C for 4 min. Reactions were dried and shipped 

overnight to the DNA Lab at Arizona State University, in Tempe, Arizona, where the Big Dye 

reactions were purified and read on an Applied Bioscience 3730 capillary genetic analyzer 

(Applied Biosystems, Foster City, CA, USA).   

The fungal DNA sequences obtained were edited manually in Geneious software 

(Biomatter Ltd., Auckland, New Zealand), correcting ambiguous bases associated with dye blobs 

and elsewhere when possible. All sequences with >3% ambiguous bases or <200 base pairs long 

were deleted. Remaining sequences were subjected to operational taxonomic unit (OTU) 

assembly (at 97% similarity) using CAP3 software (Huang 1999), as described previously 

(Taylor et al. 2007) using default settings except the following: maximum overhang percent 

length = 60, match score factor = 6, overlap percent identity cut-off = 96, clipping range = 6. 

Grouping homologous sequences that are >97% similar as a specific OTU is a conservative 

approach employed by previous studies (O’Brien et al. 2005, Izzo et al. 2005, Smith et al. 2007) 
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that assumes a 0.2%–1.2% error rate produced by PCR and unidirectional sequencing, as well as 

~1.5% divergence of the ITS region that may occur within some species at small spatial scales 

(Horton 2002). Representative fungal sequences from each OTU were checked using BLAST 

(nucleotide) searches on the International Nucleotide Sequence Database (INSD) and the User-

Friendly Nordic ITS Ectomycorrhizal (UNITE) database to obtain best matches for taxonomic 

affiliation of OTUs. The ultimate decision on the best match to a sequence was based on both 

similarity and length of the match (Table 1.2). OTUs matching 99% or better to database 

sequences from named, cultured fungi were considered the same species. Sequences with 

matches of 98% similarity or less were assigned to a genus based on the recommendations of 

(Tedersoo et al. 2017), and were assigned a number (e.g., Russula_1). If sequence matches 

among the sequence repositories showed equal affinity or similarity to multiple genera within a 

family, priority was given to the vouchered specimens residing on the UNITE database. Any 

species known to be strictly non-mycorrhizal was eliminated from the data set.  

Data Analysis 

For ECM fungi, none of the individual OTUs, genera, or families were frequent enough 

to perform statistical tests of effects of site types.  

When performing statistical analysis on the three root and mycorrhizal colonization 

variables--total pine root length (cm), total number of ECM root tips on pine roots, and ECM 

colonization intensity (ECM root tips per cm pine root length)--two different approaches were 

used to analyze the data, which differed in the way of defining the sites. In the first approach to 

classify the sites, there were five site types: Control, beetles, Robinia, Quercus, and both Robinia 

and Quercus. The second approach was to ignore the beetles, instead using a factorial design to 

classify whether each site was invaded by Robinia or Quercus or both Robinia and Quercus. In 



 

8 

both approaches, mixed-effect linear models were used to analyze each of the three response 

variables separately, with Site as a random effect to model non-independence among samples 

from the same site. In the first approach to analysis, site type (with 5 levels) was the only fixed 

factor. In the second approach to analysis, presence/absence of Quercus and presence/absence of 

Robinia, as well as the Quercus x Robinia interaction, were included as fixed effects. 

 

RESULTS 

 

Twenty-eight different ECM fungal OTUs were found, but none of the individual OTUs, 

genera, or families were frequent enough to perform statistical tests of effects of site types. When 

focusing on the OTUs, Laccaria_1 was the most abundant, having 710 root tips in sample 8 (Fig. 

1) and Cortinarius_1 was the most frequent being found in 3 different samples (Fig. 2). All of 

Laccaria_1 was found in site 2 which is a site with only Robinia present. When focusing on each 

genus, Laccaria was the most abundant, having 710 root tips in sample 8 (Fig. 3) and 

Tomentella, Russula, and Lactarius were the most frequent, all being found in 3 different 

samples (Fig. 4). Tomentella was only found in site 3, which is a site with only Quercus present. 

When focusing on each family, Russulacae was the most abundant, having 734 root tips across 

samples 3, 4, 7, 17, and 19 (Fig. 5) and Thelephoraceae was the most frequent being found in 4 

different samples (Fig. 6). Thelephoraceae was mainly found in site 3, which is a site with only 

Quercus present.  
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Table 1.2: ECM fungal OTUs, length of query sequences, identity and accession # of best 

matches on public databases, and match percentage and length. 
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Figure 1: The abundance of each ECM fungal OTU from all samples taken. The height of the bar 

indicates the amount of ECM root tips on which each OTU was found across all sites studied.  
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Figure 2: The frequency of each ECM fungal OTU from all samples taken. The height of the bar 

indicates the number of samples in which that OTU was found throughout all sites studied. 
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Figure 3: The abundance of each ECM fungal genus from all samples taken. The height of the 

bar indicates the amount of ECM root tips on which each genus found across all samples studied. 

 

 

 

Figure 4: The frequency of each ECM fungal genus from all samples taken. The height of the bar 

indicates the number of samples in which that genus was found throughout all sites studied. 
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Figure 5: The abundance of each ECM fungal family from all samples taken. The height of the 

bar indicates the amount of root tips on which that family was found across all sites studied.  

 

 

Figure 6: The frequency of each ECM fungal family from all samples taken. The height of the 

bar indicates the number of samples on which that family was found throughout all sites studied. 

By the first approach to classify the sites (with 5 site types: Control, beetles, Robinia, 

Quercus, and both Robinia and Quercus), there was no effect of site type on total root length, 

mycorrhizal tips, or tips per cm root. Moreover, when we classified site type this way with 

beetles as a separate site type, we saw that beetles were not having a negative effect on plant root 

or mycorrhizal variables; if anything, the trend was towards having a slightly positive (although 

insignificant) effect (Table 2.1). 
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The second approach was to ignore the beetles, instead only focusing on whether the site 

was invaded by Robinia or Quercus or both Robinia and Quercus, treating sites with beetles as 

uninvaded controls. With this approach, we saw that the plant invaders had no effect on ECM 

colonization intensity (tips/cm of root) (Fig. 8), but they did affect total pine root length (Table 

2.2). Specifically, total pine root length was dramatically reduced by the combination of Quercus 

and Robinia (Fig. 7). There was also a trend (P=0.07) toward Robinia reducing the total number 

of ECM root tips (Table 2.2, Fig. 9). 

 

Table 2.1: Statistical Analysis using approach 1  

Response Source F df1,df2 P 

Pine Root Length (cm) Site Type 5.904,2 0.17 

Tips per cm root Site Type  0.06 4,17 0.99 

ECM Tips Total Site Type  1.84,17 0.17 

 

 

 

Table 2.2: Statistical Analysis using approach 2  

Response  Source F df1,df2 P 

Pine Root Length (cm) Quercus  1.26 1,18 0.28 

 Robinia 9.16 1,18 0.01 

 Quercus x Robinia 7.75 1,18 0.01 

Tips per cm root Quercus  0.02 1,18 0.89 

 Robinia 0.01 1,18 0.92 

 Quercus x Robinia 0.14 1,18 0.72 

ECM Tips Total Quercus  2.09 1,18 0.17 

 Robinia 3.59 1,18 0.07 

 Quercus x Robinia 1.36 1,18 0.26 
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Figure 7: Length of Pine Root vs Quercus and Robinia  

 
Figure 8: Ectomycorrhizal tips per cm root vs Quercus and Robinia  
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Figure 9: Total ectomycorrhizal root tips vs Quercus and Robinia 

 

DISCUSSION 

 One particular phenomenon that remains poorly understood is how invasive species can 

disrupt mutualisms between native species in ecosystems (Stinson et al. 2006), such as the 

mycorrhizal mutualism between soil fungi and plants. Effects of invasions by plants and beetles 

on mycorrhizal fungi of Scots pine were complex in this study. While there were no overall 

patterns of how the invaders may have affected the ECM fungi themselves, and no evidence of 

beetles having any effect, it is clear overall that the plant invaders had a negative effect on pine 

root growth, and may have also reduced the total abundance of ECM fungi.  

ECM fungal community 

In this study, the total number of OTUs, or OTU richness, was found to be 28. Even with 

this number, none were frequent enough to provide evidence for differences in composition due 
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to the invaders. It was interesting to see that at the OTU, genus, and family levels, the family 

Thelephoraceae was among the most frequent taxa. Thelephoraceae were often found in 

Quercus-invaded sites. Although the fungal data found in this study did not directly match 

another study, there were many similarities between the ECM fungal communities present here 

and in other studies. According to many studies done on the ECM fungi on Pinus roots, 

Tomentella is a genera found in many studies (Aucina 2007). Several studies suggest the 

presence of multiple small genets of ECM fungi on Pinus roots such as Laccaria, Lactarius, 

Russula and these were all dominant in this study (Jones 2003).  

Effects of invaders on pine roots and abundance of ECM fungi 

 The most significant result found in this study was the dramatic negative effect of 

Quercus plus Robinia on total pine root length in the soil (Fig. 7). This could have happened due 

to how Quercus and Robinia together are really effective competitors for space in the soil, 

occupying space and depleting nutrients, preventing pine roots from proliferating. Another 

mechanism that could have caused this is Quercus and Robinia could be producing one or more 

allelopathic chemicals that may hinder pine root growth and/or the beneficial relationship the 

pine roots have with soil fungi (Roberts et al. 2001). 

There was a lack of an effect of the invaders on ECM fungal colonization intensity 

(tips/cm root) (Fig. 8), but there was a trend towards Robinia negatively affecting the total ECM 

fungal colonization (Fig. 9). It was seen that the more Robinia present, the less colonization of 

ECM fungi on the pine roots. This could simply be an indirect effect of the reduction in pine root 

length. If pine roots are less abundant, there are fewer colonization sites for ECM fungi. 

Although this could also be a more direct result. Robinia could release a chemical from its roots 

that actually kills or harms the native mycorrhizal fungi of the pine roots (Carlson et al. 2014). 
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Overall, the reduction in pine root length is a major effect in response to the plant invaders. Plant 

invaders, such as Robinia and Quercus as seen in this study, could ultimately lead to reduced soil 

resources available for the pines, and ultimately reduced pine growth. 

 After completing this study, it was clear to see that the effects of invasions by plants on 

the roots and mycorrhizal fungi of the Scots pine are significant. Because of the invaders, 

changes were made to the ECM fungi and especially the pine roots themselves. Although the 

exact mechanism for how the invaders affect the native plants is unknown, it is possible that the 

invaders affect the native plant in many different ways that could lead to an overall change in 

reduced soil resources, reduced pine growth and even native tree death.  
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