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ABSTRACT 

ADDISON ELOIT ROUSH: Intrinsic Buffer Hydroxyl Radical Dosimetry for Hydroxyl 

Radical Protein Footprinting 

(Under the direction of Dr. Joshua S. Sharp) 

 

Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry is a powerful 

technique for the analysis of protein topography as it generates covalent mass labels that 

can survive downstream sample handling, and it is sensitive to the solvent accessibility of 

amino acid sidechains. Of the multiple platforms for HRPF, fast photochemical oxidation 

of proteins (FPOP) utilizes a pulsed 248 nm KrF excimer laser to label proteins by 

photolyzing hydrogen peroxide. FPOP is the most widely used HRPF platform because it 

labels proteins faster than unfolding can occur.  

Variations in FPOP sample conditions make it difficult to compare results between 

experiments and labs. To compensate for this, reporter molecules, known as dosimeters, 

have been introduced to provide a metric for comparison. While several different molecules 

are currently in regular use, they all complicate FPOP by increasing the complexity of the 

sample environment and/or necessitating the addition of steps to the workflow. Here, the 

history of HRPF and FPOP are discussed in detail, and the development of a new dosimeter 

molecule, Tris(hydroxymethyl)aminomethane, is reported. This molecule is the first of its 
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kind in that it acts as both buffer and hydroxyl radical dosimeter simultaneously, thereby 

significantly simplifying FPOP sample preparation. Tris acts as a gain-of-absorbance 

optical dosimeter as it gains absorbance at 265 nm upon oxidation, and this absorbance 

gain correlates well to both protein oxidation and scavenging capacity of the FPOP sample. 

Tris is capable of being measured in real-time through the use of an inline dosimeter which 

facilitates rapid adjustment of experimental parameters. Finally, a potential mechanism for 

Tris oxidation via reaction with hydroxyl radical is presented.  
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CHAPTER 1. FAST PHOTOCHEMICAL OXIDATION OF PROTEINS 

I. Hydroxyl Radical Protein Footprinting: Early Innovations 

Although it currently provides lower resolution than other structural biology techniques 

such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), and 

cryogenic electron microscopy (cryo-EM), mass spectrometry (MS) has grown into the 

tool of choice for many proteomics applications due to its low sample-size requirement and 

tremendous flexibility in sample characteristics (homogeneity, size, dynamics, etc.).1, 2 

Solution-phase structural analysis of proteins by MS is typically divided into three groups: 

covalent labeling, chemical cross-linking, and hydrogen-deuterium exchange. Of the three 

techniques, covalent labeling is particularly useful for mapping interaction interfaces and 

protein surfaces, and it can be sensitive to changes in protein conformation.3, 4 Covalent 

labeling operates on a footprinting platform wherein a reagent molecule is covalently 

bound to a protein and the labeling sites are determined via MS analysis. As ligands or 

binding partners are added and sample conditions are changed, the protein’s footprint will 

change accordingly and can provide insight into biophysical changes in the protein’s 

structure. 

 While many reagents can be used for covalent labeling mass spectrometry (CLMS), 

the hydroxyl radical is certainly one of the most common. Because it is similar in size to a 

molecule of water, CLMS using the hydroxyl radical provides a high-resolution assessment 
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of an amino acid side chain’s solvent accessibility and is typically referred to as hydroxyl 

radical protein footprinting (HRPF).4 Many platforms exist for performing HRPF with each 

varying in its method of radical generation. Some of the earliest HRPF experiments used a 

synchrotron X-ray beam to generate hydroxyl radicals by the radiolytic ionization of 

water.5, 6 However, the technology necessary to perform these experiments is not readily 

available to most researchers. Following the introduction of HRPF via synchrotron 

radiolysis, two new methods were introduced by Sharp and coworkers which relied on 

chemical7 and photolytic8 production of hydroxyl radicals. 

 Chemical production of hydroxyl radicals was achieved using Fenton chemistry 

catalyzed by the reagent NH4Fe(SO4)2. While the technique was capable of footprinting 

many amino acids which were highly solvent accessible, the timescale of the labeling 

reaction made it highly likely that secondary radical reactions would occur. Additionally, 

the method was not applicable to metal binding proteins, a very large class of proteins.7 

Contrastingly, photolytic radical production was much faster and used no metal catalyst, 

so it could be applied to a broader range of proteins. Radicals were produced when a sample 

containing hydrogen peroxide was exposed to rapid UV irradiation. As with the other 

HRPF techniques, photolytic oxidation was shown to be sensitive to the solvent accessible 

surface area of amino acids; however, though it occurred on a much faster timescale than 

chemical oxidation, it still labeled proteins slowly enough that unfolding due to oxidation 

could occur.8 As photolytic oxidation for HRPF showed significant promise as a tool for 

protein structural analysis9, a new method using a similar platform was soon developed. 
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II. Fast Photochemical Oxidation of Proteins 

This new technique is known as fast photochemical oxidation of proteins (FPOP), and it 

uses laser flash photolysis of hydrogen peroxide to generate hydroxyl radicals. Since its 

introduction by Hambly and Gross,10 FPOP coupled with MS-based bottom-up proteomic 

methods has become a powerful technique for characterizing protein topography. FPOP 

relies on characterizing protein topography by measuring the apparent rate of reaction of 

amino acid side chains with diffuse hydroxyl radicals generated by laser flash photolysis 

of hydrogen peroxide. The apparent oxidation rate of each amino acid is dependent on both 

its inherent reactivity (which in turn is dependent on the sequence context11, 12 and side-

chain structure13) and the radical accessibility of the side chain.12, 14-16 These labeling 

reactions produce covalently bound, stable modification products which are unaffected by 

down- stream sample handling,17-19 and complete initial protein-radical chemistry on a low 

microsecond time scale that is faster than conformational changes can occur,10, 17, 18 

although secondary reactions can persist longer.2, 20, 21 

 

III. FPOP Workflow 

In order to oxidize a protein or peptide by FPOP, the sample is prepared in a buffer which 

is unreactive to hydroxyl radicals, often sodium phosphate, with glutamine or another 

radical scavenger typically included to control the lifetime of the radicals produced. FPOP 

samples also typically include a reporter molecule known as a dosimeter which will be 

discussed separately. Immediately before oxidation is to occur, hydrogen peroxide is 
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spiked into the sample. This is done to prevent unfolding due to oxidative stress prior to 

the bulk oxidation event which would result in inaccurate solvent accessibility data. FPOP 

oxidation is performed in a fused silica capillary passing perpendicular to the beam of a 

pulsed 248 nm (wavelength at which water and proteins are minimally absorbent)17 KrF 

excimer laser. Flow rate is adjusted such that each bolus of sample is exposed only once, 

and an exclusion volume (unirradiated portion) is included between each bolus to further 

protect from this. Should a protein be exposed to the laser twice, it would have sufficient 

time between oxidation events to undergo conformational changes, and the footprint 

obtained would no longer be useful. Immediately after oxidation, the sample is deposited 

directly into a solution of methionine amide and catalase which stop the reaction by 

quenching excess radicals and secondary oxidants such as superoxides.10, 17 Oxidized 

proteins can then be digested using trypsin or another protease to facilitate analysis by 

standard bottom-up proteomics tools. This workflow is further summarized graphically in 

Figure 1.  

IV. Hydroxyl Radical Dosimetry 

Structural characterization by FPOP typically depends on comparing protein footprints 

obtained under several conditions. However, alterations to hydroxyl radical scavenging 

capacity due to changes in buffer composition or the addition of some ligands and/or 

binding partners make it difficult to standardize results for comparison between 

experiments and between labs. To overcome this issue, several molecules have been 

introduced to the FPOP workflow which allow the effective hydroxyl radical concentration 

experienced by the analyte to be determined, thereby providing a metric with which  
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experiments can be compared.22-25 Each of these dosimeters competes with the analyte for 

hydroxyl radicals and experiences a change in its measurable properties proportional to the 

amount of radical present and not scavenged by other pathways.2  

The UV-absorbent molecule adenine offers an easy option for radical dosimetry,24, 26 and 

although it initially necessitated the introduction of additional steps to the FPOP workflow, 

the recent introduction of an inline UV spectrometer19 negates this issue and allows 

hydroxyl radical production to be monitored in real time. Adjustments to peroxide 

concentration, laser fluence, and scavenging capacity can then be made as an experiment 

is performed to maintain a consistent level of oxidation across all samples.2, 27 

Recently, while performing FPOP experiments in Tris buffer with the adenine dosimeter, 

members of the Sharp Laboratory observed adenine dosimetry readings that were 

inconsistent with protein oxidation and exhibited unexpected gain of absorbance behavior. 

Consequently, the properties of Tris under oxidative conditions have been investigated and 

are reported here. 
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CHAPTER 2: TRIS(HYDROXYMETHYL)AMINOMETHANE DOSIMETRY 

I. Materials and Methods 

All reagents used were of the highest purity available with no additional purification. Tris, 

myoglobin from equine skeletal muscle, human Glu1 – fibrinopeptide B (GluB), and 2-(N-

morpholino)ethanesulfonic acid (MES) hydrate were purchased from Sigma-Aldrich 

Corporation (St. Louis, MO). Hydrogen peroxide (30%) was purchased from J.T. Baker 

(Phillipsburg, NJ). Sequencing grade modified trypsin was obtained from Promega 

(Madison, WI), and methionine amide was obtained from Bachem (Torrance, CA). The 

reductant dithiothreitol (DTT) was purchased from Soltec Ventures (Beverly, MA). 

LC/MS-grade formic acid and LC/MS-grade acetonitrile were purchased from Fisher 

Chemical (Fair Lawn, NJ).2 

 Previous experiments made use of 17 mM glutamine to limit the lifetime of the 

hydroxyl radicals produced during FPOP exposure.10, 18 In order to maintain this same level 

of hydroxyl radical scavenging capacity in experiments using Tris, the second order rate 

equations for the reaction between glutamine and Tris were compared using the standard 

format shown in Equation 1. 

v = 𝑘[A]'[B])  Eq. 1 

[A] was taken to be the concentration of glutamine or Tris. In all cases, [B] was set 

equivalent to 200 mM hydroxyl radical based on the assumption that 100 mM hydrogen 



 8 
 

peroxide would photolyze completely to yield two radicals per molecule of peroxide 

without a change in volume, thereby doubling the concentration of reagent. The partial 

orders of reaction (x & y) were assumed to be 1 because a unimolecular reaction in regards 

to both analytes is the simplest possible model for a second-order reaction between two 

different analytes and thus greatly simplifies calculations. Rate constants (k) were obtained 

from Buxton et al.28 and are summarized in Table 1. The rate for reaction (v) with 

glutamine was calculated, and subsequently, the concentration of Tris required to maintain 

this rate was found to be 6.1 mM as shown in Table 2. Full calculations are provided in 

Appendix 1. Initially, the reaction rate constants were compared, and the required 

concentration of Tris was estimated to be only 8.5 mM. As substantial data had already 

been collected using this concentration, Tris was maintained at a concentration of 8.5 mM 

in all experiments reported here, but it should be decreased to 6.1 mM in the future so that 

new experiments more accurately replicate typical FPOP scavenging conditions. 

 Oxidation was achieved in all cases by exposing samples to the pulsed beam of a 

COMPex Pro 102 KrF excimer laser (Coherent Inc., Santa Clara, CA). The method for this 

oxidation is standard in the field10 (for detailed explanation see Chapter 1-III). All 

experiments utilized offline dosimetry unless otherwise specified. This was achieved by 

measuring ultraviolet absorbance on a Thermo NanoDrop 2000c UV spectrophotometer 

with a 1 cm pathlength. When real-time inline dosimetry was required, ultraviolet 

absorbance was measured on the Pioneer series inline dosimeter from GenNext 

Technologies (Montara, CA).19 After FPOP, all samples were deposited directly into a 

quench solution of 0.5 µg/µL catalase and 0.5 µg/µL methionine amide to reduce 

secondary oxidation products. 
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Table 1. Second-Order Rate Constants for Radical Scavengers 

Molecule Rate Constant, k (L mol-1 s-1) 

Glutamine 5.4 x 108 

Tris(hydroxymethyl)aminomethane 1.5 x 109 

Rate constants are obtained from Buxton et al. 

 

 

Table 2. Reaction Rates and Concentrations of Hydroxyl Radical Scavengers 

Scavenger Concentration (mM) Reaction Rate (M s-1) 

Glutamine 17 1.84 x 106 

Tris 6.1 -- 

Calculations are summarized in Appendix 1.  
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Oxidized GluB and myoglobin were incubated at 90 ºC for 15 minutes in the presence of 

5 mM DTT in order to denature them and reduce cysteine-cysteine disulfide bonds. The 

mixture was cooled at 4 ºC for 10 minutes. Sequencing grade modified trypsin was then 

added in a 1:20 w/w ratio, and the mixture was incubated at 37 ºC with slow rotation 

overnight to digest the oxidized samples into smaller peptides. The digestion was stopped 

by adding 0.1% formic acid, and the resultant peptides were analyzed by LC-MS/MS on 

an Orbitrap Fusion Tribid mass spectrometer (ThermoFisher Scientific). Myoglobin 

peptides were separated on an Acclaim PepMap 100 C18 nanocolumn (0.75 mm x 150 

mm, 2 µm, Thermo Fisher Scientific). Elution was achieved using a binary gradient of 

water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The gradient 

began at 2% B and was increased to 35% B over 22 minutes, ramped to 95% B over 5 

minutes, held at 95% B for 3 minutes, returned to 2% B over 3 minutes, and held at 2% B 

for 9 minutes to reequilibrate the column. Electrospray voltage was set to 2500 V, and ion 

transfer tube temperature was set to 300 ºC. Analytes were detected in positive ion mode, 

and the top eight peaks from MS1 were fragmented by CID.2 

 The number of oxidation events per peptide were calculated using the method 

developed by Sharp et al., summarized here.19 Peaks corresponding to unoxidized and 

oxidized peptides were first identified using Byonic version v3.6.0 (Protein Metrics, San 

Carlos, CA). The resulting selected ion chromatogram peaks were then integrated with a 

mass error of 7 ppm. Finally, oxidation events per peptide (nox) were calculated using 

Equation 2 where I represents the integrated peak area of selected ions. (+16)ox, (+32)ox, 

and (+48)ox refer to the mass shift resulting from one, two, and three labeling events 

occurring on the given peptide. While the addition of hydroxyl groups should instead lead 
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to a mass shift of +17, +34, or +51, one hydrogen is typically lost for each hydroxyl group 

added thereby giving rise to the +16, +32, and +48 mass shifts. Each of these additions is 

weighted by the number of reactions a peptide would have to undergo in order to produce 

the given mass. 

n+' =
[,(./0)23×/.,(.56)23×6.,(.78)23×5)]
[,9:23.,(./0)23.,(.56)23.,(.78)23)]

 Eq. 2 

 

II. Results and Discussion 

Previous FPOP experiments performed in Tris buffer using the adenine dosimeter produced 

adenine absorbance readings that did not correlate to protein oxidation and demonstrated 

an unexpected gain-of-absorbance signal behavior. To investigate Tris buffer’s role in this 

unexpected behavior, quadruplicate samples of Tris were oxidized by hydroxyl radicals 

produced by photolyzing hydrogen peroxide with an excimer laser. Additional Tris 

samples were combined with peroxide but not exposed to a laser pulse, so they remained 

unoxidized. UV absorbance spectra were obtained using a NanoDrop spectrophotometer, 

and a representative spectrum from each sample set is shown in Figure 2. When comparing 

the absorbance of oxidized and unoxidized Tris, it became evident that, while Tris is 

inherently absorbent in the short wavelength region of the ultraviolet spectrum (roughly 

190-240 nm shown here), this absorbance changes minimally after oxidation by FPOP. In 

contrast, oxidized Tris shows substantial absorbance in the longer wavelength region from 

250-310 nm with a maximum at 265 nm whereas unoxidized Tris is only minimally 

absorbing in this region.2 
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In order to better assess the source of Tris’ absorbance behavior, quadruplicate samples of 

Tris were oxidized under four different conditions as shown in Figure 3. Each condition 

was one of four possible combinations of peroxide inclusion or exclusion and laser 

exposure or non-exposure with only samples receiving both peroxide inclusion and laser 

exposure having the necessary combination to produce hydroxyl radicals required for 

FPOP oxidation. In agreement with the expectations from Figure 2, all samples maintained 

a basal level of absorbance at 265 nm, but this absorbance significantly increased only 

upon exposure to hydroxyl radicals. Based on this, it was hypothesized that Tris buffer 

could serve as a hydroxyl radical dosimeter for FPOP reactions, but the ability of Tris 

absorbance to correlate to diverse reaction conditions was as yet unknown. 

 

  

Figure 2. UV Absorbance Spectra of Tris in Oxidized and Unoxidized Forms 

Red trace corresponds to 8.5 mM Tris oxidized by FPOP with 100 mM peroxide. Blue 
trace corresponds to 8.5 mM Tris combined with 100 mM peroxide but not exposed to a 
laser pulse.1 
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Figure 3. Tris UV Absorbance Gain Requires Hydroxyl Radical 

Absorbance of Tris at 265 nm as measured by NanoDrop after exposure to 
four sample conditions. Absorbance increases significantly only upon reaction 
with hydroxyl radicals generated by flash photolysis of hydrogen peroxide.1 
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To evaluate the correlation between Tris gain-of-absorbance and peptide oxidation, 

quadruplicate samples of Tris were again oxidized by FPOP but with the new addition of 

the model peptide GluB. Laser fluence was held steady at 10.23 mJ/mm2 for all samples, 

and peroxide concentration was varied from 5-40 mM in 5 mM increments to generate 

increasing concentrations of radical. Typically, an increase in radical production 

corresponds to increased oxidation of analytes, so a direct, positive correlation was 

expected between Tris absorbance and GluB oxidation. As shown in Figure 4, Tris’ 

absorbance gain at 265 nm does correlate both strongly and positively with the average 

oxidation per peptide of GluB.2 

 Abolhasani Khaje et al. suggest that the deviation seen in this correlation is likely 

due to an error in the mass spectral measurement of GluB oxidation rather than variation 

in the oxidation event itself.29 Specifically, they showed that low signal intensity in the 

mass spectrum results in poor precision for FPOP workflows and can be ameliorated by 

increasing the amount of sample injected onto the LC column. This suggests that the 

correlation shown in Figure 4 could have been improved by increasing the sample injection 

volume. However, as the R2 value was 0.827, it was determined that the correlation shown 

sufficiently supported the hypothesis that Tris could act as a hydroxyl radical dosimeter, 

and work was continued to see if this held under additional conditions. 

 In some FPOP applications, the sample mixture may contain additional compounds, 

such as small-molecule drugs, that can scavenge hydroxyl radicals. In order for any 

potential dosimeter molecule to be useful, it is essential that it be able to respond reliably 

to these changes in chemical environment as well. To simulate this, quadruplicate samples  
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of Tris were oxidized by FPOP in the presence of MES buffer, a competing radical 

scavenger.  

MES was added at concentrations of 10, 20, 30, 50, and 75 mM, and hydrogen 

peroxide was held at 100 mM for all samples. The laser fluence was also held constant so 

that all samples would receive an equivalent dose of hydroxyl radicals. Immediately after 

oxidation, the absorbance at 265 nm was measured using the Pioneer series inline 

dosimeter. By subtracting the average pre-oxidation baseline signal from the average signal 

post-oxidation, the ΔAbs265 was calculated for each sample. As seen in Figure 5, the 

ΔAbs265 of Tris correlates strongly (R2 = 0.9625) with the concentration of scavenger 

present in the sample. As the concentration of scavenger is increased, the effective 

hydroxyl radical dosage experienced by other analytes decreases, and Tris experiences a 

proportional decrease in its gain-of-absorbance behavior. 

This again supports the hypothesis that Tris could act as a potential hydroxyl radical 

dosimeter. However, it is important to note that both experiments used a simple sample 

mixture containing only Tris and one additional component. In most FPOP experiments, 

the sample contains several additional analytes, which compete with the dosimeter for 

radicals, so it is important to see that Tris maintains its dosimetry abilities under such 

complex conditions.2 

In order to test the robustness of Tris acting as a radical dosimeter, a standard FPOP 

reaction containing myoglobin was carried out with buffer pH held at 8.0 to maintain 

myoglobin conformational stability. The reaction mixture was oxidized in the presence as 

well as the absence of MES buffer, and absorbance readings were obtained in real-time  
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  Figure 5. Tris Dosimetry is Sensitive to Competing Radical Scavengers

The gain in Tris absorbance decreases with increasing MES concentration.1 
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using inline dosimeter monitoring. First, myoglobin was oxidized and the ΔAbs265 readings 

were 4.97 ± 0.15 absorbance units, at a laser fluence of 11.66 mJ/mm2. In the presence of 

10 mM MES buffer, the ΔAbs265 decreased to 3.37 ± 0.30 absorbance units at 11.66 

mJ/mm2, reflecting scavenging by the MES buffer. In a separate experiment, laser fluence 

was increased to 15.30 mJ/mm2 during the exposure of the myoglobin + MES sample to 

achieve a ΔAbs265 reading ≈ 4.97, identical to that of myoglobin without MES buffer 

(Figure 6A). When FPOP is performed in the Tris buffer alone, the peptides are more 

oxidized; when MES is also added to the mixture, a drop in the oxidation of all myoglobin 

peptides is observed. By compensating for the scavenging capacity of MES buffer using 

Tris as a dosimeter, the compensated oxidation of all myoglobin peptides in the presence 

of MES buffer is the same as in the samples without MES scavenger as shown in Figure 

6B, demonstrating that Tris can act as a functional and practical radical dosimeter for 

scavenging compensation.2, 27 

While it is clear from these results that the common buffer Tris can act as both an 

effective hydroxyl radical scavenger and dosimeter for FPOP applications, it is not clear 

how this new chromophore is formed. Based on the location of the UV absorbance 

maximum, it was first suspected that the chromophore was an aldehyde formed from the 

oxidation of an alcohol group as acetaldehyde is reported to have an absorbance maximum 

of 290 in the organic solvent cyclohexane.30  While this does not directly overlap with the 

absorbance maximum seen in Figure 2, the increased polarity of water over cyclohexane 

stabilizes the n molecular orbital more greatly than it does the Π* molecular orbital 

resulting in a hypsochromic shift (or blue shift) of the n→ Π* transition.31 To test for the 

presence of an aldehyde, a Fehling test was used on a sample of oxidized Tris. This classic  
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Figure 6. Real-Time Compensation using Tris Dosimetry 

A 

B 

(A) Tris absorbance change for myoglobin samples without MES scavenger, 
with 10 mM MES scavenger, and compensated conditions with 10 mM MES 
scavenger and increased laser influence to obtain a ΔAbs265 ≈ 4.97.            
(B) (Blue) Peptide oxidation for myoglobin peptides in the absence of MES; 
(Orange) Peptide oxidation for myoglobin peptides in the presence of 10 mM 
MES; (Gray) Peptide oxidation for myoglobin peptides in the presence of 10 
mM MES under compensating laser fluence conditions, using Tris as a 
dosimeter for radical compensation. No statistically significant differences 
were detected in peptide oxidation between no MES samples and with MES-
containing samples compensated using Tris dosimetry.1 
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organic analytical method produces a red precipitate if an aldehyde is present and a green 

solution if an aldehyde is absent. When applied to Tris, the solution produced was a 

confusing blue which did not correlate with any standard Fehling test result. 

While this did not disprove the presence of an aldehyde, further discussion of 

potential reaction mechanisms led to the proposal that the newly formed chromophore 

could instead be an imine produced when the initially formed aldehyde condensed with the 

amine nitrogen of a second Tris molecule. Due to the high concentration of Tris relative to 

most other analytes and the presence of three potentially reactive alcohol groups on each 

molecule, it was hypothesized that this reaction could continue past the initial aldehyde 

production step to result in multiple aldehydes on the same molecule reacting with other 

Tris molecules to form a complex polymer. As imine condensation is reversible in aqueous 

conditions, the bond is commonly reduced using sodium borohydride (NaBH4).32 When 

excess NaBH4 was added to an aqueous sample of oxidized Tris, the solution thickened to 

a gel-like consistency while samples of unoxidized Tris treated in the same manner 

remained unchanged. This agrees with the idea that a large polymer is formed upon Tris 

oxidation via the formation of an imine bond which can be reduced to prevent hydrolysis. 

Based on these two observations, the proposed scheme for the reaction of Tris buffer with 

hydroxyl radical shown in Figure 7 was drafted. Briefly, hydroxyl radicals generated by 

laser photolyzing hydrogen peroxide are thought to abstract a hydrogen from a C-H bond 

from Tris and produce a secondary carbon radical. This radical can then react with oxygen 

dissolved in the sample to produce a peroxy radical. A geminal diol can then be formed by 

one of several different pathways. Water is then spontaneously lost to form an aldehyde. 
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Alternatively, a hydroperoxyl radical can be lost to directly produce the aldehyde. The 

aldehyde of one Tris molecule can then condense with the amine of another Tris molecule 

to form an imine. While not shown in the scheme, this reaction is thought to repeat to form 

a lengthy and potentially branched polymer.33, 34 

 

  

Figure 7. Proposed Scheme for the Oxidation of Tris by Hydroxyl 
Radical 
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III. Conclusion  

It has been clearly demonstrated that the common buffer Tris(hydroxymethyl)-

aminomethane can be used as a highly effective hydroxyl radical dosimeter for FPOP 

experiments. Increases in Tris absorbance correlate strongly with peptide oxidation (R2 = 

0.827) and scavenging capacity (R2 = 0.9625), and the absorbance loss resulting from 

increase scavenging capacity can be compensated in real time to maintain consistent 

protein footprints. This new chromophore is suspected to be the result of formation of a 

gem-diol followed by water elimination resulting in aldehyde and/or imine formation,33, 34 

with a proposed scheme as shown in Figure 7. 

 Several characteristics of Tris suggest that it may be a favorable replacement for 

adenine dosimeter in many FPOP applications. Because the molecule is UV active in the 

same range as adenine, no modifications to current measurement technologies are required 

for its adoption. As shown in Figure 8, Tris is the major contributor to absorbance change 

after laser exposure, so there is little interference from proteins or other buffer components. 

Tris also eliminates the need for the background scavenger glutamine, thereby simplifying 

sample preparation. Furthermore, the use of Tris instead of adenine will allow for the 

application of FPOP to nucleoside and nucleotide binding proteins (a very large category 

of proteins) without concern about dosimeter interference in protein structure.2 
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Figure 8. 265 nm Absorbance Contribution of FPOP Sample 
Components 

pH was held at 8.01 for all samples, and 17 mM glutamine was used to 
maintain scavenging capacity in samples not containing Tris. Tris 
concentration was 8.5 mM, and myoglobin concentration was 5 µM. 
Oxidation was performed in 100 mM peroxide for all samples.1 
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Appendix 1. Calculation of Reaction Rates for Hydroxyl Radical Scavengers 

 

 

Glutamine: 

 

v; = (5.4 × 108	L	molF/	sF/)(17 × 10F5	M)(200 ×	10F5	M) 

 

v; = 1.84 × 100	M	sF/ 

 

 

Tris Concentration Required: 

 

(1.84 × 100	M	sF/) = (1.5 × 10L	L	molF/	sF/)[Tris](200 × 10F5	M) 

 

[Tris] =
(1.84 × 100	M	sF/)

(1.5 × 10L	L	molF/	sF/)(200 × 10F5	M) 

 

[Tris] = 6.1 × 10F5	M = 6.1	mM  
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