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ABSTRACT 

The cannabinoid receptors (CB1 and CB2) belong to the family of class A GPCRs. The 

CB1 receptor is predominately found in the central nervous system and regulates various 

neuromodulatory and physiological processes while CB2 receptors are found in peripheral 

tissues, particularly in the immune system tissues. This dissertation reports several projects 

including: (1) an examination of the putative binding modes of Cannabis-derived ligands with 

CB1 and CB2 receptors, (2) the identification of novel CB1 inverse agonists, and (3) the 

identification of allosteric site(s) in the CB2 receptor and screening of new CB2 allosteric 

modulators (AMs).   

Chapter 1 describes background information on cannabinoids and the endocannabinoid 

system. Chapter 2 focuses on the structure-activity relationships of Cannabis-derived ligands 

with CB1 and CB2 receptors. These compounds are known to exhibit nanomolar to micromolar 

affinities against the CB1 and CB2 receptors; however, little-to-no information is available about 

how they interact with the receptors at the molecular level. To understand the putative binding 

interactions of these ligands with the CB receptors, molecular docking and binding free-energy 

calculations were performed. The modeling results agree well with the experimental results and 

delineate key residues of CB1 and CB2 receptors that are engaged in H-bonding, aromatic 

stacking, and hydrophobic interactions with the ligand. Chapter 3 focuses on the identification of 

new CB1 inverse agonists using protein structure-based virtual screening. These compounds 

exhibited nanomolar to micromolar binding affinities against the CB1 receptor and antagonized 
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basal GTPγS functional activity consistent with inverse agonist behavior. These compounds 

represent novel scaffolds that could be used to develop new CB1 inverse agonists with fewer or 

null psychiatric side effects compared to rimonabant. Chapter 4 focuses on the identification and 

characterization of CB2 allosteric site(s). Using known CB2 negative AMs, the binding energy 

of representative complexes after molecular dynamics studies validated the binding poses of 

AMs. Virtual screening revealed seven potential AMs and they have been submitted for in vitro 

testing. The results from this study could lead to the discovery of more effective and selective 

CB2 AMs. Finally, Chapter 5 includes the summary and conclusions of the research presented in 

this dissertation. 
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1.1. Introduction 

The G-Protein Coupled Receptors (GPCRs) are integral membrane proteins which 

represent the largest single group of targets for approximately 40-50% of FDA approved drugs, 

and functional selectivity of these targets may permit novel approaches to drug design (1-3). 

GPCRs are widely distributed only in eukaryotes, including yeast, choanoflagellates, plants and 

animals (4, 5); however, recently they were also found in fungi (6). There are at least 800 GPCRs 

identified in the human genome (7, 8). Many GPCRs do not have known ligands and are referred 

to as orphan GPCRs.  

1.1.1. General structural features of GPCRs 

The basic structure of GPCRs are characterized by an extracellular amino (N)-terminal 

segment, followed by seven transmembrane (7-TM) alpha-helix segments (TM-1 to TM-7), 

connected through three extracellular loops (EC1, EC2 and EC3) and three intracellular loops 

(IC1, IC2 and IC3) and an intracellular carboxyl (C)-terminal segment (Figure 1.1). These 

extracellular loops also contain two highly conserved cysteine residues that form disulfide bonds 

to stabilize the receptor structure. The extracellular N-terminal part of the receptor participates in 

glycosylation and ligand binding, while the intracellular C-terminal part of GPCRs participates 

in G-protein binding, desensitization, and internalization (9-11).  

The 7-TM region is known to contain well-conserved motifs that are characteristics of 

GPCRs; however, the structural diversity among the members of the same subfamily still makes 

prediction of 3D protein structure using homology or comparative modeling challenging. 
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Figure 1.1. The basic structure of GPCRs. 

1.1.2. Classification of GPCRs 

Kolakowski proposed the first classification of GPCRs system in 1994; he grouped 

GPCRs into 6 classes based on sequence homology and functional similarity (12). These classes 

were as follows: Class A (rhodopsin-like), Class B (secretin receptor family), Class C 
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(metabotropic glutamate), Class D (fungal mating pheromone receptors), Class E (cyclic AMP 

receptors) and Class F (frizzled/smoothened).  

Later in 2005, Fredriksson et al. introduced an alternative classification system known as 

GRAFS (13). According to the GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, 

Secretin) classification system, vertebrate GPCRs were grouped into 5 classes (13).  

Metabotropic glutamate/pheromone (former class C): The metabotropic receptor or 

glutamate receptor-like family has been classified previously as class C family. The 

metabotropic receptor is comprised of 8 subclasses (subfamilies) and members all form dimers 

and include the metabotropic glutamate receptors (mGluR), extracellular Ca2+-sensing receptors, 

taste (gustatory) receptors, and several odorant receptors, as well as the pheromone receptors. 

Rhodopsin family (former class A): The rhodopsin family was referred to previously as class A 

GPCR family. The rhodopsin family contains the largest number of members compiled into at 

least 19 subclasses (subfamilies). This class, which includes rhodopsins, adrenergic receptors, 

opioid, and cannabinoid receptors, shares highly conserved regions. These include the Glu/Asp-

Arg-Tyr (E/DRY) motif on the intracellular side of TM3, the CWXP in TM6 and an Asn-Pro-X-

X-Tyr (NPXXY) motif in TM7. 

Adhesion family: This class is phylogenetically related to the previously classified class B 

receptors. It includes polycystic kidney disease 1 (PKD1)-like proteins. 

Frizzled/Smoothened (former class F): The Frizzled/Smoothened has been classified 

previously as Family F. These play important roles in embryonic development and especially in 

cell polarity and segmentation. 
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Secretin receptor family (former class B): The secretin-like receptor class was classified 

previously as the class B GPCR family. The secretin receptor family is comprised of 34 

subclasses (subfamilies) and members include receptors for peptide hormones, such as 

parathyroid hormone (PTH), parathyroid hormone-related protein (PTHrP), and calcitonin. The 

class B family also contains the vast majority of the orphan GPCRs. 

Classes D and E are not included in this system because they are not part of the human genome 

(13). 

Class D (Fungal mating pheromone receptors): Family D comprises pheromone receptors 

(VNs) associated with the inhibitory G protein (Gi). 

Class E (Cyclic AMP receptors): Family E refers to cAMP receptors (cAR), which have only 

been found in D. discoideum, however no information is available about its possible expression 

in vertebrates (14-16). 

1.1.3. GPCR ligands and receptor state terminology 

Ligands are those molecules that bind to GPCRs and regulate their activation and, 

subsequently, alter their biological functions. Ligands can either act on the orthosteric site (also 

known as the agonist binding site) or an allosteric site (also known as a regulatory site). The 

agonist-binding site (orthosteric site) is well conserved in most GPCRs. In contrast, allosteric 

sites are structurally distinct from and less well-conserved compared to the active site of the 

agonist site in the same protein; therefore, allosteric sites can offer a better target to avoid side 

effects associated with orthosteric binding site agonists. Some GPCRs possess intrinsic activity 

in the absence of either endogenous or synthetic ligands. This intrinsic activity of a receptor is 
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referred to as constitutive activity or basal activity. In general, the constitutive activity of GPCRs 

results from an equilibrium state where some receptors are present in the ground state with no 

activity (R) and others are in their fully activated state (R*). Agonists are those molecules that 

bind to the active state of the receptor and promote its biological function via signal transduction, 

while inverse agonists bind to the inactive states of the receptor and block constitutive activity of 

the GPCR and agonists’ effects. Antagonists are those compounds that act on the GPCR binding 

site and block the binding and activation of agonists without altering the distribution of inactive 

and active states. Moreover, neutral antagonists are those molecules that block the binding of 

agonists as well as of inverse agonists but exert no efficacy for their cognate receptor (17).  

1.1.4. GPCR signaling 

G-proteins are heterotrimeric and comprised of α, β, and γ subunits. The α subunit not 

only plays an important role for GDP and GTP binding, but it is also responsible for GTP 

hydrolysis, whereas the β and γ subunits are in a strongly linked βγ dimer. G-proteins are 

generally referred to by their α subunits. Currently, four distinct α-subunit subfamilies have been 

reported: Gs proteins (s = “stimulatory”) couple to and stimulate adenylyl cyclase; Gi proteins (i 

= “inhibitory”) couple to and inhibit adenylyl cyclase as well as activate G-protein-coupled 

inwardly rectifying potassium (GIRK) channels; Gq proteins couple to the activation of 

phospholipase C (PLC) which generates second messengers (e.g., vasopressin, thyroid-

stimulating hormone, angiotensin); and Gt proteins (t = “transducing”) couple to trigger the 

breakdown of cyclic GMP (cGMP) .  
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Figure 1.2. Classical examples of Class-A GPCR signaling. This image has been reproduced 
with permission of the American Chemical Society under copyright license number 
3733750761285. 

In the absence of ligand, whether endogenous, synthetic, or plant-derived, integral 

transmembrane GPCR receptors such as the rhodopsin or β2 adrenergic receptor (β2-AR) present 

in the low-affinity state. When an agonist binds to the receptor, it activates the receptor in such a 

way that it forms a transient high-affinity complex of agonist, activated receptor and G protein. 

During this process, GDP is released from the G-protein due to conformational changes in the G 

protein and is replaced by GTP. This sudden change causes the dissociation of the G-protein 

complex into α subunits and βγ dimers and subsequently both act on various intracellular effector 

pathways. Gs protein, for example, activates adenylyl cyclase, which leads to an increase in 

cyclic AMP (cAMP). This increased cAMP ultimately activates protein kinase A (PKA), which 

generally phosphorylates substrates of interest, including GPCRs, other kinases, and 

transcription factors (Figure 1.2) (18-20). 
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Receptor trafficking or desensitization generally starts when an agonist activates a GPCR. 

The activation of the receptor leads to the dissociation of G-protein subunits into an α subunit 

and a βγ dimer. The free βγ dimers recruit G-protein-receptor kinases such as GRK2/3 to the 

receptor, where they specifically phosphorylate serine/threonine residues of agonist-bound 

receptors in their third intracellular loop and C-terminal domain. This phosphorylation process 

allows the recruitment of β-arrestin to the receptor and internalization of the receptor–β-arrestin 

complexes take place into clathrin-coated pits. Again, this receptor-β-arrestin complex gets 

internalized into acidic endosomes and then either degraded by lysosomes or dephosphorylated 

and returned to the surface of cell (Figure 1.3) (10, 11, 18).  

Figure 1.3. Seven-transmembrane (7-TM)-receptor trafficking.	
  This image has been reproduced 
with permission of the American Chemical Society under copyright license number 
3733750761285. 
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1.1.5. Endocannabinoid system 

The extensive research in the field of cannabis contributed to the understanding of the 

mechanism of action of cannabis and its receptor interactions through the discovery of the 

endocannabinoid system. The endocannabinoid system is made up of the cannabinoid receptors 

(CBrs), their associated endogenous ligands, such as N-arachidonoylethanolamine (anandamide) 

and 2-arachidonoylglycerol (2-AG) and the enzymes which are involved in the synthesis, such as 

phosphatidic acid phosphohydrolase, diacylglycerol lipase (DAGL), phosphoinositide-specific 

PLC (PI-PLC) and lyso-PLC, transportation and degradation of the ligands, such as fatty acid 

amidohydrolase (FAAH) and monoacylglycerol lipase (MAGL) (21). So far, there are two 

identified CB receptor subtypes: CB1 (22) and CB2 (23), and at least five endogenous (24-28) 

cannabinoids (anandamide, noladin ether, virodhamine, 2-AG and N-arachidonyldopamine) 

produced by the human brain. Recently, GPR55 has been identified as a third type of 

cannabinoid receptor (29). The cannabinoids can be classified into three categories: 

“phytocannabinoids”, mainly present in the cannabis plant (“Cannabis sativa”), “endogenous 

cannabinoids”, produced by humans and other animals; and “synthetic cannabinoids” belonging 

to similar compounds synthesized in a laboratory. The endocannabinoid system is widely 

distributed throughout the brain, immune system, and especially the spinal cord; it plays a role in 

many regulatory physiological processes including inflammation, appetite regulation, 

metabolism, energy balance, thermogenesis, neural development, immune function, substance 

abuse and digestion (30-32). 

1.1.6. Timeline for cannabinoids, receptor system and endocannabinoid research  

The plant Cannabis sativa and its many preparations (i.e., hemp, hashish, bhang, hash oil, 

and ganja) have been used for recreational as well as medicinal purpose for centuries (33). 
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Cannabis, also known as marijuana, is one of the most illicit drugs in the world and widely used 

in a cigarette commonly known as joint or nail. The U.S. Drug Enforcement Administration lists 

cannabis/marijuana as Schedule I substance, under the Controlled Substances Act (34). At 

present, four U.S. states (Alaska, Colorado, Oregon, and Washington) have legalized the sale or 

use of cannabis for both recreational and medicinal purposes, and a total of 23 US states and 

Washington, DC have legalized cannabis for medicinal use (35). The identification of ∆9-THC, a 

key active constituent of the cannabis plant which is present in the significant quantity and which 

has shown psychoactive efficacy, provided the platform for extensive research for 

pharmacological action, structure exploration studies such as structure activity relationships and 

lead optimization, discovery of cannabinoid and non-cannabinoid receptor, and synthesis of 

highly selective and potent analogs (36). 

Initially, the term cannabinoid was used to refer to cannabis-like agents or cannabinol and 

describe only 21-carbon structures which belonged to the chemical class of terpenophenolic 

compounds and related analogs present within cannabis and its preparations (37). More recently, 

the term cannabinoid includes a vast variety of ligands which have activity at the cannabinoid 

receptors, including synthetic and/or endogenous compounds.  

The following discoveries from the year 1838 to 2015 provided the fundamental basis to 

understand the mechanism of action involved in the pharmacological actions of cannabis (29, 38-

41). 

• 1838-1843 An Irish physician, O’Shaughnessy, investigated the therapeutic use of 

cannabis in India 

• 1899 Isolation of first plant cannabinoid, cannabinol 
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• 1932-1940 Cannabinol structure elucidation 

• 1940 Cannabidiol isolation 

• 1941 Synthesis and evaluation of ∆6a,10a-THC  

• 1942-1950 Early pharmacological investigations 

• 1963 Cannabidiol structure elucidation 

• 1964 Gaoni and Mechoulam, first structure elucidation of ∆9-THC from cannabis  

• 1964-1975 Isolation and identification of additional cannabinoids 

• 1972 Ring immobility and tetrad assays developed by Martin 

• 1974 Pfizer Central Research synthesized and patented CP 55,940 

• 1988 Discovery of CB1 receptor 

• 1990 Matsuda et al. provided the first definitive poof of a central cannabinoid 

receptor (CB1) by cloning of CB1 receptor 

• 1991 Stirling-Winthrop Research Group discovered the indole cannabinoids 

Win 55212-2 

• 1992 Devane et al. isolated and characterized the first endogenous ligand 

(anandamide) to the cannabis receptor  

• 1993 Munro et al. discovered a second cannabinoid receptor, CB2 which was isolated 

from human myeloid cells  

• 1994 Sanofi introduced the first selective CB1 antagonist SR141716A  

• 1995 Isolation and structure elucidation of second endogenous ligand, 2-AG 

• 1995 GPR55 was identified and cloned 

• 1996 Cloning of the first endocannabinoid-degrading enzyme, FAAH 

• 1998 Sanofi introduced the first selective CB2 antagonist SR144528  
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Figure 4.12. Overlay representation of first, middle, and last frames of each of the three 
molecular dynamics simulations. MD simulation of the CB2 receptor with (A) orthosteric ligand 
(CP 55,940) only; (B) DHGA; and (C) TBC in presence of CP 55,940 within CB2 receptor. The 
ligands and protein color represents: first frame (carbon in yellow), 5000th frame (carbon in 
gray) and last frame (carbon in blue). 
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4.3.6. SBVS using the allosteric modulator-optimized complexes 

After validation of the models, we performed SBVS using the best allosteric optimized 

CB2-CP 55,940 complexes. The top seven hits (Figure 4.13) on the basis of docking score and 

visual inspection of interactions between allosteric ligands and CB2 receptors were selected for 

further evaluation by in vitro biological activity.  

 

 

Figure 4.13. Predicted CB2 allosteric modulators identified through structure-based virtual 
screening. 
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The preliminary % displacement results of the PP101-107 compounds against the CB1 

and CB2 receptors in radioactive competition assays showed no significant CB affinity at 10 µM 

concentrations, except PP103, which further support that these compounds may act as allosteric 

modulators. Since two compounds (PP103 and PP105) showed >40% CB2 displacement, it may 

be presumed that they could be identified as biotopic (ago-allosteric or inverse ago-allosteric). 

We already submitted these compounds for testing for allosteric activity for the CB2 receptor. 

Table 4.4. The preliminary % displacement of the PP101-107 compounds against the CB1 and 

CB2 receptors in radioactive competition assays. 

Compound Code CB1 % Displacement CB2 % Displacement 

PP101 36.2 17.1 

PP102 39.1 16.0 

PP103 80.6 56.7 

PP104 4.1 8.5 

PP105 - 43.3 

PP106 6.9 5.5 

PP107 37.7 27.2 

 

4.4. Conclusion 

We have identified allosteric binding site(s) for known micromolar active allosteric 

modulators (AMs), TBC and DHGA within the CB2 receptor. We calculated the binding free 

energy of CP 55,940, which varied, with the nature of AMs bound within the allosteric site of the 

CB2 receptor. Binding of either TBC or DHGA (known as negative AMs) reduced the binding 

free-energy of CP 55,940, and thus validated the identified allosteric sites for these AMs. The 

identified allosteric sites were further used for the identification of new selective and potent CB2 
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allosteric modulators using the SBVS approach. We have identified seven hits from SBVS, 

which were further submitted for biological evaluation to see allosteric effects against the CB2 

receptor using radioactive binding and GTPγS binding functional assays.  
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5.1. Summary 

Cannabis, also known as marijuana, is one of the oldest and most famous medicinal 

plants. Having been used for recreational and medicinal purposes for several centuries (33), it 

has been used to treat various diseases, such as arthritis, glaucoma, inflammation, cancer, etc. 

(141). To date, at least 111 cannabinoids have been isolated and identified from the Cannabis 

plant (41); Δ9-THC is the most psychoactive constituent (36). Cannabinoids exert their action by 

acting on cannabinoid receptors. Cannabinoid receptors belong to the G-protein coupled 

receptors (GPCR) Class-A rhodopsin-like family (109). GPCRs are targets of approximately 40-

50% of FDA approved drugs (1, 191). Successful drug candidates often exhibit functional 

selectivity for these targets. There are two subtypes of cannabinoid (CB) receptors, CB1 and 

CB2, which have been implicated in a wide variety of important roles in human health and 

disease. A proper and detailed understanding of the CB receptor, potential binding pockets, and 

CB-ligand binding modes may assist the discovery of new potential therapeutics targeting CB 

receptors; however, neither CB receptor subtype has been successfully crystallized nor has it had 

its three-dimensional (3D) structure experimentally characterized. Researchers explore the fields 

of endocannabinoids, cannabinoid receptors, and ligands using experimental and computational 

tools; however, wide variations in CB modulatory activity (both affinity and specificity) have 

been observed but have gone unexplained for wide classes of Cannabis-derived natural 

compounds. In Chapter 2 of this dissertation, we reported the first systematic computational 

docking and free-energy calculations conducted on a set of 25 Cannabis-derived compounds in 

order to understand their interaction pattern and observed structure-activity relationship (SAR) 

against the CB1 and CB2 protein models. This study revealed the importance of key residues of 

CB1 and CB2 receptors that are engaged in H-bonding, aromatic stacking, and hydrophobic 
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interactions with the ligand. Docking studies explained the key interactions residues (Val161, 

Thr114 and Trp194) of CB2 receptor with C-8 hydroxyl group and C-3 alkyl chain length of 

cannabinol class of compounds, which led to CB2 selectivity over CB1 receptor. Furthermore, 

important structural features of α and β-hydroxyl substituted Δ9-THC and Δ8-THC related 

compounds at C-8 and C-10 positions have been justified in terms of intra-hydrogen bonding for 

stabilization of ligand with receptor binding. The docking study also revealed the importance of 

a hydroxyl group in compounds 24 and 25. These hydroxyl groups were found to be H-bond 

donors/acceptors corresponding to particular amino acids, which might be responsible for 

cannabimimetic response. 

CB1 receptor inverse agonists have been used to treat obesity, obesity-related cardio-

metabolic disorders, and substance abuse, with some clinical success (192-194). The drug 

rimonabant has been used to demonstrate the druggability of the CB1 receptor antagonists (192). 

Patients in phase III clinical trials with rimonabant showed successful weight loss and 

improvements in metabolic disorders; however, severe psychiatric side effects, such as 

depression, anxiety, nausea, and dizziness, were also observed. Rimonabant was never approved 

by the US FDA for sale in the US and was removed from the market in Europe due to its adverse 

CNS effects (59).  

Natural products continue to be a major source of new and structurally diverse leads. 

Natural product drug discovery outlines many important drugs that revolutionized the treatment 

of several diseases over several decades (164). In view of this, the present work utilized the 

ZINC database subset of natural products to discover new natural product chemotypes as CB 

modulators using structure based virtual screening approach. We identified three virtual 

screening hits PCB-2, PCB-12 and PCB-16 in our study. These structures are novel and showed 
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promising nanomolar to micromolar range functional activity towards CB1 and CB2 receptors. 

In the next step, we purchased the analogs of these compounds and structural exploration of 

these hits resulted in nanomolar range compounds and which are highly selective for CB1 (PCB-

28, PCB-210, PCB-211 and PCB-163) and CB2 (PCB-22, PCB-23, and PCB-164) receptors.  

In addition, selective activation of CB2 is a validated therapeutic approach for such 

important human ailments as pain, inflammation, multiple sclerosis, cancer, ischemic/reperfusion 

injury, and osteoporosis (97); however, prolonged activation of the CB2 receptor may cause 

immunosuppression and bone loss (89, 134, 135). Allosteric modulators (AMs), which can be 

either positive allosteric modulators (PAMs) or negative allosteric modulators (NAMs). The CB2 

receptor’s AMs include both PAMs and NAMs. AMs can have therapeutic advantages over 

orthosteric ligands; they may exhibit reduced off-target side effects or enhanced target 

specificity. Only a few CB2 AMs with micromolar activity have been identified, and the CB2 

receptor’s allosteric site(s) is not well characterized; therefore, in order search for new potent 

AMs efficiently, we aim to identify and characterize allosteric site(s) of known negative CB2 

AMs (136)(dihydro-gambogic acid (DHGA) and trans-β-caryophyllene (TBC)) and their 

potential modes of interaction with the CB2 receptor. To achieve this aim, first of all we docked 

CP 55,940, a non-selective CB agonist on multitemplate-based active state model of CB2 

receptor. The most optimized pose that matched with the experimental mutagenesis data was 

selected for further calculations. In the next step, allosteric binding site(s) for TBC and DHGA 

were mapped within the CB2 receptor with the presence of CP 55,940 at orthosteric site using 

SiteMap. After identification of potential allosteric binding site(s) within CB2 receptor, both 

TBC and DHGA were docked on CB2 receptor when CP 55,940 was already bound within CB2 

receptor. Further, 200 ns molecular dynamics simulations were carried out using the best 
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docking poses of TBC and DHGA in the presence of CP 55,940 bound ligand within the CB2 

receptor to study the overall stability of the receptor-ligand complexes and important changes in 

the binding interactions. The dynamics results were clustered using dihedral principal component 

analysis approach (dPCA). The representative structures from dPCA analysis were chosen to 

calculate the binding free energy of CP 55,940 bound within the allosteric site of the CB2 

receptor with AMs. Binding of either TBC or DHGA (known as negative AMs) reduced the 

binding free energy of CP 55,940, and thus validated the identified allosteric sites for these AMs. 

The identified allosteric sites were further used for the identification of new selective and potent 

CB2 allosteric modulators using the SBVS approach. We have identified seven virtual hits from 

SBVS, which were further submitted for biological evaluation to see allosteric effects against the 

CB2 receptor using radioactive binding and GTPγS binding functional assays.  

Conclusions 

The studies presented in this dissertation have contributed significantly to the 

advancement of cannabinoids research. The findings of this dissertation can be concluded in the 

following points: 

1. Our systematic computational studies on Cannabis-derived compounds revealed the 

importance of particular functional groups/moieties, such as C-8 hydroxyl group and C-3 alkyl 

chain length of cannabinol class of compounds, which exhibited strong interactions with the CB2 

receptor and, hence, lead to CB2 activity and selectivity. Furthermore, the role of intramolecular-

hydrogen bonding for stabilization of ligand with receptor binding has been explored considering 

α- and β-hydroxyl substituted Δ9-THC and Δ8-THC related compounds at the C-8 and C-10 

positions. On the basis of our computational analysis on these Cannabis-derived compounds, 
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new analogs can be proposed and further synthesized and tested for CB2 activities, which might 

serve as hits for further optimization and future drug development. 

2. Our protein structure-based virtual screening has identified potent and novel natural product 

derived chemotypes as CB1 inverse agonists (such as PCB-211 and PCB-16 in subnanomolar to 

nanomolar activities, respectively), which could be useful as starting points for further studies to 

identify optimized drug leads for eventual development as antiobesity drugs. 

3. In chapter 4, we have identified and validated CB2 allosteric site(s) for negative allosteric 

modulators (TBC and DHGA) by applying computational approaches. We also identified seven 

CB2 allosteric modulators using a SBVS approach. These compounds are undergoing biological 

evaluation and might serve as selective and higher affinity CB2 allosteric modulators. 
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Dissertation Title: Protein-Ligand Interaction Studies and Identification of New Drug-Like 
Hits as Cannabinoid Receptor Modulators 

 
• Shri G.S Institute of Technology and Science, Indore, India (Affiliated to Rajiv Gandhi 

Technological University, Bhopal, India) [Aug. 2005 to July 2007] 
 Master of Pharmacy (M. Pharm) in Medicinal and Pharmaceutical Chemistry  
 
      Thesis Title: Design, Synthesis and Characterization of Fluoxetine Analogs as Selective 

Serotonin Reuptake Inhibitors (SSRIs) 
 
• Shri G.S Institute of Technology and Science, Indore, India (Affiliated to Rajiv Gandhi 

Technological University, Bhopal, India) [Aug. 2001 to July 2005] 
Bachelor of Pharmacy (B. Pharm)  

  
 
 EMPLOYMENT 

 
Professional Experience 

• 10/2010 – To present      Research Assistant       University of Mississippi, USA  
• 10/2008 - 07/2010           Lecturer        Swami Vivekanand College of Pharmacy   

                                                                                    Indore, India 
• 08/2007 - 10/2008           Research Associate      Jubilant Chemsys, Noida, India 
• 08/2006 - 04/2007           Project Trainee       C.D.R.I, Lucknow, India 
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HONORS  

 
• Recipient of a Fall 2015 Dissertation Fellowship from the University’s Graduate School. 
• 2nd place in the Applied Neuroscience poster section of the First Neuroscience Research 

Showcase, The University of Mississippi, April 29, 2015. 
• 2014/2015 ACS Graduate Research Award from The Olemiss Local Section and The 

Department of Chemistry and Biochemistry, April 25, 2015. 
• The Chemical Computing Group (CCG) Research Excellence Award ($1150 and one year 

MOE software free subscription) in Medicinal Chemistry, awarded at the Spring 
2015 ACS National Meeting in Denver, CO, March 2015. 

• Graduate Achievement Award, University of Mississippi, 2014-2015. 
• Served as a session chair for the Computers in Chemistry Division at the 249th American 

Chemical Society National Meeting, Denver, CO, March 2015. 
• Nobles-Sam Graduate Research Award winner in 2013 and 2015 from Department of 

Medicinal Chemistry, The University of Mississippi USA. 
• Natural Products Neuroscience Fellow Program COBRE-NPN award recipient 2012-2013.  
• Best Graduate Student Central Nervous System Oral Presentation at the 2013 Southeast 

Regional IDeA Meeting, Little Rock Arkansas.  
• Travel award by University of Chicago for attending workshop on NSF- Multiscale Theory 

and Simulation, Chicago, IL, June 2012. 
• All India GATE Scholarship 2005-2007. 

 
 

INTERNAL FUNDING 
 

“Structural insights into CB2 agonist/antagonist-induced conformation changes on CB2 
receptor” 
Natural Products Neuroscience Fellow Program COBRE-NPN 2012-2013 
Department of BioMolecular Sciences, School of Pharmacy 
The University of Mississippi 
Principal Investigator = Pankaj Pandey 
Funded = $ 25,000 

 
 

PEER-REVIEWED PUBLICATIONS 
 

1. Mohammed, N. N; Pandey, P; Liu, H; Elokely, K. M.; Doerksen, R. J; Repka, A. M; 
“Clotrimazole-Cyclodextrin Based Approach for the Management and Treatment of 
Candidiasis- A Formulation and Chemistry Based Evaluation” Pharm. Dev. Technol. 
2015, April 29, (doi:10.3109/10837450.2015.1041041). 

2. Maheshwari, R. K; Prasad, S; Pandey, P; Wanare, G; “Novel Spectrophotometric 
Analysis of Piroxicam Tablets Using Ibuprofen Sodium as Hydrotropic Solubilizing 
Agents”. Int. J. Pharm. Sci. Drug Res. 2010, 2, 3210-3212.  
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PUBLISHED CONFERENCE ABSTRACT

 
1. P Pandey; KK Roy; H Liu; KM Elokely; S Pettaway; SJ Cutler; RJ Doerksen.  “Search 

for Cannabinoid Receptor 1 Antagonists using Structure-Based Virtual Screening:  
Identification of Natural Product Hits”. Annual Meeting of the American Society of 
Pharmacognosy, The University of Mississippi, Oxford, MS. (Aug 2-5, 2014) (Planta 
Medica, 2014-07-14, http://dx.doi.org/10.1055/s-0034-1382589) 

 
 

MANUSCRIPTS IN PROGRESS 
 

 
1.  Pandey, P; Roy, K; Liu, H; Elokely, M. K; Pettaway, S; Cutler, S. J; Doerksen, R. J; 

“Structure-Based Identification of Novel Natural Product Chemotypes as Cannabinoid 
Receptor Modulators”.  

2. Pandey, P*, Elokely, K. M*; Jekabsons M; Doerksen, R. J; “Protein-Protein Interaction: 
Computational Insights into Interactions of Voltage Dependent Anion Channel 1 
(VDAC1) and Bax”. * Equal contributions. 

3.  Pandey, P; Roy, K; Doerksen, R. J; “Computational Studies Towards Elucidation of the 
Structure-Activity Relationship for Cannabis-Derived Compounds as Cannabinoid 
Receptor Modulators”. 

4.  Pandey, P; Roy, K; Doerksen, R. J; “Identification and characterization of allosteric 
site(s) for CB2 negative allosteric modulators (NAMs).” 

5.  Ma, G; Pandey, P; Yang, F; Roy, K; Dale, O.R.; Gemelli, C.C; Husni, A.S.; Pasco, D.S; 
Doerksen,  R. J; Cutler, S.J;  Manly, S.P.  “Identification of Subereaphenol B as a Partial 
Agonist for the CB1 Receptor. 

6.   Ma, G; Dale, O.R; Pandey, P; Liu, H; Gemelli, C.C; Husni, A.S.; Pasco, D.S; Doerksen, 
R.J; Cutler, S.J; Manly, S.P. “Identification of Hydrazone Derivatives as Cannabinoid 
Receptor Inverse Agonists/Antagonists”. 

 
 

PRESENTATION (ORAL/ POSTER) 
 

 
1. P Pandey; KK Roy; RJ Doerksen “Identification and characterization of allosteric sites 

for garcinolic acid (GA) as a positive allosteric modulator (PAM) of CB2 receptor.” 
University of Mississippi Medical Center Annual Neuroscience Research Day, May 29, 
2015. 

2. P Pandey; KK Roy; RJ Doerksen “Identification and characterization of allosteric site(s) 
for CB2 negative allosteric modulators (NAMS).” 42nd Annual MALTO Medicinal 
Chemistry-Pharmacognosy Meeting, Oxford, MS, May 17, 2015. 

3. P Pandey; KK Roy; RJ Doerksen. “Identification and characterization of allosteric site(s) 
for dihydrogambogic acid (DHGA) and trans-β-caryophyllene (TBC) as cannabinoid CB2 
allosteric modulators". Oral presentation in Division of Computers in Chemistry: 249th 
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American Chemical Society (ACS) National Meeting, Denver, Colorado, USA. (March 
22-26, 2015). 

4. P Pandey; KK Roy; RJ Doerksen. “Protein structure-based virtual screening led to 
identification of novel natural product-derived hits as cannabinoid receptor 1 
modulators”. Division of Medicinal Chemistry: Poster Session, 249th American 
Chemical Society (ACS) National Meeting, Denver, Colorado, USA. (March 22-26, 
2015). 

5. KK Roy; P Pandey; RJ Doerksen. “Structural insights into the mechanism of activation 
of the human cannabinoid type 2 (CB2) receptor: Molecular dynamics study of an 
agonist-bound state”. Division of Medicinal Chemistry: Poster Session, 249th American 
Chemical Society (ACS) National Meeting, Denver, Colorado, USA. (March 22-26, 
2015). 

6. P Pandey; KK Roy; RJ Doerksen. “Identification and Characterization of Allosteric 
Site(s) for Known CB2 Allosteric Modulators" SOP/NCNPR Annual Research Day, 
University of Mississippi, MS, Oct. 2014. 

7. P Pandey; KK Roy; RJ Doerksen. “Search for Cannabinoid Receptor 1 Antagonists 
using Structure-Based Virtual Screening:  Identification of Natural Product Hits”. Annual 
Meeting of the American Society of Pharmacognosy, The University of Mississippi, 
Oxford, MS. (Aug 2-5, 2014). 

8. KK Roy; P Pandey; RJ Doerksen. “Computational Modeling and Simulation of the 
Human Cannabinoid CB2 Receptor”. The 5th Biennial Annual NISBRE IDeA Meeting, 
Washington DC, Washington. (June 16-18, 2014). 

9. P Pandey; N Mohammed; Z Rahman; M A. Repka; R J. Doerksen. “Modeling Studies on 
Inclusion Complex of Clotrimazole in 2-Hydroxypropyl [beta] Cyclodextrin”. Poster 
presentation at the 2013 AAPS Annual Meeting and Exposition; November 10–14, 2013; 
San Antonio, Texas. Poster #: T3006 

10.  KK Roy; P Pandey; RJ Doerksen. “Uncovering the Characteristic Features of the Active 
State 3D Structure of the Human Cannabinoid Subtype 2 Receptor”. The 2013 Southeast 
Regional IDeA Meeting, hosted by the Arkansas INBRE and COBREs, Little Rock, 
Arkansas, USA (Nov 15-17, 2013). 

11. P Pandey; KK Roy; RY Patel; RJ Doerksen. “Utilizing the Ensemble Docking Method 
for Ranking and Selection of Representative Cannabinoid Receptor Subtype 2 (CB2) 
Models”. The 2013 Southeast Regional IDeA Meeting, hosted by the Arkansas INBRE 
and COBREs, Little Rock, Arkansas, USA (Nov 15-17, 2013).  

12. V Gadepalli; P Pandey; KK Roy; I Muhammad; RJ Doerksen. “Docking Studies on 
Leonotis Leonurus and Leonotis Cardiaca Derived Compounds for their Potential 
Activity at Human Cannabinoid Receptor Type 1 (CB1)." 2013 Southeast Regional IDeA 
Meeting, hosted by the Arkansas INBRE and COBREs, Little Rock, Arkansas, USA 
(Nov 15-17, 2013). 

13. V Gadepalli; P Pandey; KK Roy; I Muhammad; RJ Doerksen. Docking Studies on 
Leonotis Leonurus and Leonurus Cardiaca Derived Compounds for their Potential 
Activity at CB1. The 17th Annual National Center for Natural Products Research Poster 
Session, The University of Mississippi, University, MS, USA (Nov. 2013). 
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14. P Pandey; KK Roy; RY Patel ; RJ Doerksen. Ensemble Docking Approach toward the 
Identification of Representative Cannabinoid 2 (CB2) Receptor Conformations for 
Structure-Based Virtual Screening. The Gordon Research Conference entitled 
“Cannabinoid Function in the CNS”, Waterville Valley, NH, USA (Aug 4-9, 2013). 

15.  KM Elokely; P Pandey, MB Jekabsons; RJ Doerksen. "Computational Modeling: 
Structural insights into Bax Binding to the Voltage Dependent Anion Channel 1 
(VDAC1)." 40th Annual MALTO Medicinal Chemistry-Pharmacognosy Meeting, Little 
Rock, AR, May 2013. 

16.  RJ Doerksen; AW Boler; KM Elokely; V Gadepalli; H Liu; HM Matalgah; MC Ott; P 
Pandey; RY Patel; KK Roy; M Yadav. "Cannabinoid receptor 1 Models for Protein 
Structure Based Drug Design of Antagonists." 2013 Southeast Regional IDeA Meeting, 
Little Rock, AR, Nov. 2013. 

17. KM Elokely; P Pandey; MB Jekabsons; RJ Doerksen. "Insights into Interactions of 
Voltage Dependent Anion Channel 1 (VDAC1) and Bax." Mississippi NSF EPSCoR 
Annual Meeting, Hattiesburg, MS, Apr. 2013. 

18. KM Elokely; P Pandey; MB Jekabsons; RJ Doerksen. "Insights into Interactions of 
Voltage Dependent Anion Channel 1 (VDAC1) and Bax." SOP/NCNPR Annual 
Research Day, University of Mississippi, MS, Nov. 2012. 

19. P Pandey; K Elokely; MB Jekabsons; RJ Doerksen. "Prediction of Binding Modes for 
the Interaction of Voltage Dependent Anion Channel 1 (VDAC1) and Bax." 39th Annual 
MALTO Medicinal Chemistry-Pharmacognosy Meeting, Monroe, LA, May 2012 

20. P Pandey; K Elokely; MB Jekabsons; RJ Doerksen. “Insights into Interactions of 
Voltage Dependent Anion Channel 1 (VDAC1) and Bax." University of Mississippi 
Graduate Student Council Poster Competition, Oxford, MS, Apr. 2012 

21. P Pandey; N Kawathekar. “Synthesis, Characterization and Biological Evaluation of 
Fluoxetine Analogs as Selective Serotonin Reuptake Inhibitor." at 9th Tetrahedron 
Symposium July 2008, USA.   

22. P Pandey; J Patel; N Kawathekar. “Rationalization of physic-chemical properties of                  
aminoquinazoline-ureidoquinazolines and their nitrosoureas derivatives towards EGFR 
inhibition” at Indian Pharmaceutical Conference (IPC) June 2007. 

23. P Pandey; J Patel; N Kawathekar. 3D-QSAR study of potent and selective inhibitors of 
PDGF receptor autophosphorylation at Indian Pharmaceutical Conference (IPC) June 
2007. 

24. P Pandey; R Maheshwari; N Kawathekar. “Application of Hydrotrophic Solubilization 
Phenomenon in Spectrophotometric Analysis of Cefixime Tablets.” at Indian 
Pharmaceutical Conference (IPC) December 2006.  

25. P Pandey; J Patel; N Kawathekar. “QSAR of Pyridinium-1-yl- bisphosphonates as Potent 
Inhibitors of Farnesyl Diphosphate Synthatase” at Indian Pharmaceutical Conference 
(IPC) December 2006.      
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SUMMARY OF SKILLS/ QUALIFICATIONS 

 
Experience with instruments, software’s and techniques on Synthetic organic chemistry and 
analytical Chemistry as following: 

• Research skills: Performed Computational-modeling studies using Schrödinger, 
Gaussian 09, PatchDock, Fiber Dock, Sybyl, MOE, NAMD, Zap suite in OpenEye 
software. Also have an experience to handle various graphics software such as Pymol, 
Gaussian View 03, VMD etc. 

• Synthesis of various types of the compounds using the unique types of the reaction 
having the plethora of application in organic and medicinal chemistry like Grignard 
Reaction, reduction, acid amine coupling, Schiff bases synthesis etc., having the 
knowledge of various equipment handling like Spectrophotometer, Infra red 
spectrophotometer, Chromatotron apparatus for Purification, Various types of the 
Chromatography, knowledge of general lab procedures, Spectral analysis of the data 
problem solving and drawing of conclusions, strong theoretical background. Attended the 
demonstrative session for the combi flash, genevac evaporator and for LC-MS.    

• Computer skills: Basic, MS Office, Systat and Valstat for molecular modeling 
purpose, Discovery Gate, Belstein. 

• Project management skills: Initiation, evaluation, development and execution of various 
science and pharmaceutical related projects during teaching of 20-25 people. 

• Communication and Presentation Skills: experienced giving scientific and educational 
talks during the bachelor’s and master’s program. 

• Energetic, detail-oriented, able to multi-task and work well as part of a team. 
 

MEMBERSHIPS (PROFESSIONAL AND HONORARY SOCIETIES)  
 

• Serving as a Director of International Student Affairs in the Graduate Student Council 
(GSC), at the University of Mississippi (2014-2015). 

• Registered Pharmacist, Under M. P. State Pharmacy Council, India; Registration No. 
13106.  

• Graduate Student Senator of Department of Medicinal Chemistry (Aug2012-Aug2013). 
• Selected Who’s Who class for The University of Mississippi 2013-2014. 
• Served as a Co-Director of Academic and Professional Development 2013-2014 in 

Graduate Student Council (GSC) at University of Mississippi. 
• Certificate of Achievement in recognition of Nobel Sam Research Award at the Honors 

convocation, at The University of Mississippi (April 10, 2014). 
• GRE: 1290 (V-530, Q-760, A-2.5) 
• Professional Membership 

• AAAS  
• Rho Chi Honor Society  
• AAPS 
• ACS  
• Phi Kappa Phi Honor Society 
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• National Association of Graduate and Professional Students  
 

 
POSITIONS OF RESPONSIBILITY 

 
• Management Representative for Swami Vivekanand College of Pharmacy for ISO 

2001:2008 certifications. 
• Organizing committee member National seminar on Current Trends in Challenges in 

Pharmaceutical Sciences at SVCP, Indore on 7th March’ 2009. 
• Member of the committees formed for the International symposium Current Trends in 

Drug Discovery Research (CTDDR-07), held at CDRI, Lucknow, India. 
• In charge of Sophisticated Instrumental Laboratory, Swami Vivekanand College of 

Pharmacy, Indore. 
 

 
SERVICE AND EXTRA-CURRICULAR ACTIVITIES 

 
• Graduate Student Senator of Department of Medicinal chemistry (Aug2012-Aug2013). 
• Served as a member of Instructional Resources and Computing Committee (IRC) at School 

of Pharmacy, University of Mississippi 2012-2013. 
• Served as an active member of the Chancellor’s Standing Committees under the Instructional 

Resources and Computing Committee (IRC), University of Mississippi 2013-2014. 
• Served as a Co-Director of Academic and Professional Development 2013-2014 in 

graduate student council (GSC) at University of Mississippi 
• Served as a judge in the District Science Fair at Della Davidson Elementary School 

in Oxford, MS (2012, 2013 and 2015) and the Mississippi Regional VII Science Fair in the 
Tad Smith Coliseum, Oxford, MS (2013 and 2014). 

• Team Leadership: Captain of the following two Inter-Department Teams Events: Quiz, 
Cricket for the session 2004-06. 

• Participated and won many prizes in Quizzes, Elocutions, and Skits in School and College. 
• Hobbies: Reading, playing chess. 
• Enthusiastic about social services, involved in various activities to spread awareness in 

rural areas with NGO’s in city of Indore. 
 


