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ABSTRACT 

Traditional medical systems contributed significantly to medicine with a number of their 

phytochemicals found to possess good biological properties. Recently, Dr. Youyou Tu was 

awarded the Nobel Prize (2015) for her discovery/isolation of Artemisinin from the TCM plant 

Artemisia annua. Our first aim is to identify active phytochemicals against botulinum neurotoxin 

A (BoNT/A), and diabetes from Ayurveda and TCM, respectively, by using in silico, in vitro and 

in vivo approaches. In our second aim, we wanted to enantioselectively synthesize scalable 

quantities of phytoestrogenic isoflavans such as equol and sativan. The following three chapters 

summarize results of the three research goals. 

Chapter II describes our approach to identify the small molecules effective against 

BoNT/A, one of the most lethal toxins known to humans, with none of the current known its 

inhibitors reaching even the clinical trial stages. Ayurvedic literature was analyzed and a number 

of plants were identified based on their usage, frequency and utility in various formulations, for 

treating diseases with symptoms similar to botulism. The phytochemicals of these plants were 

studied by docking into the catalytic domain of BoNT/A. From the docking results, thirty-one 

compounds and their analogues were identified and tested in vitro using liquid chromatography-

based protease assay. From these results, seven compounds were further tested using ex vivo 

mouse phrenic nerve hemidiaphragm assay (MPNHDA). Results showed a number of 

compounds including acoric acid 1, and galangin 3 possessed inhibitory activities of around 40-
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50% against BoNT/A in the in vitro assay, and in the MPNHDA, initial studies showed that at 20 

μM, acoric acid 1 possessed marginal protection. Further testing of the active compounds like 

acoric acid 1 and their analogues and using more sensitive, reproducible bioassays could yield 

more active compounds. 

Chapter III deals with the identification of small-molecule antidiabetic compounds from 

the TCM plant, Goji (Lycium barbarum and Lycium chinense), widely used for treating various 

diseases including diabetes and hypertension Current clinical antidiabetic drugs, like 

rosiglitazone display severe side effects like edema, weight gain and heart failure. By docking 

the twenty-seven selected reported compounds of Goji into the partial and full agonist binding 

sites of PPARγ (target of rosiglitazone), tyramine derivatives were found to possess good 

docking scores and binding poses. Henceforth, twenty-four cinnamomyl phenylethyl amide 

derivatives (termed as tyramine-derivatives) were synthesized and were tested in vitro using 

PPARγ-PPARα luciferase assay. Three compounds showed similar or higher fold induction than 

the positive control, rosiglitazone. One tyramine-derivative 08, and tyramine derivatives-

enriched fraction (21%) of the root bark of L. chinense were further studied in vivo using diabetic 

db/db mice. However, both of them did not possess antidiabetic properties in the tested mice 

model. In vivo results indicate that the antidiabetic property of Lycium species is not due to 

tyramine derivatives. 

Chapter IV describes the first large-scale, enantioselective synthesis of both antipodes of 



 

iv 

phytoestrogenic isoflavans, equol and sativan, synthesized in >98% ee, with good overall yields 

starting from the commercially available starting material. Syntheses of these isoflavans were 

performed using Evans’ aldol condensation as a chiral inducing step at C-3 position of isoflavan 

scaffold. The same flexible methodology can be applied for syntheses of other C-3 chiral 

isoflavans.  
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CHAPTER 1                                                                                              

TRADITIONAL MEDICINE AND DRUG DISCOVERY 

1. Contribution of natural products to drug discovery 

Natural products continue to be the basis of new drugs, contributing either by acting 

directly as drugs or by acting as a source of new drugs. According to a review by Newmann et 

al. in 2010, over the last 30 years (1980 to 2010), natural products (including natural product-

derived compounds, natural product-derived botanicals, synthetic compounds with core of 

natural products) contributed to the bulk of the drugs approved for clinical usage (Figures 1-1 

and 1-2) [1]. Among these drugs classes, since 1940s, 75% of the small molecule anticancer 

drugs were other than synthetics and 48% were actually based on natural product scaffolds. 

Synthetic approaches were used successful to identify clinically better natural product analogues. 

However, combinatorial-chemistry approaches contributed to very few de novo drugs. Hence, 

drug discovery based on natural products is still relevant to identify novel agents to find 

treatments against health care challenges. Recently, the contribution of sources other than plants 

in drug discovery, especially from the microbial sources, has risen and is projected to rise with a 

number of them in clinical trials [1].  
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Figure 1-1. Classification of the approved drugs from 1981 to 2010.  

(permitted by Newmann et al, 2010). 

The total number of newly approved drugs from 1981 to 2010 is 1355. B = biological, N = 

natural product, NB = natural product botanical, ND = derived from a natural product, S = totally 

synthetic drug, often found by random screening/modification of an existing agent, S* = made by 

total synthesis, but the pharmacophore is/was from a natural product, and V = vaccine. 

 

Figure 1-2. Percentage of natural products in the approved new chemical entities from 1981 to 

2010 [1]. 

(permitted by Newmann et al, 2010). 

The contribution of natural products to human health is significant. Two scientists, 



 

3 

Alexander Flemming (Medicine, 1942) and Selman Waksman (Medicine, 1952) were awarded 

the Nobel Prize for their discoveries of penicillin and streptomycin, from fungi and bacteria, 

respectively. Very recently, the significance of natural products in human health has also gained 

enormous publicity with the announcement of the Nobel Prize (for 2015) in medicine to three 

natural product scientists: Youyou Tu, Satoshi Ōmura and William Cambell (Table 1-1). 

Yougou Tu, isolated artemisinin form a plant named sweet worm wood, which was used 

traditionally in China for treatment of fever [2]. The antimalarial effect of sweet worm wood 

(Artemisia annua) was recorded in the compendium of Materia medica written by Shizhen Li 

(1518 -1593). Currently, artimisinin and its derivatives are clinically used for the treatment of 

malaria around the world. In 1978 Satoshi Ōmura succeeded in culturing a strain from which 

William Campbell purified a substance, avermectin, which, in a chemically modified form 

(ivermectin), proved to be active against round worm infections.  

2. Ethnomedicine/traditional medicine 

Since prehistoric periods, plants have been a major source for medical treatments across 

the world. In countries like Greece, Egypt, India, Tibet and China etc., there have been 

archeological and ancient textual references about the usage of plants for the treatment of 

diseases or disease symptoms [3]. Ethnomedicine is defined as the use of plants as medicine, 

which includes traditional forms of treatment like TCM and Ayurveda. Ethonopharmacology is 

“a much diversified approach to drug discovery involving observation, description and 

experimental investigation of indigenous drugs and their biological activities. This involves 

highly interrelated studies of botany, geology, biochemistry, pharmacology, and other 

disciplines” [4].  
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Table 1-1. Three natural product scientists awarded the Nobel Prize for their contribution to 

human health. 

Youyou Tu William C. Campbell Satoshi Ōmura 

   

Artemisinin 

 

Novel therapy against Malaria 

Traditional Chinese medicine 

o uses sweet wormwood to treat 

fever 

o extracted artemisinin, which 

inhibits the malaria parasite. 

Ivermectin chemically modified from 

Avermectin (isolated from bacteria) 

 

 Novel therapy against infections: 

Lymphatic filariasis, or elephantiasis, effective 

against river blindness 

Ethnomedicine contributed to the identification of a number of drugs. According to the 

2001 review by Farnsworth et al., a total of 122 compounds were identified to be obtained from 
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plants used in traditional medicine, and among these 80% of the compounds were used for the 

same or related ethnomedical use (Table 1-2) [4]. Compounds from these ethnomedical plants 

also serve as precursors for the synthesis of new drugs like papaverine, which acted as a 

precursor for verapamil, galegine, which acted as a precursor for metformin (Figure 1-3). 

 

 

Figure 1-3. Drugs derived from natural products: verapamil from papaverine and galegine from 

metformin [4] 

Traditional medicine is a broad term representing all forms of non-western medicine, 

including eastern medical systems which originated in China and India, and have been practiced 

for over thousands of years. Traditional Chinese medicine (TCM) and traditional Indian 

medicine (Ayurveda, Yoga, Siddha, Unani and Homeopathy etc.) are well documented (Table 1-

3) for a number of centuries with a number of prescriptions mainly plant-based are used for 

treatment. Till today, traditional medicine is still very popular among a majority of populations 

of the world, with WHO estimates of 1995, indicating that 65% of the world’s population 

continue to be treated with traditional medical treatments [4].  
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Table 1-2. Some examples of phytochemical drugs with similar enthomedical properties as their 

traditional uses. [4] 

Drug Action or clinical use Plant source 

Agrimophol Anthelmintic Agrimonia eupatoria L. 

Atropine Anticholinergic Atropa belladonna L. 

Cocaine Local anesthetic Erythroxylum coca Lamk. 

Codeine Analgesic; antitussive Papaver somniferum L. 

Cynarin Choleretic Cynara scolymus L. 

Deslanoside Cardiotonic Digitalis lanata Ehrh. 

Gossypol Male contraceptive Gossypium spp. 

Khellin Bronchodilator Ammi visnaga (L.) Lamk. 

Picrotoxin Analeptic Anamirta cocculus (L.) 

W.&A. 

Reserpine Antihypertensive, 

tranquillizer 

Rauvolfia serpentina (L.) 

Benth ex. Kurz 

Rotundine Analgesic; sedative Stephania sinica Diels 

Scillarin A Cardiotonic Urginea maritima (L.) Baker 

Theophylline Diuretic; bronchodilator Camellia sinensis (L.) Kuntze 

Tubocurarine Skeletal muscle relaxant Chondodendron tomentosum 

R. & P. 

Yohimbine Aphrodisiac Pausinystalia yohimbe 

(K.Schum.) Pierre 

3. Ayurveda and TCM 

Both TCM and Ayurvedic systems are based on health principles, and aim to promote 

both health and quality of life [5]. They mainly use plant-based formulations along with animal 

and other metals.  

According to TCM, the world is made up of elements—water, earth, metal, wood and 

fire, and two relatively opposite aspects represented as Yin and Yang, which act like positive and 

negative opposites, and are interchangeable. The amount of Yin reduces while Yang increases 

and vice versa. In TCM, human body is the center of the universe with the four bodily humors 

(qui, blood, moisture, essence) and internal organ systems (Zang fu) playing an important role in 
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balancing the Yin and Yang in the body. Any disease condition is stated to be due to an 

imbalance of the body. TCM has contributed to a number of breakthrough drugs like ephedra 

(from Ma hung, isolated in 1885), artemisinin (anti-malarial) and paclitaxel (anti-cancer). The 

antimalarial effect of the artemisinin plant, Artimisia annula was recorded in the compendium of 

Materia medica written by Shizhen Li (1518-1593). 

Table 1-3. Historical progress of the literature in TCM [6] and Ayurvedic [7]. 

TCM Ayurveda 

Period Literature Period Literature 

~300 BC Prescriptions for fifty-two 

diseases (300 BC), 

anonymous. 

1000 BC Charak Samhita  

221 BC–220 

AD 

Shen Nong Ben Cao Jing (25 

–220 AD), anonymous. 

Shang Han Za Bing Lun (210 

AD), written by Zhang 

Zhong-Jing. 

100 AD Sushrut Samhita  

581–960 AD Xin Xiu Ben Cao (659 AD), 

written by Li Ji and Su Jing et 

al. 

Wai Tai Mi Yao (752 AD), 

written by Wang Tao. 

800 AD Madhav Nidan  

960–1368 AD Zheng Lei Ben Cao (1082 

AD), written by Tang Shen-

Wei. 

Sheng Ji Zong Lu (1111–

1117 AD), compiled by Zhao 

Ji. 

  

1368–1643 AD Ben Cao Gang Mu (1578 

AD), written by Li Shi-Zhen. 

Pu Ji Fang (1406 AD), 

written by Zhu Di. 

  

 

According to the Ayurvedic system of treatment, the world is made up of five elements, 

akasha (ether or space), vayu (air), teja (fire), jal (water) prithvi (earth). These five elements are 
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coded into the human body as three forces/doshas, termed as “tridosha’ kapha, vata, pitta, each 

doshs consists of one or two elements, Vata-space and air, Pitta – space and air, kapha – water 

and ether. The tridosha is responsible for the health; any imbalances would generate disease 

conditions in the system [5]. Plants from Ayurvedic system of medicine have contributed to the 

discovery of a number of compounds which are useful to treat against a number of diseases and 

possess good bioactivities. Table 1-4 shows some examples of compounds from Ayurvedic 

plants and their treatment target diseases. In addition, there are a number of plant formulations or 

whole plant parts from Ayurveda, which are currently used for the treatment of diseases or 

disease symptoms. Although Ayurveda has contributed to a number of pure compounds against a 

number of diseases, it was not able to produce any breakthrough drugs like placlitaxel or 

artemisinin, from TCM, and the credits were taken by the Western pharmaceutical companies for 

the discovery of drugs like forskolin and reserpine. 



 

9 

Table 1-4. List of Ayurvedic plants and their phytochemicals used for treatment of various 

disease conditions [6]. 

 Compound Plant Disease 

Anti-

inflammatory 

Withanolides Withania somnifera Arthritis 

 Curcumin Curcuma longa  

 Guggul Commiphora mukul  

Cardiovascular 

symptoms 

Cardiac glycosides or 

cardenolides 

Several plants Potent cardiac 

glycosides 

 Thevitin A, B, 

Peruvoside 

Yellow oleander plant  

 Reserpine Rauvolfia serpentina 

(L.) Benth ex. Kurz 

Angina pectoris 

 Colenol Coleus spp Hypotensive 

actionand positive 

ionotopic effect 

Antidiabetic Charantin with 

steroidal saponins in 

1:1  

Momordica charantia Insulin-like 

activity, 

hypoglycemic 

activity 

 Gymnemic acid Glymnema sylvestra Type-II diabetes 

Anti-obesity Guggulipid Commiphora mukul Antihyperlipidemic 

Anti-malarial Nimbolide, timonoid 

triterpene 

Azadirecta indica Anti-malarial 

4. Overall aims  

Drug discovery from plants in traditional medicine  

There is an ever increasing demand to find new phytochemicals as drugs. However, the 

current approaches in drug discovery from plant extracts are based on mechanism-based testing 

of pure compounds using high-throughput screening or bioactivity-guided fractionation. Drug 

discovery from plants is a very laborious process with over 250 thousand known plants. In 

addition, the number of bioassays used for screening is ever increasing.Hence, finding the active-

phytochemical principles and their disease-targets is very complex. In order to overcome these 

challenges, instead of random screening of plants for activities and disease treatments, 
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ethnomedical usage or traditional usage could be a good metric for the selection of plants to be 

tested for a particular bioactivity. This selection should be based on their exact or similar 

ethnomedical or symptomatic usage. Our aim primary aim is to identify new biological roles of 

the phytochemicals from plants mentioned in TCM and Ayurveda. Using computational/in silico, 

synthetic, in vitro-based approaches, TCM and Ayurvedic plant-based phytochemicals were 

tested for their anti-botulism (Chapter 2) and anti-diabetic (Chapter 3) activities.  

Isoflavans are secondary metabolites of plants possessing varied biological properties. 

Equol 7, an isoflavan, is a biological metabolite of the isoflavonoids commonly found in the soy 

based traditional foods in China, Japan and south-east Asian countries. S-Equol 7 was found to 

bind preferentially to estrogen receptor β (among the two nuclear estrogen receptors, estrogen 

receptor-α and -β). In order to further test the biological activities of equol and other 

isoflavonoids, a large scale general synthetic method to produce enough quantities of 

enantiopure material will be useful for further biological testing. In our other aim, we performed 

enantioselective synthesis of isoflavans, equol and sativan. The same method could be used for 

the synthesis of other plants (Chapter 4). 

In this dissertation, three projects were performed which include testing for phytochemicals from 

both Ayurveda and TCM. They are:  

1. Identification of new scaffolds from Ayurvedic literature against botulinum neurotoxin 

(Chapter 2). 

2. Screening of the phytochemicals of the Traditional Chinese Medicinal plant, Goji, for the 

identification of small molecules with anti-diabetic activities (Chapter 3). 

3 New synthetic method for enantioselective synthesis of isoflavans, equol and sativan 

(Chapter 4).
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CHAPTER 2                                                                                       

IDENTIFICATION OF NOVEL PHYTOCHEMICAL INHIBITORS OF 

BOTULINUM NEUROTOXIN A 

1. Introduction 

1.1. Ayurveda and drug discovery 

Drug discovery continues to rely on natural products which are a major source of drugs, 

producing 50% of all small-molecule new chemical entities from the year 2000 to 2010 [6]. 

Traditional systems of medicine from India and China contributed to the discovery of a number 

of drugs for the treatment of many diseases such as malaria (quinine, artemisinin) and cancer 

(vinca alkaloids, paclitaxel, camptothecin, irinotecan) [7, 8]. Ayurveda is a traditional system of 

medicine from the Indian subcontinent with a history of over 3000 years. With “Ayur” meaning 

life and “veda” meaning knowledge or science, Ayurveda is centered on health principles [9]. 

Ayurvedic literature such as Charak Samhita (1000 BC) and Sushrut Samhita (100 AD) provides 

a description of conditions and symptoms associated with a number of diseases. Over 10,000 

formulations with >1,500 herbs were included in the Ayurvedic materia medica and over 5,000 

signs and symptoms were mentioned in the diagnosis classic, Madhav Nidan (800 AD). This vast 

knowledge of disease symptoms and treatment procedures provides a time-tested approach for 

solving current challenges in drug discovery. The aim of the current study is to identify novel 

small-molecule leads for the treatment of botulinum neurotoxin serotype A (BoNT/A) by using 
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the Ayurvedic literature and modern in silico drug screening techniques. 

1.2. Botulinum neurotoxins (BoNTs) 

BoNTs, produced by anaerobic gram-positive bacilli such as Clostridium botulinum, 

result in a disease known as botulism which is characterized by flaccid paralysis. Symptoms 

arise from the inhibition of the release of acetylcholine at the peripheral neuromuscular junction 

(Figure 2-1) [10]. So far, seven identified serotypes (A to G) and numerous subtypes of BoNT 

have been reported. Serotypes A, B, E, and F affect humans, and among these, BoNT/A is the 

most potent serotype [11, 12]. The lethal dose of the crystalline form of BoNT/A is 

approximated as 0.09-0.15 µg intramuscularly and 0.70-0.90 µg orally for a 70 kg human being 

[13]. BoNTs are classified as Category A bio-warfare agents by the Centers for Disease Control 

and Prevention (CDC). Due to their action at the neuromuscular junction, BoNTs are used for the 

treatment of various muscular disorders and for various cosmetic purposes [14, 15].The currently 

available remedies for botulism include treatment with anti-toxins, which is limited since it is 

effective only for sequestering the free, circulating toxin  but ineffective for treating post-

infected cells [16]. Hence, the identification of small-molecule inhibitors which possess activity 

against the already infected cells is of immense interest to the human health and the research 

community.  
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Figure 2-1. Mode of action of BoNTs [17]. 

BoNTs inhibit the release of acetyl choline by cleaving the proteins involved in vesicle binding 

to the receptor via four step mechanism (Permitted by Lalli et al., 2003). 

1.3. BoNT/A: Structure and binding site 

The structure of the BoNT/A is highly complex and consist of three domains, each of 

which are approximately 50 kDa in size, incorporating two peptide chains [light chain (LC) and 

heavy chain (HC)] connected by a disulfide bridge [18] (Figure 2-2). LC possesses a single 

catalytic domain responsible for the proteolytic activity; whereas, HC, possesses two domains: 

the translocation domain, and the binding domain, and is involved in neuro specific binding, 

uptake and translocation of LC into the neuronal cytosol. The LC, which possesses the zinc-

dependent catalytic domain, cleaves one of the three proteins that are essential for synaptic 
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vesicle fusion, this results in the inhibition of the release of acetylcholine and leads to flaccid 

paralysis of the muscles [19].  

 

Figure 2-2 Structure of BoNT/A (PDB 3BTA). 

A) BoNT/A consists of three domains, light chain (LC) domain in grey which possess the 

peptide cleaving pocket, heavy chain (HC) which acts as a translocation domain and receptor 

binding domain in violet. B) LC domain with the binding pocket possessing hydroxamate 

inhibitor. (permitted by Thompson et al [20]. 

 

The LC exerts its proteolytic action by cleaving Synaptosome Associated Protein 25kD 

(SNAP-25), a peptide which is involved in binding of the vesicles to the membrane, at Gln197-

Arg198. SNAP -25 possesses two helices, a C-terminal helix and an N-terminal helix denoted by 

sn1 and sn2, respectively. The crystal structure of SNAP-25 with sn2 (PDB: 1XTG) showed 

extensive interface with the LC, were it was found to possess two exosites, α and β (Figure 2-2). 

These exosites are formed by the interaction of the α-helix and β-sheet of SNAP-25, in addition 

to the catalytic site. This extensive interface between the LC and SNAP-25 results in specificity 
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and efficiency of proteolytic cleavage (Figure 2-3) [21]. 

 

Figure 2-3. Structure of SNAP-25 (PDB 1XTG) in complex with LC of BoNT/A. 

The Cα backbone of the LC is represented as cyan ribbons, and its molecular surface is in 

transparent gray. sn2 is depicted in red, and the catalytic Zn
2+

 at the active site as a purple 

sphere. [Perrmitted by Montal et al. [22]] 

The catalytic domain (LC) consists of: Zn
+2 

ion and residues that-chelate with the zinc 

ion, -help in peptide cleavage, form the hydrophobic pocket, and loops surrounding the active 

site of BoNT/A. The LC of BoNT/A is a zinc-protease, and possess a highly conserved Zn
+2

 

protease motif HEXXH. The imidazole groups of His222 and His226 and the carbonyl side chain 

of Glu261 coordinate with Zn
+2

 at the active site. A water molecule coordinating with Glu223 

plays a crucial role in the proteolysis. They are involved in positioning the substrate to enable its 

cleavage. The residues that help in peptide cleavage are Tyr366 and Arg363, whereas, Ile161, 

Phe163, Phe194, and Phe369 make up the hydrophobic pocket [23]. Loops 360/370 (366-372) 
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and 60/70 (61-79) surround the catalytic site and are flexible upon inhibitor binding [20]. 

Kumaran et al. described the key interacting residues in the catalytic site of BoNT/A, by using 

four inhibitory substrate tetrapeptides. They showed that Tyr 366 and Arg 363 interact with the 

P1 and P1' of the substrate. S1 is formed by Glu164, whereas, S1' is formed by Phe194, Thr215, 

Thr220, Asp370 and Arg363, and S3' is formed by Tyr250, Tyr251, Met253, Leu256, Phe369, 

Phe423, Pro206, and Leu207 [24] (Figure 2-4). 

 

Figure 2-4. Binding site of BoNT/A representing S1, S1
'
, and S3' sites using an inhibitor peptide 

[25]. 

“The side chain groups of the terminal peptides are shown at the bottom of the figure. Residues 

of the enzyme forming the subsites are shown in boxes [25].” 
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1.4. BoNT/A inhibitors 

In general, the identification of inhibitors and modulators of BoNT is approached by 

targeting all three modules: the receptor-binding module, the translocation domain module, and 

the protease module [19, 26]. Among these three approaches, we want to target BoNT/A at its 

catalytic domain (LC) which is located in the protease module of the enzyme. Several inhibitors 

which target the catalytic domain were reported including peptide inhibitors [27] and small 

molecule inhibitors, including natural products.  

Small molecule inhibitors: Identification of small-molecule inhibitors which target the 

catalytic domain of BoNT/A is a very active area of research. Several small-molecule inhibitors 

including natural products have been reported by various groups. However, none have reached 

advanced levels such as clinical trials [13, 28]. These small-molecule inhibitors include 

hydroxamic acid derivatives, their prodrugs [20, 29-31] (Figure 2-5) and quinolinol [27, 32, 33] 

inhibitors (Figure 2-6).  

 

Figure 2-5. Structures of the hydroxamic acid derivatives possessing BoNT/A inhibitory activity 

[20]. 
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Figure 2-6. Structures of quinolinol based inhibitors of BoNT/A [32]. 

IC50 values of selected analogs against recombinant full-length BoNT/A LC (rALC) and 

truncated BoNT/A LC (tALC; residues 1 to 425) are given in parenthesis. 

 

Natural products: In addition to the synthetic molecules, several natural products, 

including some from fungal sources, have been identified as inhibitors of BoNT/A (Figure 2-7). 

These compounds include chicoric acid [34], caftaric acid, and chlorogenic acid [35] which were 

found to
 
act via exosite mechanisms. Lomofungin, a compound first isolated from fungi, was 

found to be an inhibitor with a Ki of 6.7 + 0.7 μM [36]. Capsaicin  was previously identified by 

Thyagarajan et al. as a potential inhibitor of BoNT [37, 38]. By in silico screening of the NIH 

Molecular Library Small-Molecule Repository (MLSMR) containing ~350,000 compounds, 

fungal bis-naphthopyrones, chaetochromin A, and talaroderxines A and B were identified as 

potent inhibitors of BoNT/A [39]. Five highly potent quinolinol inhibitors were first identified 

using a combination of in silico and in vitro screening of the NCI database [32]. 
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Figure 2-7. Structures of the reported natural product inhibitors of BoNT/A [34, 39]. 

2. Results and discussion  

We hypothesized that phytochemicals obtained from Ayurvedic plants which are used for 

the treatment of diseases with symptoms closely related to that of botulism can be used as small-

molecule inhibitors of BoNT/A LC protease. With the aim to identify novel natural product 

inhibitors of BoNT/A using symptom based-Ayurvedic literature in three stages: i) selection of 

plants from Ayurvedic literature, ii) in silico screening, iii) in vitro and ex vivo testing. Several 

crystal structures of BoNT/A were reported in the literature, six crystal structures were selected 

for computational work. All the phytochemicals from the selected Ayurvedic plants were first 

screened against six known crystal structures of BoNT/A for probing the available chemical 

space with in silico methods such as docking. The resulting hits were further investigated with 
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HPLC-based in vitro screening method.  

2.1. Selection of plants from Ayurvedic literature 

Botulinum neurotoxin causes flaccid paralysis of the muscles. The weakness of the 

muscles descends from the muscles of the head and upper extremities via respiratory muscles to 

the muscles of the lower extremities. This could become fatal when left untreated, due to the 

respiratory failure resulting from the arrest of the intercostal muscles and the diaphragm. 

Clinical symptoms of botulism include blurred vision, drooping eye lids, symptoms of the throat 

such as slurred speech, difficulty swallowing, dry mouth, muscle weakness, and flaccid 

paralysis [40] (Table 2-1).  

Table 2-1. Clinical symptoms of Botulism [40]. 

Initial prodromal 

symptoms 
Initial neurological Muscle weakness If untreated 

Nausea 

Vomiting 

Abdominal 

cramps 

Diarrhea 

 

Ocular cranial nerve 

dysfunction: 

Blurred vision; diplopia, 

ptosis,  photophobia, 

facial weakness 

Bulbar nerve dysfunction) 

Dysarthria, dysphonia  

(speech) & dysphagia  

(swallowing) 

Head control 

Upper extremities 

Respiratory 

muscles 

Lower extremities 

 

If unrecognized 

and untreated, 

the intercostal 

muscles (ribs) 

and the 

diaphragm are 

compromised, 

then respiratory 

insufficiency 

occurs followed 

by respiratory 

failure. 

 Using clinical symptoms as a benchmark, Ayurvedic literature were analyzed to identify 

within them any discussion of diseases with neuromuscular symptoms similar to that of botulism. 

Interestingly, the neuromuscular symptoms of some of the diseases mentioned in the Ayurvedic 

text, Ayurveda Saukhyam of Todarananda written by Vaidya Bhagwan Dash and Lalitesh 

Kashyap, were similar to the clinical symptoms of botulism [40]. These diseases include Ardita, 
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Apa tänaka, Hanu graha, Hanu stambha, Gŗdhrasi, and Akshepaka (Table 2-2).  

Table 2-2. List of the diseases with symptoms similar to botulism mentioned in the Ayurvedic 

text by Vaidya Bhagwan Dash and Lalitesh Kashyap. 

Disease name 

(Ayurvedic) 

Symptoms 

Ardita Facial paralysis 

Apa tänaka Emprosthotonos: A tetanic spasm in which the head and feet 

are drawn forward and the spine arches backward 

Hanu graha Lock jaw 

Hanu stambha Lock jaw 

Gŗdhrasi Sciatica: A sharp or burning pain that radiates from the lower 

back or hip, possibly following the path of the sciatic nerve to 

the foot 

Aksepaka Convulsions: Frequent spasmodic contractions of all the 

muscles in the body 

 The Ayurvedic text also includes formulations made up of a number of plants which can be used 

for the treatment of these diseases. A thorough analysis of the plants discussed in the Ayurvedic 

text revealed 325 plants mentioned in the 46 formulations used to treat the six diseases. These 

plants were ranked based on their utility to treat more than one disease and the frequency of their 

mention in the formulations. Out of the 325 plants, 14 plants belonging to 12 different families 

were selected based on their ranking to be studied further (Table 2-3). The phytochemicals of 

these 14 plants were further tested using docking studies. 
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Table 2-3. List of the 14 Ayurvedic plants selected based on their treatment of botulism like 

diseases mentioned in the Ayurvedic literature. 

No Plant Name Family Formulatios Disease 
Referen

ce 

1 Acorus calamus Linn. Acoraceae 16 5 [41] 

2 Foeniculum vulgare Mill. Apiaceae 12 5 [42] 

3 Coriandrum sativum Linn. Apiaceae 7 3 [43] 

4 
Pluchea lanceolata Oliver 

and Hiern. 
Compositae 27 6 [44] 

5 
Argyreia speciosa Linn. 

f.Sweet 
Convolvulaceae 5 3 [45] 

6 Ricinus communis Linn. Euphorbiaceae 17 5 [46] 

7 
Clerodendrum serratum 

Moon. 
Lamiaceae 6 4 [47] 

8 
Phaseolus mungo 

Linn.(vigna mungo) 
Leguminosae 10 4 [48] 

9 Sida cordifolia Linn. Malvaceae 19 5 [49] 

10 Sida rhombifolia Linn. Malvaceae 2 2 [50] 

11 Cedrus deodara Laud. Pinaceae 12 4 [51] 

12 Piper chaba Hunter. Piperaceae 5 3 [52] 

13 Hordeum vulgare Linn. Poaceae 7 4 [53] 

14 Zingiber officinale Rosc. Zingiberaceae 23 5 [54] 
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2.2. Docking studies 

Selection of crystal structures 

An analysis of the crystal structures of BoNT/A in complex with various inhibitors was 

performed using a protein data bank (PDB). The search produced eighteen crystal structures 

containing proven BoNT/A inhibitors reported at the time of this analysis. Out of these 18, 

thirteen contained peptide inhibitors (PDB code: 3C88, 3C89, 3C8A, 3C8B, 3DS9, 3DSE, 3NF3, 

3QW5, 3QW6, 3QW7, 3QW8, 3DDA and 3DDB) and 5 crystal structures contained small-

molecule inhibitors (PDB code: 3QIY, 3QIZ, 3QJ0, 4HEV and 2ILP) [20, 23, 24, 30]. The 

crystal structures containing the five small-molecule and one peptide- inhibitor (PDB: 3C8B) 

were selected for their utilization in the docking studies. The structures of the six proven 

BoNT/A inhibitors from the selected crystal structures are included in the Figure 2-8.  

Protein preparation and grid validation 

All six selected ligand-BoNT/A complex crystal structures were prepared by the addition 

of hydrogen atoms and the removal of all the water molecules. Their grids were generated 

around a 12 Å radii from the centroid of the ligand and were used for docking studies in the 

virtual screening workflow (VSW) in the glide docking module. In order to test if water 

molecules can influence the docking results, a test docking run was performed using the grids 

with and without the water molecules. Although, water molecules were reported to facilitate in 

the hydrolysis of SNAP-25 [25], test docking results indicated no difference in the docking 

scores of the compounds docked in grids with or without water. Thus, all the water molecules 

were removed prior to docking. 
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Figure 2-8. Structures of the ligands in the crystal structures selected for BoNT/A docking 

studies. 

 

Figure 2-9. Structures of BoNT/A LC inhibitor positive controls used in in vitro and docking 

studies. 

The grids were also tested by re-docking the native ligand to the grid and the RMSD of 

the output ligands were compared to the ligands’ crystal structure conformations. Results showed 

an RMSD of <1 Å for the output ligands when compared to the native crystal structure 

conformation for all the small-molecule grids except for the protein ligand (due to its large, 

flexible structure). The prepared 570 ligands selected from the Ayurveda literature (section 3.1) 
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resulted in 835 structures (more than one stereoisomer for some ligands), which were then 

docked into the six grids using the VSW module. In addition to the phytochemicals, native 

ligands and known BoNT/A inhibitors were also included in the docking studies as positive 

controls.  

Docking results and selection of compounds 

Docking of the 570 compounds from Ayurvedic plants using Glide SP in the six BoNT/A 

grids generated 866 results. These 866 results (more than one conformer for each compound) 

contain 535 compounds, indicating that about 35 compounds were eliminated in the docking in 

the specified conditions. The docked ligands included two proven BoNT/A inhibitors, CB 

7967495 and NSC 84094 [55] and the native BoNT/A crystal structure ligands (Figures 2-8, 9). 

The docking scores of the docked compounds ranged from -11.2432 to +0.7210 kcal/mol. A 

compound with a more negative docking score represents more favorable binding at the binding 

site, hence a more negative score is desirable for a compound to act as an inhibitor. The native 

ligands of the crystal structures and their conformers showed good docking scores ranging from -

11.074 to -7.50 kcal/mol.  
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Figure 2-10. The binding poses and ligand-interaction diagrams of the two hit compounds 

selected from virtual screening in the BoNT/A active site of PDB 3QJ0. 

a, b) acoric acid 1 (color: pinkish-orange), c, d) galangin 3 (color: pinkish-black) in the catalytic 

domain of the BoNT/A LC showing that both interact with Zn
+2

. The other key residues in the 

catalytic site are shown as sticks in yellow. 

 

The docking scores of the conformers of positive controls, CB 7967495 and NSC 84094, 

d 

b 

c 

a 
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ranged from -8.5490 to -6.51 kcal/mol. The first 250 results in the docking output include 170 

compounds and show docking scores ranging from -11.2432 to -7.11989 kcal/mol (SI table 1). 

Among these, acoric acid 1, chlorogenic acid 2, galangin 3 and quercetin 4 possessed docking 

scores of -9.089, -11.094, -7.187 and -7.603 kcal/mol, respectively, and were selected for further 

testing in vitro. The ligand-interaction diagrams of these compounds showed that the carboxylic 

acid group of acoric acid 1 and the hydroxyl group of galangin 3 coordinate with the zinc ion in 

the catalytic site and also interact with other residues such as Tyr366, Phe163, Ile161, Pro69, 

Asp370, and Arg363 in the hydrophobic pocket around the S1' region of the catalytic site 

(Figure 2-10).  

Based on structural similarity, twenty-seven other compounds were selected and tested 

for their BoNT/A inhibitor activities using an HPLC-based protease assay. These compounds 

include seven isoflavonoids (5 to 9), six kavalactones (10 to 15), two capsaicin derivatives (16, 

17), three coumarin derivatives (18 to 20), three gingerols (22 to 24), and one compound of each 

type such as curcumin 21, epigallocatechingalelate (EGCG) 25, (Z)-5-benzylidenethiazolidine-

2,4-dione 26, chicoric acid 27, piperine 28, pterostilbene 29, bilobalide 30, and ginkgolide C 31. 

Capsaicin 16 was previously identified by Thyagarajan et al as a potential inhibitor of BoNT/A 

[56, 57]. Chicoric acid 27 [34] and chlorogenic acid 2 [35] were previously studied by Janda et 

al., and were found to act as exo-site inhibitors of BoNT/A. Chlorogenic acid 2 was included 

since it was one of the docking hits and chicoric acid 27 was included to test its activity on the 

catalytic site. Figure 2-11 shows the structures of all the compounds tested using in vitro 

HPLC/UPLC based bioassay.  
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2.3. In vitro studies utilizing SNAP-25 substrate 

In vitro assays were performed using the isolated LC of BoNT/A and a 17-residue 

substrate peptide consisting of residues 187–203 of SNAP-25, which is the minimum length of 

SNAP25 required for light chain protease activity. The sequence of the substrate peptide is 

(N(α)-acetyl)-SNKTRIDEANQRATKML-(carboxamide), corresponding to residues 197 and 

198 of SNAP-25 [58]. LC cleaves this substrate peptide between residues 11 (glutamine, Q) and 

12 (arginine, R). The peak areas of the corresponding N-terminal and C-terminal cleaved 

peptides were measured using liquid chromatography, and test compounds were compared to 

that of the blank (treated only with BoNT/A). All the compounds were tested at 20 µM, and the 

results were reported as % inhibition compared to the blank.  

In vitro bioassay results 

Twenty-two compounds (Table 2-4) were first analyzed using HPLC, whereas nine 

compounds were tested using UPLC (Table 2-5) [59]. UPLC method was utilized since the 

HPLC method has several  issues like long run times (~ 50 min for 1 sample), non-reproducible 

activities of the blank and test sample, affecting the stability of the toxin. Hence, a UPLC method 

was applied mainly to reduce the run times and to make it ideal for large set of compounds. The 

results of the HPLC BoNT/A protease activity bioassay are presented in Tables 2-4 and 2-5. 

Compounds CB 7967495 and NSC 84094 were used as positive controls [55] and showed 92% 

and 91% inhibition, respectively at 20 µM in the HPLC assay, whereas the activities of the same 

were lower 86 and 87% in UPLC runs.  
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Figure 2-11. Structures of the compounds tested using HPLC-BoNT/A LC protease assay. 
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Testing the four hit compounds selected from virtual screening revealed acoric acid 1, as 

the most active of the compounds exhibiting an inhibition of 47 ± 7% at 20 µM, followed by 

galangin 3 which showed 43 ± 8% inhibition. Among the five other isoflavonoid derivatives, 

fisetin 5 was found to be the most active, possessing inhibition of 59 ± 0.5%. Kavain 10 was the 

most active compound among the six kava lactones, showing 53 ± 13% inhibition, with a 

significant standard deviation between the results and among the three coumarins derivatives (18 

to 19). 4-hydroxy coumarins 18 showed superior inhibition of 41 ± 8% compared to coumarin 19 

and 4-methylumbelliferone 20, with 25 ± 11 and 16 ± 1% inhibitions, respectively. 

None of the three gingerols 22–24 were good inhibitors possessing % inhibitions ranging 

from 17 to 20%. Among the two capsaicin derivatives 16 and 17, capsaicin 16 showed 38 ± 7 %. 

Curcumin 21 showed inhibition of 49 ± 4%. Among the seven ungrouped compounds 25-31, 

none of them showed good inhibition: epigallocatechin gallate (EGCG) 25 (4 ± 1.1%), (Z)-5-

benzylidenethiazolidine-2,4-dione 26 (13 ± 1%), chicoric acid 27 (6 ± 1.4%), piperine 28 (21 ± 

1.5), pterostilbene 29 (16 ± 1.5), bilobalide 30 (13 ± 2.0%), and ginkgolide C 31 (2 ± 0). The 

known exosite inhibitors chlorogenic acid 2 and chicoric acid 27 also showed low inhibition (15 

± 3.0%), and 6 ± 1.4%), respectively, indicating that these compounds are not active in the 

catalytic site which validates the reported exosite binding of these compounds. 

From the HPLC/UPLC bioassay results, seven compounds 1, 3, 5, 10, 16, 18, and 21 

showed good inhibitions and were tested further using mouse phrenic nerve hemidiaphragm 

assay (MPNHDA) ex vivo assay (Table 2-6). The mouse phrenic nerve hemidiaphragm contains 

the myoneuronal junction that is the target of botulinum intoxication. Hence, it best replicates the 

in vivo system and can be used as an ex vivo method for testing BoNT/A inhibitors. 
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Table 2-4. HPLC-bioassay results and docking scores of the twenty-two compounds tested for 

BoNT/A LC protease inhibition. 

Number Compound 
% Inhibition  

(20 µM) 
Glide Docking Score 

1 Acoric acid 47 ± 7 -9.089 

3 Galangin 43 ± 8 -7.187 

4 Quercitin 20 ± 2 -7.603 

5 Fisetin 59 ± 0.5 -7.061 

6 Morin hydrate 11 ± 1 -6.935 

7 Apigenin 38 ± 6 -7.969 

8 Chrysin 26 ± 2 -7.984 

9 kaempferol 30 ± 1.5 -8.663 

10 kavain 53 ± 13 -6.536 

11 Dihydrokavain 23 ± 1 -6.614 

12 Methysticin 12 ± 1.5 -6.614 

13 Dihydromethysticin 19 ± 1.5 -6.588 

14 Yangonin 27 ± 1 -5.996 

15 Desmethoxyyangonin 24 ± 2 -6.16 

18 4-Hydroxycoumarin 41 ± 8 -6.448 

19 Coumarin 25 ± 11 -6.328 

20 4-Methylumbelliferone 16 ± 1 -6.737 

21 Curcumin 49 ± 4 -6.328 

22 [6]-Gingerol 20 ± 2 -5.049 

23 [8]-Gingerol 17 ± 2 -5.77 

24 [10]-Gingerol 18 ± 2.5 -6.639 

26 

(Z)-5- 

Benzylidenethiazolidine-2,4-

dione 

13 ± 1 -8.302 

 CB79674951 91 ± 1.3 -7.75 

 NSC 84094 92 + 0 -8.549 
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Table 2-5. BoNT/A LC inhibition and docking scores of the nine compounds tested using 

UPLC. 

 

2.4. Ex vivo assay 

The MPNHDA uses a small amount of BoNT/A LC, it can be done in a non-CDC 

registered laboratory. It can test small molecules, peptides, and antibodies for efficacy. Its 

drawbacks are: it is technically difficult as takes about 6 months to 1 year to be proficient. It can 

test only one inhibitor per day at three concentrations. The hemidiaphragm can only run about 5 

hours and the tissues become exhausted. It cannot detect subtle toxicity as well as cell culture. 

Small molecules require DMSO. Too much DMSO will stop intoxication of the nerve.  

Figures 2-12 and 2-13 show the MPNHDA results of the seven tested compounds. 

Curcumin 21 was not protective against BoNT/A at 20 µM and so was not tested at any lower 

concentrations. Fisetin 5 was found to be marginally protective against BoNT/A at 20 µM. On 

retest, it was found to not be protective at 20 µM or at 2 µM against BoNT/A. 4-Hydroxy 

coumarin 18 showed marginal partial protection against BoNT/A at 20 µM but no protection at 2 

µM. The retest of 4-hydroxy coumarin 18 indicated it was not effective against BoNT/A at either 

Number Compound % Inhibition 

(20 µM) 

Glide Docking Score  

2 Chlorogenic acid 15 ± 3.0 -11.094 

16 Capsaicin* 38 ± 7.2 -7.983 

17 Dihydrocapsaicin* 30 ± 4.8 -6.931 

25 Epigallocatechin 

gallate (EGCG)* 

4 ± 1.1 -9.431 

27 Chicoric acid* 6 ± 1.4 -10.83 

28 Piperine* 21 ± 1.5 -6.411 

29 Pterostilbene 16 ± 1.5 -7.251 

30 Bilobalide* 13 ± 2.0 -6.954 

31 Ginkgolide C* 2 ± 0.8 -6.147 

 CB79674951 86 ± 1.3 -7.75 

 NSC 84094 87 + 1.5  -8.549 
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concentrations. 

Kavain 10 was tested in two individuals assays at 20 μM, little protection observed.. 

However, in these runs the toxin was not very “hot”, and also, it was not run out to 210-270 

minutes.  

Acoric acid 1, which showed good binding poses and docking scores in the docking 

studies, and an in vitro inhibition of 47 + 7 (Table 2-4), was tested ex vivo in two iterations, each 

at 20 µM. This compound might be partially protective, but it would have to be retested to 

confirm this activity in different concentrarions and also using other relevant assays. Galangin 3 

was found to be toxic at 20 µM. The tissues receiving the galangin 3 dropped the twitch tension 

faster than the toxin controls. Capsaicin 16 was found to be non-protective against BoNT/A at 20 

µM and so was not tested at the lower concentrations. 
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Table 2-6. Results of selected seven compounds tested using MPNHA. 

Compound Concentration Protection against 

BoNT/A 

Notes 

Acoric acid 1 20 μM 2 assays marginal 

protection 

Note: To be retested to 

confirm its activity 

Galangin 3 20 μM Toxic at 20 μM Note: The graph shows 

the tissues receiving the 

galangin dropped 

twitch tension faster 

than the toxin controls 

Fisetin 5 Trial 1: 20 μM 

Trial 2: 20 μM and 2 

μM 

Trial 1: Marginal 

protection at 20 μM  

Trial 2: Not protective 

protective in the second 

trial  

 

Kavain 10 20 μM 2 assays at 20 μM, but 

neither were active 

Note: Toxin was not 

very “hot” in this run, 

and it was not run up to 

to 210-270 minutes but 

there was little 

protection observed 

Capsaicin 16 20 μM non-protective  

4-Hydroxy 

coumarin 18 

20 μM and 2 μM 20 μM:, marginal/partial 

protection 

2 µM: No protection 

 

Curcumin 21 20 μM Not protective  
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Figure 2-12. MPNHDA activities of acoric acid 1, galangin 3, fisetin 5, and 4-hydroxycoumarin 

18. The percent twitch tension is measured vs time. At 20 M Acoric acid 3 showed marginal 

activity, whereas galangin 4 was found to exacerbate then to BoNT/A activity. 
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Figure 2-13. BoNT/A inhibition activities of curcumin 21, kavain 10, capsaicin 16 tested against 

LC of BoNT/A using MPNHDA. 

2.5. Conclusions 

Botulinum neurotoxin acts like a double edge-sword. On one side, it is a possible-

bioterror threat, and on the other side, it is increasingly used for cosmetic purposes and against 

neurological disorders [60]. Hence, the identification of novel small molecule inhibitors of BoNT 

serotype A is of great significance. A number of small molecules were found to be active against 

the BoNT/A protease enzyme which include the zinc-binding hydroxamic acid derivatives [31] 
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and natural products like chicoric acid and chlorogenic acid [61] on the exo-sites α/β [18]. 

However, none of the reported compounds reached the market as drugs or to the clinical trial 

stage [62, 63]. In a novel approach, combining Ayurvedic literature, computer-based drug 

screening, and in vitro HPLC-based testing was used to identify the activities of natural products 

against BoNT/A.  

Analysis of the Ayurvedic literature resulted in the identification of plants which could 

possess BoNT inhibition activities. The phytochemicals of the selected plants were screened 

using in silico docking in the BoNT/A inhibitor crystal structures (SI table 2). Based on the 

docking results, thirty-one compounds were tested using in vitro HPLC/UPLC based assay. The 

results indicated seven compounds showing BoNT/A inhibition of around 45-60% including 

acoric acid and some flavonoids (Tables 2-4 and 2-5). These seven compounds were evaluated 

further in an ex vivo methods such as mouse phrenic nerve-hemidiaphragm assay (MPNHDA) 

[55]. 

Based on the bioassay results, acoric acid 1, a novel scaffold which was isolated from 

Acorus calamus, was also found to show promising activity (~50% inhibition) in vitro and partial 

protection in MPNHDA. Further confirmatory testing of these compounds using in vivo or ex 

vivo models could evaluate their utility as BoNT/A inhibitors. Acoric acid 1 possesses three arms 

similar to the reported hydroxamic acid derivativies [20] and also possesses chelating ability 

with zinc metal. These functional points, like the carbonyl group on the cyclohexane and 

isobutyryl side chain, could be explored further for structural modifications to allow them to take 

advantage of the unexplored region in the binding site (Figure 2-14). These modifications may 

increase the inhibitory activity and potency of acoric acid 1.  

 



 

38 

 

Figure 2-14. Structure of acoric acid 1 in the ligand binding domain of BoNT/A. 

3. Experimental 

3.1. Virtual screening for identification of BoNT/A inhibitors 

System specifications 

To perform virtual screening studies, a commercial version of the Schrödinger software 

package [64] was installed on a Windows desktop computer with Intel® Core™ Quad CUP 

Q6600@2.40GHz 2.40 GHz processor with a random access memory (RAM) of 4.00 GB and 

32-bit operating system. 

Protein Preparation and alignment of binding sites  

The Protein Data Bank (PDB) structures of six BoNT/A crystal structures were 

downloaded (PDB codes: 3QIY, 3QIZ, 3QJ0, 4HEV, 2ILP and 3C8B) and prepared using the 

Protein Preparation Wizard (PPW) module of Schrödinger suite to remove errors in the 
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structures from the crystallographic data by adding hydrogen atoms and correcting their bond 

orders. The prepared proteins were minimized with Optimized Potentials for Liquid Simulations 

(OPLS)-2005 force field (FF) at an intermediate docking stage, and all the water molecules 

without contact and 5 Å or more away from the protein residues were removed. All the prepared 

proteins were aligned at the binding site. 

Virtual screening of ligands from Ayurvedic literature 

Using Ayurvedic literature, a total of 356 plants were identified as potential plants for 

treating the symptoms of botulism, and among these, 14 plants were shortlisted based on their 

frequency of usage in various formulations and the number of diseases they treat. To generate a 

structural database of the reported phytochemicals of these 14 plants, Duke’s database, 

PubChem, SciFinderDictionary of Natural Products [65] and various online sources were 

searched, and their exact structures, including stereochemistry, were drawn. Chem3D (Perkin 

Elmer) was used to convert these structures into 3D, and Maestro [64] was used to label each 

compound individually and save the files in structural-data file (.sdf) format. The database from 

these 14 plants consisted of 570 compounds. These compounds were prepared using the Ligprep 

module with Epik to generate metal binding sites at pH 7.4, to include metal binding states, and 

to include only one stereoisomer per ligand. The binding sites of all the six selected crystal 

structures were overlaid to align their binding sites. For each crystal structure, grids were 

generated using Glide with an area of 12 Å around the native ligand and with no constraints. The 

prepared ligands were then docked with the Virtual Screening Workflow (VSW) option in 

Maestro (Schrödinger, LLC) using all the six prepared grids and using Glide standard precision 

(SP) with settings to generate docking results for all the compounds. The poses from the docking 

results were analyzed on Maestro and PyMol softwares [64]. 
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3.2.  In vitro studies 

Experimental material 

Recombinant botulinum neurotoxin type A light chain (BoNT/A LC) was prepared 

according to procedures previously described [66]. The substrate for the HPLC-based enzymatic 

assay was a 17-mer peptide consisting of residues 187 to 203 of SNAP-25 (Ac-

SNKTRIDEANQRATKML-NH2). It was custom synthesized to 98.0% purity by GenScript 

(Piscataway, NJ).  The HPLC system consisted of Waters model 6000A pumps, U6K injector, 

680 automated gradient controller, 996 PDA and Empower 2 software (Waters Corp., Milford, 

MA, USA). The UPLC system consisted of Waters Aquity with PDA detector. The HPLC 

column (Zorbax 300SB-C18, 4.6 x 150 mm) was obtained from Agilent Technologies (Santa 

Clara, CA) while the UPLC column (Acquity UPLC BEH C18 (2.1 x 50 mm column) was 

obtained from Waters Technologies (Waters, Bedford, MA).  

HPLC-based BoNT/A LC protease assay  

Compounds were tested in an HPLC-based BoNT/A LC enzymatic assay as previously 

described [67]. The assay mixture contained 50 mM HEPES pH 7.3 buffer, test compound 

dissolved in dimethyl sulfoxide (DMSO) at the final assay concentration (20 μM), 0.8 mM 17-

mer SNAP-25, and 3.0 to 6.0 μg/ml (60 to 120 nM) BoNT/A LC. In negative control samples, 

the test compound was replaced by DMSO.  Upon addition of the LC, the reaction mixture was 

briefly vortexed and incubated at 37°C for 5 min.  Reactions were stopped by acidification with 

90 μL of 0.7% trifluoroacetic acid (TFA).  Uncleaved substrate and products were separated by 

reverse-phase HPLC. Solvent A was 100% water/0.1% TFA and solvent B was 70% 

acetonitrile/0.1% TFA. The flow rate was 1.0 ml/min. at 25°C with a gradient profile of 10% B 
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(2.5 min.), linear gradient to 36% B (21 min.), and 100% B (6 min.). Amounts of intact and 

cleaved substrate were quantified and used to calculate LC activity (μM/min/mg). Percent 

inhibition was determined by comparing the LC activity in control and test samples.  

In vitro UPLC analysis 

UPLC method [59] was applied to improve the sensitivity of the bioassay and reduce the run 

times and to make it ideal for large set of test compounds. A number of compounds were tested 

using UPLC method and are reported in the Table 2-4. The BoNT/A reaction was performed 

same as in the HPLC method. However, the reaction mixture was analyzed using UPLC loaded 

with Aquity UPLC BEH C18 column, under the similar solvent conditions as that of the HPLC 

method. Unlike the reported method, no bovine serum albumin was included in the reaction 

mixture as reported in the literature [59]. 

3.4 Ex vivo assay (MPNHDA)  

The mouse phrenic nerve hemidiaphragm assay (MPNHDA) was conducted by our 

collaborators at the US Army Medical Research Institute for Infectious Diseases USAMRIID, 

similar to the reported on the procedure [32]. “Female CD-1 mice (20 to 25 g) were euthanized 

with CO2, and their diaphragms with attached phrenic nerves were removed. The diaphragms 

were then divided into two hemidiaphragms, with each section complete with a phrenic nerve 

and myoneural junction. Each hemidiaphragm was attached to an isometric force transducer 

(Fohr Medical Instruments, Seeheim, Germany), and its phrenic nerve was secured to a 

stimulating electrode. The nerve-muscle preparations were immersed in separate 10-ml tissue 

baths containing Tyrode’s buffer (1.8 μM CaCl2, 1 mM MgCl2, 2.7 mM KCl, 137 mM NaCl, 0.4 
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mM NaH2PO4, 12 mM NaHCO3, and 6 mM glucose), pH 7.2 to 7.4 (Sigma, St. Louis, MO). A 

mixture of 95% O2-5% CO2 gas was passed through the Tyrode’s buffer. The tissue baths were 

kept at 37°C. Each phrenic nerve was stimulated with single supramaximal pulses (SD9 

Stimulators Grass Instruments, Warwick, RI) through a Powerlab/4sp and Bridge Amp relay 

(AD Instruments, Inc., Colorado Springs, CO) with a 0.3-ms duration at 0.03 Hz. The twitch 

tensions were digitally recorded by Chart software (AD Instruments, Inc., Colorado Springs, 

CO). After acclimation to the tissue baths, the tissue preparations were run for 20 to 30 min for 

baseline measurements. The inhibitor (dissolved in DMSO at 2x the final assay concentration) 

was mixed with 60 pM BoNT/A (Metabiologics, Madison, WI) in 5 ml of Tyrode’s buffer and 

incubated for 15 to 20 min at 37°C. After baseline stabilization, the toxin-inhibitor mixture was 

added to a 10-ml bath with an additional 5 ml of Tyrode’s buffer, bringing the final 

concentration of BoNT/A toxin to 30 pM. The concentration of BoNT/A neurotoxin was 

previously calibrated to induce a 50% loss of twitch tension in approximately 60 min. In all 

samples, including the controls, the final concentration of DMSO was 0.3%.  

For each experiment, four tissue baths were used. One bath was the BoNT/A toxin-only 

control. A second bath was an assay control with toxin or inhibitor. The third and fourth baths 

contained toxin plus two different concentrations of inhibitor. Adding the toxin or the 

toxin/inhibitor mixture to the bath initiated the beginning of data collection, which continued for 

5 h or until muscle twitch tension ceased. For all preparations, neurotoxin-induced paralysis was 

measured as a 50% loss of twitch tension evoked by nerve stimulation.  

Procedures used to obtain mouse tissues were conducted in compliance with the Animal 

Welfare Act and other federal statutes and regulations relating to animals and experiments 

involving animals and adhered to the principles stated in the Guide for the Care and Use of 
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Laboratory Animals, National Research Council, 1996. The facility where this research was 

conducted is fully accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care International” [32].  

.
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CHAPTER 3                                                                                                             

STUDY OF LYCIUM SPECIES (GOJI) FOR ANTIDIABETIC COMPOUNDS 

1. Introduction 

1.1. Diabetes mellitus and metabolic syndrome  

Type 2 diabetes mellitus (T2D), a complication resulting from insulin resistance, has 

reached epidemic proportions worldwide. According to world health organization (WHO) 

statistics, T2D accounts to about 90% of the total diabetic populations of 382 million, which was 

8.3% of the total adult population in 2012-2013, and resulted in 1.5 to 5.5 million deaths 

worldwide [68]. There are approximately 1.4 million new cases of diabetes each year and if the 

current trends continue, these numbers are projected to increase to 1 in 3 by 2050 [69] (Figure 3-

1). T2D patients are non-responsive to insulin, have impaired glucose and lipid metabolism and 

could be at high risk for developing complications, such as hypertension, dislipidemia, 

cardiovascular disease related death, heart attack, stroke, blindness, eye problems, kidney 

diseases and amputations. Metabolic syndrome is a series of highly interrelated disease 

conditions which include hypertension, obesity and elevated blood glucose levels. Among the 

people affected with metabolic syndrome, the chances of occurrence of T2D are found to be 

high. T2D and the risk factors associated with metabolic syndrome can be treated by targeting 

peroxisome-proliferator activated receptors (PPARs) [70]. 
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Figure 3-1. The raise in the population of Americans suffering from diabetes in 2010 (25.8 

million) and 2012 (29.1 million) [69]. 

1.2. PPARγ role and importance 

PPAR’s are a family of nuclear transcription factors, expressed on various tissues and 

regulate key biological processes including glucose and lipid homeostasis. There are three PPAR 

subtypes: PPARα, PPARβ/δ and PPARγ, and these three receptors are considered as viable 

targets for treating metabolic syndrome [70] and diabetes [71].They exert their action in the 

nucleus by heterodimerization with retinoid X receptor (RXR), which are stabilized by co-

repressors. Ligand binding to PPARs results in its activation by inducing changes in the receptor 

conformation which results in the recruitment of coactivators and removal of corepressors. The 

activated RXR-PPAR dimers then regulate the expression of genes in DNA by binding to the 

specific response elements in the promoter region of the DNA (Figure 3-2). PPARs have a role 

in the carbohydrate and lipid metabolism pathways by directly regulating their metabolism and 

transport, or by acting on the proliferation and differentiation of a number of cells including 

adipocytes [70]. 
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Figure 3-2. Mode of action of PPARs [70]. 

PPARα subtype is expressed mainly in the liver, adipose tissue, kidneys, heart, skeletal 

muscle and large intestine. Fibrates, a class of ampiphilic carboxylic acids, activate PPARα  and 

are used for treating metabolic disorders mainly, hypercholesterolemia and are used as 

hypolipidemic or lipid-lowering agents. PPAR β/δ subtype is expressed in various tissues 

including the skin, gut, placenta, skeletal and heart muscles.  

PPARγ is expressed mainly in adipose tissue (white and brown) and in significant 

amounts in intestines, kidneys, retina, immunologic system and trace amounts in muscles and is 

considered as a primary target for treating diabetes [72]. Hence, intense research efforts were put 

into identifying clinical agents targeting PPARγ [73]. Several ligands, both endogenous and 

synthetic agents act as PPAR ligands. The endogenous ligands targeting PPARγ include, fatty 

acids, oxidized lipids, prostaglandin J2 metabolites. Synthetic agents of PPARγ. include full- and 

partial-agonists. Phenyl acetic acids, tyrosine-based compounds, thiazolidine dione-class of 

compounds act as PPARγ full-agonists (Figure 3-3). Fmoc-L-leucine, FK-614, T2384 [74], INT-

131 [75], MBX-102 [76], azadiole derivatives, 2-BABA-derivatives, GW0072 [77], L-

764406[78], cercosporamide-derivative VI [79] act as PPARγ modulators or partial agonists [80] 
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(Figure 3-4). 

Partial and full agonists  

Thiazolidinediones (TZD) or glitazones are a class of insulin sensitizing pharmacological 

agents, targeting insulin resistance, and preserve β-cell function in the pancreatic islets. PPARγ 

agonists include TZDs like ciglitazone I, pioglitazone (Actos
®
) II, torglitazone (Rezulin

®
) III, 

rosiglitazone (Avandia
®

) IV, and a non-TZD compound, farglitazar V (Figure 3-3). 

Rosiglitazone IV and pioglitazone II are currently used for treating diabetes clinically. These 

agents are effective in improving insulin and glucose parameters, and increase whole-body 

insulin sensitivity [81].  Hence, they are termed insulin-sensitizing medications. They decrease 

hepatic glucose production and prolong pancreatic β-cell function by preventing apoptosis of β-

cells [81]. 

Although, TZDs are effective in treating T2D, adverse events like weight-gain, edema, 

and anemia are seen among the patients and the treated populations have an increased risk for 

cardiovascular events and bone fracture [82]. In the TZD treated population, there is an increased 

risk for exacerbation of congestive heart failure, volume-overload, systemic edema due to fluid 

retention and subsequent increase in intravascular volume by approximately 15% [81]. 

Therefore, there is a high demand for the identification of new, safer antidiabetic agents which 

do not cause high fluid retention. Unlike full agonists like TZDs, which show side-effects, partial 

agonists or modulators of PPARγ are effective against insulin-resistance without the undesirable 

side-effects observed while using full agonists [79, 83]. Hence, finding new partial agonists of 

PPARγ could be a viable method for treating diabetes. Our aim is to identify novel natural 

product-based antidiabetic agents by targeting PPARγ and by screening the TCM-based anti-
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diabetic plant, Goji, using in silico, in vitro and validate with in vivo models. 

 

Figure 3-3. Structures of thiazolidinedione (TZD) class of compounds I to IV and farglitazar V, 

which act as PPARγ full agonists. 

 

Figure 3-4. Structures of PPARγ- partial agonists: GW0072 VI [77], cercosporamide-derivative 

VII [79],  L-764406 VIII [78] and antagonist GW 9662 IX [84]. 

Ligand-binding domain description and two binding modes:  
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The PPARγ receptor is a nuclear receptor which is comprised of four domains 

including 1) N-terminus and ligand-independent activating domain (AF1), 2) highly conserved 

DNA binding domain, 3) ligand-binding domain (LBD) and 4) ligand-independent domain 

(AF2). The structure of apo-PPARγ site along with co-activating factor SRC-1 was determined 

(PDB: 2PRG) [85]. The LBD is a T-shaped cavity with a total volume of 1,300 Å and is 

comprised of helices 3, 4, 6, 10, two β-sheets and helix 12, which belong to the AF2 domain. 

The binding site consists of two regions perpendicular to each other. The region between helix 3 

and the β sheet (length 20 Å) is parallel to helix 3, while another region from β sheet to AF2 

(length 16 Å) is perpendicular to the cavity behind helix 3 (Figure 3-5) [85]. It consists of an 

entry site which is comprised of hydrophobic amino acids, Asp243, Glu290, Arg288, Gln295. 

Depending on how these agents interact with the residues in the ligand binding domain, there 

are two binding modes of PPARγ agonists, full-agonist binding mode and partial-agonist 

binding mode. 

Binding mode of full-agonists 

The structure of rosiglitazone IV in the crystal structure of PPARγ (PDB 2PRG) is L-

shaped, which wraps around helix 3 and occupies 40% of the ligand binding site. In general, 

glitazones or thiazolidinedione (TZD)-type PPARγ full agonist structures contain three subunits: 

an effector sub unit, a linker sub unit and a binder subunit [73].  
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Figure 3-5. Structure of the ligand-binding domain of PPARγ.  

The key helices in the ligand binding domain are labeled. The binding pocket is marked red. 

Figure b, is obtained by the rotation of figure a, along the z-axis. 

b 

a 
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Figure 3-6. a) Binding mode of PPPARγ full-agonist, rosiglitazone IV (green) PDB: 2PRG; b) 

including its ligand-interaction diagram. 

The binder subunit of rosiglitazone IV includes a thiazolidine (TZD) group which 

interacts with amino acids in the helices 3, 4, 10 and AF2. The TZD groups forms hydrogen-

bonding interactions with Gln286, Ser289 on helix 3, His323 near helix 4, His449 of helix 10, 

and Tyr473 on helix 12 of AF2 (Figure 3-6). The linker is a central benzene ring, which lies 

behind helix 3 and forms hydrophobic interactions with residues Cys285 and Met364. The 

effector subunit, which is the core region, is made up of pyridine, interacts with the hydrophobic 
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site helix 3 and the β-sheet [73]. Figure 3-6 shows the structures of thoazolidinedione (TZD) 

class of compounds. 

Binding modes of partial agonists 

Partial agonists or modulators of PPARγ are effective against insulin resistance without 

the undesirable side effects observed while using full agonists [79, 80] Hence, finding partial 

agonists of PPARγ could be a viable method for treating diabetes without the side-effects shown 

while using thiazodinedione (TZD) derivatives. Unlike full agonists, partial agonists do not 

interact with helix 12. PDB 3LMP [79] revealed that the cercosporamide-scaffold is located 

between helix 3 and β-sheet, and also makes water assisted interactions with Leu340, Ser342 

consisting of helices 2, 5, β-strand-2 and helix 7 but does not interact with helix 12 (Figures 3-7, 

3-8). 

1.3. Natural products as PPARγ agonists  

Several natural products, like honokiol [86], amorfrutin 1 [87], amorfrutin B [88], 

amorphastilbol [89], saurufuran A [77] from Saururus chinensis (Saururaceae), flavonoids such 

as chrysin, apigenin and kaempferol, and phenolic compounds from Glycyrrhiza uralensis 

(Fabaceae) and Glycyrrhiza glabra [90] were found to possess PPARγ activity [91]. These 

natural products possessed different binding modes in the PPARγ binding pocket, compared to 

full agonist-binding modes, and were also found to activate PPARα or RXR and also improve 

the metabolic parameters with reduced side-effects compared to thiazolidinedione derivatives 

[91]. A careful study of more phytochemicals could result in the discovery of new anti-diabetic 

compounds from natural sources including traditional herbals. 
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Figure 3-7. a) Binding mode of PPPARγ partial-agonist, cercosporamide-derivative VII (light 

green) PDB: 3LMP; b) including its ligand-interaction diagram. 
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Figure 3-8. Overlap of the PPARγ-full and -partial agonists, rosiglitazone IV (green) and 

cercosporamide-derivative VII (light green) in 2PRG. They occupy binding sites in different 

binding regions. 

1.4. TCM: Goji  and diabetes 

Natural products are important and promising sources for drug discovery. Several 

compounds isolated from plants used in Traditional Chinese Medicine (TCM) have been used 

and studied as drugs like artemisinin and paclitaxel. The root bark and fruits of two closely 

related medicinal plants from TCM,  Lycium barbarum and L. Chinense, also known as gou qi zi 

or Goji, wolfberry, Chinese wolfberry, matrimony wine, have been traditionally used mainly in 

China, Vietnam, Korea and Japan [92]. Goji berry preparations, in the form of tinctures, powders 

or tablets, are used in TCM as mild Yin-enhancing agents, treating liver, kidneys and lungs, and 

are claimed to increase the longevity and reduce premature graying. The root barks of Goji are 

consumed as decoctions and used as cooling agents to ‘clear heart’ and lower consumptive fever 

due to Yin deficiency. Root barks are used in the treatment of night sweating, steaming bone 

sensation and chronic low grade fever, cough and against hemoptysis, hematuria, diabetes 
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mellitus and hypertension (Figure 3-9) [93]. 

 

 Figure 3-9. Pictures of L. barbarum fruit [94]. 

Goji: Chemical constituents and their activities, TCM preparation  

Because of the significance of Goji in traditional medicine, several investigations were 

performed on various parts of Goji, especially the fruit of L. barbarum and other parts of L. 

chinense like roots and leaves. The reported chemical constituents were reviewed in 2010 by 

Potterat [92]. The chemical constituents of L. barbarum and L. chinense include: carotenoids 

from the fruits and leaves, vitamin C precursors and glycolipids from the fruits, alkaloids and 

cyclopeptides from the roots, amides and other phenolic compounds from the fruits and roots of 

Goji. Table 3-1 shows the different classes of chemical constituents of Goji classified based on 
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parts and species.  

These chemical constituents were tested for activities including antioxidant, antitumor, 

immunomodulatory, radioprotective, antidiabetic activities and neoprotective effects [95, 96]. 

Proteoglycans also known as “Lycium barbarum polysaccharides” showed antioxidant 

properties and some interesting pharmacological activities in the context of age-related diseases 

such as atherosclerosis and diabetes [97].  

Cortex Lycis Radicis (CLR) or Chinese wolfberry root bark or bark of box thorn root, 

which is the dried root bark of L. barbarum (Solanaceae family), is used to treat pneumonia, 

night sweats, cough, hematemesis, inflammation and diabetes mellitus [98]. The TLC analysis of 

CLR aqueous extracts, indicating the presence of organic acids, alkaloids, flavones, 

anthraquinones, polysaccharides, and saponins. These aqueous extracts of CLR were tested on 

Alloxan-induced diabetic mice and were shown to decrease glucose levels, increase insulin 

levels, and long-term hypoglycemic effects and reduced the body weight in diabetic mice [98]. 

Lycii cortex radicis (LCR) is also a traditional Chinese medication, made from the root barks of 

L. chinense. The methanolic extracts of LCR, LCR1 and LCR2 and tyramine derivatives, trans-

N-p-coumaroyl tyramine, trans-N-ferulolyl tyramine which were isolated from LCR were tested 

for hypocholestrolemic and antioxidant effects [99]. Trans-N-feruloyl tyramine was found to 

possess an anti-oxidant effect by inhibiting liver microsomal HMG CoA reductase activity. 

Studies on LCR1 and LCR2, ginger, safflower seed using Sprague-Dawley male rats concluded 

that LCR possess hypocholestromeic activity. 
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Table 3-1. List of the chemical constituents isolated from the fruits, roots, leaves and flowers of 

L. barbarum and L. chinense [92]. 

  Class of compounds Examples 

Fruits of  L. 

barbarum 

Polysaccharides (23 %) 

Termed as Lycium barbarum polysaccharides: 

Rha, Ara, Xyl, Man, Gluc, Gal in varied 

proportions 

Carotenoids 
Zeaxanthin dipalmitate (56 % of the carotenoid 

content) 

Vitamins Riboflavin, Thiamin, Ascorbic acid 

Flavonoids 
Aglycone portions: Myricetin, quercetin, 

kaempferol 

Essential oils and fatty acids  

Miscellaneous compounds 

β-setosterol and its glycoside. scopolectin, p-

coumaric acid, lyciumide A, l-monomethyl 

succinate 

Fruits of L. 

chinense 

Similar to L.barbarum Polysaccharides, carotenoids, flavonoids 

Cerebrosides, pyrrole derivatives  

Sterols 
Cycloartenol, 24-ethylycloartenol, granisterol, 24-

methylene cycloartenol 

Roots of L. 

chinenese 

Cyclic peptides Licyumines (A-D) 

Indole glycosides, Nitrogen 

compounds: aurantiamide acetate, 

lyciumamide 

Tyramine derivatives 

 

Alkalods Spermine alkaloids, kukoamines A and B 

Calystegenines and N-methyl 

ccalysegines 
 

Polyphenolic compounds Apigenin, acaccetin, luteolin, Kaempferol 

Coumarins 
Scopolecin and its glycosides: scopolin and 

fabiatrin 

Lignans, anthraquinonines terpenoids, 

fatty acids 
 

Roots of L. 

barbarum 
Cyclopeptides Licyumins A and B 

 Betain, choline lineolic acid  

Leaves and 

flowers of L. 

chinense 

Acyclic diterpene glycosides Lyciumosides I - IX 

Terpenoids, Withanolides 
 

Flavonoids, glycosides, carotenoids, 

tannins, diosgenin, β-sitosterol, 

lanosterol 

 

Leaves of L. 

barbarum 

Leaves: flavonoids, damascenone, 

choline 

Other compounds: damascenone, choline, 

scopoletin, vanillic acid, salicylic acid, diosgenin, 

β-setosterol, lanosterol 
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1.5. Aim:  

Since Goji was used traditionally in TCM and its extracts showed anti-diabetic activities, 

our aim was to identify novel small molecule agonists of PPARγ from Goji, and test their 

antidiabetic activities. We utilized computational docking, synthesis, in vitro and in vivo 

approaches to achieve the desired goals. 

2. Results and Discussion 

Our approach to identify small molecule-antidiabetic (T2D) compounds from Lycium 

species, which are active against diabetes, using a three stepped approach: 1) in silico screening 

of the reported phytochemicals of Goji into PPAR-γ binding site to identify the best active 

chemical scaffolds, 2) synthesis of compounds with the desired scaffolds and, 3) validate and 

confirm their activities with in vitro and in vivo screening.  

Several compounds were reported to be isolated from various parts of Goji (L. barbarum 

and L. chinense). Among these, twenty-seven compounds isolated from the fruits and roots were 

selected for docking studies. These included alkaloids, a cyclic peptide, licumin D, indole 

glycoside derivative (aglycone form), nitrogen compounds including aurantiamide acetate, 

lyciumamide and a series of tyramine derivatives. The roots of Goji contain alkaloids such as 

spermine alkaloids, kukoamines A and B. A series of calystegenines and N-methylcalystegines, 

lignin lyoniresinol aglycone, a series of anthraquinones including, physcion, emodin, 1,3,6-

trihydroxy-2-methylanthraquinone (Figure 3-10). The glycosides of some of the reported 

compounds of Goji were removed to allow for binding into the small volume active site grids 

used in the docking studies.  
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2.1. Molecular docking 

Full agonists of PPARγ, termed as glitazones, ex: pioglitazone II, troglitazone III, 

rosiglitazone IV are currently used for the treatment of Type 2 Diabetes. However, these 

compounds show undesirable side-effects in treated patients, including cardiac problems [81, 

82]. Partial PPARγ agonists were shown to possess anti-diabetic activity, but with reduced 

activity compared to full agonists [79, 83]. Hence, targeting PPARγ using partial agonists is a 

viable approach for the treatment of diabetes, without the undesirable side-effects of full 

agonists. In the current approach, we utilized both the partial and full agonists of PPARγ. The 

PDB crystal structure and binding mode analysis of full agonist (rosiglitazone IV, PDB: 2PRG) 

and partial agonist (cercosporamide-derivative VII, PDB: 3LMP) show different binding modes 

and protein-ligand interactions. The binding interactions of the full and partial agonists at the 

active site revealed differences in the binding modes of both types of agents. While full agonists 

show good hydrogen bonding interactions with His343 on helix 4, His449 on helix 10, and 

Tyr473 on helix 12, partial agonists do not show any interactions with these residues. Partial 

agonists occupy the binding site, more in the region between helix 3 and the β-sheet, when 

compared to the full agonists which occupy the binding site, more in the region between helices 

3 and 12.  
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Figure 3-10. List of the compounds used for docking studies in PPAR-γ crystal structures 2PRG, 

3LMP. 

To identify new natural product-derived PPAR ligands, docking of 27 reported compounds 

(Figure 3-10) isolated from various parts of both L. barbarum and L. chinense was performed 

inside the ligand binding domain of PPARusing the X-ray crystal structures of full agonist 

rosiglitazone IV (PDB ID: 2PRG) and partial agonist, cercosporamide-derivative VII (PDB ID: 
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3LMP) [92]. Grid boxes were generated using Glide SP module (Schrödinger, LLC) with 12 Å 

radii around the native ligand generated using different hydrogen bonding constraints for full and 

partial agonists. For the full agonist, 2PRG, three hydrogen-bonding constraints were applied, in 

the partial agonist, 3LMP, no constraints were applied.  

Docking output 

The output for docking in both partial (3LMP) and full agonist (2PRG) binding sites was 

analyzed (SI Tables 2 and 3). Analysis of the docking results revealed that a number of 

compounds possessed good binding poses with favorable protein-ligand interactions. A study of 

the binding modes and the docking scores revealed that five compounds belonging to the 

cinnamomyl phenyl ethyl amide class lyciumamide A X, dihydro-N-caffeoyltyramine XI, cis-N-

caffeoyltyramine XII, trans-N-caffeoyltyramine XIII, trans-N-feruloyloctopamine XIV 

possessed good binding poses, comparable to the native ligands (termed as tyramine derivatives 

hereafter for simplicity, since all of these amides are made of tyramines). These compounds 

displayed good hydrogen bonding interactions with the residues on the helix 3 and helix 12, 

similar to the full agonist, rosiglitazone IV. Whereas, in the partial agonist binding site, they do 

not show any binding near the helix 12 binding site and occupy the region more between helix 3 

and β-sheet, similar to the partial agonist cercosporamide-derivative VII. These five tyramine-

derivatives also possess good binding poses in both full and partial agonist binding sites (Table 

1). This reveals that tyramine derivative-class of compounds may possess good PPARγ activity, 

either as a full- or partial- agonists. Hence, these simple amide derivatives were synthesized 

along with several analogs. All the compounds were validated using in vitro luciferase assays. 
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In general, tyramine-derivatives were reported to possess diverse biological activities like 

potentiation of antibiotics, inhibition of prostaglandin synthesis, anti-oxidant activities, 

antitubercular activity [100], bacterial efflux pump inhibitors, antihyperglycemic activites, 

melanin synthesis inhibitors [101], inhibitors of melanocyte-tyrosinase inhibitors [102], 

antifungal activities [103]. Several tyramine-derivatives were also isolated from the root barks of 

L. chinense and were found to possess anti-fungal activities [103]. Here we wanted to test the 

activities of these compounds against PPARα-PPARγ receptors.  
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Table 3-2. Docking scores of the five tyramine derivatives in full agonist and partial 

agonist binding sites of PPARγ.  

  Glide Docking score 

Number Structure 2PRG 3LMP 

X 
 

Lyciumamide A 

-5.03 -7.47 

XI 
 

Dihydro-N-caffeoyltyramine 

-8.82 -8.10 

XII 
 

cis-N-caffeoyltyramine 

-5.70 -6.26 

XIII 

tran

s-N-caffeoyltyramine 

-7.50 -6.16 

XIV 
 

trans-N-feruloyloctopamine 

-7.31 -8.11 

 Rosiglitazone IV -10.66 

(native ligand) 

-8.56 

 
Cercosporamide-

derivative VI 

No docking 

result obtained 

-7.94 

(native ligand) 
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Figure 3-11. a) Binding modes of the four tyramine derivatives in the full agonist binding site 

and ligand-interaction diagram in the full agonist crystal structure. 2PRG-tyramine derivatives- 

X (Brown), XI (Blue), XII (dark green), XIII (wheat), XIV (light green) rosiglitazone IV 

(yellow).  b) Ligand-interaction diagram of XI in the full agonist crystal structure (PDB: 2PRG) 

of 

PPARγ.

 

Figure 3-12. a) Binding poses of the five tyramine derivatives in the partial agonist binding site; 

X (dark blue), XI (brown), XII (light blue), XIII (black), XIV (light green), 3LMP-ligand 

(green). b) Ligand-interaction diagram of X in the partial agonist crystal structure (3LMP) of 

PPARγ.  
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2.2. Synthesis of tyramine derivatives for biological evaluation 

First, a series of twelve compounds were synthesized by a coupling reaction using 

commercially available substituted cinnamic acid derivatives and phenyl alkylamines/tyramines, 

in the presence of triethyl amine and PyBOP [(Benzotriazole-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate [104]. Four types of cinnamic acids (SM1 to SM4) were each coupled with 

three types of phenylethyl amine derivatives (SM5 to SM7) that resulted in amides (1 to 12) in 

50-95% yields after flash chromatography. Moreover, the twelve-amides (13 to 24) were further 

subjected to reduction under hydrogenation conditions (Pd/H2) and gave saturated amides in 

good yields (Scheme 3-1), (Figure 3-13). Among all these synthesized 24 amides, four 

compounds 02 (XII), 08 (XIII), 14 (X) were identified to possess good docking scores in our 

docking studies in 2PRG and 3LMP and were natural constituents of Goji [103, 105]. Along with 

three hits (natural products), all these twenty-one analogs (01 to 24) were evaluated for their 

activity as PPAR-γ agonists in HepG2 cells. 
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Scheme 3-1. Synthesis of twenty-four small molecule amide derivatives for in vitro screening 

using PPARγ-PPARα bioassay. 

By coupling of the commercially available acids (SM1 to SM4) and phenyl amines (SM5 

to SM7), twelve-different-amides were produced (1 to 12). These twelve-amides were further 

reduced to produce twelve-saturated compounds (13 to 24). 
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Figure 3-13. Structures of the twenty-four tyramine derivatives synthesized by coupling 

reaction. 

2.3. In vitro and in vivo testing 

In vitro luciferase assay [106] for PPARγ and PPARα induction activity was performed 

on all the twenty-four synthesized small molecule amide derivatives and along with the known 

ligands ciprofibrate (PPARα agonist) and rosiglitazone IV(PPAR γ agonist) as positive controls 

at 30, 10 and 3 μM concentrations. A two-fold induction means a 100% increase in activity 

compared to the DMSO control. PPARγ-selective compounds would possess a very good fold 

induction in PPARγ and a fold induction of 1.0 in PPARα cells (no increase in activity compared 



 

68 

to DMSO).  

Among the twenty-four compounds, three compounds showed good PPARγ-induction 

compared to DMSO (Figure 3-14). Compound 01 showed a fold induction of 2.1, 1.4 and 1.4 at 

30, 10 and 3 µM concentrations, respectively; whereas CA-G-010, showed a fold induction of 

1.5, 1.8 and 1.4 at 30, 10 and 3 µM concentrations, respectively. The third compound, 08 showed 

best activity with a fold induction of 2.0, 1.9 and 1.4 at 30, 10 and 3 μM concentrations and this 

was selected for further testing using in vivo mouse assay. 

 

Figure 3-14. Structures and the results of the PPARγ induction-Luciferase assay in HepG2 cells 

for compounds 01, 08, 10 each studied at 3, 10 and 30 μM. These compounds did not possess 

much PPARα induction. 

2.4. Enriched extract containing tyramine derivatives 

Four phenolic amides were reported to be isolated from the root barks of L. chinense. 

[103, 105]. The root bark of L. chinense (0.8 Kg) extracted with ethanol yielded 137.3 g ,which 

was further isolated to produce four phenolic amide derivatives at 0.0187%, including dihydro-



 

69 

N-caffeoyl tyramine XI (106 mg, 0.01325%), cis-N-caffeoyl tyramine XII (9.2 mg, 0.00115%), 

trans-N-caffeoyl tyramine XIII (14.8 mg, 0.00185), trans-N-feruloyl octopamine XIV (19.6 mg, 

0.00245%) [103, 105]. Previous studies of the aqueous extract of Cortex Lycis Radicis (CLR) on 

alloxan-induced diabetic mice caused a decrease in glucose levels, increased insulin levels, and 

long-term hypoglycemic effects and reduce the body weight [98]. Also, studies of a methanolic 

extract of Lycii cortex radicis (LCR) on Sprague-Dawley male rats concluded that LCR possess 

hypocholestromeic activity. In order to study the antidiabetic properties of tyramines, an 

enriched extract of the root bark of Lycium chinese, was prepared and tested for in vivo activities 

along with small molecule amide derivative 08. 

2.5. In vivo diabetic mouse assay results 

Compound CA-G-008 and the alkaloid-enriched fraction (21% tyramine derivatives) of 

the Goji extract were tested in vivo using db/db mice model.  

Body weight, food intake and glucose tolerance measurements 

The body weight and food intake of both high and medium dose db/db mice groups was 

measured after two weeks of control period, treated either with the drug or the extract or vehicle. 

In the high dose groups, the mice treated with the drug showed a slight increase in the body 

weight, whereas as the group treated with the extract showed a slight decrease in their body 

weights. In contrast, the medium dose group of mice treated with extract and compound showed 

a slight decrease in body weight (Figure 3-15). The food intake of high dose groups treated with 

drug increased while the extract decreased slightly. In the medium dose group treated with the 

extract, the food intake decreased slightly, whereas the mice treated with the drug remained the 

same (Figure 3-16). 
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Figure 3-15. Body weight measurements of the db/db mice in both high and medium dose 

groups treated with both drug and extract. 

 
Figure 3-16. Food intake by db/db mice in both high dose group and medium dose group, treated 

with both drug and extract. 

Glucose tolerance tests were performed by measuring the glucose concentration by 

treating the high and medium dose group mice with extract and the drug. In both medium and 

high dose treated groups, no improvements were observed in the mice treated with both drug and 

extract. Figure 3-17 shows the blood glucose measurements in the medium and high dosage 

groups. 
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Metabolic Data 

In both the medium- and high- dose groups (Figures 3-18 and 3-19), metabolic data were 

measured including respiratory quotient, oxygen consumption, carbon dioxide production, 

respiratory quotient, heat production and total movement.  

In the medium dose group treated with the drug, the respiratory quotient, VO2, VCO2 decreased 

significantly where as the heat content decreased slightly and the total movement increased 

slightly compared to the baseline. In the extract treated medium dose group, all the metabolic 

parameters decreased slightly compared to the baseline (Figure 3-18). 

In the high dose group mice treated with the drug, compared to the baseline, the 

respiratory quotient, total average movement decreased compared to the drug treated group, 

while VO2, VCO2 and heat increased compared to the drug baseline group. In the extract treated 

high dose group, the respiratory quotient decreased slightly, total average movement increased 

significantly, whereas, VO2, VCO2 remained the same and the heat content decreased (Figure 3-

19). 
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Figure 3-17. Blood glucose measurements plotted against time for drug (08) and extract 

(tyramide enriched) in medium and high dosage of the db/db mice (n=3). 
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Figure 3-18. Metabolic data of the medium dose groups treated with both drug and the extract: 

a) respiratory quotient, b) VO2, c) VCO2, d) heat and e) total movement 
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Figure 3-19. Metabolic data of the high dose groups treated with both drug and the extract: a) 

respiratory quotient, b) VO2, c) VCO2, d) heat and e) total movement. 

EchoMRI body composition 

The body composition was measured in the medium dose group using EchoMRI to 

a b 

c d 
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measure lean and fat mass, free and total water content (Figure 3-20). In the drug treated mice, 

lean mass, fat mass and total water content almost remained the same as the baseline, free-water 

content decreased in the first week, and it increased in the second week. In the extract-treated 

group, lean mass remained the same, fat mass increased slightly in the first and second weeks, 

and free-water content increased in the first week, and decreased in the second week. 
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Figure 3-20. The body composition of the medium dose group mice treated with drug and the 

extract: a) lean mass, b) fat mass, c) free water and d) total water content. 

Blood pressure and heart rate  

Blood pressure and heart rate were measured in the high dose group after treatment with 
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extract and drug. The blood pressure in the high dose group of mice treated with the drug 

decreased, whereas with the extract, the blood pressure increased slightly. The heart rate of the 

mice increased slightly in both drug and extract treated mice. 

 

Figure 3-21. Blood pressure and heart rates of high dose group db/db mice treated with drug and 

extract. 

2.6. Conclusions  

Preparations containing Goji, a TCM plant, are widely used in the Eastern countries to 

treat various diseases including diabetes. To identify the active compounds, some of the reported 

phytochemicals of Goji selected and were docked into the PPARγ ligand binding domains of 

both full and partial agonists (2PRG and 3LMP, respectively). Docking results revealed five 

compounds belonging to cinnamomyl phenyl ethyl amide class X to XIV (termed as tyramine-

derivatives), possess good binding poses and docking scores in both the partial and full agonist 

catalytic binding domains. Hence, tyramine-derivatives were selected for synthesis and further 

testing. An enriched extract of the root bark of L. chinense (calculated conc. of tyramine-

derivatives, 21%) was prepared. In addition, using coupling of tyramines with cinnamic acid-

b a 
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derivatives, followed by reduction, twenty-four compounds belonging to the tyramine-derivative 

class were synthesized and evaluated for PPARγ activity and selectivity using PPARγ- and 

PPARα-luciferase bioassays. Among the twenty-four compounds, three compounds (01, 08, 10) 

possessed a good induction compared to positive control rosiglitazone. Compound 08 and 

tyramine-derivative enriched extract were tested further, using in vivo diabetic db/db mice model 

to check their antidiabetic and metabolic properties. Although some tyramine derivatives 

possessed good activities in vitro, the results of the in vivo studies indicate no significant 

improvement in the  biochemical parameters of the db/db mice model by both 08 and tyramine-

derivative enriched Goji fraction. In conclusion, though the TCM preparations were used 

traditionally for their antidiabetic properties and were previously reported to possess this activity, 

our studies indicate that this antidiabetic property may not be due to the tyramine-derivative class 

of compounds either alone or in combination, at the concentrations tested in vivo. The 

phytochemicals of Goji including tyramine-analogues might be working as antidiabetic 

compounds via different targets or mechanisms other than PPARs. 

3. Experimental  

3.1. Docking studies  

System specifications and software 

To perform virtual screening, studies, a commercial version of the Schrödinger software 

package [64] was installed on a Windows desktop computer with Intel® Core™ Quad CUP 

Q6600@2.40GHz 2.40 GHz processor with a random access memory (RAM) of 4.00 GB and 

32-bit operating system. PyMol software (Schrödinger, LLC) was utilized to perform post 
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docking visualization and analysis. 

Ligand Preparation 

Thirty one compounds, including 27 from Goji and three PPARγ agonists farglitzar, 

rosiglitazone IV and cercosporamide-derivative VII were prepared using LipPrep module in 

force field OPLS-2005, ionized at pH 7.4 + 2, desalted and generated tautomers. The specified 

chirality was retained to generate at most 32 per ligand. This ligand preparation generated 81 

ligands from the input of 31 compounds. 

Protein preparation 

Crystal structures of PPARγ with rosiglitazone IV, a full agonist (PDB: 2PRG) and 

cercosporamide-derivative VII, a partial agonist (PDB: 3LMP) were prepared using the protein 

preparation wizard. Both the proteins were preprocessed to assign bond orders, add hydrogen 

bonds, create zero order bonds to metals, create disulfide bonds, and delete waters beyond 5 Å 

from hetero groups. For 2PRG, the chains B and C were deleted, whereas, for 3LMP, chain C 

was deleted. The H-bond assignment was applied using sample water orientations, using 

PROPKA pH 7.0. Water molecules with less than three hydrogen bonding distance were 

removed from the protein. Restrained minimization was performed using OPLS_2005, 

converged the heavy atoms to RMSD 0.3 Å. 

Glide Grid generation and docking 

Receptor grids were generated for the prepared proteins 2PRG and 3LMP using Glide 

(Schrödinger, LLC). For 2PRG, three hydrogen bonding constraints to His323, 449 and Tyr473 

were applied, and for 3LMP, no constraints were applied. The grids thus generated were 



 

79 

validated for both the native ligands to check if the RMSD of the docked output was < 1 Å from 

that of the crystal structure. All the prepared ligands were docked in the two generated grids. 

Their docking results and binding poses were analyzed using PyMol (Schrödinger, LLC). 

3.2. Synthesis of tyramine-derivatives 

Materials and methods.  

All the reactions were performed under an atmosphere of argon with oven-dried 

glassware and standard syringe/septa techniques. Materials were obtained from commercial 

suppliers and used without further purification except when otherwise noted. All reactions were 

magnetically stirred with teflon stir bars, and temperatures were measured externally. Solvents 

were distilled under an argon atmosphere prior to use. The solvents CH2Cl2 was dried over P2O5 

and triethylamine was distilled from CaH2. Ethanol and methanol used were bottle-grade 

solvents. All reagents obtained commercially were used without further purification. The 

reaction progress was monitored on precoated silica gel TLC plates. Spots were visualized under 

254 nm UV light and/or by dipping the TLC plate into a solution of 2 mL of anisaldehyde, 10 

mL of glacial acetic acid, and 5 mL of H2SO4 in 340 mL of EtOH, followed by heating with a 

heat gun. Column chromatography was performed with silica gel (230−400mesh). All the 

solvents (hexanes, ethyl acetate, CH2Cl2, Et2O) were distilled prior to use for column 

chromatography. 
1
H and 

13
C NMR spectra were measured in MeOD on 500 MHz (125 MHz) 

machines. Chemical shifts were reported in parts per million (ppm) downfield from 

tetramethylsilane (δ) as the internal standard, and coupling constants are in hertz (Hz). 

Assignment of proton resonances were confirmed by correlated spectroscopy. IR spectra were 

recorded with a universal attenuated total reflection sampling accessory (diamond ATR) on an 
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Agilent Cary 630 FT-IR spectrometer.  

Synthesis of  1 to 12 

General procedure: A substituted Cinnamic acid derivative (1 eq.) is dissolved in 2.5 mL 

of dimethylformamide (DMF) and trimethylamine (TEA) (3 eq) The solution is cooled in an ice 

± water bath and substituted tyramine derivative (1.25 eq) are added followed by a solution of 

PyBOP (1.25 eq) in 2.5mL of CH2Cl2. The mixture is stirred at 0 C for 30 min and then at room 

temperature for 12 h. CH2Cl2 is removed under reduced pressure and the solution is diluted with 

15mL of water. The products are extracted with ethyl acetate. The extract was washed 

sequentially with 1N HCl, water, 1M NaHCO3 and brine, dried over MgSO4, filtered and 

evaporated. The residue was purified on a silica gel column (eluent: ethyl acetate or petroleum 

ether) to obtain compounds 01 to 12, at yields between 65 and 85%. 

(E)-N-(3,4-dihydroxyphenethyl)-3-(3,4-dihydroxyphenyl)acrylamide 01 

(yield 88%) IR (cm
-1

): 3313, 2939, 2487, 2073, 1648, 1579, 1513, 1463, 1439, 1360, 1280, 

1203, 1164, 1122, 973, 850 and 811; 
1
H NMR (500 MHz, MeOD) δ 7.40 (d, J = 15.7 Hz, 1H), 

7.02 (s, 1H), 6.94 – 6.89 (m, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.73 – 6.67 (m, 2H), 6.57 (d, J = 8.0 

Hz, 1H), 6.36 (d, J = 15.7 Hz, 1H), 3.46 (t, J = 7.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H); 
13

C NMR 

(126 MHz, MeOD) δ 167.88, 147.34  , 145.31 , 144.86 , 143.39 , 140.76 , 130.72 , 126.92 , 

120.70 , 119.66 , 117.03 , 115.48 , 115.03, 113.66 , 41.16 , 34.66 . 

(E)-3-(3,4-dihydroxyphenyl)-N-(4-hydroxyphenethyl)acrylamide 02 

(yield 75%) IR (cm
-1

): 3273, 2492 1649, 1595, 1514, 1463, 1362, 1284, 1242, 1114, 975, 850 

and 815; 
1
H NMR (500 MHz, MeOD) δ 7.41 (d, J = 15.6 Hz, 1H), 7.11 – 7.01 (m, 3H), 6.94 – 

6.88 (m, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 8.4 Hz, 2H), 6.36 (d, J = 15.6 Hz, 1H), 3.52 – 

3.47 (t, J = 7.3 Hz, 2H), 2.76( t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.91, 155.49, 
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147.35, 145.31, 140.82, 129.94, 129.37, 126.93, 120.77, 117.02, 115.10, 114.89, 113.70, 41.19, 

34.42. 

(E)-3-(3,4-dihydroxyphenyl)-N-(3-methoxyphenethyl)acrylamide 03 

(yield 75%) IR (cm
-1

): 3170, 2944, 2491, 1651, 1585, 1514, 1456, 1362, 1284, 1260, 1203, 

1154, 1116, 1039, 978, 851, 814, 783 and 696; 
1
H NMR (500 MHz, MeOD) δ 7.41 (d, J = 15.6 

Hz, 1H), 7.19 (t, J = 8.1 Hz, 1H), 7.03 (s, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.79 (dt, J = 12.5, 8.0 

Hz, 5H), 6.36 (d, J = 15.7 Hz, 1H), 3.76 (s, 3H), 3.52 (t, J = 7.3 Hz, 2H), 2.83 (t, J = 7.3 Hz, 

2H); 
13

C NMR (126 MHz, MeOD) δ 167.91, 159.87, 147.38, 145.33, 140.87, 140.67, 129.10, 

126.91, 120.75 (d, J = 3.1 Hz), 117.00, 115.11, 113.85 (d, J = 35.4 Hz), 113.50, 111.50, 54.19, 

40.79, 35.28. 

(E)-N-(3,4-dihydroxyphenethyl)-3-(3-methoxyphenyl)acrylamide 04 

(yield 57%) IR (cm
-1

): 3245, 2488, 1655, 1598, 1520, 1489, 1456, 1361, 1280, 1256, 1197, 

1116, 1047, 977, 850, 784 and 680;
1
H NMR (500 MHz, MeOD) δ 7.50 (d, J = 15.7 Hz, 1H), 

7.29 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.09 (s, 1H), 6.94 (dd, J = 8.1, 2.1 Hz, 1H), 

6.71 (dd, J = 9.7, 4.9 Hz, 2H), 6.58 (dd, J = 8.7, 7.0 Hz, 2H), 3.81 (s, 3H), 3.48 (t, J = 7.3 Hz, 

2H), 2.72 (t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.18, 160.11, 144.89, 143.43, 

140.19, 136.26, 130.65, 129.53, 120.78, 119.98, 119.69, 115.50, 115.09 (d, J = 10.8 Hz), 112.43, 

54.34, 41.18, 34.59. 

(E)-N-(4-hydroxyphenethyl)-3-(3-methoxyphenyl)acrylamide 05 

(yield 88%) IR (cm
-1

): 2967, 2868, 2396, 1656, 1610, 1516, 1489, 1453, 1361, 1242, 1206, 

1156, 1087, 1048, 1015, 982, 831, 782 and 681; 
1
H NMR (500 MHz, MeOD) δ 7.50 (d, J = 15.7 

Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.11 – 7.05 (m, 4H), 6.94 (dd, J = 8.1, 

2.0 Hz, 1H), 6.74 (d, J = 8.3 Hz, 2H), 6.59 (d, J = 15.8 Hz, 1H), 3.82 (s, 4H), 3.49 (t, J = 7.4 Hz, 
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2H), 2.78 (t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.14, 160.13, 155.59, 140.18, 

136.27, 129.82, 129.55, 129.35, 120.78, 119.97, 115.13, 114.90, 112.44, 54.35, 41.20, 34.37. 

(E)-N-(4-hydroxyphenethyl)-3-(3-methoxyphenyl)acrylamide 06 

(yield 89%) IR (cm
-1

): 3277, 3070, 2935, 2835, 1655, 1602, 1582, 1546, 1488, 1454, 1433, 

1367, 1315, 1209, 1217, 1153, 1039, 979, 849, 779, 695 and 677; 
1
H NMR (500 MHz, CDCl3) δ 

7.60 (d, J = 15.5 Hz, 1H), 7.27 (dt, J = 11.3, 7.8 Hz, 3H), 7.09 (d, J = 7.6 Hz, 1H), 7.02 (s, 1H), 

6.91 (d, J = 8.1 Hz, 1H), 6.82 (dd, J = 14.7, 9.4 Hz, 3H), 6.35 (d, J = 15.6 Hz, 1H), 5.83 (bs, 1H), 

3.83 (s, 3H), 3.81 (s, 3H), 3.68 (m, 2H), 2.89 (t, J = 6.8 Hz, 2H); 
13

C NMR (126 MHz, CDCl3) δ 

165.85, 159.87, 140.94, 140.51, 136.22, 129.76 (d, J = 12.1 Hz), 121.06 (d, J = 17.5 Hz), 120.42, 

115.40, 114.50, 112.91, 111.94, 55.25 (d, J = 9.5 Hz), 40.72, 35.70. 

(E)-N-(3,4-dihydroxyphenethyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide 07 

(yield 65 to 85%) IR (cm
-1

): 3322, 2492, 1651, 1591, 1515, 1461, 1362, 1280, 1205, 1123, 1032, 

976, 845 and 815; 
1
H NMR (500 MHz, MeOD) δ 7.46 (d, J = 15.7 Hz, 1H), 7.12 (s, 1H), 7.03 

(dd, J = 8.1, 1.4 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.71 (dd, J = 9.4, 4.8 Hz, 2H), 6.57 (dd, J = 

7.8, 1.5 Hz, 1H), 6.43 (d, J = 15.7 Hz, 1H), 3.89 (s, 3H), 3.48 (t, J = 7.3 Hz, 2H), 2.72 (t, J = 7.2 

Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.79, 148.41, 147.87, 144.87, 143.40, 140.64, 

130.71, 126.89, 121.84, 119.69, 117.37, 115.51, 115.05 (d, J = 4.3 Hz), 110.12, 54.98, 41.15, 

34.65. 

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acrylamide 08 

(yield 75%) IR (cm
-1

): 3255, 2492, 1651, 1591, 1514, 1459, 1362, 1279, 1126, 1032, 977 and 

819; 
1
H NMR (500 MHz, MeOD) δ 7.46 (d, J = 15.6 Hz, 1H), 7.16 – 7.01 (m, 5H), 6.81 (d, J = 

8.1 Hz, 1H), 6.74 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 15.6 Hz, 1H), 3.88 (s, 3H), 3.54 – 3.45 (m, 

2H), 2.77 (t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.80, 155.53, 148.44, 147.88, 
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140.67, 129.91, 129.37, 126.87, 121.85, 117.35, 115.09, 114.89, 110.13, 54.98, 41.17, 34.42 

(E)-3-(4-hydroxy-3-methoxyphenyl)-N-(3-methoxyphenethyl)acrylamide 09 

(yield ~ 75%) IR (cm
-1

): 2938, 2482, 1652, 1600, 1585, 1514, 1456, 1434, 1362, 1281, 1262, 

1281, 1262, 1206, 1157, 1125, 1035, 979, 846, 818, 782 and 696; 
1
H NMR (500 MHz, MeOD) δ 

7.46 (d, J = 15.7 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 7.12 (s, 1H), 7.04 (dd, J = 8.1, 1.3 Hz, 1H), 

6.82 (t, J = 7.8 Hz, 2H), 6.80 – 6.75 (m, 1H), 6.42 (d, J = 15.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 

3H), 3.54 (t, J = 7.3 Hz, 2H), 2.85 (t, J = 7.2 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.81, 

159.90, 148.49, 147.90, 140.71, 129.09, 126.83, 121.83, 120.73, 117.28, 115.09, 114.01, 111.47, 

110.13, 54.97, 54.16, 40.76, 35.26. 

(E)-N-(3,4-dihydroxyphenethyl)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylamide 10  

(yield ~ 75%) IR (cm
-1

): 3339, 2939, 2492, 2071, 1652, 1603, 1514, 1457, 1427, 1337, 1282, 

1216, 1156, 1114, 975, 869 and 827; 
1
H NMR (500 MHz, MeOD) δ 7.43 (d, J = 15.6 Hz, 1H), 

6.82 (s, 2H), 6.75 – 6.69 (m, 2H), 6.57 (d, J = 7.9 Hz, 1H), 6.45 (d, J = 15.6 Hz, 1H), 3.85 (s, 

7H), 3.50 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.71, 

148.01, 144.88, 143.41, 140.88, 137.40, 130.74, 125.86, 119.75, 117.85, 115.56, 115.09, 104.99, 

55.40, 41.15, 34.63. 

(E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-N-(4-hydroxyphenethyl)acrylamide 11 

(yield ~ 75%) IR (cm
-1

): 3339, 2939, 2493, 2071, 1652, 1603, 1514, 1457, 1427, 1337, 1282, 

1216, 1156, 1114, 975, 868 and 827; 
1
H NMR (500 MHz, MeOD) δ 7.44 (d, J = 15.6 Hz, 1H), 

7.06 (d, J = 8.2 Hz, 2H), 6.83 (s, 2H), 6.74 (d, J = 8.2 Hz, 2H), 6.45 (d, J = 15.6 Hz, 1H), 3.86 (s, 

6H), 3.49 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 7.2 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 167.68, 

155.53, 148.03, 140.87, 137.46, 129.90, 129.37, 125.84, 117.82, 114.91, 105.01, 55.39, 41.15, 

34.40. 
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(E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-N-(3-methoxyphenethyl)acrylamide 12 

(yield ~ 75%) IR (cm
-1

): 3282, 2938, 2839, 2252, 1655, 1602, 1513, 1490, 1455, 1425, 1320, 

1285, 1259, 1209, 1153, 1112, 1061, 1038, 976, 907, 828, 780 and 696; 
1
H NMR (500 MHz, 

CDCl3) δ 7.52 (d, J = 15.5 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 6.79 (dd, J = 16.6, 6.9 Hz, 3H), 6.70 

(s, 2H), 6.27 (d, J = 15.5 Hz, 1H), 6.09 (s, 1H), 6.02 (s, 1H), 3.84 (s, 6H), 3.77 (s, 3H), 3.69 – 

3.61 (m, 2H), 2.86 (t, J = 6.7 Hz, 2H); 
13

C NMR (126 MHz, CDCl3) δ 166.23, 159.79, 147.24, 

141.12, 140.59, 136.63, 129.64, 126.29, 121.11, 118.66, 114.53, 111.80, 104.79, 56.26, 55.18, 

40.71, 35.71. 

Synthesis of 13 to 24 

General Procedure: The unsaturated tyramine derivative (1 to 12) (0.045 g, 0. 150 mmol) 

is dissolved in MeOH (1.5 ml) and to this solution, palladium on carbon 5% (0.010 g, 0.0944 

mmol) is added and purged with hydrogen gas. The resulting solution is stirred for 12 h at room 

temperature under hydrogen atmosphere (with H2 filled balloon). After 12 h, the reaction mixture 

is filtered using celite, washed with methanol and the combined fractions were concentrated and 

purified by flash column chromatography using chloroform and methanol (94:6) to yield the 

saturated amide derivatives (13 to 24) in yield (70 to 90 %) 

Data 13-24:  

N-(3,4-dihydroxyphenethyl)-3-(3,4-dihydroxyphenyl)propanamide 13 

(yield 79%) IR (cm
-1

): 3314, 2935, 2501, 2073, 1599, 1517, 1481, 1440, 1359, 1282, 1199, 

1152, 1115, 972, 870, 811 and 783; 
1
H NMR (500 MHz, MeOD) δ 6.69 (dd, J = 8.0, 1.2 Hz, 

2H), 6.65 (dd, J = 5.7, 1.6 Hz, 2H), 6.52 (dd, J = 8.0, 1.6 Hz, 1H), 6.48 (dd, J = 7.9, 1.6 Hz, 1H), 

3.33 – 3.27 (m, 2H), 2.75 (t, J = 7.6 Hz, 2H),  2.57 (t, J = 7.7 Hz, 2H), 2.39 (t, J = 7.7 Hz, 2H); 
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13
C NMR (126 MHz, MeOD) δ 174.07, 144.78, 143.26 (d, J = 15.9 Hz), 132.44, 130.71, 119.73, 

119.24, 115.45, 115.17, 114.99, 114.98, 40.90, 38.06, 34.55, 31.09. 

3-(3,4-Dihydroxyphenyl)-N-(4-hydroxyphenethyl)propanamide 14 

(yield 68%) IR (cm
-1

): 3282, 2499, 1610, 1515, 1449, 1361, 1284, 1242, 1115, 976 and 819; 
1
H 

NMR (500 MHz, MeOD) δ 6.97 (d, J = 8.3 Hz, 2H), 6.69 (dd, J = 20.7, 11.9 Hz, 4H), 6.53 (d, J 

= 6.5 Hz, 1H), 3.32 (dd, J = 12.7, 5.1 Hz, 2H), 2.75 (t, J = 7.5 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 

2.39 (t, J = 7.6 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 174.03, 155.43, 144.81, 132.39, 129.93, 

129.34, 119.24, 115.17, 114.95, 114.82, 40.92, 38.04, 34.32, 31.06. 

3-(3,4-dihydroxyphenyl)-N-(3-methoxyphenethyl)propanamide 15 

(yield 86%) IR (cm
-1

): 3276, 2938, 2491, 1595, 1515, 1453, 1437, 1360, 1282, 1201, 1166, 

1152, 1116, 1061, 1038, 869, 812, 781, 743 and 696; 
1
H NMR (500 MHz, MeOD) δ 7.18 (t, J = 

8.0 Hz, 1H), 6.71 (ddd, J = 21.9, 13.9, 4.1 Hz, 5H), 6.55 – 6.48 (m, 1H), 3.76 (s, 3H), 3.40 – 3.32 

(m, 3H), 2.72 (dt, J = 20.7, 7.3 Hz, 4H), 2.39 (t, J = 7.6 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 

174.08, 159.85, 144.81, 143.23, 140.67, 132.40, 129.06, 120.78, 119.23, 115.19, 114.99, 113.95, 

111.45, 54.21, 40.52, 38.05, 35.21, 31.07. 

N-(3,4-Dihydroxyphenethyl)-3-(3-methoxyphenyl)propanamide 16 

(yield 91%) IR (cm
-1

): 3280, 2939,2507, 1627, 1602, 1519, 1485, 1465, 1455, 1440, 1359, 1278, 

1260, 1197, 1152, 1116, 1049, 872, 784 and 697; 
1
H NMR (500 MHz, MeOD) δ 7.18 (t, J = 8.0 

Hz, 1H), 6.81 – 6.73 (m, 3H), 6.69 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 1.4 Hz, 1H), 6.47 (d, J = 6.4 

Hz, 1H), 3.78 (s, 3H), 3.32 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 7.6 Hz, 2H), 2.58 (t, J = 7.3 Hz, 2H), 

2.45 (t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 173.77, 159.85, 144.85, 143.36, 142.35, 

130.65, 129.04, 120.32, 119.66, 115.43, 114.96, 113.66, 111.26, 54.17, 40.88, 37.53, 34.54, 

31.62. 
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N-(4-hydroxyphenethyl)-3-(3-methoxyphenyl)propanamide 17 

(yield 95%) IR (cm
-1

): 2947, 2868, 1635, 1614, 1516, 1455, 1362, 1261, 1261, 1207, 1153, 

1087, 1015, 831, 780 and 697; 
1
H NMR (500 MHz, MeOD) δ 7.18 (t, J = 8.0 Hz, 1H), 6.96 (d, J 

= 8.3 Hz, 2H), 6.82 – 6.74 (m, 3H), 6.71 (d, J = 8.4 Hz, 2H), 3.77 (s, 3H), 3.35 – 3.29 (m, 2H), 

2.87 (t, J = 7.6 Hz, 2H), 2.62 (t, J = 7.6 Hz, 2H), 2.45 (t, J = 7.6 Hz, 2H); 
13

C NMR (126 MHz, 

MeOD) δ 173.71, 159.86, 155.51, 142.36, 129.86, 129.33, 129.07, 120.37, 114.85, 113.70, 

111.29, 54.20, 40.93, 37.50, 34.33, 31.60. 

N-(3-methoxyphenethyl)-3-(3-methoxyphenyl)propanamide 18 

(yield 77%) IR (cm
-1

): 3294, 2937, 1644, 1602, 1585, 1547, 1490, 1455, 1260, 1152, 1041, 874, 

780 and 696; 
1
H NMR (500 MHz, MeOD) δ 7.18 (dd, J = 10.6, 5.4 Hz, 2H), 6.82 – 6.72 (m, 

6H), 3.78 (s, 6H), 3.40 – 3.35 (m, 2H), 2.87 (t, J = 7.7 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.46 – 

2.42 (t, J = 7.3 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 173.76, 159.86, 142.33, 140.64, 129.03, 

120.72, 120.30, 113.98, 113.67, 111.39, 111.24, 54.16, 40.49, 37.51, 35.20, 31.60. 

N-(3,4-Dihydroxyphenethyl)-3-(4-hydroxy-3-methoxyphenyl)propanamide 19 

(yield 89%) IR (cm
-1

): 3338, 2938, 2500, 1600, 1516, 1465, 1449, 1362, 1275, 1153, 1123, 

1034, 976, 870 and 814; 
1
H NMR (500 MHz, MeOD) δ 6.78 (d, J = 1.7 Hz, 1H), 6.72 (d, J = 8.0 

Hz, 1H), 6.69 (d, J = 8.0 Hz, 1H), 6.63 (dd, J = 5.8, 1.9 Hz, 2H), 6.46 (dd, J = 8.0, 1.9 Hz, 1H), 

3.83 (s, 3H), 3.30 (d, J = 7.6 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.58 (t, J = 7.7 Hz, 2H), 2.42 (t, J 

= 7.7 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 174.01, 147.48, 144.85, 144.46, 143.36, 132.37, 

130.65, 120.40, 119.68, 115.42, 114.97, 114.77 111.72, 54.95, 40.88, 38.02, 34.56, 31.28. 

3-(4-Hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)propanamide 20 

(yield 91%) IR (cm
-1

): 3279, 2938, 2499, 1627, 1613, 1596, 1515, 1465, 1452, 1436, 1363, 

1236, 1153, 1125, 1034 and 822; 
1
H NMR (500 MHz, MeOD) δ 6.95 (d, J = 8.4 Hz, 2H), 6.78 
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(d, J = 1.7 Hz, 1H), 6.74 – 6.69 (m, 3H), 6.64 (dd, J = 8.0, 1.7 Hz, 1H), 3.84 (s, 3H), 3.33 – 3.28 

(m, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.3 Hz, 2H), 2.42 (t, J = 7.5 Hz, 2H); 
13

C NMR 

(126 MHz, MeOD) δ 173.97, 155.47, 147.48, 144.50, 132.33, 129.88, 129.33, 120.44, 114.83, 

114.77, 111.75, 54.95, 40.91, 37.98, 34.32, 31.23. 

3-(4-Hydroxy-3-methoxyphenyl)-N-(3-methoxyphenethyl)propanamide 21 

(yield 90%) IR (cm
-1

): 2937, 2488, 1631, 1600, 1516, 1465, 1433, 1363, 1260, 1153, 1125, 

1037, 854, 787 and 697; 
1
H NMR (500 MHz, MeOD) δ 7.17 (dd, J = 8.8, 7.6 Hz, 1H), 6.81 – 

6.74 (m, 3H), 6.72 (d, J = 7.9 Hz, 2H), 6.63 (dd, J = 8.0, 1.8 Hz, 1H), 3.83 (s, 4H), 3.78 (d, J = 

7.9 Hz, 3H), 3.37 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H), 2.42 (t, J 

= 7.6 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 174.00, 159.87, 147.48, 144.51, 140.64, 132.32, 

129.05, 120.74, 120.41, 114.78, 113.96, 111.73, 111.42, 54.95, 54.18, 40.50, 37.99, 35.21, 31.24. 

N-(3,4-Dihydroxyphenethyl)-3-(4-hydroxy-3,5-dimethoxyphenyl)propanamide 22  

(Yield 87%) IR (cm
-1

): 3348, 2939, 2499, 1611, 1519, 1461, 1345, 1282, 1215, 1114, 977 and 

814; 
1
H NMR (500 MHz, MeOD) δ 6.68 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 1.9 Hz, 1H), 6.52 – 

6.47 (m, 2H), 6.45 (dd, J = 8.0, 1.9 Hz, 1H), 3.82 (s, 6H), 3.33 – 3.29 (m, 2H), 2.82 (t, J = 7.5 

Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.43 (t, J = 7.6 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 

173.96, 147.80, 144.85, 143.36, 133.50, 131.62, 130.63, 119.67, 115.41, 114.97, 105.25, 55.33, 

40.90, 37.99, 34.58, 31.74. 

3-(4-Hydroxy-3,5-dimethoxyphenyl)-N-(4-hydroxyphenethyl)propanamide 23 

(Yield 91%) IR (cm
-1

): 2941, 2506, 2189, 2028, 1621, 1603, 1512, 1486, 1456, 1437, 1351, 

1328, 1260, 1242, 1139, 1050, 969, 837 and 757; 
1
H NMR (500 MHz, MeOD) δ 6.94 (d, J = 8.4 

Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 6.48 (s, 2H), 3.83 (s, 7H), 3.36 – 3.30 (m, 4H), 2.82 (t, J = 7.5 

Hz, 2H), 2.62 (t, J = 7.3 Hz, 2H), 2.43 (t, J = 7.5 Hz, 2H); 
13

C NMR (126 MHz, MeOD) δ 
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173.89, 155.36, 147.75, 133.49, 131.57, 129.87, 129.38, 114.92, 105.27, 55.51, 40.98, 38.07, 

34.40, 31.80. 

3-(4-Hydroxy-3,5-dimethoxyphenyl)-N-(3-methoxyphenethyl)propanamide 24 

(Yield 89%) IR (cm
-1

): 3299, 2938, 2838, 2496, 1633, 1603, 1518, 1458, 1429, 1326, 1259, 

1213, 1152, 1114, 1040, 908, 830, 785 and 697; 
1
H NMR (500 MHz, MeOD) δ 7.21 – 7.14 (m, 

1H), 6.75 (d, J = 6.0 Hz, 2H), 6.70 (d, J = 7.5 Hz, 1H), 6.49 (s, 2H), 3.82 (s, 7H), 3.77 (s, 3H), 

3.37 (t, J = 7.3 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H), 2.43 (t, J = 7.5 Hz, 

2H); 
13

C NMR (126 MHz, MeOD) δ 173.95, 159.87, 147.81, 140.62, 133.57, 131.57, 129.05, 

120.72, 113.96, 111.41, 105.29, 55.33, 54.18, 40.52, 37.96, 35.23, 31.70. 

Preparation of the tyramine-enriched extract of L. chinense 

The root bark of L. chinense (2 Kg) was extracted with methanol (8 L) at room 

temperature to get the methanolic extract (345.5 g). This methanolic extract was suspended in 

water and successively partitioned between hexanes and ethyl acetate to obtain hexane extract 

and ethyl acetate extract (35.1 g). This ethyl acetate extract (33 g) was acidified with 5% HCl in 

water (approx. 1 L) and extracted with ethyl acetate (3x300 mL) to get ethyl acetate fraction 

(20.6 g). This ethyl acetate fraction (18.0 g) was subjected to Sephadex LH-20 column 

chromatography with CHCl3:MeOH 1:1 as a solvent to get three fractions (1-3). Fraction 3 (6.49 

g) was further chromatographed over Sephadex LH-20 column chromatography with MeOH to 

get three fractions. The tyramine derivative enriched fraction was obtained as the third fraction, 

identified by performing comparative TLC using a pure tyramine derivative 08. 
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3.3. PPAR in vitro assays 

Chemical reagents and plasmids 

Ciprofibrate and rosiglitazone IV were obtained from Cayman Chemical (Ann Arbor, 

MI). Dulbecco's Modified Eagle's Medium (DMEM), fetal bovine serum (FBS) and phosphate-

buffered saline (PBS) were from Hyclone (South Logan, Utah). Penicillin/streptomycin and 

trypsin were from Gibco (Grand Island, NY). Specific plasmids pSG5–PPARα (plasmid 22751) 

and PPRE X3-tk-luc (plasmid 1015) were obtained from Addgene (Cambridge, MA). pCMV-

rPPARγ and pPPREaP2-tk-luc were provided by Dr. Dennis Feller (Department of 

Pharmacology, University of Mississippi). 

Reporter gene assay for the activation of PPARs 

Cell-based reporter gene assay for the identification of PPARα and PPAR agonists was carried 

out in human hepatoma (HepG2) cells as described previously [106, 107]. Briefly, HepG2 cells 

were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), 100 units/mL penicillin, and 100 g/mL streptomycin in a humidified 

atmosphere of 5% CO2 at 37°C. HepG2 cells were transfected with either pSG5-PPARα and 

PPRE X3-tk-luc or pCMV-rPPAR and  pPPREaP2-tk-luc plasmid DNA (25 g of each/1.5 mL 

cell suspension) by electroporation at 160 V for a single 70 msec pulse using a BTX Electro 

Square Porator T820 (BTX, San Diego, CA). Transfected cells were plated at a density of 5  

104 cells/well in 96-well tissue culture plates and grown for 24 h. The cells were treated with the 

test compounds or ciprofibrate or rosiglitazone IV (3, 10, 30 M). After incubation for 24 h, the 

cells were lysed and the luciferase activity was measured using a luciferase assay system 
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(Promega, Madison, WI). The fold activation of luciferase activity in treated cells was calculated 

in comparison to the vehicle control.  

3.4  In vivo testing 

Materials 

Diabetic db/db mice were employed and measurements were made using EchoMRI to obtain the 

measurements of the whole body fat, lean, free water, total water masses. Transmitters were used 

to record the blood pressure, heart rate. In vitro testing was performed by our collaborators at 

University of Mississippi Medical Center, Jackson, MS (USA). 

Methods 

Diabetic db/db mice were used for in vivo testing of pure phenolic amide compound 8 and the 

amide enriched extract which contains 21% of the four amide derivatives.  

Dosage calculations: The dosage for high dose group mice was given 32mg/Kg and medium 

dose group was 8 mg/kg. All the db/db mice were followed for one to two weeks control period 

before treatment was started. In the medium dose group (n=6), 3 mice received the drug, 3 mice 

received the extract; where as in the high dose group (n=8), 3 mice received vehicle, 3  mice 

received drug (1 died during treatment), 3 mice received extract. Medium dose group was 

monitored with EchoMRIs performed during control and experimental periods to test the body 

composition analysis, measuring whole body fat, lean, free water, and total water masses. High 

dose group was implanted with transmitters to record the blood pressure and heart rate 24-hr/day 

for 3 consecutive days. Animals were dosed daily by gavage. 
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CHAPTER 4                                                                                    

STEREOSELECTIVE SYNTHESES OF BIOACTIVE ISOFLAVANS: 

EQUOL AND SATIVAN 

1. Introduction 

1.1. Isoflavonoids: Structures and classes 

Flavonoids are one of the main groups of phytochemicals, with a general structure with 

two phenyl rings and one pyran rings containing C15 (C6-C3-C6) (Figure 4-1). They can be 

further subdivided into flavonoids (general term) and isoflavonoids. Isoflavonoids are secondary 

metabolites of plants, mainly belonging to the subfamily Papilionoideae of Leguminosae and to 

a lesser extent in other families. These class of compounds act as phytoalexins and were also 

found to possess various biological activities [108]. Isoflavonoids contain a large class of 

compounds; over 2000 isoflavonoids belonging to 14 classes and 23 subclasses, based on their 

structural arrangements [108-113]. These classes include: isoflavones, isoflavanones, rotenoids, 

pterocarpans, isoflavans, isoflav-3-enes, 3-arylcoumarins, coumestans, coumaronochromones, 2-

arylbenzofurans.
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Figure 4-1. Examples of different classes of flavonoids including the isoflavonoids (isoflavans 

and isoflavones [102]. 

Among the isoflavonoid-subclasses, isoflavans are characterized by: chirality at the C-3 

position of the pyran ring (C-ring). These isoflavans are produced in plants or animals upon the 

double reduction of isoflavanoids (eg. formonentin 11, daidzein 12 and genistein 13). There are a 

number of isoflavans, including equol 7, sativan 8, vestitol 9, coluteol 15, lespedezol G1 16 and 

lespecyrtin D1 17 with unique, promising biological activities are reported in the literature. 

1.2. Equol 7 and Soy isoflavonoids as Phytoestrogens 

Soy isoflavonoids: Historical relevance 

Soy isoflavonoids were used in traditional foods in Japan and China for many millennia. 

Soybean (Glycine max (L.) Merr.) (Figure 4-2), also called “Shu” in ancient Chinese, is one of 

the five main plant foods in China along with rice, wheat, barley and millet. Soya bean is of 
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comemricial interest due to its oil and protein content [114]. Soy protein is a highly digestible 

protein, with a Protein Digestibility Corrected Amino Acid Score (PDCAAS) =1, highest among 

vegetable proteins. Since a couple of decades, soy gained a lot of interest as functional food due 

to its isoflavone content. Soy related food industry was given a good a great boost on October 

26, 1999, when the FDA issued a ruling, based on the scientific evidences on soy protein, which 

states that “diet low in saturated fat  and that includes 25 g of soy protein a day may reduce the 

risk of heart disease”. In the ruling, FDA proposed that, in order to qualify for this health claim 

the soy food should contain 6.25 g soy protein per serving [114].  

 

Figure 4-2. The soybean pods, soybean seeds and Tofu [115]. 

Note: Image obtained from He et al 2013 [115]. 

Among the legumes, soy contain largest amount of isoflavones, which act as 

phytoestrogens. These isoflavones are genistein 13, daidzein 12, glycitein, and formononetin 11 

and are present in their glycosidic forms as genistin, diadzin, and glycetin with a total flavone 

content of 61.7 mg of diadzein (37.6 mg) and genistern (24.1 mg) per kg of dry weight [116]. 

These soy isoflavonoids which is present in physiologically relevant concentrations especially 

genestin, are found to be beneficial to treat a number of diseases including heart conditions, post-

menopausal symptoms, women health and breast cancer [117]. 

Metabolites of isoflavones: Equol 7 

Soy isoflavonoids undergo transformation in the digestive system, especially in the colon 
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where these undergo transformation to other metabolites like deglucogenated products, and by 

the action of gut bacteria into derivatives like equol (Figure 4-3). Equol 7 has higher affinity to 

estrogen receptor (ER), than its precursor isoflavones, genistin 13 or daidzein 12, and was found 

to possess varied biological activities. There are large differences in the metabolism rates of 

genistein 13 and daidzein 12 between the caucasian population and in Asian population. It was 

found that among the general population, only approximately 30–50% is able to metabolize 

daidzein 12 to equol 7 and among the U.S. Caucasian population, only 25–35% is capable of 

converting daidzein 12 to equol 7 [118]. Whereas, among the Asian people in high soy 

consumption areas, 40–60% are capable of converting daidzein 12 to equol 7. Prevalence of  

daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and 

girls [118]. This high variability in equol 7 production is presumably due to inter-individual 

differences in the composition of the intestinal microflora such as Adlercreutzia equolifaciens 

[119]. Racemate of equol 7 may not show the same activities as that of enatiomeric forms as 

shown in the pharmacokinetic studies on this compound [120].  
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Figure 4-3. Soy isoflavonoids: Isoflavones (formonentin 11, diadzein 12, genistein 13) and 

isoflavan (S-(-)-equol 7. 

History of equol 7 and isoflavans 

Equol 7 was the first discovered isoflavan, isolated from equine urine [121, 122] 

unexpectedly (a dialcohol from equine urine, hence the name equol 7), in an attempt to isolate 

estrogen, and was later isolated in the urine of other animals [123] and in humans [124], in 1980. 

Its absolute configuration as a S-isomer was assigned in 1968, after the identification of some 

isoflavans from plant sources [125]. It was found to be produced seteroselcetively (S-equol 7) in 

humans, from the dietary soy isoflavonoid aglycone, daidzein 12, by the action of gut bacteria 

[119]. It binds to estrogen receptors [126], immunoglobulin E (IgE) induced receptor [127], and 

the circulating 5α-dihydrotestosterone (DHT) [128]. Since its discovery, equol 7 was shown to 

possess a wide variety of biological activities such as anti-fungal [129], anti-cancer [130], anti-

osteoporotic, anti-androgen [128], anti-inflammatory, anti-oxidant and anti-aging properties 

[131], promote brain mitochondrial function [132], inhibit prostate growth [128], and hence it is 

widely considered as a dietary phytoestrogen along with daidzein 12 and genistein 13 [133]. 

Interestingly, (S)-equol 7 is 13 times more selective to ERβwhen compared to ERα[126, 133, 

134]. Further studies of its biological and clinical properties is an area of immense interest, 

including our own [135, 136].  

Other Isoflavans 
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Several other isoflavans were isolated from plant sources since the first discovery of (+)-

vestitol 9, (-)-duartin, (-)-mucronulatol in 1968 in Dalbergia variabilis and several Macherium 

species [125]. Isoflavans with plant origin have oxygen at C2
'
 and almost never have 

oxygenation at C5 [137]. Some examples of isoflavans are sativan 8, which was first isolated as 

an induced isoflavan from the leaves of Medicago sativa [138, 139], and later in Lotus 

corniculatus [140], colutelol 15 from the roots of Colutea arborescens [141], lespedezol G1 9 

from the stems of Lespedeza homoloba [142], and lespecyrtin D1 17 from the root extracts of 

Lespedza cyrtobotry [143] (Figure 4-4). 

 

Figure 4-4. Naturally occurring phytoestrogenic isoflavans (9, 15-17). 

 

Scheme 4-1. Synthesis of racemic equol (+) 7 by Friedel-Crafts acylation of protected 

monomethoxy resorcinol, 18 [144]. 
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Reported syntheses of Isoflavans 

Given the desirable biological properties of isoflavans, their enantioselective large scale 

synthesis enables these isoflavans to study further for their biological, metabolic and 

pharmacokinetic studies.  Several syntheses of isoflavans have been reported; majority of these 

produced the product in a racemic form [145-147], followed by their chiral separation. These 

include, catalytic hydrogenation of isoflavans using Pd catalysts at different solvent and pH 

conditions [148, 149]. Multistep total syntheses of racemic mixture of a number of isoflavans 

[150] were also reported including 5-O-methyllicoricidin [151], halogen substituted isoflavans 

and isoflavenes [152].  

Racemic synthesis of equol 7 

Equol 7 was synthesized as a racemate from formononetin 11 and daidzein 12 using 

Pearlman’s catalyst (20% Pd(OH)2 on C) followed by separation using chiral HPLC [134], and 

by bacterial transformation [153] using bacteria isolated from human intestinal bacterium. Sie-

Rong Li and co-workers [154] reported the racemic synthesis of equol 7 along with 

isoflavonoids; haginin E, formononetin 11 and daidzein 12 from resorcinol 18 via a common 

isoflavenene intermediate. (Scheme 4-1).  
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Scheme 4-2. Total synthesis of enantiopure (S)-equol 7 by an asymmetric Evans’ alkylation 

[149, 155]. 

Enantioselective synthesis of equol 7  

Very few enantioselective syntheses of isoflavans were reported, and most of them were 

for the synthesis of (S)-equol 7. Ferreira and co-workers [156, 157] have demonstrated the 

enantioselective synthesis of the dimethoxy analogue of (S)-equol via α-benzylation of N-acyl 

imidazolidinones. However, due to the unstable nature of alkoxy benzyl halide, only small 

quantities of dimethoxy equol was reported and the nontrivial cleavage of the methyl ethers was 

not attempted. 

In 2006, Heemstra et al. [155] reported the first enantioselective total synthesis of (S)-
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equol 7. The described route relies on an Evans’ alkylation to form the required C-3 stereocenter 

and an intramolecular Buchwald etherification to generate the chroman ring. However, the key 

transformations such as Evans’ alkylation of oxazolidinone with regiomeric mixture of 

bromobenzyl bromide and palladium catalyzed Buchwald etherification had produced less than 

50% conversion with an overall yield < 10% (Scheme 4-2).  

Takashima et al. reported [158, 159] the stereoselective synthesis of three isoflavans, S-

equol 7, R-sativan 8 and R-vestitol 9 using allylic substitution as the chirality transfer step with 

the copper reagent derived form PhMgBr and CuBr.Me2S. Mitsnobu cyclization was 

subsequently utilized for the formation of the chroman ring (Scheme 4-3). Recently, Yang S. et 

al, reported the enantioselective iridium catalyzed hydrogenation [160] of α-arylcinnamic acids 

and applied the same methodology for the synthesis of (S)-equol 7 at an overall yield of 48%. 
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Scheme 4-3. Enantioselective total synthesis of (S)-equol 7 uisng allylic substitution as the key 

step with an overall yield of approximately 24% [149, 159]. 

1.3. Aim 

In continuation of our work (for biological testing using enantiopure compounds) on 

phytoestrogens for women health, several grams of enantiomerically pure S-equol 7 and other 

chiral isoflavans were required. To address this need, herein, we report a scalable 

enantioselective synthesis of isoflavans, equol enantiomers, (-)-7, (+)-7, sativan isomers (-)-8 and 
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(+)-8 were synthesized using Evans’ aldol approach (Figure 4-5). Unlike, the poor selectivity in 

Evans’ alkylation [155], excellent stereoselectivity was expected with Evans’ chiral imide 

enolate aldol condensation. 

 

Figure 4-5. Structures of the synthesized isoflavans. 

2. Results and Conclusion 

2.1. Retrosynthetic scheme 

Scheme 4-4 describes the retrosynthetic analysis of the chiral isoflavan scaffold. The key 

intermediate, syn-aldol product 44 (for intermediate to produce S-equol) or 45 (for intermediate 

to produce sativan 8) can be obtained via Evan’s aldol reaction between aldehydes (46 or 47) and 

chiral-auxiliary substituted imides (26 or 48). Deoxygenation of aldol product, followed by 

reduction would furnish hydroxy phenols 42 (for intermediate to produce equols) and 43 

(intermediate to produce sativans). Cyclization under Mitsnobu conditions or base catalysis of 

the corresponding ditosyl derivative, followed by deprotection would produce the isoflavans, 

equol 7 and sativan 8.  
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Scheme 4-4. Retro synthetic scheme for the synthesis of isoflavans, equol 7 and sativan 8 using 

Evans’ aldol condensation to generate the chirality at C-3 position. 

2.2. Synthesis of the starting materials for Evans’ aldol condensation (26, 48; 46, 47). 

The crucial starting materials required for Evans’ aldol reaction are benzoxazolidinone 

derived amides of phenyl acetic acids and oxygenated benzaldehydes. The chiral amides (-), (+)-

26 and (-), (+)-48 were synthesized by following reported methods, in which the phenyl acetic 

acids  were activated as acid chloride with thonyl chloride or mixed anhydride with pivolyl 

cholride and the resulting anhydrides were treated with respective oxazolidinone anions after 

treatment with BuLi. Four chiral auxiliary substituted imides (-), (+) 26 and (-), (+) 48 were 

synthesized according to the literature procedure [161]. The counter-part oxygenated aldehydes 

46 and 47 were prepared from the commercially available starting material 51 and 52. MOM 

protection of 51 at the o-hydroxy benzaldehyde produced 46, while the sequential protection of 

52 with MOMCl and TBSCl produced 47 (Scheme 4-5). 
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Scheme 4-5. Synthesis of the starting material for the stereo specific Evans’ aldol reaction. 

Conditions: a) For 26 (as reported [161]) : 25, SOCl2, 2h; n-BuLi, -65 to -45 
o
C, (+) or (-) 50 in 

THF, 2 h, 73%; for 48: 49, pivolylchloride, DIPEA, THF, -78 
o
C; n-BuLi, (+) or (-) 50 in THF, -

78 
o
C, 3 h, 91%; b) for 46: 51, MOMCl, DIPEA, DCM, rt, 20 h, 99%; for 53 (as reported [162]): 

52, MOMCl, K2CO3, acetone, rt, 24 h, 75%; c) For 47: 53, TBSCl, DIPEA/DCM, 0 
o
C, 1h; RT, 

24 h, 99%. 

2.3. Evans’ aldol condensation 

The synthetic venture for the synthesis of isoflavans commenced with diastereoselective 

Evans’ aldol condensation [163-165] of benzaldehydes 46 and 47 with oxazolidinones 26 and 48, 

respectively using Bu2BOTf (Scheme 4-6). The generation of the enolate of the oxazolidone 
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derivatives were found to be affected by temperature; the enolate could not be generated below -

25 
o
C and it decomposed above -10 

o
C.  

 

Scheme 4-6. Evans’ aldol condensation to generate R-syn-aldol products (+) 44 and (+) 45 via 

Zimmerman-Traxler six membered chair-like transition state. 

Conditions: a) DIPEA added to 26 or 48 in DCM at 0 
o
C; cooled to -25

 o
C; 1 M BBu2OTf 

in DCM; -25 
o
C to -15 

o
C, 3 h/ DCM; add 46 or 47 in DCM, -25 

o
C to -15 

o
C 1.5 h, 80-90%. 

The reaction of enolate from 26 with 4-methoxy-2-(methoxymethyl) benzaldehyde 46 

furnished 2,3-syn-aldol product 44. Similarly, the reaction of enolate from 47 with diprotected 

benzaldehyde 48 furnished 2,3-syn-aldol product 45 as a single diastereomer in 90% yield. The 

superior stereochemical outcome of the aldol reaction can be rationalized using a Zimmerman-

Traxler six membered chair-like transition state 59 (Scheme 4-6). As anticipated, the facial 

selectivity of the aldehyde was directed by the chiral auxiliary of the enolate resulting in re-face 

attack to deliver Evans’ syn aldol product.  
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2.4. Further reactions  

The conversion of the aldol adducts (+) 44 and (+) 45 to natural products (-) equol 7 and 

(+)-sativan 8 require deoxygenation at the benzylic hydroxyl position, followed by the reduction 

of their chiral auxiliary to produce the dialcohols (+) 42 and (+) 43, are further to be cyclized. 

The produced cyclized products, (-) 30 and (+) 57 should be deprotected in the C7 of the 

chroman ring to produce equol enantiomers (-)-7 and (+)-sativan 8, respectively (Scheme 4-7). 

Deoxygenation 

Several attempts to enable the dehydroxylation of the aldol products (+) 44 and (+) 45 in 

the presence of Pd/C/H2 in EtOAc, Pd/C/H2 in MeOH, Pd(OH)2/H2 in MeOH, 

HCOONH4+Pd/C/H2 in MeOH, NaH2PO2+ Pd/C/H2 in THF+water and Raney Ni/H2 in MeOH 

were unsuccessful or produced the required prodcuts in low quantities. Conversion of the 

benzylic hydroxyl group of these compounds to their corresponding tosylates were also 

unsuccessful. This is may be due to presence of electron rich aromatic system and possible 

chelation. Gratifyingly, deoxygenation of syn-aldol product using excess of triethylsilane in the 

presence of TFA, furnished the compounds in (+) 54 and (+) 56 in 75 to 80% yields, 

respectively. Next, the MOM group of (+) 54 was selectively deprotected using HCl in MeOH to 

obtain (+) 55 in 85% yield.  

 



 

106 

 

Scheme 4-7. Enantioselective synthesis of S-equol 7 and S-sativan 8 starting from Evans’ aldol 

products 44 and 45. 

Conditions: a) TFA, Et3SiH/DCM, 0 
o
C, 30 min (75-80%); b) 3N HCl in MeOH/reflux, 

30 min, 85%; c) for 55: LiAlH4/ THF,0 
o
C to rt, 4 h, 90%; for 56: LiAlH4/THF,0 

o
C to rt, 

overnight, TBAF/THF, 89%; d) DEAD, TPP/THF, rt, 6 h, 86%; e). for 30: Pyridinium.HCl/150 

o
C, overnight; for 57: 3M HCl; rt, 0.5 to 0.75 h, 85%. 

Reduction 

The chiral auxialiary of the deoxygenated compound (+) 55 was reduced with LAH, to yield the 

diol product (+) 42 at an yield of 90%. Similarly, the chiral auxialiary of the deoxygenated 

compound (+) 56 was reduced with LAH, and further, the TBS group was deprotected using 

TBAF in THF to yield the diol (+) 43 in ~85% yield. Chiral auxiliaries were recovered further 

without any loss of their optical purity. 

Cyclization and deprotection 

The diols (+) 42 and (+) 43 were then cyclized using Mitsnobu conditions, DEAD and 

TPP in THF to the produce cyclic products (-) 30 and (+) 57 in ~92% and 86% yields, 
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respectively. The obtained dimethoxy analogues of equol (-) 30 and MOM protected analogues 

of sativan (+) 57 were then subjected to deprotection to yield the desired chiral products (-) 7 and 

(+) 8 at 86%yield. 

2.5. Synthesis of R-isomers of equol 7 and sativan 8 

Implementing the same synthetic sequences (Scheme 4-6 and 4-7), the stereoselective synthesis 

of R-isomers of equol (+)-7 and sativan (-)-8 (Scheme 4-8) were performed from their respective 

starting material, (-) 26 and (-) 48, via aldol intermediates (-) 44 and (-) 45, which were subjected 

to deoxygenation, deprotection, cyclization, and deprotection of the functional groups. The 

overall yield was 33% for S-(-) and R-(+)-equol (+)7, 34% for (+) 8 and about 25% for sativan (-

) 8, starting from their respective  phenyl acetic acid-starting material. 

 

Scheme 4-8. General schemes for the synthesis of (+) equol 7 and (-) sativan 8. 

 

2.6. Conclusion  

Chiral flavans were successfully synthesized starting for phenyl aceic acid and 4-benzyl-

2-oxazolidine dinone. Reaction of boron enolates with oxygenated aldehydes resulted in syn-

superior aldol products with excellent diastereoselectivity. This followed by deprotection, 

removal of chiral auxiliaries, cyclization and deprotections resulted chiral flavans in >30% 

overall yields This flexible synthetic approach allowed the synthesis of their antipodes by simply 

switching the chiral auxiliary.  
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3. Experimental 

3.1. Materials and methods 

All reactions were performed under an atmosphere of argon with oven-dried glassware 

and standard syringe/septa techniques. All reactions were magnetically stirred with Teflon stir 

bars, and temperatures were measured externally. Solvents were distilled under an argon 

atmosphere prior to use. The solvents tetrahydrofuran (THF) and Et2O were distilled from 

sodium benzophenone, while CH2Cl2 and cyclohexane were dried over P2O5. Triethylamine and 

hexamethylphosphoramide (HMPA) were distilled from CaH2. Ethanol and methanol used were 

bottle-grade solvents. All reagents obtained commercially were used without further purification. 

The reaction progress was monitored on precoated silica gel thin-layer chromatography (TLC) 

plates. Spots were visualized under 254 nm UV light and/or by dipping the TLC plate into a 

solution of 2 mL of anisaldehyde, 10 mL of glacial acetic acid, and 5 mL of H2SO4 in 340 mL of 

EtOH, followed by heating with a heat gun. Column chromatography was performed with silica 

gel (230−400 mesh). All the solvents (hexanes, ethyl acetate, CH2Cl2, Et2O) were distilled prior 

to use for column chromatography. 
1
H and 

13
C NMR spectra were measured in CDCl3 or MeOD 

on 400 MHz (100 MHz) or 500 MHz (125 MHz) machines. Chemical shifts were reported in 

parts per million (ppm) downfield from tetramethylsilane (δ) as the internal standard, and 

coupling constants are in hertz (Hz). Assignment of proton resonances were confirmed by 

correlated spectroscopy. IR spectra were recorded by use of a universal attenuated total reflection 

sampling accessory (diamond ATR) on an Agilent Cary 630 FT-IR spectrometer. High-

resolution mass spectra were recorded on an Agilent electrospray ionization quadrupole time-of-

flight (ESI-QTOF) instrument. 
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3.2. Synthesis 

Synthesis of the aldehydes 

4-methoxy-2-(methoxymethoxy)benzaldehyde 46: 2-Hydroxy-4-methoxybenzaldehyde 51 (1g, 

6.57 mmol) was dissolved in 20 mL dichloromethane and placed in an ice bath under argon 

atmosphere. To this solution, N,N-diisopropyl ethyl amine (1.27 g, 1.7 mL, 9.9 mmol) was added 

dropwise and stirred for 30 min after which, chloromethoxymethane (0.79 g, 0.75 mL, 9.9 mmol) 

was added. The reaction was stirred for 20 h. The reaction mixture was quenched with distilled 

water (20 mL) and the layers were separated. The aqueous layer was further extracted with (2x20 

mL) DCM. The combined organic layers were dried over sodium sulfate and concentrated under 

vacuum to produce a pale yellow crystalline solid as MOM protected aldehyde 1046 (1.27 g, 

64.7 mmol, 99%).: IR (cm
-1

): 2941, 2844, 2766, 1678, 1600, 1579, 1501, 1451, 1395, 1259, 

1222, 1154, 1078, 987, 925 and 815; ESI-HRMS: calcd. for C10H13O4 197.0808 [M+H]
+
; found 

197.0800. 

Synthesis of the aldehyde 47 

4-Hydroxy-4-(methoxymethoxy)benzaldehyde 53 

By following the reported procedure[162]., the aldehyde 47 was prepared in two steps, first by 

the synthesis of 53. 2,4-Dihydroxybenzaldehyde (1g, 7.24 mmol) and potassium carbonate (1.5 

g, 13.8 mmol) dissolved in 15 mL acetone, stirred for 1 h to 0 

C. To this solution 

chloro(methoxy)methane (0.55 mL, 7.24 mmol) was added dropwise and allowed to heat to 

room temperature and stirred for 28 h. The reaction mixture was then filtered to remove 

potassium carbonate and concentrated the mixture with rotovap. The mixture was then separated 

using column chromatography to obtain mom-protected o-hydroxy benzaldehyde as brick 

colored crystals (0.99 g, 0.54 mmol, 75%). IR (cm
-1

): 2961, 2848, 1628, 1579, 1503, 1250, 1225, 
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1156, 1078, 992, 959 and 804;
1
H NMR (400 MHz, Chloroform-d) δ 11.34 (s, 1H), 9.71 (s, 1H), 

7.42 (d, J = 8.6 Hz, 1H), 6.63 (dd, J = 8.6, 2.3 Hz, 1H), 6.58 (d, J = 2.3 Hz, 1H), 5.20 (s, 2H), 

3.46 (s, 3H); ESI-HRMS: calcd. for C9H11O4 183.0652 [M+H]
+
; found 183.0666. 

TBS protection of the aldehyde intermediate 53 to produce 47 

2-hydroxy-4-(methoxymethoxy)benzaldehyde 53 (5.62 g, 30 mmol) and tert-

butylchlorodimethylsilane (9.31 g, 61.79 mmol) were dissolved in dry dichloromethane and 

DIPEA (16 mL, 108 mmol) was added dropwise and allowed to stir at room temperature for 30 

h. The reaction was monitored by TLC and observed for the disappearance of the starting 

material. The reaction was then extracted with water and dried over anhydrous MgSO4 and 

filtered and dried to obtain brick colored crystals (9 g, 30 mmol, 99%). 

2-((Tert-butyldimethylsilyl)oxy)-4-(methoxymethoxy)benzaldehyde 47: IR (cm
-1

): 2961, 2848, 

1628, 1577, 1501, 1445, 1335, 1290, 1223, 1154, 1078, 989, 959 and 806; 
1
H NMR (400 MHz, 

Chloroform-d) δ 10.29 (s, 1H), 7.75 (d, J = 8.6 Hz, 1H), 6.68 (ddd, J = 8.7, 2.2, 0.9 Hz, 1H), 

6.52 (d, J = 2.2 Hz, 1H), 5.17 (s, 2H), 3.46 (s, 3H), 1.06 – 0.91 (m, 9H), 0.27 (d, J = 2.2 Hz, 6H); 

13
C NMR (101 MHz, CDCl3) δ 188.7, 163.4, 160.6, 129.9, 121.9, 109.8, 107.1, 94.1, 56.2, 25.7 

(3C), 18.3, -4.4 (2C); ESI-HRMS: calcd. for C15H24O4Si 297.1517 [M+H]
+
; found: 297.1497. 

Amide formation of propanoic acid with a chiral auxiliary 

Coupling of (R)-4-benzyloxazolidin-2-one (+) 50 with phenyl acetic acid 25, to produce (R)-4-

Benzyl-3-(2-(4-methoxyphenyl)acetyl)oxazolidin-2-one (-) 26 

By following the procedure [155], (+) 26 and (-) 26 were prepared from the 

corresponding 4-benzyloxazolidin-2-ones (+) 50 and (-) 50. 

(R)-4-Benzyl-3-(2-(4-methoxyphenyl)acetyl)oxazolidin-2-one (-) 26 

MP 84-85 
o
C, [α]

D
 = -73.3 (c = 1.195, CHCl3); IR (cm

-1
): 3028, 2924, 1778, 1700, 1514, 1391, 
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1357, 1248, 1181, 1106, 1033, 793 and 706;
 1

H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.22 

(m, 5H), 7.17 – 7.09 (m, 2H), 6.92 – 6.85 (m, 2H), 4.72 – 4.61 (m, 1H), 4.33 – 4.11 (m, 4H), 

3.80 (s, 3H), 3.26 (dd, J = 13.4, 3.3 Hz, 1H), 2.75 (dd, J = 13.4, 9.4 Hz, 1H); 
13

C NMR (101 

MHz, CDCl3) δ 171.7, 159.0, 153.5, 135.3, 131.0 (2C), 129.6 (2C), 129.1 (2C), 127.5, 125.6, 

114.2 (2C), 66.3, 55.5, 55.4, 40.8, 37.9; ESI-HRMS: calcd. for C19H20N04 326.1387 [M+H]
+
; 

found 326.1367. 

(R)-4-Benzyl-3-(2-(4-methoxyphenyl)acetyl)oxazolidin-2-one (+) 26 

[α]
D
 = + 70.377 (c = 1.06, CHCl3); IR (cm

-1
): 2935, 2996, 1780, 1758, 1700, 1615, 1514, 1359, 

1249, 1181, 1108, 1033, 763, 790, and 706; 
1
H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.22 

(m, 5H), 7.16 – 7.11 (m, 2H), 6.92 – 6.84 (m, 2H), 4.70 – 4.61 (m, 1H), 4.31 – 4.11 (m, 4H), 

3.80 (s, 2H), 3.25 (dd, J = 13.4, 3.4 Hz, 1H), 2.75 (dd, J = 13.4, 9.4 Hz, 1H).; 
13

C NMR (101 

MHz, CDCl3) δ 171.7, 158.9, 153.5, 135.3, 130.9 (2C), 129.5 (2C), 129.0, 127.4, 125.6, 114.2 

(2C), 66.2, 55.4, 55.4, 40.8, 37.9; ESI-HRMS: calcd. for C19H20NO4 326.1392 [M-H20+H]
+
; 

found 326.1395. 

(R)-4-Benzyl-3-(2-(2,4-dimethoxyphenyl)acetyl)oxazolidin-2-one (-) 48 

Procedure modified from that of Liu et al [161]. To a solution of 2-(2,4-

dimethoxyphenyl)acetic acid 15 (3.9 g, 20 mmol) and DIPEA(2.8 g, 22 mmol)  in anhydrous 

THF (50 mL) at -78 

C was added pivolyl chloride (3.1 g, 26 mmol) dropwise under an 

atmosphere of argon. The resulting mixture was stirred for 15 min at -78 

C, 1 h at 0 


C, and then 

recooled to –78 

C to form mixed anhydride reaction mixture. Meanwhile, in a different flask, n-

BuLi (24 mmol; 10 mL of 2.5 M in DCM) was added dropwise to a solution of (R)-4-benzyl-

oxazolidin-2-one (+16) (4.3 g, 24.4 mmol) in anhydrous THF at -78 

C under atmosphere of 

argon and the mixture was stirred for 40 min at -78 

C, it was then transferred with a cannula to 
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the preformed mixed anhydride reaction mixture. After stirring the reaction mixture for 15 min, 

it was allowed to warm up to room temperature over 2 h, then quenched with saturated aqueous 

NH4Cl (50 mL) and extracted with ethyl acetate (3 x 30 mL). The combined organic layers were 

washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure. The residue was purified by flash chromatography on silica gel to obtain a viscous 

liquid (5.48 g, 18 mmol, 91%).  

(R)-4-Benzyl-3-(2-(2,4-dimethoxyphenyl)acetyl)oxazolidin-2-one (-) 48 

R)-4-Benzyl-3-(2-(2,4-dimethoxyphenyl)acetyl)oxazolidin-2-one (-) 48: Viscous liquid [α]
D
 = -

76.1 (c = 1.0, CHCl3); IR (cm
-1

): 2941, 2840, 2361, 1778, 1706, 1616, 1512, 1212, 1158, 1037, 

886, 765 and 707;
 1

H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.16 (m, 5H), 7.07 (dd, J = 7.9, 

2.3 Hz, 1H), 6.54 – 6.42 (m, 2H), 4.68 (td, J = 7.7, 6.2, 3.0 Hz, 1H), 4.31 – 4.04 (m, 4H), 3.81 (s, 

6H), 3.28 (dd, J = 13.6, 2.5 Hz, 1H), 2.81 (dd, J = 13.0, 9.7 Hz, 1H); 
13

C NMR (101 MHz, 

CDCl3) δ 171.6, 160.5, 158.6, 153.8, 135.5, 131.6, 129.6 (2C), 129.0 (2C), 127.4, 115.1, 104.3, 

98.8, 66.3, 55.6, 55.5 (2C), 37.9, 36.9; ESI-HRMS: calcd. for C20H22NO5 356.1492 [M+H]
+
; 

found 356.1493. 

(S)-4-Benzyl-3-(2-(2,4-dimethoxyphenyl)acetyl)oxazolidin-2-one (+) 48 

(S)-4-Benzyl-3-(2-(2,4-dimethoxyphenyl)acetyl)oxazolidin-2-one (+13): [α]
D
 = + 78.8 (c = 1.0, 

CHCl3); IR (cm
-1

): 2939, 2838, 1178, 1708, 1616, 1592, 1512, 1393, 1367, 1212, 1367, 1212, 

1110, 1037, 991, 838, 765 and 707; 
1
H NMR (400 MHz, Chloroform-d) δ 7.34 – 7.29 (m, 2H), 

7.28 – 7.23 (m, 1H), 7.20 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 7.9 Hz, 1H), 6.53 – 6.44 (m, 2H), 4.68 

(ddtd, J = 9.0, 6.3, 3.1, 1.1 Hz, 1H), 4.29 – 4.07 (m, 4H), 3.80 (m, 6H), 3.29 (dd, J = 13.3, 3.2 

Hz, 1H), 2.80 (dd, J = 13.2, 9.5 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 171.7, 160.6, 158.7, 

153.8, 149.2, 135.6, 131.6, 129.6 (2C), 129.1 (2C), 127.4, 115.3, 104.5, 99.0, 66.4, 55.6, 55.5, 
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38.0, 36.9; ESI-HRMS: calcd. for C20H22NO 356.1492 [M+H]
+
; found 356.1483. 

Evans’ aldol reaction of aldehydes with oxazolidinone amides to produce (+)-, (-)-44, (+)-, (-)-45 

General procedure: In a 0.5 L round bottom flask, DIPEA (1 equiv.) was added drop wise to a 

pre-cooled solution of chiral 4-benzyl-(acetyl)oxazolidin-2-one (1 equiv.) in anhydrous DCM 

(200 mL) at 0 
o
C. The resulting solution was cooled to -25 

o
C, 1.0 M solution of 

dibutyl(((trifluoromethyl)sulfonyl)oxy)borane (1.1 equiv.) in DCM was added drop wise. The 

resulting orange colored solution was heated to -15 
o
C over 30 min and then stirred for 3h at -

15
o
C. The solution was re-cooled to -25 

o
C and a solution of 4-methoxy-2-

(methoxymethoxy)benzaldehyde (1 equiv.) in DCM (50 mL) was added drop wise and continued 

stirring at -25 
o
C. After 20 min, the temperature of the mixture was raised to -15 

o
C over a period 

of 30 min and stirred further for additional 1 h. The mixture was quenched with methanol (25 

mL) and phosphate buffer (15 mL, pH 7.4). Hydrogen peroxide (15 mL, 30%) in MeOH (35 mL) 

was added, warmed to room temperature and stirred for 1h. The whole mixture was concentrated 

under reduced pressure and the residue was diluted with water (150 mL) and extracted with 

diethyl ether (3 x 150 mL). The combined organic layers were washed with brine, dried over 

anhydrous MgSO4, concentrated and the resulting residue was purified by column 

chromatography by eluting with 10-25% Ethyl acetate in hexanes to give the aldol product. 

(R)-4-Benzyl-3-((2R,3R)-3-hydroxy-3-(4-methoxy-2-(methoxymethoxy)phenyl)-2-(4-

methoxyphenyl)propanoyl)oxazolidin-2-one (+) 44: Yield 90%; [α]
D
 = + 97 (c = 0.115, CHCl3); 

IR (cm
-1

): 3529, 2956, 2935, 1777, 1611, 1510, 1154, 1000, 998, 732 and 704; 
1
H NMR (500 

MHz, Chloroform-d) δ 7.29 (d, J = 8.7 Hz, 2H), 7.22 – 7.18 (m, 3H), 7.02 (d, J = 8.5 Hz, 1H), 

6.99 – 6.95 (m, 2H), 6.88 – 6.84 (m, 2H), 6.72 (d, J = 2.4 Hz, 1H), 6.42 (dd, J = 8.5, 2.4 Hz, 1H), 

5.54 (s, 2H), 5.29 – 5.19 (m, 2H), 4.60 (ddt, J = 9.0, 7.1, 3.5 Hz, 1H), 4.06 – 3.97 (m, 2H), 3.80 
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(s, 3H), 3.76 (s, 3H), 3.54 (s, 3H), 3.09 (dd, J = 13.5, 3.4 Hz, 1H), 2.55 (dd, J = 13.5, 9.1 Hz, 

1H);
 13

C NMR (126 MHz, CDCl3) δ 173.7, 160.1, 159.1, 155.2, 152.5, 134.8, 131.1 (2C), 129.4 

(2C), 129.1, 128.8 (2C), 127.2, 126.3, 121.8, 113.7 (2C), 106.0, 101.1, 94.7, 70.8, 65.7, 56.3, 

55.3, 55.2, 54.7, 53.1, 37.2; ESI-HRMS: calcd. for C29H30NO7 [M-H20+H]
+
 504.2017; found 

504.2030. 

(S)-4-Benzyl-3-((2S,3S)-3-hydroxy-3-(4-methoxy-2-(methoxymethoxy)phenyl)-2-(4-

methoxyphenyl)propanoyl)oxazolidin-2-one (-) 44: Yield 90%,.[α]
D
 = -111.3 (c = 0.39, CHCl3); 

IR (cm
-1

): 3528, 2986, 2838, 1777, 1611, 1510, 1156, 1000, 912 and 732; 
1
H NMR (500 MHz, 

Chloroform-d) δ 7.30 (d, J = 8.7 Hz, 2H), 7.23 – 7.17 (m, 3H), 7.03 (d, J = 8.5 Hz, 1H), 7.00 – 

6.94 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 2.4 Hz, 1H), 6.42 (dd, J = 8.5, 2.4 Hz, 1H), 

5.54 (s, 2H), 5.30 – 5.21 (m, 2H), 4.60 (ddt, J = 8.9, 7.2, 3.6 Hz, 1H), 4.06 – 3.97 (m, 2H), 3.79 

(s, 3H), 3.76 (s, 3H), 3.54 (s, 3H), 3.08 (dd, J = 13.5, 3.4 Hz, 1H), 2.56 (dd, J = 13.5, 9.0 Hz, 

1H); 
13

C NMR (126 MHz, CDCl3) δ 173.7, 160.1, 159.1, 155.2, 152.5, 134.8, 131.1 (2C), 129.4 

(2C), 129.1, 128.8 (2C), 127.2, 126.3, 121.9, 113.7 (2C), 106.0, 101.1, 94.7, 70.8, 65.7, 56.3, 

55.3, 55.2, 54.7, 53.1, 37.2; ESI-HRMS: calcd. for C29H30NO7 504.2017 [M-H20+H]
+
; found 

504.1997. 

(R)-4-Benzyl-3-((2R,3R)-3-(2-((tert-butyldimethylsilyl)oxy)-4-(methoxymethoxy)phenyl)-2-

(2,4-dimethoxyphenyl)-3-hydroxypropanoyl)oxazolidin-2-one (+) 45: viscous liquid, yield 82% 

[α]
D
 = + 203.5 (c = 1.0, CHCl3) ; IR (cm

-1
): 3542, 2931, 2857, 1791, 1674, 1613, 1588, 1508, 

1389, 1212, 1160, 1121, 1017, 843, and 786; 
1
H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.21 

(m, 3H), 7.20 – 7.10 (m, 2H), 7.06 (d, J = 8.3 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.56 – 6.51 (m, 

1H), 6.48 – 6.41 (m, 2H), 6.35 – 6.30 (m, 1H), 5.63 (d, J = 3.6 Hz, 1H), 5.47 (d, J = 4.1 Hz, 1H), 

5.09 (s, 2H), 4.72 – 4.62 (m, 1H), 4.01 (d, J = 5.5 Hz, 2H), 3.79 (s, 3H), 3.71 (s, 1H), 3.44 (s, 
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3H), 3.42 (s, 3H), 3.35 (dd, J = 13.3, 3.5 Hz, 1H), 2.53 (dd, J = 13.3, 10.0 Hz, 1H), 1.00 (s, 9H), 

0.34 (s, 3H), 0.32 (s, 3H);
 13

C NMR (101 MHz, CDCl3) δ 175.1, 160.3, 159.3, 157.1, 153.2, 

152.0, 135.5, 131.1, 129.5 (2C), 129.1 (2C), 128.4, 127.4, 125.4, 114.5, 108.1, 106.2, 103.8, 

98.6, 94.7, 69.0, 66.0, 55.9, 55.4, 55.2 (2C), 48.2, 37.8, 25.9 (3C), 18.4, -3.9, -4.1; ESI-HRMS: 

calcd. for C35H44NO8Si 634.2831[M-H2O+H]
+
; found 634.2827. 

(R)-4-Benzyl-3-((2R,3R)-3-(2-((tert-butyldimethylsilyl)oxy)-4-(methoxymethoxy)phenyl)-2-

(2,4-dimethoxyphenyl)-3-hydroxypropanoyl)oxazolidin-2-one (-) 45: Yield 85 %; [α]
D
 = - 203.4 

(c = 1.0, CHCl3) ; IR (cm
-1

): 3540, 2931, 2859, 1790, 1672, 1611, 1508, 1366, 1292, 1212, 1158, 

1119, 1013, 842, 784 and 704; 
1
H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.19 (m, 3H), 7.20 – 

7.11 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.5 Hz, 1H), 6.53 (d, J = 2.2 Hz, 1H), 6.48 – 

6.39 (m, 2H), 6.32 (d, J = 2.2 Hz, 1H), 5.63 (t, J = 3.4 Hz, 1H), 5.47 (d, J = 3.6 Hz, 1H), 5.09 (s, 

2H), 4.72 – 4.61 (m, 1H), 4.01 (d, J = 5.4 Hz, 2H), 3.78 (s, 3H), 3.71 (d, J = 3.0 Hz, 1H), 3.44 (s, 

3H), 3.42 (s, 3H), 3.34 (dd, J = 13.2, 2.8 Hz, 1H), 2.53 (dd, J = 13.1, 10.2 Hz, 1H), 1.00 (s, 9H), 

0.34 (s, 3H), 0.32 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 175.1, 160.3, 159.3, 157.1, 153.2, 

152.0, 135.5, 131.1, 129.5 (2C), 129.0 (2C), 128.3, 127.4, 125.4, 114.5, 108.1, 106.2, 103.8, 

98.6, 94.7, 69.0, 66.0, 55.9, 55.4, 55.2 (2C), 48.2, 37.8, 25.9 (3C), 18.4, -3.9, -4.1; ESI-HRMS: 

calcd. for C35H44NO8Si 652.2936 [M-H20+H]
+
= 634.2831; found 634.2817. 

Deoxygenation of the aldol products for the synthesis of (+)-, (-)- 54, (+)-, (-)- 56 

(R)-4-Benzyl-3-((2R,3R)-3-hydroxy-3-(4-methoxy-2-(methoxymethoxy)phenyl)-2-(4-

methoxyphenyl)propanoyl)oxazolidin-2-one (+) 44 (1.04 g, 2 mmol) was dissolved in 10 mL 

dichloromethane, cooled to O 
o
C and triethyl silane (10 mL, 64.7 mmol) was added dropwise. 

After stirring for 10 min, trifluoroacetic acid (1 mL, 12.9 mmol) was added drop-wise in two 

installments, allowed to heat to room temperature, and the reaction was monitored using TLC. 
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After 30 min, the reaction was cooled to 0 

C quenched using NaHCO3 (10 mL) and extracted 

using dichloromethane (2x15mL), dried over anhydrous MgSO4, concentrated and separated 

using column chromatography to obtain a colorless viscous liquid (0.98 g, 1.62 mmol, 81%).  

(R)-4-Benzyl-3-((S)-3-(4-methoxy-2-(methoxymethoxy)phenyl)-2-(4-

methoxyphenyl)propanoyl)oxazolidin-2-one (+) 54: [α]
D
 = +24.0 (c = 0.15, CHCl3); IR (cm

-1
): 

2933, 2836, 1778, 1695, 1613, 1510, 1249, 1218, 1156, 1007, 836 and 707;
 1

H NMR (400 MHz, 

Chloroform-d) δ 7.36 (d, J = 8.4 Hz, 2H), 7.22 – 7.15 (m, 3H), 7.02 – 6.92 (m, 3H), 6.87 (d, J = 

8.4 Hz, 2H), 6.68 (d, J = 2.5 Hz, 1H), 6.39 (dd, J = 8.3, 2.5 Hz, 1H), 5.41 (dd, J = 8.8, 6.2 Hz, 

1H), 5.18 (s, 2H), 4.63 (tt, J = 7.6, 3.5 Hz, 1H), 4.07 – 3.95 (m, 2H), 3.80 (s, 3H), 3.75 (s, 3H), 

3.52 (s, 3H), 3.35 (dd, J = 13.6, 8.8 Hz, 1H), 3.13 – 2.98 (m, 2H), 2.56 (dd, J = 13.6, 8.9 Hz, 1H); 

13
C NMR (101 MHz, CDCl3) δ 173.9, 159.4, 158.8, 156.4, 152.7, 135.1, 131.3 , 130.8, 129.8 

(2C), 129.4 (2C), 128.8(2C), 127.1, 120.2, 113.9 (2C), 105.8, 101.0, 94.6, 65.6, 56.1, 55.3, 55.2, 

54.9, 47.9, 37.4, 34.4; ESI-HRMS: calcd. for C29H32NO7 506.2173 [M+H]
+
; found 506.2176. 

(S)-4-Benzyl-3-((R)-3-(4-methoxy-2-(methoxymethoxy)phenyl)-2-(4-

methoxyphenyl)propanoyl)oxazolidin-2-one (-) 54: Yield: 75%, [α]
D
 = -26.4 (c = 0.33, CHCl3); 

IR (cm
-1

): 2933, 2838, 1178, 1695, 1510, 1218, 1156 and 1007; 
1
H NMR (500 MHz, 

Chloroform-d) δ 7.36 (d, J = 8.7 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.00 – 6.93 (m, 3H), 6.87 (d, J = 

8.7 Hz, 2H), 6.68 (d, J = 2.4 Hz, 1H), 6.39 (dd, J = 8.3, 2.5 Hz, 1H), 5.41 (dd, J = 8.8, 6.2 Hz, 

1H), 5.19 (s, 2H), 4.68 – 4.59 (m, 1H), 4.06 – 3.98 (m, 2H), 3.80 (s, 3H), 3.75 (s, 3H), 3.51 (s, 

3H), 3.34 (dd, J = 13.4, 8.9 Hz, 1H), 3.09 – 3.01 (m, 2H), 2.56 (dd, J = 13.5, 9.0 Hz, 1H). 
13

C 

NMR (126 MHz, CDCl3) δ 174.0, 159.6, 158.9, 156.5, 152.9, 135.2, 131.5, 130.9, 129.9 (2C), 

129.6 (2C), 128.9 (2C), 127.3, 120.3, 114.1 (2C), 105.9, 101.1, 94.6, 65.7, 56.3, 55.4, 55.4, 55.0, 

48.1, 37.5, 34.6; ESI-HRMS: calcd. for C29H32NO7 506.2173 [M+H]
+
; found 506.2151. 
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(R)-4-Benzyl-3-((S)-3-(2-((tert-butyldimethylsilyl)oxy-4-(methoxymethoxy)phenyl)-2-(2,4-

dimethoxyphenyl)propanoyl)oxazolidin-2-one (+) 56: Colorless crystalline solid (1.35 g, 2.12 

mmol, 73%). [α]
D
 = + 11.6 (c = 1.0, CHCl3) ; IR (cm

-1
): 2954, 2931, 2859, 1784, 1698, 1611, 

1506, 1292, 1210, 1156, 1015, 843 and 784;
 1

H NMR (400 MHz, Chloroform-d) δ 7.36 – 7.21 

(m, 4H), 7.19 – 7.11 (m, 2H), 6.89 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 6.50 – 6.46 (m, 

2H), 6.42 (d, J = 2.4 Hz, 1H), 5.54 (t, J = 7.6 Hz, 1H), 5.15 – 5.01 (m, 2H), 4.60 (ddt, J = 10.7, 

7.4, 3.2 Hz, 1H), 3.98 (dd, J = 8.9, 3.0 Hz, 1H), 3.92 (t, J = 8.3 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 

3H), 3.44 (s, 3H), 3.34 – 3.24 (m, 2H), 3.03 (dd, J = 13.3, 7.3 Hz, 1H), 2.55 (dd, J = 13.2, 10.0 

Hz, 1H), 1.01 (s, 9H), 0.30 (s, 3H), 0.29 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 174.9, 159.9, 

158.3, 156.5, 154.7, 152.4, 135.7, 131.0, 129.5, 129.3 (2C), 128.9 (2C), 127.2, 123.1, 120.1, 

108.1, 107.1, 104.1, 98.6, 94.6, 65.7, 55.8, 55.6, 55.4, 55.3, 42.7, 37.7, 32.5, 25.9 (3C), 18.3, -

4.1, -4.2; ESI-HRMS: calcd. for C35H46NO8Si 636.2987 [M+H]
+
; found 636.2995. 

(R)-4-Benzyl-3-((S)-3-(2-((tert-butyldimethylsilyl)oxy)-4-(methoxymethoxy)phenyl)-2-(2,4-

dimethoxyphenyl)propanoyl)oxazolidin-2-one (-) 56: Yield 68%; [α]
D
 = -10.7 (c = 1.0, CHCl3) ; 

IR (cm
-1

): 2957, 2857, 2361, 1788, 1698, 1613, 1508, 1292, 1212, 1158, 1018, 924, 843, 784 and 

706; 
1
H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.23 (m, 4H), 7.21 – 7.13 (m, 2H), 6.88 (d, J = 

8.3 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H), 6.48 (dd, J = 8.4, 2.4 Hz, 2H), 6.42 (d, J = 2.4 Hz, 1H), 

5.53 (t, J = 7.7 Hz, 1H), 5.17 – 5.01 (m, 2H), 4.60 (ddt, J = 10.6, 6.7, 3.1 Hz, 1H), 3.98 (dd, J = 

9.1, 3.1 Hz, 1H), 3.93 (t, J = 8.3 Hz, 1H), 3.81 (s, 3H), 3.68 (s, 3H), 3.45 (s, 3H), 3.34 – 3.23 (m, 

2H), 3.02 (dd, J = 13.3, 7.3 Hz, 1H), 2.55 (dd, J = 13.3, 10.0 Hz, 1H), 1.01 (s, 9H), 0.29 (s, 3H), 

0.28 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 174.9, 159.9, 158.3, 156.5, 154.8, 152.4, 135.8, 

131.0, 129.5, 129.3 (2H), 128.9 (2H), 127.2, 123.2, 120.1, 108.1, 107.1, 104.1, 98.6, 94.6, 65.7, 

55.8, 55.6, 55.4, 55.3, 42.7, 37.7, 32.5, 25.9 (3H), 18.3, -4.1, -4.2; ESI-HRMS: calcd. for 
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C35H46NO8Si 636.2987 [M+H]
+
= 636.2987; found 636.2979. 

MOM deprotection of the deoxygenated aldol products (+) 54, (-) 54 to produce (+) 55, (-) 55. 

(+) 54 (1 g, 2 mmol) was dissolved in 3 M HCl in methanol (10 mL), refluxed and the 

reaction monitored by TLC.  After 30 to 40 min, the reaction was cooled to 0 

C, quenched with 

saturated NaHCO3 (10 mL), methanol was evaporated using roptovap and extracted using ethyl 

acetate (2x10 mL). The organic layer was dried over anhydrous MgSO4, concentrated and 

isolated using column chromatography to obtain a colorless viscous liquid product (0.78 g, 1.7 

mmol, 85%).  

(R)-4-Benzyl-3-((S)-3-(2-hydroxy-4-methoxyphenyl)-2-(4-ethoxyphenyl)propanoyl)oxazolidin-

2-one (+) 55: [α]
D
 = +37.1 (c = 0.205, CHCl3); IR (cm

-1
): 3401, 2929, 2838, 1777, 1510, 1164, 

1181, 1106, 1033, 834 and 704; 
1
H NMR (400 MHz, Chloroform-d) δ 7.40 (d, J = 8.7 Hz, 2H), 

7.25 – 7.15 (m, 4H), 7.03 (d, J = 8.3 Hz, 1H), 6.99 – 6.88 (m, 4H), 6.48 (d, J = 2.5 Hz, 1H), 6.45 

(dd, J = 8.3, 2.6 Hz, 1H), 5.21 (dd, J = 11.0, 4.3 Hz, 1H), 4.68 (tt, J = 8.5, 3.3 Hz, 1H), 4.09 (t, J 

= 8.5 Hz, 1H), 4.02 (dd, J = 9.1, 3.1 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.45 (dd, J = 14.3, 11.1 

Hz, 1H), 3.07 (dd, J = 13.5, 3.5 Hz, 1H), 2.76 (dd, J = 14.4, 4.3 Hz, 1H), 2.56 (dd, J = 13.5, 8.9 

Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 175.8, 159.7, 159.1, 155.1, 152.3, 134.6, 131.9, 130.2, 

129.6 (2C), 129.4 (2C), 128.9 (2C), 127.3, 117.8, 114.3 (2C), 107.0, 102.8, 65.7, 55.3, 55.2, 

54.8, 50.8, 37.1, 33.9; ESI-HRMS: calcd. for C27H28NO6 462.1911 [M+H]
+
; found 462.1917. 

(S)-4-benzyl-3-((R)-3-(2-hydroxy-4-methoxyphenyl)-2-(4-methoxyphenyl)propanoyl)oxazolidin-

2-one (-) 55: [α]
D
 = -34.7 (c = 0.15, CHCl3); IR (cm

-1
): 3388, 2928, 1777, 1695, 1620, 1510, 

1181, 1033 and 704; 
1
H NMR (400 MHz, Chloroform-d) δ 7.41 (d, J = 8.6 Hz, 2H), 7.26 – 7.13 

(m, 4H), 7.03 (d, J = 8.3 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.48 (d, J = 2.5 

Hz, 1H), 6.45 (dd, J = 8.3, 2.6 Hz, 1H), 5.21 (dd, J = 11.0, 4.3 Hz, 1H), 4.68 (tt, J = 8.5, 3.3 Hz, 
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1H), 4.09 (t, J = 8.5 Hz, 1H), 4.02 (dd, J = 9.1, 3.1 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 3.45 (dd, 

J = 14.3, 11.0 Hz, 1H), 3.07 (dd, J = 13.5, 3.5 Hz, 1H), 2.77 (dd, J = 14.4, 4.3 Hz, 1H), 2.56 (dd, 

J = 13.5, 8.9 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 175.9, 159.9, 159.2, 155.3, 152.5, 134.8, 

132.0, 130.3 (2C), 129.8 (2C), 129.5 (2C), 129.0 (2C), 127.4, 118.0, 114.4 (2C), 107.1, 102.9, 

65.9, 55.4, 55.4, 55.0, 50.9, 37.3, 34.1. ESI-HRMS: calcd. for C27H28NO6 462.1911 [M+H]
+
; 

found 462.1891. 

Reduction of the chiral auxiliary to produce dialcohols (+) 42, (-) 42: 

 (+) 55 (24 g, 52 mmol)  was dissolved in THF (150 mL) and added dropwise to a 

suspension of LiAlH4 (4 g, 104 mmol) in 25 mL THF at 0 

C and stirred overnight at room 

temperature. Then the reaction was cooled to 0 

C and quenched with a dropwise addition of 

saturated NaOH (50 mL), THF was evaporated and the resulting solution was extracted with 

ethyl acetate (3 x 50 mL) and separated, dried over anhydrous MgSO4 and isolated using flash 

chromatography toproduce colorless liquid (+) 42 (13.5 g, 47 mmol, 90%).  

(S)-2-(3-Hydroxy-2-(4-methoxyphenyl)propyl)-5-methoxyphenol (+) 42:  [α]
D
 = +31.6 (c = 

0.185, CHCl3); 
1
H NMR (400 MHz, Chloroform-d) δ 7.15 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 

Hz, 2H), 6.81 (d, J = 8.5 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 6.39 (dd, J = 8.3, 2.5 Hz, 1H), 3.80 

(s, 3H), 3.74 (bs, 5H), 3.08 (dd, J = 13.5, 8.4 Hz, 1H), 2.98 (dq, J = 9.9, 4.8 Hz, 1H), 2.82 (dd, J 

= 13.5, 5.0 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.4, 158.4, 155.5, 134.6, 131.9, 128.8 

(2C), 118.0, 114.0 (2C), 106.3, 102.1, 65.1, 55.3, 55.3, 47.5, 31.5; ESI-HRMS: calcd. for 

C17H21O4 289.1434 [M+H]
+
; found 289.1433. 

(R)-2-(3-Hydroxy-2-(4-methoxyphenyl) propyl)-5-methoxyphenol (-) 42 

[α]
D
 = -33.3 (c = 0.185, CHCl3); 

1
H NMR (400 MHz, Chloroform-d) δ 7.15 (d, J = 8.6 Hz, 2H), 

6.86 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.3 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 6.39 (dd, J = 8.3, 2.6 
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Hz, 1H), 3.80 (s, 3H), 3.75 (bs, 5H), 3.08 (dd, J = 13.6, 8.5 Hz, 1H), 3.04 – 2.93 (m, 1H), 2.82 

(dd, J = 13.6, 5.0 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.4, 158.4, 155.6, 134.6, 131.9, 

128.8 (2C), 117.9, 114.0 (2C), 106.3, 102.1, 65.1, 55.3, 55.2, 47.4, 31.4; ESI-HRMS: calcd. for 

C17H21O4 289.1434 [M+H]
+
; found 289.1441. 

(S)-2-(2-(2,4-Dimethoxyphenyl)-3-hydroxypropyl)-5-(methoxymethoxy)phenol (+) 43 

A solution of (R)-4-Benzyl-3-((S)-3-(2-((tert-butyldimethylsilyl)oxy-4-

(methoxymethoxy)phenyl)-2-(2,4-dimethoxyphenyl)propanoyl)oxazolidin-2-one (+) 56 (1.18 g, 

1.86 mmol) in THF (50 mL) and added dropwise to a suspension of LiAlH4 (0.2 g, 5.13 mmol) 

in 15 mL THF at 0 

C and stirred overnight at room temperature. Then the reaction was cooled to 

0 

C and quenched with a dropwise addition of saturated NaOH (10 mL) and extracted with ethyl 

acetate (3 x 20 mL). The combined layers were dried over anhydrous MgSO4. TLC indicated 

mixture of the expected alcohol along with the desilylated alcohol as the major products. 

Without further purification, the mixture was subjected to desilylation using TBAF in THF. 

After workup, the crude mixture was purified using flash chromatography to produce desilylated 

product as a colorless liquid (0.085g, 0.183 mmol, 10%) and colorless viscous liquid (+) 43 

(0.575 g, 1.65 mmol, 89%). 

(S)-2-(2-(2,4-Dimethoxyphenyl)-3-hydroxypropyl)-5-(methoxymethoxy)phenol (+) 43:  

Yield 89%; Colorless viscous liquid, [α]
D
 = + 26.9 (c = 1.0, CHCl3) ; IR (cm

-1
): 3362, 2939, 

2954, 1615, 1588, 1508, 1467, 1292, 1210, 1156 and 1015;
 1

H NMR (400 MHz, Chloroform-d) 

δ 7.14 (d, J = 8.3 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 6.55 – 6.41 (m, 

3H), 5.12 (s, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 3.80 – 3.66 (m, 3H), 3.47 (s, 3H), 3.32 (dt, J = 9.6, 

4.6 Hz, 1H), 3.04 (dd, J = 14.0, 9.6 Hz, 1H), 2.74 (dd, J = 14.0, 4.6 Hz, 1H); 
13

C NMR (101 

MHz, CDCl3) δ 159.5, 157.7, 156.9, 155.8, 131.7, 128.5, 123.4, 119.8, 108.3, 104.5, 104.2, 98.9, 
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94.4, 63.5, 55.9, 55.5, 55.4, 41.3, 30.5; ESI-HRMS: calcd. for C19H25O6 349.1646 [M+H]
+
; 

found 349.1655. 

(R)-2-(2-(2,4-Dimethoxyphenyl)-3-hydroxypropyl)-5-(methoxymethoxy)phenol (-) 43:  

Yield 74%; [α]
D
 = - 24.4 (c = 1.0, CHCl3) ; IR (cm

-1
): 3391, 2939, 2934, 1615, 1588, 1506, 

1290, 1210, 1154, 1015 and 836 ; 
1
H NMR (400 MHz, Chloroform-d) δ 7.15 (d, J = 8.3 Hz, 

1H), 6.89 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 6.57 – 6.42 (m, 3H), 5.13 (s, 2H), 3.84 (s, 

3H), 3.81 (s, 3H), 3.79 – 3.70 (m, 2H), 3.47 (s, 3H), 3.29 (dq, J = 9.3, 4.6 Hz, 1H), 3.04 (dd, J = 

14.1, 9..3 Hz, 1H), 2.73 (dd, J = 14.1, 4.6 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.7, 157.8, 

157.1, 156.0, 131.8, 128.6, 123.5, 119.8, 108.5, 104.8, 104.3, 99.1, 94.6, 63.6, 56.1, 55.6, 55.5, 

41.7, 30.7; ESI-HRMS: calcd. for C19H25O6 349.1646 [M+H]
+
; found 349.1645. 

Mitsnobu cyclization of the dialcohol to produce isoflavan product 

(S)-2-(3-Hydroxy-2-(4-methoxyphenyl)propyl)-5-methoxyphenol (+) 42 (0.1 g, 0.35 

mmol) was dissolved in 5 mL THF, followed by the addition of triphenyl phosphine (0.3 g, 1.15 

mmol) and dropwise addition of diethylazodicarboxylate (0.2 g, 1.15 mmol) at room temperature 

and allowed to stir for 2 h. Then the solvent was removed, purified using flash chromatography 

with 7% ether in hexanes to obtain a colorless viscous liquid (-) 30 (0.059 g, 0.17 mmol, 90 %).  

(S)-7-methoxy-3-(4-methoxyphenyl)chromane (-) 30 [α]
D
 = - 12.2 (c = 0.66, CHCl3); 

1
H NMR 

(400 MHz, Chloroform-d) δ 7.17 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 8.6 

Hz, 2H), 6.49 (dd, J = 8.3, 2.6 Hz, 1H), 6.44 (d, J = 2.6 Hz, 1H), 4.31 (dd, J = 10.6, 2.9 Hz, 1H), 

3.98 (t, J = 10.5 Hz, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.18 (tdd, J = 10.5, 7.1, 3.5 Hz, 1H), 2.99 – 

2.89 (m, 2H).
 13

C NMR (101 MHz, CDCl3) δ 159.1, 158.6, 155.0, 133.4, 130.2, 128.3 (2C), 

114.2 (3C), 107.3, 101.4, 71.1, 55.3, 55.3, 37.9, 31.9; ESI-HRMS: calcd. for C17H19O3 271.1329 

[M+H]
+
; found 271.1339. 
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(S)-3-(2,4-Dimethoxyphenyl)-7-(methoxymethoxy)chromane (+) 57 

(S)-2-(2-(2,4-Dimethoxyphenyl)-3-hydroxypropyl)-5-(methoxymethoxy)phenol (+) 43 (0.07 g, 

0.20 mmol) was dissolved in 2 mL THF, followed by the addition of triphenyl phosphine (0.3 g, 

1.15 mmol) and dropwise addition of diethylazodicarboxylate (0.2 g, 1.15 mmol) at room 

temperature and allowed to stir for 6 h. Then the solvent was removed, purified using flash 

chromatography with 7% ether in hexanes to obtain a colorless viscous liquid (S)-3-(2,4-

Dimethoxyphenyl)-7-(methoxymethoxy)chromane (+) 57 (0.057 g, 0.17 mmol, 86%).  

(S)-3-(2,4-Dimethoxyphenyl)-7-(methoxymethoxy)chromane (+) 57: Yield 86%; [α]
D
 = + 9.2 (c 

= 1.0, CHCl3) ; IR (cm
-1

): 2952, 2933, 1616, 1587, 1506, 1467, 1261, 1208, 1154, 1127, 1033, 

925, 836, 827 and 799; 
1
H NMR (400 MHz, Chloroform-d) δ 7.03 (d, J = 8.3 Hz, 1H), 7.00 (d, J 

= 9.1 Hz, 1H), 6.64 – 6.54 (m, 2H), 6.54 – 6.42 (m, 2H), 5.15 (s, 2H), 4.32 (ddd, J = 10.4, 3.4, 

2.0 Hz, 1H), 4.01 (t, J = 10.2 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.65 – 3.49 (m, 1H), 3.49 (s, 

3H), 3.00 (dd, J = 15.8, 10.8 Hz, 1H), 2.89 (dd, J = 15.7, 3.9 Hz, 1H); 
13

C NMR (101 MHz, 

CDCl3) δ 159.7, 158.3, 156.6, 155.1, 130.2, 127.6, 121.8, 116.1, 108.8, 104.4, 104.1, 98.7, 94.6, 

70.2, 55.9, 55.4 (2C), 31.6, 30.5. ESI-HRMS: calcd. for C19H23O5 331.1545 [M+H]
+
; found 

331.1543. 

(R)-3-(2,4-Dimethoxyphenyl)-7-(methoxymethoxy)chromane (-) 57: Yield 83%[α]
D
 = - 10.6 (c = 

1.0, CHCl3) ; IR (cm
-1

): 2933, 2838, 1618, 1587, 1467, 1384, 1261, 1208, 1154, 1127, 1033, 

1009 and 925; 
1
H NMR (400 MHz, Chloroform-d) δ 7.02 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 9.1 

Hz, 1H), 6.62 – 6.55 (m, 2H), 6.52 – 6.42 (m, 2H), 5.14 (s, 2H), 4.31 (ddd, J = 10.4, 3.5, 2.0 Hz, 

1H), 4.00 (t, J = 10.1 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.63 – 3.49 (m, 1H), 3.48 (s, 3H), 2.99 

(dd, J = 15.7, 10.6 Hz, 1H), 2.88 (dd, J = 15.7, 4.2 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 

159.8, 158.4, 156.7, 155.2, 130.3, 127.7, 122.0, 116.2, 109.0, 104.5, 104.3, 98.9, 94.7, 70.3, 56.1, 
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55.5, 55.5, 31.7, 30.6; ESI-HRMS: calcd. for C19H23O5 331.1545 [M+H]
+
; found 331.1392.  

Deprotection of the isoflavan (-), (+) 30 and (+), (-) 57 product to yield (-), (+) 7, (+), (-) 8. 

(-) 30 (18 g, 66 mmol) was dissolved in pyridine hydrochloride (192 g, 148 mL, 1.66 

mol) and refluxed overnight (at 150 

C) and the reaction mixture was cooled to the room 

temperature. After neutralized with excessive NaHCO3 (aq) and extracted by dichloromethane, 

the crude product was further purified by column chromatography (using 7% ether in hexanes ) 

and dried to produce a colorless crystalline powder (S-equol 7)  

(S)-3-(4-Hydroxyphenyl)chroman-7-ol (S)-(-)-Equol (-) 7 

(-) 4 (14 g, 58.08 mmol, 88%). [α]
D
 = - 19.5 (c = 1.05, MeOH), reported, [α]

D
 = - 13 (c = 0.21, 

EtOH) [159]; 
1
H NMR (400 MHz, Methanol-d4) δ 7.09 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.2 Hz, 

1H), 6.76 (d, J = 8.5 Hz, 2H), 6.33 (dd, J = 8.2, 2.5 Hz, 1H), 6.25 (d, J = 2.5 Hz, 1H), 4.20 (ddd, 

J = 10.5, 3.6, 1.8 Hz, 1H), 3.91 (t, J = 10.5 Hz, 1H), 3.05 (tdd, J = 10.2, 6.0, 3.6 Hz, 1H), 2.93 – 

2.77 (m, 2H).
13

C NMR (101 MHz, MeOD) δ 157.6, 157.3, 156.3, 133.8, 131.2, 129.3 (2C), 

116.4 (2C), 114.6, 109.1, 103.8, 72.2, 39.4, 33.0; ESI-HRMS: calcd. for C15H15O3 243.1016 

[M+H]
+
; found 243.1017. 

(S)-3-(2,4-Dimethoxyphenyl)chroman-7-ol (+) 8  

(S)-3-(2,4-Dimethoxyphenyl)-7-(methoxymethoxy)chromane (+) 57 ( 0.034 g, 0.103 mmol) was 

dissolved in freshly prepared 3 M HCl in methanol (2 mL). After stirring for 30 min, the initial 

suspension turned into clear solution and continued stirring for additional 15 min at room 

temperature. The reaction was cooled to 0 

C, carefully quenched with saturated NaHCO3 

solution. The whole mixture was concentrated under reduced pressure and the resulting mixture 

was purified by flash chromatography  with 10-15% ethyl acetate in hexanes to obtain brown-red 

crystalline solid (25 mg, 0.087 mmol, 89%). 
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(S)-3-(2,4-Dimethoxyphenyl)chroman-7-ol (+) 8: [α]
D
 = + 8.5 (c = 1.0, CHCl3); IR (cm

-1
): 

3363, 2928, 2840, 1508, 1460, 1300, 1210, 1158, 1117, 1033, 840, 799 and 739;
 1

H NMR (400 

MHz, Chloroform-d) δ 7.03 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.55 – 6.43 (m, 2H), 

6.43 – 6.30 (m, 2H), 5.18 (bs, 1H), 4.30 (ddd, J = 10.2, 3.2, 1.9 Hz, 1H), 4.00 (t, J = 10.1 Hz, 

1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.57 (tt, J = 9.8, 5.1 Hz, 1H), 2.97 (dd, J = 15.6, 10.7 Hz, 1H), 

2.86 (dd, J = 15.6, 5.2 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 159.6, 158.3, 155.1, 154.9, 

130.4, 127.5, 121.8, 114.8, 107.9, 104.1, 103.2, 98.7, 70.1, 55.4, 55.3, 31.5, 30.3; ESI-HRMS: 

calcd. for C17 H19 O4 287.1278 [M+H]
+
; found 287.1290. 

(S)-3-(2,4-Dimethoxyphenyl)chroman-7-ol, (R)-Sativan (-) 8: Yield: 88%; [α]
D
 = - 9.5 (c = 1.0, 

CHCl3) Reported= -9.9 (c 0.33, MeOH), MP: 128-129 
o
C [159] ; IR (cm

-1
):3404, 2935, 2838, 

1618, 1460, 1262, 1210, 1158, 1117, 1033 and 838 ; 
1
H NMR (400 MHz, Chloroform-d) δ 7.02 

(d, J = 8.2 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.53 – 6.43 (m, 2H), 6.43 – 6.33 (m, 2H), 5.06 (bs, 

1H), 4.30 (dd, J = 10.3, 1.4 Hz, 1H), 4.00 (t, J = 10.1 Hz, 1H), 3.81 (s, 3H), 3.81 (s, 3H), 3.56 (tt, 

J = 9.8, 4.5 Hz, 1H), 2.97 (dd, J = 15.7, 10.5 Hz, 1H), 2.86 (dd, J = 15.6, 4.5 Hz, 1H); 
13

C NMR 

(101 MHz, CDCl3) δ 159.8, 158.4, 155.3, 155.0, 130.5, 127.7, 122.0, 114.9, 108.0, 104.3, 103.3, 

98.8, 70.2, 55.5, 55.5, 31.7, 30.5; ESI-HRMS: calcd. for C17H19O4 287.1278 [M+H]
+
; found 

287.1290. 
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CHAPTER 5                                                                                                        

OVERALL CONCLUSIONS 

Plants used in the traditional medical systems could beserved as excellent sources to 

identify new chemical entities. With an aim of identifying new bioactive compounds from 

traditional medical systems like Ayurveda, Traditional Chinese Medicine (TCM), three projects 

were completed: 

1. Identification of small molecule phytochemical inhibitors of BoNT/A using Ayurvedic 

literature (Chapter 2). 

2. Identifying the antidiabetic phytochemicals from the TCM plant, Goji (Lycium species) 

(Chapter 3). 

3. Enantioselective synthesis of four bioactive isoflavanas: equol and sativan (Chapter 4). 

By utilizing a symptom-based Ayurvedic literature search, the phytochemicals of fourteen 

plants were tested for their BoNT/A inhibition activities. In silico screening of the 570 

phytochemicals was performed using six reported BoNT/A crystal structures. From the docking 

output, four compounds were selected and 27 other structurally related compounds were 

screened in vitro using HPLC/UPLC-based bioassay. Seven compounds were further tested ex 

vivo using mouse phrenic nerve hemidiaphragm assay (MPNHDA). Initial results of the 

MPNHDA showed that among the seven compounds, acoric acid possessed marginal protection 

again BoNT/A. Modification of the structure of the side arms of acoric acid using rational drug-

design approaches by utilizing the catalytic binding site of BoNT/A could pave  the way for the 
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identification of more active compounds 

To identify new antidiabetic compounds, Goji plant (L. barbarum and L. chinense) was 

used. Preparations made of the root bark of Goji were used traditionally for their antidiabetic 

applications. We screened twenty-seven of the reported phytochemicals in silico using partial 

and full agonist crystal structures (PDB: 2PRG and 3LMP). Docking score and binding pose 

analysis shortlisted five compounds belonging to the tyramine derivative class of compounds 

possessed good binding poses. Twenty-four tyramine derivatives were synthesized and tested 

using PPARγ and PPARα-based luciferase assay. Among the twenty-four tested compounds, 

three compounds posed good PPARγ selectivity when compared to the positive control 

Rosiglitazone. A tyramine derivative enriched extract (21 %) was also prepared using the root 

bark of L. chinense.  Compound 8 and the enriched extract were tested in vivo using diabetic 

db/db mice models of BoNT/A. Results indicated none of these compounds reduced the post-

prandial glucose concentrations. Based on the in vivo results, it is concluded that tyramine 

derivatives may not possess antidiabetic activities and their reported antidiabetic activities (TCM 

uses) could be due to other chemical constituents of the extracts, or acting on targets other than 

PPAR. 

Soy is commonly used in the traditional foods of the eastern countries especially, Japan, where 

the incidence of breast cancer is very low compared to the eastern countries like the USA. 

Isoflavans like S-equol are produced in vivo upon the oxidation of the soy isoflavonoids like 

diadzein, by the gut bacteria. The biological properties of equol and other isoflavans like sativan, 

and vestitol are not yet fully understood, making it necessary to have good amounts of enantio 

pure compounds. Enantioselective synthesis of these isoflavonoids could be useful to produce 

enough quantities for further testing. Using simple five synthetic steps, which utilized Evan’s 
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aldol as the chiral center generating step, R- and S- equol were synthesized at >99% ee with 

overall yields of 33% ,and 27% for (-), (+) equol, and (+), (-) sativan, respectively. 
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SI Table 1. Docking results of the Ayurvedic compounds docked into BoNT/A catalytic site. 

This table shows the first 250 hits including the native ligands and positive controls. 

No Title glide grid file 
docking 
score 

glide 
gscore glide emodel 

glide 
energy 

1 RC1_ 1095321-15-5 
glide-grid_31_3QIY-new-
10-23-2015 -11.2432 -11.265 -145.008 

-
86.886 

2 RC1_ 1095321-15-5 
glide-grid_31_3QIY-new-
10-23-2015 -11.2432 -11.265 -145.008 

-
86.886 

3 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -11.0441 -11.074 -117.043 -54.42 

4 HV1-CKG41-C.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -10.9741 -10.974 -126.739 

-
73.128 

5 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -10.8408 -10.87 -111.494 

-
53.148 

6 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -10.7229 -10.752 -104.403 

-
50.243 

7 RC1_ 1095321-15-5 
glide-grid_31_3QIY-new-
10-23-2015 -10.6787 -12.65 -122.393 

-
67.337 

8 RC1_ 1095321-15-5 
glide-grid_31_3QIY-new-
10-23-2015 -10.6787 -12.65 -122.393 

-
67.337 

9 HV1-135972-64-4.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -10.594 -10.61 -98.482 

-
62.068 

10 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -10.5035 -10.533 -112.814 

-
53.415 

11 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -10.4994 -10.509 -94.618 

-
50.245 

12 HV1-44257976 
glide-grid_31_3QIY-new-
10-23-2015 -10.4386 -10.46 -118.669 

-
72.251 

13 RC1_ 1095321-14-4 
glide-grid_31_3QIY-new-
10-23-2015 -10.3886 -10.41 -109.798 

-
70.235 

14 RC1_ 1095321-14-4 
glide-grid_31_3QIY-new-
10-23-2015 -10.3886 -10.41 -109.798 

-
70.235 

15 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -10.3869 -10.396 -96.373 

-
49.141 

16 
4HEV-prepared-new-10-22-
2015_ligand 

glide-grid_34-4hev-
correct-new-10-23-2015 -10.3421 -10.388 -75.257 

-
30.455 

17 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -10.2474 -10.257 -95.749 

-
50.508 

18 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -10.201 -10.23 -102.728 

-
51.701 

19 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -10.1707 -10.18 -96.71 

-
51.322 

20 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -10.1043 -10.134 -107.397 

-
53.079 

21 HV1-74235-23-7.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -10.0462 -10.11 -98.982 

-
45.701 

22 HV1-212271-12-0.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -10.0287 -10.05 -91.96 

-
64.533 

23 PC1_PL2_1213780-74-5 
glide-grid_36-3qj0-correct-
10-23-2015 -10.0136 -10.014 -99.532 

-
53.989 

24 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -9.84512 -9.875 -100.731 

-
48.286 

25 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -9.77159 -9.801 -98.711 

-
49.574 

26 ZO1_44256715 
glide-grid_31_3QIY-new-
10-23-2015 -9.75884 -9.801 -106.67 

-
69.326 

27 CS2-272441-52-8.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -9.68586 -9.686 -130.262 -80.1 

28 HV1-9799386 
glide-grid_36-3qj0-correct-
10-23-2015 -9.53581 -9.538 -80.303 

-
46.685 
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29 ZO1_MYM60-L 
glide-grid_32-3qiz-
newGrid-10-23-2015 -9.52553 -9.526 -87.822 

-
51.141 

30 HV1-212271-12-0.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -9.46834 -11.46 -107.016 

-
76.528 

31 CD1-75775-36-9.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -9.41986 -9.42 -83.239 

-
52.036 

32 HV1_7073-64-5.cdx 
glide-grid_30-3c8b_new-
10-23-2015 -9.39539 -9.395 -140.947 

-
76.395 

33 FV1_1794427 (Chlorogenic acid) 
glide-grid_36-3qj0-correct-
10-23-2015 -9.32865 -9.336 -89.614 

-
50.985 

34 HV1-162350 
glide-grid_31_3QIY-new-
10-23-2015 -9.322 -9.346 -89.676 

-
54.663 

35 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -9.24961 -9.267 -95.618 

-
60.003 

36 HV1-JTP73-Q.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -9.24475 -9.269 -88.619 

-
59.293 

37 ZO1_Duke_05 
glide-grid_31_3QIY-new-
10-23-2015 -9.20203 -9.202 -84.212 

-
54.626 

38 ZO1_1794427 
glide-grid_36-3qj0-correct-
10-23-2015 -9.19684 -9.204 -88.523 -50.94 

39 FV1_44259215 
glide-grid_31_3QIY-new-
10-23-2015 -9.16344 -9.181 -91.865 

-
60.744 

40 CD1-CRC-JNB98-T.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -9.13141 -9.133 -54.857 

-
28.523 

41 AS1-150226-16-7.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -9.10403 -9.139 -101.617 

-
63.518 

42 CD1-27200-12-0.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -9.06912 -9.132 -77.958 

-
47.426 

43 FV1_5490064 
glide-grid_31_3QIY-new-
10-23-2015 -9.05461 -9.073 -99.97 

-
64.471 

44 RC1_195702-53-5 
glide-grid_31_3QIY-new-
10-23-2015 -9.03342 -9.051 -79.714 -68.85 

45 RC1_195702-53-5 
glide-grid_31_3QIY-new-
10-23-2015 -9.03342 -9.051 -79.714 -68.85 

46 PL1_BJR89-H 
glide-grid_36-3qj0-correct-
10-23-2015 -8.9887 -8.989 -60.276 

-
28.416 

47 HV1-54680783 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.91963 -8.92 -56.144 

-
29.913 

48 HV1-212271-11-9.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.9165 -8.937 -104.207 

-
70.571 

49 ZO1_Duke_19 
glide-grid_31_3QIY-new-
10-23-2015 -8.91471 -8.915 -88.996 

-
61.818 

50 CD1-344363-33-3.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.86445 -8.865 -43.962 

-
25.133 

51 SC1_SR1_905833-45-6 
glide-grid_31_3QIY-new-
10-23-2015 -8.85517 -8.864 -84.354 

-
64.922 

52 AC1-42607660 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.85461 -8.855 -59.237 

-
33.138 

53 HV1-35450-86-3.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.85296 -8.874 -105.304 

-
66.627 

54 HV1-496788-49-9.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.79074 -8.812 -100.955 

-
70.674 

55 ZO1_182227-92-5 
glide-grid_31_3QIY-new-
10-23-2015 -8.78204 -8.782 -92.598 

-
62.458 

56 PC1_PL2_ONF51-X 
glide-grid_31_3QIY-new-
10-23-2015 -8.73471 -8.735 -67.807 

-
34.564 

57 PC1_PL2_25173-72-2 
glide-grid_36-3qj0-correct-
10-23-2015 -8.72686 -8.727 -65.679 -36.79 

58 FV1_6508 
glide-grid_36-3qj0-correct-
10-23-2015 -8.70238 -8.702 -64.527 

-
34.591 

59 RC1_5280863 
glide-grid_31_3QIY-new-
10-23-2015 -8.68964 -8.719 -62.335 

-
41.522 
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60 RC1_5280863 
glide-grid_31_3QIY-new-
10-23-2015 -8.68964 -8.719 -62.335 

-
41.522 

61 CS2-288094-92-8.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.68299 -9.152 -79.967 

-
45.115 

62 HV1-6466 
glide-grid_36-3qj0-correct-
10-23-2015 -8.68123 -8.681 -76.024 

-
40.945 

63 FV1_5318717 
glide-grid_31_3QIY-new-
10-23-2015 -8.637 -8.655 -91.155 

-
59.905 

64 FV1_3469 
glide-grid_31_3QIY-new-
10-23-2015 -8.62922 -8.63 -55.863 

-
27.582 

65 CD1-83728-85-2.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.61079 -8.612 -81.024 -50.93 

66 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -8.56064 -8.578 -96.987 

-
60.085 

67 CS2-529-53-3.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.55945 -8.6 -73.116 

-
51.567 

68 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -8.55482 -8.572 -97.405 -60.24 

69 NSC 84094 
glide-grid_31_3QIY-new-
10-23-2015 -8.54905 -8.688 -64.319 

-
46.057 

70 ZO1_44256715 
glide-grid_31_3QIY-new-
10-23-2015 -8.54783 -10.336 -104.421 

-
65.432 

71 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -8.53056 -8.548 -105.331 

-
62.737 

72 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -8.52118 -8.539 -73.889 

-
54.986 

73 FV1_5280863 
glide-grid_31_3QIY-new-
10-23-2015 -8.44933 -8.478 -61.83 

-
40.947 

74 FV1_441476 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.44049 -8.44 -68.221 

-
35.004 

75 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -8.43637 -8.472 -85.894 

-
54.693 

76 HV1-445858 
glide-grid_31_3QIY-new-
10-23-2015 -8.42794 -8.428 -51.512 

-
26.218 

77 FV1_445858 
glide-grid_31_3QIY-new-
10-23-2015 -8.42794 -8.428 -51.512 

-
26.218 

78 CD1-120019-19-4.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.40488 -8.407 -57.871 

-
33.493 

79 PC1_PL2_41917-45-7 
glide-grid_31_3QIY-new-
10-23-2015 -8.38556 -8.387 -59.86 

-
29.046 

80 CS1-5280805 
glide-grid_31_3QIY-new-
10-23-2015 -8.35134 -8.369 -90.343 

-
60.368 

81 CS1-441476 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.33235 -8.332 -65.801 

-
31.527 

82 CS2-529-53-3 
glide-grid_31_3QIY-new-
10-23-2015 -8.29473 -8.335 -72.264 

-
51.932 

83 CS1-72 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.28371 -8.284 -59.565 

-
28.494 

84 HV1-442530 
glide-grid_29-2ILP_new-
10-23-2015 -8.25516 -8.403 -57.271 -36.1 

85 SC1_SR1_960198-74-7 
glide-grid_29-2ILP_new-
10-23-2015 -8.2547 -8.255 -96.291 

-
63.032 

86 CS2-288094-92-8.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.25284 -8.615 -73.279 

-
39.086 

87 CS2-529-53-3.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.25234 -10.384 -83.13 

-
40.869 

88 CS2-529-53-3 
glide-grid_31_3QIY-new-
10-23-2015 -8.25071 -10.383 -83.972 

-
40.828 

89 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_29-2ILP_new-
10-23-2015 -8.25041 -9.317 -141.523 

-
70.128 

90 HV1-44257976 
glide-grid_31_3QIY-new-
10-23-2015 -8.23377 -10.201 -112.868 

-
69.291 
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91 HV1-69199-37-7.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.23139 -8.372 -81.208 -40.3 

92 AS1-150226-15-6.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.22387 -8.259 -90.883 

-
60.416 

93 RC1_445858 
glide-grid_31_3QIY-new-
10-23-2015 -8.21507 -8.215 -50.47 

-
25.965 

94 RC1_445858 
glide-grid_31_3QIY-new-
10-23-2015 -8.21507 -8.215 -50.47 

-
25.965 

95 HV1-74281-81-5.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.20757 -8.348 -70.736 

-
35.429 

96 HV1-79136-97-3.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.20699 -9.031 -73.031 

-
66.421 

97 HV1-79136-97-3.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.20328 -8.738 -64.722 

-
55.424 

98 SC1_SR1_1068148-58-2 
glide-grid_31_3QIY-new-
10-23-2015 -8.19353 -8.222 -63.159 

-
43.486 

99 3QJ0-prepared-new_ligand 
glide-grid_36-3qj0-correct-
10-23-2015 -8.18619 -8.222 -91.457 

-
59.538 

100 FV1_44258918 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.18618 -8.211 -84.072 -57.09 

101 HV1-5280896 
glide-grid_36-3qj0-correct-
10-23-2015 -8.17129 -8.174 -61.142 

-
33.716 

102 CS2-284486-60-8.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.17014 -8.17 -85.187 

-
60.944 

103 HV1-5165850 
glide-grid_36-3qj0-correct-
10-23-2015 -8.16119 -8.161 -59.115 

-
30.495 

104 AC1-286957-98-0.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.14587 -8.146 -71.456 

-
51.697 

105 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -8.13628 -8.154 -86.549 

-
56.917 

106 CS2-272441-52-8 
glide-grid_31_3QIY-new-
10-23-2015 -8.10422 -8.104 -73.319 

-
68.551 

107 SC1_SR1_130690-19-6 
glide-grid_31_3QIY-new-
10-23-2015 -8.09622 -8.096 -67.62 

-
55.512 

108 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -8.09366 -8.553 -104.929 

-
60.201 

109 SC1_SR1_6159-55-3 
glide-grid_31_3QIY-new-
10-23-2015 -8.08566 -8.115 -50.348 

-
33.487 

110 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -8.07643 -8.442 -97.001 

-
58.326 

111 FV1_7478 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.07231 -8.073 -46.702 

-
22.218 

112 HV1-135972-64-4.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -8.06785 -10.574 -95.074 

-
64.129 

113 AC1-5956-06-9.cdx (acoric acid) 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.06577 -8.066 -56.819 

-
30.785 

114 PC1_PL2_94-53-1 
glide-grid_34-4hev-
correct-new-10-23-2015 -8.06479 -8.065 -49.172 

-
24.087 

115 HV1-73607-09-7.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -8.04973 -8.05 -73.803 

-
41.945 

116 SC1_SR1_PSS18-Z 
glide-grid_31_3QIY-new-
10-23-2015 -8.0208 -8.037 -58.143 

-
39.551 

117 RC1_ 1095321-14-4 
glide-grid_31_3QIY-new-
10-23-2015 -8.01734 -9.989 -113.579 

-
76.323 

118 RC1_ 1095321-14-4 
glide-grid_31_3QIY-new-
10-23-2015 -8.01734 -9.989 -113.579 

-
76.323 

119 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -8.00863 -8.026 -86.604 

-
56.043 

120 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_29-2ILP_new-
10-23-2015 -8.00109 -8.367 -141.341 

-
70.601 

121 CD1-439533 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.98639 -9.463 -85.785 

-
47.874 



 

146 

122 CD1-27200-12-0.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.98507 -9.468 -88.835 

-
49.799 

123 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.97301 -8.339 -90.159 

-
57.871 

124 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.96955 -8.429 -99.983 

-
62.285 

125 CD1-31106-05-5.cdx 
glide-grid_30-3c8b_new-
10-23-2015 -7.96223 -9.439 -106.593 

-
58.448 

126 AS1-12309749 
glide-grid_31_3QIY-new-
10-23-2015 -7.95861 -8.094 -58.823 

-
39.139 

127 HV1-439258 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.93694 -7.937 -63.681 

-
29.858 

128 ZO1_5280863 
glide-grid_31_3QIY-new-
10-23-2015 -7.93111 -7.96 -61.759 

-
41.336 

129 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_30-3c8b_new-
10-23-2015 -7.91267 -8.979 -143.322 

-
68.554 

130 ZO1_6431302 
glide-grid_36-3qj0-correct-
10-23-2015 -7.90271 -7.903 -42.573 

-
26.885 

131 FV1_5280804 
glide-grid_31_3QIY-new-
10-23-2015 -7.8918 -7.91 -83.984 

-
55.566 

132 HV1-189811 
glide-grid_31_3QIY-new-
10-23-2015 -7.87601 -8.009 -67.83 

-
34.508 

133 ZO1_Duke_10 
glide-grid_31_3QIY-new-
10-23-2015 -7.85581 -7.856 -78.683 

-
52.668 

134 SC1_SR1_1000152-08-8 
glide-grid_31_3QIY-new-
10-23-2015 -7.83612 -8.175 -49.352 

-
30.393 

135 CD1-51373-21-8.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.82712 -7.827 -50.848 -25.28 

136 SC1_SR1_32164-04-8 
glide-grid_36-3qj0-correct-
10-23-2015 -7.8132 -7.828 -56.462 -37.7 

137 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.79753 -8.164 -101.644 

-
64.931 

138 FV1_637540 
glide-grid_36-3qj0-correct-
10-23-2015 -7.79307 -7.795 -47.058 

-
24.344 

139 PM1-5281810 
glide-grid_31_3QIY-new-
10-23-2015 -7.77438 -7.801 -81.597 

-
55.442 

140 
3QIZ-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.77143 -7.789 -83.49 

-
55.379 

141 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.77082 -8.23 -95.606 

-
58.337 

142 NSC 84094 
glide-grid_31_3QIY-new-
10-23-2015 -7.76001 -8.76 -69.837 

-
46.236 

143 CD1-57308-24-4.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.75705 -7.757 -56.145 

-
38.158 

144 HV1-212271-11-9.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -7.75119 -9.743 -106.109 

-
64.814 

145 CB 7967495 
glide-grid_31_3QIY-new-
10-23-2015 -7.74581 -7.784 -70.275 

-
45.745 

146 PM2-611-40-5.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.73667 -7.764 -81.84 

-
55.491 

147 SC1_SR1_1040198-26-2 
glide-grid_36-3qj0-correct-
10-23-2015 -7.73586 -7.736 -54.522 

-
33.441 

148 ZO1_Duke_14 
glide-grid_36-3qj0-correct-
10-23-2015 -7.72124 -7.721 -87.276 

-
58.247 

149 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -7.71896 -8.085 -92.678 

-
55.083 

150 AS1-442072 
glide-grid_31_3QIY-new-
10-23-2015 -7.71 -7.835 -48.88 

-
31.977 

151 PL1_HBY78-W 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.70495 -8.26 -57.136 

-
28.786 

152 HV1-5281166 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.7035 -7.704 -57.337 

-
28.569 
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153 FV1_5281166 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.7035 -7.704 -57.337 

-
28.569 

154 CS1-938 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.70288 -7.706 -43.452 

-
21.828 

155 CB 7969312 
glide-grid_31_3QIY-new-
10-23-2015 -7.70063 -7.949 -65.856 

-
44.916 

156 CS2-267892-26-2.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.69216 -7.696 -80.666 -59.48 

157 HV1- 10502-21-3.cdx 
glide-grid_29-2ILP_new-
10-23-2015 -7.68666 -7.689 -98.953 

-
61.552 

158 3QJ0-prepared-new_ligand 
glide-grid_29-2ILP_new-
10-23-2015 -7.68472 -7.72 -83.402 

-
55.483 

159 SC1_SR1_934476-88-7 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.68442 -7.78 -69.427 

-
46.199 

160 SC1_SR1_960198-73-6 
glide-grid_29-2ILP_new-
10-23-2015 -7.68328 -7.683 -98.095 

-
68.566 

161 CD1-CRC-OQM82-L.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.67989 -7.687 -88.492 

-
62.704 

162 CD1-57759-55-4.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.66694 -7.667 -70.221 

-
47.153 

163 HV1-189811 
glide-grid_31_3QIY-new-
10-23-2015 -7.6577 -8.863 -80.853 

-
37.841 

164 CD1-31076-39-8.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.64576 -9.117 -80.871 

-
43.807 

165 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.64391 -8.103 -99.552 

-
63.591 

166 
PM1-
Glutamylmethioninsulfoxide.cdx 

glide-grid_31_3QIY-new-
10-23-2015 -7.63204 -7.632 -69.69 

-
38.724 

167 SC1_SR1_905833-45-6 
glide-grid_30-3c8b_new-
10-23-2015 -7.63177 -10.122 -114.91 

-
63.132 

168 CS2-267892-28-4 
glide-grid_30-3c8b_new-
10-23-2015 -7.62415 -7.624 -87.605 

-
62.862 

169 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.60088 -7.967 -96.712 

-
62.428 

170 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.59863 -8.058 -98.565 

-
58.904 

171 ZO1_Duke_02 
glide-grid_31_3QIY-new-
10-23-2015 -7.59316 -7.593 -86.915 

-
60.931 

172 CS2-222853-11-4.cdx 
glide-grid_30-3c8b_new-
10-23-2015 -7.57271 -7.573 -92.737 

-
65.754 

173 CD1-33788-39-5.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.57142 -9.043 -82.388 

-
45.792 

174 3QJ0-prepared-new_ligand 
glide-grid_29-2ILP_new-
10-23-2015 -7.57002 -7.606 -82.036 

-
54.357 

175 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_31_3QIY-new-
10-23-2015 -7.56556 -8.025 -85.111 -55.27 

176 
ZO1_5280343 (Quercetin 
dihydrate) 

glide-grid_31_3QIY-new-
10-23-2015 -7.56261 -7.592 -70.068 

-
44.723 

177 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.55793 -7.924 -97.439 

-
54.328 

178 
4HEV-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -7.55311 -7.559 -56.123 

-
33.615 

179 HV1-69199-37-7.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.54671 -8.634 -75.502 -38.19 

180 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_30-3c8b_new-
10-23-2015 -7.53896 -7.905 -156.051 

-
83.623 

181 CD1-26294-59-7.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.53739 -7.537 -47.301 

-
33.109 

182 CD1-75513-81-4.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.5256 -9.003 -84.885 

-
47.566 

183 AC1-71609-04-6.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -7.51927 -7.519 -35.808 

-
25.371 
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184 CS2-267892-26-2 
glide-grid_31_3QIY-new-
10-23-2015 -7.51605 -7.518 -71.167 

-
53.491 

185 CD1-33788-39-5.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.50014 -7.552 -67.87 

-
45.758 

186 CD1-65373 
glide-grid_31_3QIY-new-
10-23-2015 -7.49389 -7.494 -73.68 

-
48.888 

187 CD1-5280343 
glide-grid_31_3QIY-new-
10-23-2015 -7.49252 -7.522 -69.334 

-
44.168 

188 ZO1_SID_135265111 
glide-grid_36-3qj0-correct-
10-23-2015 -7.49039 -7.49 -85.796 

-
61.011 

189 FV1_5280343 
glide-grid_31_3QIY-new-
10-23-2015 -7.48647 -7.515 -69.255 

-
44.132 

190 CD1-26920-04-7.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.47956 -7.48 -42.002 

-
31.598 

191 AS1-442072 
glide-grid_36-3qj0-correct-
10-23-2015 -7.46396 -10.429 -79.902 -38.06 

192 CS1-NJP14.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.44958 -7.45 -81.08 -58.72 

193 AS1-12309749 
glide-grid_29-2ILP_new-
10-23-2015 -7.44936 -10.415 -82.953 -38.52 

194 CS1_104154-37-2.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -7.4484 -7.448 -63.246 

-
41.307 

195 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.42853 -7.795 -99.151 

-
57.533 

196 CB 7969312 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.42567 -8.125 -73.631 -41.92 

197 ZO1_65575 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.42033 -7.42 -50.006 

-
34.143 

198 HV1-442530 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.41913 -8.315 -81.904 

-
43.858 

199 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.41033 -7.869 -96.496 

-
57.929 

200 PC1_PL2_23477-80-7 
glide-grid_31_3QIY-new-
10-23-2015 -7.40943 -7.409 -62.883 

-
42.691 

201 HV1_28608-75-5.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.39769 -7.42 -86.853 

-
58.531 

202 HV1- LBD65-H.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.39035 -7.395 -43.814 

-
28.062 

203 CS1-5280804 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.36838 -7.386 -77.506 

-
51.991 

204 ZO1_5317588 
glide-grid_36-3qj0-correct-
10-23-2015 -7.35953 -7.36 -60.058 

-
43.338 

205 ZO1_Duke_06 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.35903 -7.359 -70.854 

-
48.902 

206 CS1-5280343 
glide-grid_31_3QIY-new-
10-23-2015 -7.34859 -7.378 -68.037 

-
44.868 

207 PC1_PL2_20069-09-4 
glide-grid_31_3QIY-new-
10-23-2015 -7.34639 -7.346 -59.144 

-
42.682 

208 AC1-71305-89-0.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.33951 -7.34 -41.588 

-
27.508 

209 AC1-258885-35-7.cdx 
glide-grid_29-2ILP_new-
10-23-2015 -7.33828 -7.338 -81.747 

-
59.637 

210 ZO1_12306047 
glide-grid_31_3QIY-new-
10-23-2015 -7.33565 -7.336 -34.168 

-
24.852 

211 AS1-442072 
glide-grid_30-3c8b_new-
10-23-2015 -7.31776 -8.301 -78.627 

-
45.855 

212 ZO1_44256715 
glide-grid_31_3QIY-new-
10-23-2015 -7.31524 -9.647 -104.97 

-
66.721 

213 CD1-31106-05-5.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.30513 -7.362 -87.95 

-
59.447 

214 ZO1_Duke_04 
glide-grid_31_3QIY-new-
10-23-2015 -7.29093 -7.291 -71.354 

-
50.276 
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215 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.28832 -10.245 -114.446 

-
61.456 

216 SC1_SR1_957477-44-0 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.2812 -7.29 -95.951 

-
69.376 

217 ZO1_Duke_13 
glide-grid_31_3QIY-new-
10-23-2015 -7.27511 -7.275 -81.067 

-
58.981 

218 HV1-69199-37-7.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.26854 -9.033 -84.306 

-
41.123 

219 CD1-3853-83-6.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -7.265 -7.265 -43.556 

-
30.396 

220 SC1_SR1_486-64-6 
glide-grid_31_3QIY-new-
10-23-2015 -7.25897 -7.259 -47.286 -31.44 

221 CD1-85317-74-4.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.25295 -7.253 -82.265 -53.77 

222 PC1_PL2_109771-09-7 
glide-grid_31_3QIY-new-
10-23-2015 -7.24451 -7.348 -56.281 

-
40.261 

223 HV1-74235-23-7.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.24358 -8.636 -82.144 

-
43.369 

224 AC1-211944-25-1.cdx 
glide-grid_29-2ILP_new-
10-23-2015 -7.23863 -7.239 -77.399 

-
59.931 

225 ZO1_SID_135229712 
glide-grid_31_3QIY-new-
10-23-2015 -7.22721 -7.234 -86.543 

-
64.413 

226 ZO1_Duke_11 
glide-grid_31_3QIY-new-
10-23-2015 -7.20988 -7.21 -86.296 

-
61.527 

227 ZO1_120163-17-9 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.20538 -7.205 -76.205 -52.29 

228 HV1-JTP73-Q.cdx 
glide-grid_31_3QIY-new-
10-23-2015 -7.19416 -9.527 -87.959 

-
57.417 

229 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_36-3qj0-correct-
10-23-2015 -7.18911 -7.648 -91.556 -56.44 

230 AC1-5281616 (Galangin) 
glide-grid_31_3QIY-new-
10-23-2015 -7.18884 -7.227 -56.136 

-
38.383 

231 CS1-116408-80-1.cdx 
glide-grid_36-3qj0-correct-
10-23-2015 -7.18839 -7.188 -46.282 

-
30.332 

232 RC1_5281855 
glide-grid_30-3c8b_new-
10-23-2015 -7.18382 -7.249 -75.944 

-
49.662 

233 RC1_5281855 
glide-grid_30-3c8b_new-
10-23-2015 -7.18382 -7.249 -75.944 

-
49.662 

234 CS2- 288094-92-8 
glide-grid_31_3QIY-new-
10-23-2015 -7.17828 -7.647 -62.085 

-
39.414 

235 PC1_PL2_23434-88-0 
glide-grid_31_3QIY-new-
10-23-2015 -7.17633 -7.176 -54.653 

-
38.793 

236 CS2- 288094-92-8 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.17419 -7.536 -69.84 

-
41.625 

237 UP2-942486-48-8.cdx 
glide-grid_29-2ILP_new-
10-23-2015 -7.1741 -9.002 -101.773 

-
56.528 

238 HV1-10153 
glide-grid_29-2ILP_new-
10-23-2015 -7.16243 -7.2 -64.324 

-
42.213 

239 ZO1_5352470 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.14286 -7.143 -42.518 

-
31.973 

240 ZO1_5281775 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.14149 -7.141 -70.84 

-
48.643 

241 HV1-74281-81-5.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.13648 -8.223 -80.517 

-
40.845 

242 CD1-75423-03-9.cdx 
glide-grid_34-4hev-
correct-new-10-23-2015 -7.13568 -7.192 -94.231 

-
65.944 

243 ZO1_86609 
glide-grid_36-3qj0-correct-
10-23-2015 -7.13529 -7.135 -32.058 -22.96 

244 CD1-439533 
glide-grid_30-3c8b_new-
10-23-2015 -7.13312 -7.19 -75.414 

-
50.498 

245 CS2-284486-60-8 
glide-grid_31_3QIY-new-
10-23-2015 -7.12842 -7.128 -78.768 

-
59.748 
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246 FV1_5388319 
glide-grid_30-3c8b_new-
10-23-2015 -7.12331 -7.123 -87.383 

-
57.243 

247 CD1-31076-39-8.cdx 
glide-grid_32-3qiz-
newGrid-10-23-2015 -7.12236 -7.174 -67.05 

-
47.796 

248 PC1_PL2_  42438-80-2 
glide-grid_36-3qj0-correct-
10-23-2015 -7.12227 -7.122 -63.608 

-
45.602 

249 
3C8B-prepared-new-10-22-
2015_ligand 

glide-grid_32-3qiz-
newGrid-10-23-2015 -7.12006 -7.486 -101.269 -61.89 

250 FV1_10212 
glide-grid_36-3qj0-correct-
10-23-2015 -7.11989 -7.12 -56.403 

-
38.473 
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SI Table 2. Docking output of ligands docked in 2PRG with three H-bonding constraints. 

S.No. Title docking score glide gscore 

glide 

emodel glide energy 

  2PRG-Prepared_final-Aligned         

1 Rosiglitazone -10.658 -10.976 -94.121 -57.727 

2 2,4-Thiazolidiinedione_derivative_2PRG -10.534 -10.853 -91.928 -57.731 

3 2,4-Thiazolidiinedione_derivative_2PRG -10.483 -11.03 -97.989 -60.693 

4 Rosiglitazone -9.985 -10.532 -95.823 -60.972 

5 Rosiglitazone -8.992 -11.682 -103.617 -57.688 

6 2,4-Thiazolidiinedione_derivative_2PRG -8.889 -11.58 -101.555 -57.225 

7 Tyramine derivative-44 -8.455 -8.617 -67.754 -49.105 

8 Lyciumide A 24 -8.364 -8.366 -70.924 -50.202 

9 Tyramine derivative-41 -8.182 -8.183 -70.163 -48.207 

10 Anthra quinone derivative-65 -8.034 -8.143 -52.155 -36.113 

11 Kavatin -7.948 -7.948 -50.223 -34.688 

12 Indole deriv-no-glycoside 38 -7.609 -7.609 -45.101 -31.943 

13 Tyramine derivative-43 -7.491 -7.683 -67.43 -50.284 

14 Tyramine derivative-44 -7.311 -8.159 -66.122 -46.477 

15 Pyrrole derivative-27 -7.3 -7.3 -54.497 -34.977 

16 Kukoamine B 46 -7.289 -7.297 -79.353 -63.487 

17 Calystegines-54 -7.12 -7.325 -30.606 -25.299 

18 Pyrrole derivative-28 -6.932 -6.933 -54.151 -35.868 

19 Calystegines-57 -6.893 -7.569 -40.9 -32.298 

20 Calystegines-57 -6.863 -7.095 -36.405 -27.462 

21 Calystegine-47 -6.856 -6.908 -30.046 -24.197 

22 Nicotamine derivative-82 -6.792 -6.824 -52.318 -34.911 

23 Nicotamine derivative-82 -6.575 -6.607 -49.748 -34.99 

24 Calystegines-54 -6.51 -7.245 -28.592 -22.977 

25 1,2-dehydro-a-cyperone 33 -6.485 -6.485 -15.356 -9.433 

26 calystegines-49-related -6.476 -6.585 -35.989 -28.419 

27 Calystegines-48 -6.453 -6.504 -30.421 -25.18 

28 Tyramine derivative-42 -6.221 -6.413 -65.5 -47.974 

29 Tyramine derivative-43 -6.148 -6.911 -63.821 -45.113 

30 Pyrrole derivative-29 -6.112 -6.112 -47.861 -35.934 

31 Solavetivone 32 -5.997 -5.997 -23.107 -13.545 

32 Monoterpene-noglycoside-69 -5.988 -5.988 -20.95 -18.882 

33 Anthra quinone derivative-65 -5.891 -7.805 -49.656 -32.038 

34 Calystegines-48 -5.809 -7.304 -33.827 -25.601 

35 Tyramine derivative-42 -5.699 -6.461 -67.616 -45.641 
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36 Calystegine-47 -5.533 -7.029 -27.796 -20.78 

37 calystegines-49-related -5.398 -6.465 -35.902 -26.825 

38 Nicotamine derivative-82 -5.128 -7.207 -60.306 -34.797 

39 Nicotamine derivative-82 -5.096 -7.174 -57.651 -35.834 

40 Lyciumide A 24 -5.03 -8.546 -71.352 -44.458 

41 Nicotamine derivative-82 -4.592 -6.845 -52.179 -34.085 

42 Nicotamine derivative-82 -4.032 -6.285 -54.502 -34.385 

43 Pyrrole derivative-27 -3.792 -7.914 -53.041 -38.26 

44 Kukoamine B 46 -3.742 -7.178 -73.408 -64.157 

45 Pyrrole derivative-28 -3.501 -7.624 -53.522 -38.736 

46 Kukoamine B 46 -1.696 -9.114 -102.072 -71.699 

47 Nicotamine derivative-82 8.801 -7.313 -64.823 -45.822 

48 Nicotamine derivative-82 9.178 -6.936 -60.687 -42.312 

49 Nicotamine derivative-82 19.772 -7.513 -63.329 -43.463 

50 Nicotamine derivative-82 19.821 -7.464 -62.939 -40.961 

51 Nicotamine derivative-82 19.997 -7.288 -60.272 -48.342 

52 Nicotamine derivative-82 20.188 -7.097 -62.333 -47.989 

53 Nicotamine derivative-82 20.236 -7.049 -67.836 -46.529 

54 Nicotamine derivative-82 20.408 -6.877 -62.016 -48.43 

55 Nicotamine derivative-82 20.658 -6.627 -61.007 -44.181 

 

SI Table 3. Docking output of ligands docked in 3LMP without hydrogen-bonding constraints. 

S. No Title 

Potential 

Energy-OPLS-

2005 docking score glide gscore 

glide 

emodel glide energy 

  3LMP_Partial-agonist           

1 Farglitazar-like-90percent_SI 154.152 -9.085 -9.085 -81.369 -51.252 

2 Rosiglitazone 81.414 -8.561 -9.107 -71.857 -49.164 

3 

2,4-

Thiazolidiinedione_derivative_2PRG 82.787 -8.555 -9.101 -71.822 -49.165 

4 Kavatin 112.682 -8.191 -8.191 -53.522 -35.611 

5 Tyramine derivative-44 62.657 -8.114 -8.276 -64.076 -44.977 

6 Tyramine derivative-41 28.923 -8.091 -8.093 -71.852 -49.177 

7 

2,4-

Thiazolidiinedione_derivative_2PRG 102.485 -8.079 -8.398 -68.35 -47.17 

8 Rosiglitazone 101.803 -8.07 -8.388 -68.837 -46.928 

9 Cercosporamide-Der_3LMP 199.69 -7.944 -10.112 -83.195 -55.686 

10 Kukoamine B 46 99.934 -7.574 -7.583 -89.978 -63.05 

11 Lyciumamide 40 65.832 -7.519 -7.519 -64.014 -48.271 

12 Lyciumide A 24 90.259 -7.473 -7.476 -67.361 -46.465 
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13 Tyramine derivative-44 61.248 -7.341 -8.19 -63.752 -43.398 

14 Indole deriv-no-glycoside 38 21.648 -7.142 -7.142 -39.614 -28.758 

15 1,2-dehydro-a-cyperone 33 14.267 -7.122 -7.122 -33.679 -24.423 

16 Anthra quinone derivative-65 94.547 -7.016 -7.125 -59.105 -40.397 

17 Cercosporamide-Der_3LMP 203.596 -6.945 -7.489 -84.496 -58.348 

18 Aurantiamide acetate 39 23.176 -6.808 -6.808 -67.431 -49.977 

19 Tyramine derivative-43 46.325 -6.735 -6.927 -61.788 -45.728 

20 Diterpene derivative 67 156.715 -6.507 -6.508 -47.194 -34.57 

21 Solavetivone 32 138.913 -6.495 -6.495 -19.482 -20.286 

22 Pyrrole derivative-27 28.095 -6.494 -6.494 -44.757 -30.597 

23 Cercosporamide-Der_3LMP 265.536 -6.442 -6.9 -73.552 -53.71 

24 Withanolide A 79 447.515 -6.407 -6.407 -70.408 -53.321 

25 Pyrrole derivative-28 38.307 -6.262 -6.262 -44.334 -32.087 

26 Tyramine derivative-42 72.069 -6.256 -7.019 -61.38 -42.015 

27 Cercosporamide-Der_3LMP 284.258 -6.182 -7.849 -89.223 -57.884 

28 Tyramine derivative-43 44.393 -6.16 -6.923 -61.658 -43.241 

29 Rosiglitazone 83.12 -6.137 -8.827 -71.533 -49.353 

30 Cercosporamide-Der_3LMP 217.183 -6.032 -7.782 -86.791 -57.928 

31 

2,4-

Thiazolidiinedione_derivative_2PRG 83.684 -5.981 -8.672 -73.469 -48 

32 Tyramine derivative-42 72.22 -5.888 -6.08 -51.389 -38.236 

33 (+)-Lyoniresinol-no-glycoside 64 183.871 -5.879 -5.879 -27.237 -28.014 

34 Kukoamine B 46 90.116 -5.621 -9.566 -113.219 -70.39 

35 Anthra quinone derivative-65 90.116 -5.583 -6.827 -57.507 -38.897 

36 Calystegines-54 230.398 -5.561 -5.766 -44.546 -26.331 

37 Pyrrole derivative-29 42.866 -5.56 -5.56 -45.763 -34.545 

38 Cercosporamide-Der_3LMP 196.413 -5.548 -7.716 -75.865 -53.098 

39 Calystegine-47 206.388 -5.545 -5.597 -40.628 -24.421 

40 Calystegines-48 179.715 -5.506 -5.557 -41.498 -24.895 

41 Nicotamine derivative-82 24.442 -5.401 -5.432 -53.906 -32.157 

42 Monoterpene-noglycoside-69 172.531 -5.339 -5.339 -17.608 -15.559 

43 Calystegines-57 269.287 -5.311 -5.542 -40.137 -29.592 

44 Nicotamine derivative-82 -2.895 -5.301 -5.333 -49.652 -31.565 

45 calystegines-49-related 188.191 -5.284 -5.393 -39.125 -23.091 

46 Calystegines-57 251.591 -5.279 -5.955 -47.279 -27.663 

47 Cercosporamide-Der_3LMP 220.414 -5.159 -9.282 -87.688 -57.373 

48 Anthra quinone derivative-65 89.261 -5.114 -7.028 -54.893 -37.069 

49 Calystegines-54 213.208 -5.004 -5.74 -36.941 -26.063 

50 calystegines-49-related 186.285 -4.567 -5.635 -34.569 -24.404 

51 Lyciumide A 24 87.747 -4.399 -7.915 -65.857 -43.813 
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52 Calystegines-48 160.11 -4.349 -5.845 -33.259 -23.722 

53 Calystegine-47 190.735 -4.312 -5.808 -34.313 -23.953 

54 Farglitazar-like-90percent_SI 156.246 -4.122 -8.653 -84.647 -55.607 

55 Kukoamine B 46 94.605 -3.962 -7.399 -90.461 -57.009 

56 Nicotamine derivative-82 35.633 -3.206 -5.46 -49.428 -33.102 

57 Nicotamine derivative-82 9.387 -3.183 -5.261 -42.291 -30.267 

58 Nicotamine derivative-82 7.553 -3.162 -5.415 -47.839 -32.93 

59 Kukoamine B 46 78.431 -3.082 -6.54 -92.368 -58.114 

60 Nicotamine derivative-82 36.938 -2.694 -4.773 -39.723 -28.689 

61 Kukoamine A 45 56.277 -2.319 -5.548 -81.743 -58.802 

62 Pyrrole derivative-27 38.238 -2.145 -6.267 -45.946 -33.383 

63 Pyrrole derivative-28 48.293 -1.741 -5.864 -47.519 -35.828 

64 Kukoamine B 46 85.33 -1.654 -9.072 -109.676 -73.565 

65 Kukoamine B 46 74.725 -0.595 -7.711 -105.945 -65.928 

66 Kukoamine A 45 50.74 -0.387 -7.082 -87.283 -61.037 

67 Kukoamine B 46 75.023 3.109 -7.868 -84.237 -60.106 

68 Kukoamine B 46 76.882 7.322 -7.098 -81.495 -55.485 

69 Nicotamine derivative-82 83.197 10.577 -5.537 -65.668 -41.656 

70 Nicotamine derivative-82 59.037 10.983 -5.131 -66.049 -43.525 

71 Nicotamine derivative-82 80.449 20.723 -6.562 -59.62 -46.428 

72 Nicotamine derivative-82 88.587 20.992 -6.293 -72.712 -46.947 

73 Nicotamine derivative-82 75.886 21.336 -5.949 -64.208 -43.364 

74 Nicotamine derivative-82 53.819 21.509 -5.776 -65.083 -43.568 

75 Nicotamine derivative-82 81.133 21.637 -5.648 -61.017 -42.467 

76 Nicotamine derivative-82 66.503 21.919 -5.366 -66.506 -44.407 

77 Nicotamine derivative-82 78.958 22.048 -5.237 -58.91 -39.809 
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SI Spectral Data 1. Spectral data of tryaminederivatives 01, 08, 10. 

 
1
H NMR of 01 

 
13

C NMR of 01 
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SI Spectral Data 2. Synthesis of the starting material-aldehydes: 46, 47 and 53. 

 
IR spectrum of compound 46 

 
ESI-HRMS of compound 46 
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1
H NMR spectrum of 53. 

 
IR spectrum of compound 53 
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ESI-HRMS of 53 
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SI Spectral Data 3. Spectral data of the compounds for synthesis of S-(-)-Equol 7. 
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IR spectrum of compound (-) 26 
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ESI-HRMS of compound (+) 44 
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IR spectrum of compound (+) 54 
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ESI-HRMS of compound (+) 54 
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H NMR spectrum of compound (+) 55 
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C NMR spectrum of compound (+) 55  

 
IR spectrum of compound (+) 55 
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ESI-HRMS of compound (+) 55  
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ESI-HRMS of compound (-)-30 
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H NMR spectrum of compound S-Equol (-)-7 
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SI Spectral Data 4. Spectral date of the compounds for Synthesis of R-Equol. 
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IR spectrum of compound (+) 26 

 

ESI-HRMS of compound (+) 26
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IR spectrum of compound (-) 44 

 
ESI-HRMS of compound (-) 44 
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IR spectrum of compound (-) 54 

 
ESI-HRMS of compound (-) 54
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IR spectrum of compound (-) 55 

 
ESI-HRMS of compound (-) 55 
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ESI-HRMS of compound (-) 42 
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SI Spectral Data 5. Spectral data of the compounds for synthesis of S-Sativan 
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IR spectrum of compound (-) 48 

 
ESI-HRMS of compound (-) 48 
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H NMR spectrum of compound (+) 45 
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IR spectrum of compound (+) 45 

 
ESI-HRMS of compound (+) 45 
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IR spectrum of compound (+) 56 

 
ESI-HRMS of compound (+) 56 
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H NMR spectrum of compound (+) 43 
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IR spectrum of compound (+) 43 

 
ESI-HRMS of compound (+) 43 
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13C NMR spectrum of compound (+) 57 



 

198 

 
IR spectrum of compound (+) 57 

 
ESI-HRMS of compound (+) 57 
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H NMR spectrum of compound (+) 8 
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IR spectrum of compound (+) 8 

 
ESI-HRMS of compound (+) 8  
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SI Spectral Data 6. Spectral data of the compounds for synthesis of R-Sativan 8. 
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IR spectrum of compound (+) 48 
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IR spectrum of compound (-) 45 
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IR spectrum of compound (-) 56 

 
ESI-HRMS of compound (-) 56 
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IR spectrum of compound (-) 43 

 
ESI-HRMS of compound (-) 43 
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IR spectrum of compound (-) 57 

 
ESI-HRMS of compound (-) 57 
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IR spectrum of compound (-) 8 

 
ESI-HRMS of compound (-) 8 
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