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ABSTRACT 

PRIYA CHETAN SANIPARA: Characterization of a Plasmid-Based DNA Vaccine for 

Simian Immunodeficiency Virus (Under the direction of Dr. Wayne L. Gray) 

 

 

 Described as one of the world’s worst pandemics, HIV (Human 

Immunodeficiency Virus) infects millions of people each year and is the cause for AIDS 

(Acquired Immunodeficiency Syndrome). Despite the development of vaccines for 

numerous infectious diseases such as polio, small pox, and influenza, a vaccine for HIV 

remains elusive due to the virus’s high mutation rate and ability to evade the immune 

system. HIV causes depletion of CD4+ lymphocytes, resulting in a weakened immune 

system. However, the development of a plasmid-based DNA vaccine approach may help 

revolutionize vaccine development for HIV due to its ability to confer cellular and 

humoral immunity through T-cells and antibodies, respectively. The already constructed 

pVAX1 plasmid’s small size and multiple cloning sites make it an effective vector for the 

development of a plasmid-based DNA vaccine for HIV. In this experiment, a gene 

sequence for SIV (Simian Immunodeficiency Virus) proteins inserted into the pVAX1 

plasmid was transfected into an African green monkey kidney cell line (Vero cells) for 

expression of SIV proteins. 

 HIV and AIDS research aims to contribute to the development of prevention and 

treatment strategies for this disease. The research in this thesis focuses on 

characterization of a plasmid-based DNA vaccine expressing rev, tat, and nef (Retanef) 

proteins for SIV using restriction endonuclease analysis, PCR, immunofluorescence, and 
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western blotting. The specific aims for this thesis include: evaluating the presence of the 

Retanef gene sequence inside pVAX-RTN, and analyzing the expression of the Retanef 

protein in vitro. This study showed that transfection of pVAX-RTN into Vero cells 

resulted in successful expression of the Retanef protein. Detection of the Retanef protein 

by SIV positive monkey sera also showed positive results, further proving that Retanef is 

expressed inside Vero cells via the pVAX-RTN plasmid.  

 The results acquired in this experiment will contribute towards HIV vaccine 

research by using SIV as the experimental model for HIV. The results acquired in this 

research supports the use of early regulatory proteins in SIV vaccines and will be 

contribute towards successfully creating an effective HIV vaccine in the future.  

  

 

  

 

 

 

 

 

 

  

 

 

 

 

 



vii 
 

TABLE OF CONTENTS 

LIST OF FIGURES……………………………………………………………………..viii 

LIST OF ABBREVIATIONS……………………………………………………………ix 

INTRODUCTION………………………………………………………………………..1 

 

CHAPTER 1: BACKGROUND ON HIV/AIDS…………………….…………………...3 

   Origin and Emergence of HIV/AIDS..……….……………………………………….4 

   Viral Transmission………………………………….…………………………………5 

   Viral Structure…………………………………………………………………………6  

   Viral Replication……………….………………………………………………………8 

   Illness and Symptoms………………………………………….………………………8 

   Diagnosis…………………………/…………………………………………………….9 

   Treatment and Prevention……………………………….…………………………..11 

 

 

CHAPTER 2: BACKGROUND ON PLASMID-BASED DNA VACCINES………….13 

   Background………………………………………………………………………...…13 

   DNA Vaccines for HIV…………………………………………………….…………14 

   Specific Aims for This Experiment………………………………………………….15 

 

 

CHAPTER 3: METHODS……………………………………………………………….17 

   Restriction Endonuclease Analysis of pVAX-RTN and PCR analysis of RTN...…18 

   Detection of SIV-Retanef Protein in Vero Cells via Immunofluorescence………..19 

   Identification of SIV-Retanef Protein via Western Blotting………………..……...22 

   Western Blotting using SIV Positive Serum……………………….………………..24 

 

RESULTS………………………………………………………………………..………25 

 

CONCLUSION…………………………………………………………………………..34 

 

APPENDIX………………………………………………………………………………36 

 

BIBLIOGRAPHY………………………………………………………………..………38 

 

 

 

 

 

 



viii 
 

LIST OF FIGURES 

 

 

FIGURE 1: Structure of HIV genome and Retanef Sequence …………………………...7 

 

FIGURE 2: Structure of the pVAX1 vector……………………………………………..18 

 

FIGURE 3: Sequence of samples prior to performing SDS-PAGE……………………..24 

 

FIGURE 4: Gel electrophoresis of pVAX-RTN clones 1 and 2 cut with BamHI…….....26 

 

FIGURE 5: PCR data using RTN forward and reverse primers…………………………26 

 

FIGURE 6: Gel electrophoresis of pVAX-RTN clone 1 PCR products using forward  

and reverse primers………………………………………………………………………28 

 

FIGURE 7: Gel electrophoresis of pVAX-RTN clone 2 PCR products using forward  

and reverse primers…………………………………………………………………...….29 

 

FIGURE 8: Immunofluorescence analyses of Vero cells transfected with pVAX-RTN 

clones 1 and 2………………………………………………………………………….…30 

 

FIGURE 9: Western Blot of pVAX-RTN clones 1 and 2 using anti-HA-1 antibody and 

HRP-conjugated anti-mouse antibody………………………………………………...…32 

 

FIGURE 10: Western Blot of pVAX-RTN clones 1 and 2 using SIV positive and SIV 

negative monkey sera………………………………………………………………….…33 

 

FIGURE A-1: Gene sequencing results for pVAX-RTN clone 1………………………..36 

 

FIGURE A-2:Gene sequencing results for pVAX-RTN clone 2…………………...……37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF ABBREVIATIONS 

 

 

1°                              Primary  

2°                           Secondary 

AIDS                      Acquired Immunodeficiency Syndrome 

BSA                        Bovine Serum Albumin 

𝐶𝑂2                         Carbon Dioxide  

CMV                       Cytomegalovirus  

DAPI                       4′,6-diamidino-2-phenylindole 

EBV                        Epstein Barr Virus 

FITC                       fluorescein isothiocyanate 

HIV                         Human Immunodeficiency Virus 

HIV-1                     Human Immunodeficiency Virus Type 1  

HIV-2                     Human Immunodeficiency Virus Type 2  

kDa                         Kilodalton 

MHC                      Major Histocompatibility Complex 

𝜇𝑔                          Microgram 

𝜇𝐿                          Microliter 

NIH                        National Institutes of Health 

PBS                        Phosphate Buffered Saline 

PCP                        Pneumocystis carinii pneumonia 

PCR                        Polymerase Chain Reaction 

PVDF                     Polyvinylidene fluoride 

RTN                       Retanef 

RT-PCR                 Reverse Transcription Polymerase Chain Reaction 



x 
 

SDS-PAGE            Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SIV                        Simian Immunodeficiency Virus 

SIVcpz                    Chimpanzee Strain of SIV 

SIVgor                   Gorilla Strain of SIV 

SIVgsn                   Greater-spot Nosed Monkey Strain of SIV   

SIVmac251          Macaque Strain of SIV 

SIVrcm                   Red-capped Mangabey Strain of SIV 

SIVsmm                 Sooty Mangabeys Strain of SIV



1 
 

 

 

 

 

INTRODUCTION 

 

              Throughout history, ever since the first humans spread across the world, 

outbreaks of infectious disease have been common. Only a few of these outbreaks have 

been able to reach a pandemic level, such as smallpox, bubonic plague, and the Spanish 

flu. As scientists developed a better understanding of disease transmission and 

mechanism of action, many of these diseases were eradicated or prevented from 

occurring again by means of proper sanitation, prevention, and treatment. Over the years, 

the development of vaccines has better prepared us to face diseases and the challenges 

they bring. However, creating a vaccine involves an incredible amount of time and effort, 

and new diseases are accompanied with their own unique challenges. Discovered in the 

1980s, HIV (Human Immunodeficiency Virus) has become a pandemic, infecting 

millions of people around the world. Without treatment, HIV weakens the immune 

system and progresses to AIDS (Acquired Immunodeficiency Syndrome), which leaves 

the affected individual vulnerable to opportunistic infections. Effective treatments for 

HIV only maintain the viral particles at a manageable level; the affected individual has to 

live with HIV for the rest of their life. The development of a vaccine for HIV is crucial to 

slowing the spread of this disease and preventing new infections. The research conducted 

in this thesis will contribute towards vaccine development in the global fight against 

HIV/AIDS.  

              This project uses SIV (Simian Immunodeficiency Virus) as a model for HIV for 

the characterization of a plasmid-based DNA vaccine. A previously constructed plasmid 
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containing the gene sequence for SIV early regulatory (rev and tat) and accessory (nef) 

proteins was analyzed for expression in African green monkey kidney cells (Vero cells). 

The features of the vaccine were analyzed using various lab techniques as follows: 

       -  Restriction endonuclease analysis was used to determine the size of the Retanef 

gene sequence within the plasmid.  

       -  PCR and gel electrophoresis was used to determine the orientation of the Retanef 

gene sequence within the plasmid. 

       -  Immunofluorescence was used to determine the expression and localization of the 

desired Retanef protein within the transfected Vero cells.  

       -  Western Blotting was used to identify the protein within the transfected Vero cells.  

 Characterizing this vaccine and evaluating the expression of the desired antigen within 

Vero cells will contribute towards the possibility of using this vaccine in trials using non-

human primate models.  
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CHAPTER 1: BACKGROUND ON HIV/AIDS 

 

In 1981, the Centers for Disease Control and Prevention’s Morbidity and 

Mortality Weekly report first described Acquired Immunodeficiency Syndrome (AIDS) 

in five homosexual men diagnosed with an opportunistic infection of Pneumocystis 

carinii pneumonia in California (De Cock et al., 2011). The disease was also later 

identified in heterosexual individuals receiving blood products and babies born to 

infected mothers (Piot & Quinn, 2013). Although the causative agent was yet to be 

identified, preventative methods based on risk groups and modes of transmission were 

already being implemented. Since the discovery of the Human Immunodeficiency Virus 

(HIV) in 1983 as being the etiologic agent for AIDS, public health organizations have 

made many advances in treatment, screening, and prevention of AIDS. Despite these 

efforts, a vaccine for HIV is not yet available, and AIDS remains one of the world’s 

worst pandemics (De Cock et al., 2011).  

As of 2018, there were 37.9 million people in the world living with AIDS, with an 

average of 1.7 million new infections occurring each year. However, only 21% of those 

individuals had access to HIV testing, and only 62% had access to antiretroviral therapy. 

The majority of individuals affected by this disease are from low or middle-income 

countries that do not have access to proper HIV prevention and treatment. HIV testing 

and treatment are crucial to preventing the progression to AIDS and ending transmission 

of the virus. Despite these setbacks, AIDS-related deaths had decreased from 1.2 million 
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in 2010 to 770,000 in 2018. With more efforts to increase access in resource-poor 

countries and investment in HIV/AIDS research by the NIH, more progress is being made 

towards more effective treatments and a cure (“Global HIV/AIDS Overview”). 

 

Origin and Emergence of HIV/AIDS 

 AIDS is caused by the human immunodeficiency virus (HIV), a Lentivirus in the 

family Retroviridae that is closely related to simian immunodeficiency virus (SIV). There 

are two types of HIV (HIV-1, HIV-2), and each one is thought to have originated via 

cross-species infection of a simian precursor from non-human primates to humans. The 

African green monkey was the first species to be found infected with SIV. Non-

pathogenic to the host species, SIV primarily infects monkeys and is species-specific 

(Sharp & Hahn, 2011).  However, the virus is pathogenic if it infects a non-host species. 

For example, chimpanzees may have acquired 𝑆𝐼𝑉𝑐𝑝𝑧  via a recombination event resulting 

from cross-species transmissions of SIVs by two different monkey species. Greater spot-

nosed monkeys are the natural reservoir for 𝑆𝐼𝑉𝑔𝑠𝑛, and red-capped mangabeys are the 

natural reservoir for 𝑆𝐼𝑉𝑟𝑐𝑚. Chimpanzees may have acquired these two SIVs by 

predation which resulted in the two viruses recombining to form a virus capable of also 

infecting humans, 𝑆𝐼𝑉𝑐𝑝𝑧. This virus then evolved to HIV-1 as a result of host adaptation. 

Although similar in structure, HIV-1 and HIV-2 differ in their evolutionary pathways and 

pathogenicity. HIV-2 is less pathogenic and is closely related to 𝑆𝐼𝑉𝑠𝑚𝑚, a virus naturally 

infecting West African sooty mangabeys. In a similar cross-species transmission event, 

HIV-2 is thought to have originated by humans getting infected with 𝑆𝐼𝑉𝑠𝑚𝑚, and the 

virus adapting to the host to form HIV-2 (Sharp & Hahn, 2010). Surprisingly, there is 
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also evidence of cross-species transmission of SIV between chimpanzees and gorillas, 

resulting in 𝑆𝐼𝑉𝑔𝑜𝑟. Scientists have yet to discover how this virus was transmitted because 

gorillas are herbivores (Sharp & Hahn, 2010). 

 Additionally, each type of HIV has multiple sub-types resulting from independent 

cross-species transmission events. The sub-types of HIV-1 include group M, N, O, and P, 

with M being the pandemic form and accounting for the majority of AIDS cases. Group 

O and N are less prevalent than group M, and infections involving these subtypes are 

mainly found in Cameroon. Group P is even less prevalent; the virus was only found in 

two individuals from Cameroon. Less likely to progress to AIDS and with lower 

transmission rates, HIV-2 consists of groups A and B (Sharp & Hahn, 2011).  

 

HIV Viral Transmission 

 HIV is primarily transmitted through exposure to infected bodily fluids or blood 

via injured skin or mucosa. This can be through blood transfusions, organ transplants, 

sexual intercourse, breastmilk, childbirth, or contaminated needles (German Advisory 

Committee Blood, 2016). However, since the majority of HIV cases are the result of 

transmission via sexual intercourse, HIV is classified as a sexually transmitted disease 

(STD) (Sharp & Hahn 2011). Although less common, HIV is also transmissible by 

contact with an infected person’s saliva to open legions and bite injuries. The chances of 

infection increase if the infected individual’s virus titers are higher. Additionally, 

pregnant women can transmit the infection to the baby during the last trimester or earlier, 

depending on viral titers. Although HIV could be considered a zoonotic disease in the 

early part of the 20th century, it is currently only transmissible between humans. 
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Therefore, HIV is not transmitted via animal vectors; it is also not spread by food or 

water (German Advisory Committee Blood, 2016). 

 

HIV Viral Structure  

 HIV has many key proteins that assist in viral entry, and it is important to 

understand their function before discussing pathogenesis. HIV is 100 nm in diameter and 

is composed of an outer lipid bilayer, which functions as the envelope and assists the 

viral particle with entry into the host cell. The envelope of the virus contains spikes 

formed by trimers of a surface protein (gp120), which are attached to the membrane by 

trimers of a transmembrane protein (gp41). The inner viral capsid is composed of a 

capsid protein (p24), and the outer capsid membrane is assembled by a matrix protein 

(p17). The core of the virus contains two single-stranded RNA molecules with enzymes 

that assist in viral replication. Additional regulatory and accessory proteins such as rev, 

tat, nef, vif, vpr, and vpu contribute to viral production and pathogenicity (German 

Advisory Committee Blood, 2016). The HIV genome and structure of SIV-Retanef is 

shown in Figure 1.  
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(A) 

 

(B)  

Figure 1 – Structure of SIV genome and Retanef Sequence - (A) – Structure of SIV 

Genome – The structure and organization of reading frames encoding the genes for the 

various structural and regulatory proteins. Notice that the rev and tat are composed of 

two gene regions. (B) - Structure of RTN sequence - Schematic representation of the 

chimeric Retanef protein. C: carboxy terminus of the protein; N: amino terminus. The 

sequences for rev and tat were separated and rearranged to disrupt the functionality of 

these two proteins. A partial sequence for tat was inserted between the two separated nef 

sequences to prevent nef from rearranging itself back to its pathogenic form. Figure A is 

adapted from, “New Strain of Simian Immunodeficiency Virus Identified in Wild-Born 

Chimpanzees from Central Africa” - Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/The-Amplification-strategy-and-the-genome-

structure-of-the-new-SIVcpz-identified_fig7_230865090 [accessed 28 Apr, 2020]Figure 

B is adapted from ‘A novel chimeric Rev, Tat, and Nef (Retanef) antigen as a component 

of an SIV/HIV vaccine,” by Zdeněk Hel, Julie M. Johnson, Elzbieta Tryniszewska, Wen-

Po Tsai, Robert Harrod, Jake Fullen, JimTartaglia, and Genoveffa Franchini, 2002, 

Vaccine, 20, 3174.  
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HIV Viral Replication  

 HIV targets CD4+ T cells and gains entry by attaching to the CD4+ receptor on 

the surface of these cells (Naif, 2013). This internalization occurs via the surface protein, 

gp120. This action triggers a series of conformational changes that assist in viral 

attachment to the host cell. The virus is then able to bind to a chemokine co-receptor, 

which triggers an irreversible conformational change that results in the formation of a 

pore by gp41. The subsequent fusion of the viral envelope to the plasma membrane 

releases the viral capsid into the cytoplasm of the host cell (Simon et al., 2006). In the 

cytoplasm, the virus uses its reverse transcriptase to transcribe its RNA genome into 

proviral DNA. Finally, the proviral DNA is transported to the nucleus and integrated into 

the host cell genome via an integrase., establishing latency. HIV viral reverse 

transcriptase has no proofreading activity, which causes additional mutations in the 

proviral DNA. These mutations lead to viral particles with variant genomes that are able 

to evade the immune system, resulting in a sustained infection (German Advisory 

Committee Blood, 2016).  

 

HIV Illness & Symptoms  

 HIV is a chronic infection that causes a depletion of CD4+ lymphocytes, which 

leads to a weak immune system resulting in a variety of non-specific symptoms. During 

the initial symptomatic phase, which lasts 2-6 weeks, infected individuals will show non-

specific symptoms similar to EBV or CMV induced mononucleosis. More serious 

symptoms can include aseptic meningitis, meningismus, and photophobia. Individuals 

may also present with early symptoms including lymphadenopathy, or oral 
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manifestations such as leukoplakia, thrush, or periodontal disease. Viral titers are highly 

infectious during this time. However, during the asymptomatic period, the virus enters a 

latent period, and the majority of patients will not show signs or symptoms until years 

after exposure to HIV. Even though viral titers are low during the asymptomatic period, 

individuals may still unknowingly spread the disease. Since there is a broad range of 

early signs and symptoms, physicians must be vigilant in assessing patient history and 

risk factors to recognize an HIV infection before it manifests into AIDS.   (Miedzinski, 

1992).  

 If left untreated, HIV can cause significant CD4+ cell depletion that can lead to 

AIDS within 10 years from initial infection (German Advisory Committee Blood, 2016). 

This weakened immune system leaves the body susceptible to opportunistic infections 

such as Pneumocystis carinii pneumonia (PCP), which is an indicating factor for AIDS. 

Additionally, patients can contract tuberculosis, which can be fatal in 

immunocompromised individuals. Neurologic effects include AIDS dementia complex, 

which occurs in 60% of AIDS cases. These diseases are the indirect result of an HIV 

infection, and many deaths occur due to the secondary opportunistic infections caused by 

a weakened immune system. Another sign that is indicative of AIDS is Kaposi’s 

sarcoma, a malignant cancer that causes nodules on mucous membranes, or any organ 

(Miedzinski, 1992). 

 

HIV Diagnosis  

During the initial asymptomatic phase, infected individuals will not show any 

symptoms. Due to this reason, the early recognition ofpotential infections are made by 
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assessing the patient’s risk factors such as intravenous drug use, sexual contact, or 

exposure to blood products. During this phase, a test for the p24 HIV core antigen can be 

conducted in the early stages if the assessment of risk factors forms enough evidence to 

suspect an infection (Miedzinski,1992). Primary screening for HIV occurs by testing for 

antibodies against the virus or detecting the virus. Antibody or antigen detection by using 

a serological test is more commonly used because it is rapid and can be done on various 

bodily fluids such as plasma, blood, or saliva. However, these tests are not effective when 

the virus is in the latent phase because no antibodies are present. Babies born to mothers 

who are infected will have maternal HIV antibodies, and a test may result in a false-

positive. In these situations, the viral DNA in the host’s genome has to be detected using 

RT-PCR (Simon et al., 2016). Current methods of HIV antibody are sensitive enough to 

detect the virus within 1-2 weeks of infection, which allows the individual early access to 

treatment and prevents further transmission of HIV (Zulfiqar et al., 2017).  

In order to determine the severity of the infection and progression towards AIDS, 

physicians have to determine the stage of the disease by measuring CD4+ cell count and 

plasma viral load using flow cytometry. Other symptoms associated with opportunistic 

infections are also evaluated. The time between specimen collection and laboratory 

assays should be minimal, so dried blood samples are used to counteract problems 

associated with the transportation of specimens. However, communities, where resources 

are limited, need more cost-effective methods for analysis such as dipstick assays, total 

white-counts, or CD4+ chips (Simon et al., 2006). 
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HIV Treatment and Prevention  

The current treatments for HIV do not eradicate the virus. Instead, the treatments 

help prevent the progression of HIV to AIDS and HIV infection to high-risk individuals. 

Initially, HIV was treated with only one antiretroviral drug. As the development and 

discovery of HIV drugs increased to include various inhibitors of HIV essential enzymes, 

more drugs started to be used in combination. This combination drug therapy became 

known as HAART (highly active antiretroviral therapy). The main goal of this therapy is 

to increase the strength of the immune system by reducing viral load and increasing 

CD4+ T lymphocytes (Zulfiqar et al., 2017). This treatment is effective in controlling 

viral multiplication and prolongs the asymptomatic stage of the infection resulting in 

lower risk of transmission and progression to AIDS (Bhatti et al., 2016). Because HIV 

manifests various symptoms in different individuals, the drug combinations are modified 

according to the patient. Normally, HAART involves a combination of three drugs, 

which can include reverse transcriptase inhibitors, protease inhibitors, fusion inhibitors, 

chemokine receptor 5 antagonists, or integrase transfer inhibitors. Each of these drugs 

targets viral entry, integration of viral DNA into the host’s genome, or the production and 

assembly of the virus. HAART is recommended for all HIV patients regardless of the 

CD4+ lymphocyte count, and adherence to the regimen is recommended to prevent drug 

resistance and viral rebound (Bhatti et al., 2016). 

HIV can be prevented by avoiding high-risk behaviors such as intravenous drug 

use, multiple sexual partners, and unprotected sex. For high-risk individuals, another 

option is pre-exposure prophylaxis (PrEP), which is used in uninfected individuals before 

potential exposure to HIV. This treatment prevents HIV infection by inhibiting viral 
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replication once the virus enters the body, and it prevents HIV from establishing a 

permanent infection. Truvada, which is a combination of two drugs, is usually the drug of 

choice for PrEP (Marfatia et al., 2017). When taken consistently, PrEP is an effective 

way to prevent new HIV infections (Eakle et al., 2018). Post-exposure prophylaxis (PEP) 

is used in emergencies after exposure to potentially HIV infected individuals or needles. 

PEP should be used within 2 to 72 hours of HIV exposure for maximum efficacy and 

continued for 28 days post-exposure. PrEP and PEP are useful treatments for the 

prevention of HIV infection when used correctly and consistently (Marfatia et al., 2017).  
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CHAPTER 2: PLASMID-BASED DNA VACCINES 

 Current vaccination strategies involve using vaccines containing live, attenuated 

viruses, killed pathogens, or viral subunits. Killed pathogens provide immunity through 

the humoral response by mobilizing CD4+ lymphocytes; however they do not provide 

permanent immunity. Live, attenuated vaccines provide both cellular and humoral 

immunity, and they provide life-long immunity. However, there are disadvantages to live, 

attenuated vaccines as well. A live, attenuated vaccine only targets a specific viral 

subtype, therefore it is not effective against a virus with multiple subtypes. Additionally, 

the degree of attenuation affects the strength of the immune response. There is also the 

risk of an attenuated vaccine recovering virulence and causing disease. Due to these 

limitations, scientists were driven to develop new vaccination strategies such as DNA 

vaccines (Ferraro et al., 2011).  

Background  

 DNA vaccines became of interest in 1990, when it was discovered that plasmid 

DNA could induce immune responses to viral and nonviral antigens. Initial clinical trials 

included DNA vaccines against HIV, influenza, human papillomavirus, hepatitis, and 

malaria. However, these first generation DNA vaccines produced low CD4+ and CD8+ 

lymphocyte responses resulting in poor immunogenicity. This low immunogenicity was 

hypothesized to be from inefficient plasmid delivery methods. Following these results, 
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many improvements were made to optimize transfection efficiency, which led to the 

development of second-generation DNA vaccines (Ferraro et al., 2011).  

 In contrast to the conventional vaccines, DNA vaccines contain genes for a 

particular antigen rather than the antigen itself. This way, the protein produced by the 

gene sequence can be introduced into the MHC class 1 processing pathway for 

presentation to CD8+ lymphocytes. With DNA vaccines for HIV, the viral RNA is 

converted to DNA, which is then inserted into a bacterial plasmid. This plasmid is then 

introduced into a bacterial vector where it can be used as a vaccine and be administered 

intramuscularly. After administering the vaccine, the plasmid is taken up by the cell’s 

nucleus, where the promoter will initiate transcription, which is followed by protein 

production. These proteins mobilize T cells and antibodies that will destroy the virus. 

Since these proteins are created inside the cell, they are also exposed to different antigen 

processing pathways that involve MHC class I molecules, thus expanding vaccines to 

include cellular responses as well as humoral responses (Donnelly et al., 2005).  

 

DNA Vaccines for HIV 

 Developing a vaccine against HIV produces several unique challenges. The 

conserved receptor and co-receptor bindings sites that assist in viral attachment are 

covered in a glycosylated residue, which allows the virus to evade antibodies. 

Additionally, HIV is able to integrate into the host’s genome and become latent, which 

allows the virus to escape the immune system. The high error rate of the reverse 

transcriptase has resulted in at least 12 viral subtypes, adding to the challenge of creating 

a universal vaccine (Gira et al., 2004).  
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Due to the high mutation rate and the complex nature of HIV, an effective vaccine 

for HIV requires cellular and humoral responses. Several vaccine trials have tested the 

heterologous prime-boost method, which combines a DNA-based and viral-based vaccine 

with a recombinant protein vaccine (Ferraro et al., 2011). The addition of a DNA vaccine 

induces a broader T-cell response, which is important in combating an infection that 

primarily infects helper T-cells (Donnelly et al., 2005). Currently, a trial determining the 

safety of an DNA vaccine containing HIV genes for gag, pol, and env is underway 

(Ferraro et al., 2011).  

 

Specific Aims for this Experiment  

 This experiment involves using pVAX, a plasmid approved for use in developing 

DNA vaccines, with the gene sequence for SIV proteins. This gene sequence is 

collectively called Retanef, and is composed of genetically modified and re-assorted 

sequences for rev, tat, and nef proteins. These three proteins are expressed early in the 

viral life cycle, and their recognition may increase the elimination of infected cells by the 

immune system. The frequency of T-cell recognition of these three proteins was also 

shown to be higher than reverse transcriptase, env gp41, and gp120 proteins. The Rev 

protein contributes to viral replication, and the Tat protein down-regulates MHC class II 

proteins while promoting T-cell apoptosis. Tat also transactivates multiple genes that may 

contribute to the development of AIDS-related tumors. Nef is especially important to 

pathogenicity because it down-modulates MHC class I surface proteins, which 

contributes to viral evasiveness to the immune system by protecting virus-infected cells 

from apoptosis. Partially deleted Nef protein is able to re-arrange itself back into a 
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pathogenic form. By including the sequence for the Nef protein in this vaccine, 

recognition of the infected cells may occur before Nef down-modulates the MHC class 1 

surface proteins and allow the immune system to clear the infected cells. The effect of 

these early regulatory genes on the host’s MHC molecules indicates the importance for 

their inclusion in a vaccine that aims to increase immune T-cell response (Hel et al., 

2002).  

 The structure of the Retanef coding sequence contains rev, tat, and nef  SIV gene 

sequences. The rev and tat sequences are split into two segments to disrupt their 

functionality. The C-terminal part of the tat sequence is placed in between the C-terminal 

and N-terminal part of the nef sequence. The nef sequence was separated by the tat 

sequence to prevent the recombination of nef into its pathogenic form.  An HA-tag was 

attached to C-terminal end of the entire sequence to facilitate the detection of the protein 

using antibodies. These details can be seen in Figure 1. 
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CHAPTER 3: METHODS 

 
The methods in this thesis were used to qualitatively characterize a previously 

constructed pVAX1(Thermo-Fisher Scientific) vector (Figure 2) with SIV-retanef 

proteins using PCR (Polymerase Chain Reaction), immunofluorescence, and western 

blotting. The pVAX1 vector is specifically constructed for use in the development of a 

DNA vaccine. The plasmid vector is 3.0kb in size with a CMV(cytomegalovirus) 

promoter, which ensures a high level of expression in various mammalian cells. The 

plasmid vector has multiple unique cloning sites, however, the SIV-retanef gene has been 

inserted near the BamH1 restriction site, making it the point of interest in this study. SIV 

–retanef has been constructed by re-assortment of the rev, tat, and nef open-reading 

frames of SIV. There is also an HA (hemagglutinin) tag that has been inserted at the end 

of the SIV-retanef gene sequence for antibody detection during immunofluorescence or 

western blotting. There are two pVAX1-RTN (pVAX1-Retanef) clones that have been 

previously constructed with the SIV-retanef gene sequence in opposite orientations to the 

CMV promoter. The experiments conducted in this thesis analyze the orientation of the 

SIV-retanef gene in these two clones via PCR and successful expression of the protein by 

transfection into African green monkey kidney cells, also called Vero cells. The 

expression of the protein was analyzed by using immunofluorescence and western 

blotting.  
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Figure 2- Structure of the PVAX1 vector – This figure shows the gene for Kanamycin 

resistsance, the location of the CMV promoter inside the pVAX1 vector., and the BamH1 

restriction site. The size of the plasmid is 3.0 kb , and the size of the RTN protein is 1.486 

kb or 55kDa.(https://www.thermofisher.com/order/catalog/product/V26020#/V26020) 

 

Restriction Endonuclease Analysis of pVAX-RTN and PCR analysis of RTN  

 

 

 A restriction digest using BamHI, a restriction endonuclease, was used to isolate 

the gene sequence with SIV-retanef from the rest of the plasmid for pVAX-RTN clones 1 

and 2. Five 𝜇𝐿 of pVAX-RTN clone 1 was added to an eppendorf tube along with two 

𝜇𝐿 of CutSmart buffer, 1 𝜇𝐿 of BamHI, and 12 𝜇𝐿 of distilled water. This process was 

repeated for pVAX-RTN clone 2, and the two tubes were added to a water bath at 37℃ to 

cut overnight.  

https://www.thermofisher.com/order/catalog/product/V26020#/V26020
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 The following day, both pVAX-RTN clones were loaded onto a trisborate gel 

with a molecular weight ladder for gel electrophoresis. After completion, the gel was 

observed under an  imager, which allowed visualization of results by showing the size of 

the cut pVAX vector and the SIV-retanef gene sequence in each of the two clones.  

 In order to determine the orientation of the SIV-retanef gene sequence, a PCR 

with forward and reverse primers for SIV-Retanef was conducted for both pVAX-RTN 

clones. Three PCR tubes were used with tube 1 containing,  pVAX-RTN clone 1, CMV 

primer sequence, and a reverse RTN primer. Tube 2 contained pVAX-RTN clone 1, 

CMV primer sequence, and a forward RTN primer. Tube 3 contained pVAX-RTN clone 

2, reverse RTN primer, and a forward RTN primer. The amount of DNA and primer 

sequences used in each tube was 2 𝜇𝐿. All three tubes contained 25 𝜇𝐿 of the Bio Taq 

mix, and 19 𝜇𝐿 of distilled water. A PCR was run on each tube, and this was repeated for 

pVAX-RTN clone 2.  

 

Detection of SIV-Retanef Protein in Vero Cells via Immunofluorescence  

 Before starting the protocol for immunofluorescence, both pVAX-RTN clones 

were sent for gene sequencing to Eurofins, which verified the presence of a gene 

sequence of an HA tag for 1° antibody (Appendix A). The sequence also verified that the 

gene sequence inserted into the pVAX plasmid in both clones was indeed SIV-Retanef. 

Next, pVAX-RTN clones 1 and 2 were transfected into Vero cells using the Superfect 

reagent (Invitrogen) before observation under a Zeiss microscope using the 

immunofluorescence settings.  
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 It is important to mention that before deciding to use a 4-well permanox chamber 

slide to transfect the Vero cells, a 96-well plate and 8-well chamber glass slide were also 

used. However, observation under a microscope using a 96-well plate did not produce 

conclusive results. The 8-well chamber glass slide resulted in the infected Vero cells 

peeling off the slide before antibody detection could occur. After trial and error, a 4-well 

permanox chamber slide produced successful adherence of infected Vero cells.  

A 4-well permanox chamber slide was seeded to confluence with the outer two 

chambers having 40,000 and 60,000 cells each. The two middle chambers had 50,000 

cells each. All chambers were filled with 500 𝜇𝐿 of cell media and placed in a 𝐶𝑂2 

incubator. The chamber with 40,000 cells was used as negative control for cell 

transfection, therefore it was not transfected with the either pVAX-RTN clone. Since 

pVAX-RTN clone 1 could not express the SIV-retanef protein because the gene sequence 

was oriented in the backwards direction, it was used as a negative control for protein 

expression and only added to one chamber with 50,000 cells. The last two chambers with 

50,000 and 60,000 cells, respectively, were used for pVAX-RTN clone 2, which had the 

SIV-retanef gene sequence in the forwards direction.  

 The following methods explain the protocol for one chamber as per the 

manufacturer’s directions for Superfect. Firstly, Optimem was used to dilute 1 𝜇𝑔 of the 

plasmid DNA to a total volume of 60𝜇𝐿. The concentration of plasmid DNA for clone 1 

and 2 was 0.5𝜇𝑔/𝜇𝐿 each, so a 2𝜇𝐿 solution of each was used to obtain 1𝜇𝑔 of plasmid 

DNA. Next, 5𝜇𝐿 of Superfect was added to the plasmid DNA and optimum solution and 

mixed. This mixture was incubated at room temperature for 5-10 minutes. While the 

plasmid DNA-superfect complex formation was taking place, the growth medium was 
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aspirated from the 4-well permanox chamber slides. The cells in the chamber slide were 

washed once with 300𝜇𝐿 of 5% PBS. After adding and mixing 350𝜇𝐿 of cell media 

without trycine to the plasmid DNA-Superfect complexes, the total volume was 

transferred to the chamber slide. The cells with the transfection complexes were 

incubated for 3 hours at 37℃ in a 𝐶𝑂2 incubator. Afterward, the medium with remaining 

transfection complexes was removed, and the cells were washed once with 350𝜇𝐿 PBS. 

Finally, 500𝜇𝐿 of cell media was added to the cells before incubating at 37℃ in a 𝐶𝑂2 

incubator for at least 48 hours.  

 After the incubation time was complete, the cells were fixed onto the slide in 

preparation for visualization using antibodies. After the cell media was removed from 

each chamber, 500 𝜇𝐿 of 4% paraformaldehyde was added to each chamber and 

incubated for 20 minutes at room temperature. Next, the paraformaldehyde was removed, 

and the cells were permeabilized with 500 𝜇𝐿 of 0.2% triton x-100 for 10 minutes at 

room temperature. The triton x-100 was removed before adding 500 𝜇𝐿 per chamber of 

1% BSA in PBS to block the cells overnight in the fridge at 4℃. 

 Next, the blocking buffer was removed from the cells, and the antibody dilutions 

were prepared. The 1° antibody used was an HA-tag monoclonal antibody designed to 

identify and adhere to the hemagglutinin tag on the expressed SIV-retanef protein. A 

1:100 dilution was made with this antibody and 1% BSA in PBS before adding 100 𝜇𝐿 to 

each chamber. The cells were then incubated for 2 hours at room temperature. After the 

1° antibody dilutions were removed and the cells washed four times with 1X PBS, the 2° 

antibody dilutions were prepared using a goat anti-mouse antibody conjugated to FITC. 

All of the steps involving the 2° antibody were conducted in the dark due to the FITC 
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label’s sensitivity to light. The 2° antibody  was diluted in a 1:1000 ration using 1% BSA 

in PBS, and the cells were incubated with 100 𝜇𝐿 of this dilution for 1 hour. After 

removing the 2° antibody and washing the cells again with 1X PBS, the cells’ nuclei 

were stained with DAPI for 5-10 minutes. Lastly, the cells were washed again with 1X 

PBS after removing DAPI. The chamber walls were removed, and the slide was prepped 

with 70% glycerol and a coverslip for observation under the Zeiss scope for 

immunofluorescence.  

 Identification of SIV-Retanef Protein via Western Blotting 

 Vero cells were transfected with pVAX-RTN clones 1 and 2, and the protein 

expressed by the SIV-retanef gene was isolated and identified using western blotting. 

Vero cells were seeded in two 25𝑐𝑚2 flasks. One flask was seeded with 16 × 105 cells, 

and transfected with pVAX-RTN clone 1. Another flask was seeded with 8 × 105 cells 

and transfected with  pVAX-RTN clone 2. The same Superfect transfection protocol was 

used to transfect the cells with the measurements adjusted according to the size of the 

flasks. 

 After transfection, the cells in each flask were solubilized with 500𝜇𝐿 of a 1:10 

mixture DTT and protein solubilization buffer. The solubilized cells were transferred to 

separate tubes and placed in boiling water for 5 minutes. Next, the cells in both tubes 

were centrifuged for 5 minutes at 21,000xg  in preparation for an SDS-PAGE, a common 

procedure used to separate proteins based on mass. The protein samples and molecular 

weight ladder were run on a 10% tris-glycine gel for 75 minutes at 100V and 60mA. The 

order that the proteins and molecular weight ladder were loaded is shown in Figure 3.  
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 After separating the proteins on a gel, the samples were transferred to a PVDF 

membrane for antibody detection. Before starting the western blot, the blotting sponges 

and filter paper were soaked in 1X transfer buffer. The PVDF membrane was soaked in 

methanol for 30 seconds and washed with distilled water for 3-5 minutes. After the SDS-

PAGE ended, the gel sandwich was assembled by putting the PVDF membrane on the 

gel. Afterward, the filter paper was added to the gel and the PVDF side of the sandwich. 

The blotting sponges were then placed on each side of the sandwich, covering the filter 

paper. This sandwich was then clamped inside a cassette, and the blotting transfer was 

run for 75 minutes at 20V and 180mA. After the transfer was complete, the PVDF 

membrane was washed with distilled water two times for 5 minutes each.  

 Before starting the chemiluminescence immunoassay, the PVDF membrane with 

the samples was washed with 100% methanol for a few seconds and washed with 

distilled water. Then, the membrane was blocked overnight in 5% blotto blocking buffer 

at 4℃. The next day, the 1° antibody was diluted 1:200 in 5% blotto blocking buffer. The 

primary antibody used was the HA-tag anti-mouse monoclonal antibody, and the 

membrane was incubated with this antibody at room temperature for 3 hours on a 

gyratory shaker. Afterward the 1° antibody was removed, and the membrane was washed 

with 1X PBS five times for 5 minutes each. Next, a 1:1000 dilution of 2° antibody and 

5% blotto blocking buffer was placed on the membrane and incubated for 1 hour at room 

temperature on a gyratory shaker. The 2° antibody used was an HRP (horse radish 

peroxidase) conjugated goat-anti-mouse antibody. Next, the membrane was washed with 

1X PBS five times for 5 minutes each. Next, a 1:1 solution of luminol and peroxide 

substrate was added to the membrane for 5 minutes to react with the horse radish 



24 
 

peroxidase enzyme, which emits light and is detectable by the Biorad Chemidoc Imager. 

The “high resolution” program was used to expose the membrane to light for five 

seconds, capturing an image every second.  

 

Figure 3 - Sequence of samples prior to performing SDS-PAGE. Molecular weight 

ladder was always loaded before loading pVAX-RTN clones 1 and 2. This PVDF 

membrane provided 3 blots, 2 of which were used in a later experiment with other 

antibodies.  

 

Western Blotting using SIV positive monkey serum 

 The remaining blots from the previous western blot were used to do a 

chemiluminescence immunoassay using SIV positive serum from a monkey challenged 

with the macaque strain of SIV (SIVmac251) as the 1° antibody, and the 2 ° antibody was 

HRP-conjugated anti-monkey. SIV negative monkey serum was used as the 1° antibody, 

and the same 2 ° antibody was used. The same methods for a chemiluminescence 

immunoassay were followed, as mentioned in the Methods for western blotting.  
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RESULTS 

Restriction Endonuclease Analysis of pVAX-RTN 

The purpose of restriction endonuclease analysis of pVAX-RTN was to confirm 

the presence of the gene encoding Retanef in the BamH1 restriction site. After cutting the 

pVAX-RTN clones 1 and 2 with BamH1 restriction endonuclease and running the 

resulting samples on a trisborate gel, the results showed two bands. The 3.0kb band 

indicates the larger remaining sequence from the cut pVAX-RTN plasmid. The 1.5kb 

band indicates a shorter sequence within the BamH1 restriction site on the pVAX 

plasmid. These results shown in Figure 4 confirm that the Retanef gene sequence was 

inserted into the BamH1 restriction site on pVAX-RTN clones 1 and 2.  
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                MW          1            2 

 

Figure 4 – Gel electrophoresis of pVAX-RTN clones 1 and 2 cut with BamHI. A 

molecular weight ladder was loaded before the pVAX-RTN clones. After cutting each 

clone with BamHI, the samples were loaded onto a trisborate gel for electrophoresis. 

Lane 1 contains pVAX-RTN clone 1, and lane 2 contains pVAX-RTN clone 2.  

 

pVAX-RTN clone 1 – Backwards Orientation 

 CMV Primer                    RTN Rev Primer                                     RTN Fwd Primer                     

                                                                            poly-A-RTN 

 

pVAX-RTN clone 2 – Forwards Orientation 

  CMV Primer                   RTN Fwd Primer                                    RTN Rev Primer 

                                                                           RTN-poly-A                      

 
Figure 5 – PCR data using RTN forward and reverse primers. The figure above 

shows the orientation of the RTN forward and reverse primers for PCR analysis. The 

purpose of the PCR was to determine the orientation of the RTN gene sequence relative 

to the CMV promoter. The sequence in the backwards orientation was used as the 

negative control.  

 

 

Cut pVAX plasmid – 3.0kb 

Cut RTN sequence – 1.5kb 

CMV promoter 

CMV promoter 

STOP 

ATG                      

ATG 

STOP 
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PCR analysis of SIV-RTN in pVAX-RTN 

 

 PCR was conducted to confirm that the 1.5kb gene sequence in pVAX-RTN 

clones 1 and 2 is the gene sequence for SIV-RTN. The use of RTN specific primers 

during PCR produced results that confirmed that the 1.5kb gene sequence inside clones 1 

and 2 is SIV-Retanef. These results are shown in Lane 3 in Figures 6 and 7 where the 

forward and reverse RTN primers were used. The results in Lane 3 in Figures 6 and 7 

confirm that the 1.5kb sequence is RTN in pVAX-RTN clones 1 and 2.  

The RTN sequence inserted into the pVAX plasmid can be in the forwards or 

backwards orientation with respect to the CMV promoter. A PCR analysis with the 

specific combination of the primer for the CMV promoter, forward RTN primer, and 

reverse RTN primer was used to determine the orientation of the RTN sequence inside 

each clone. After running a PCR with specific RTN primers, and the specific pVAX-

RTN clone, the resulting samples were run on a trisborate gel. Figure 6 shows the results 

for pVAX-RTN clone 1. Lanes 1 and 2 contained the experimental samples while lane 3 

contained forward and reverse RTN primers. The results for the PCR sample in lane 1 

with pVAX-RTN clone 1, CMV primer, and  reverse RTN primer were inconclusive. 

Lane 1 does not have a definitive band throughout the gel. Lane 2 contains the PCR 

results for pVAX-RTN clone 1, CMV primer, and the forward primer; this lane shows a 

definitive band, which indicates that using a forward primer results in a successful 

amplification of pVAX-RTN clone 1. Lane 3 contains both forward and reverse primers 

for RTN, and the results show a clear band. The results shown in Figure 6 in Lane 2 and 

Lane 3 indicate that the RTN sequence in pVAX-RTN clone 1 is backwards relative to 

the CMV promoter, and the 1.5kb sequence in clone 1 is the sequence for Retanef, 
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respectively. Therefore, pVAX-RTN clone 1 was used as a negative control for further 

experiments involving the expression of the Retanef protein. The orientation of the CMV 

primer, forwards RTN primer, and backwards RTN primer can be seen in Figure 5. Prior 

to doing PCR, the pVAX-RTN clones 1 and 2 were sent to Eurofins for gene sequencing, 

and these results also confirmed that the 1.5kb sequence is the sequence for Retanef 

(Appendix A).  

 

MW      1         2         3 

 

Figure 6 – Gel electrophoresis of pVAX-RTN clone 1 PCR products using forward 

and reverse primers. A molecular weight ladder was loaded before the pVAX-RTN 

clone 1 PCR products. Lane 1 contains the PCR products of pVAX-RTN clone 1, CMV 

primer, and the reverse RTN primer. Lane 2 contains the PCR products of pVAX-RTN 

clone 1, CMV primer, and forward RTN primer. Lane 3 is the positive control with the 

PCR products of pVAX-RTN clone 1, reverse RTN primer, and forward RTN primer.  

         

 

The PCR results for pVAX-RTN clone 2 show conclusive results which can be 

seen in Figure 7. Lane 1 contains the PCR results for pVAX-RTN clone 1, reverse primer 

for RTN, and a CMV primer. This lane shows a clear band indicating that the reverse 

primer resulted in a successful amplification of pVAX-RTN clone 2. Lane 2 contains the 

forward primer, CMV primer, and pVAX-RTN clone 2. This lane does not have a clear 

band, which indicates the forward primer did not result in successful amplification of 

pVAX-RTN clone 2. Lane 3 is a positive control that contains both forward and reverse 
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primers, and the results show a clear band indicating successful amplification of pVAX-

RTN clone 2. The results shown in Figure 7 in Lane 2 and Lane 3 indicate that the RTN 

sequence in pVAX-RTN clone 2 is forwards, and the 1.5kb sequence in clone 2 is the 

sequence for Retanef, respectively.  

 

         MW    1         2      3 

 

Figure 7 – Gel electrophoresis of pVAX-RTN clone 2 PCR products using forward 

and reverse primers. A molecular weight ladder was loaded before the pVAX-RTN 

clone 1 PCR products. Lane 1 contains the PCR products of pVAX-RTN clone 2, CMV 

primer, and the reverse RTN primer. Lane 2 contains the PCR products of pVAX-RTN 

clone 2, CMV primer, and forward RTN primer. Lane 3 is the positive control with the 

PCR products of pVAX-RTN clone 2, reverse RTN primer, and forward RTN primer.  

 

Detection of SIV-Retanef Protein in Vero Cells via Immunofluorescence  

After transfecting the pVAX-RTN clones into Vero cells, the expression of RTN 

protein inside Vero cells was observed using immunofluorescence. The transfected cells 

were stained with DAPI to analyze the location of the nuclei. Anti-HA-1 antibodies were 

the 1° antibody and used to localize the Retanef protein, and antibodies tagged with FITC 

were the 2° antibody and used to visualize the location of the 1° antibody. Vero cells 

transfected with pVAX-RTN clone 1and Vero cells transfected with pVAX-RTN clone 2 

both showed viable cells when stained with DAPI. However, cells stained with FITC and 
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pVAX-RTN clone 1 did not fluoresce. The immunofluorescence results for Vero cells 

stained with FITC and transfected with pVAX-RTN clone 2 showed localization of the 

Retanef protein as indicated by the green fluorescence. These results shown in Figure 8 

confirm that the transfection of pVAX-RTN clone 2 into Vero cells results in the 

successful expression of Retanef protein. The transfection of pVAX-RTN clone 1 into 

Vero cells does not produce Retanef protein. This was the expected result for pVAX-

RTN clone 1 because it was used as the negative control.  

       

 

 

 

 

     pVAX-RTN clone 1 w/DAPI             pVAX-RTN clone 1 w/FITC 

 

 

 

 

 

 

 

 

     

       pVAX-RTN clone 2 w/DAPI          pVAX-RTN clone 2 w/FITC 

 

Figure 8 – Immunofluorescence analyses of Vero cells transfected with pVAX-RTN 

clones 1 and 2. The nuclei were stained with DAPI (blue fluorescence). The Retanef 

protein was stained with anti-HA-1 antibody and FITC-conjugated goat anti-mouse 

antibody (green fluorescence). Localization of the Retanef protein and stained nuclei of 

the cell is indicated with a white pointer arrow.  
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 Identification of SIV-Retanef Protein via Western Blotting   

 Western Blotting was used to confirm further that the protein identified during 

immunofluorescence was Retanef. Vero cells transfected with pVAX-RTN clones 1 and 

2 were solubilized, and the proteins were separated on a SDS-PAGE. After transferring 

the proteins to a PVDF membrane, the protein of interest was identified using antibodies 

in a chemiluminescence immunoassay. The 1° antibody used was a anti-HA-1 antibody, 

and the 2° antibody used was an HRP-conjugated antibody. Lane 1 was the negative 

control and contained proteins isolated from Vero cells transfected with pVAX-RTN 

clone 1, and the results did not indicate the presence of the Retanef protein. Lane 2 

contained the experimental group which contained proteins isolated from Vero cells 

transfected with pVAX-RTN clone 2. This lane contained a definitive band around 

55kDa, the estimated size of the Retanef protein. These results shown in Figure 9 indicate 

that the protein isolated from Vero cells transfected with pVAX-RTN clone 2 reacts to 

the anti-HA-1 antibody. Since the antibody can only identify the HA-tag on the Retanef 

protein and not the protein itself, this experiment can only definitively confirm the 

presence of the HA-tag. The next experiment further proves that the protein identified is 

Retanef.  
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       MW     1       2 

 
Figure 9 – Western Blot of pVAX-RTN clones 1 and 2 using anti-HA-1 antibody and 

HRP-conjugated anti-mouse antibody. Lane 1 has pVAX-RTN clone 1 as the negative 

control. Lane 2 contains pVAX-RTN clone 2 and is the experiemental group. There is a 

band around 55 kDa in lane 2; this is similar to the size of the Retanef protein.  

 

 

Western Blotting using SIV monkey serum  

  

  

 Serum from monkeys infected with SIV was used to confirm the identity and 

analyze the humoral response produced by the protein isolated from the transfected Vero 

cells. SIV positive monkey serum was used against both clones, and the results are shown 

in Figure 10 (A). SIV negative monkey serum was also used against both clones as a 

negative control, and the results are shown in Figure 10 (B). Again, Vero cells transfected 

with pVAX-RTN clone 1 were used as the negative control for the expression of RTN 

protein, and the results for both SIV positive and SIV negative monkey serum showed no 

indication of the Retanef protein. Vero cells transfected with pVAX- RTN clone 2 

reacted with SIV positive monkey serum, and the results are indicated by a 55kDa band 

found in lane 2 of Figure 10 (A). Vero cells transfected with pVAX-RTN clone 2 

exposed to SIV negative monkey serum did not show any results and is indicated by the 

absence of a band in lane 2 in Figure 10 (B). The results for this experiment confirmed 

55 kDa 
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that the protein produced by pVAX-RTN clone 2 is Retanef and that the protein is able to 

produce a humoral response with SIV antibodies.  

 

 

         MW  1    2                                      MW   1    2      

(A)                            (B)  

Figure 10 – Western Blot of pVAX-RTN clones 1 and 2 using SIV positive and SIV 

negative monkey sera. Both figures have pVAX-RTN clone 1 in lane 1 as the negative 

control, and pVAX-RTN clone 2 in lane 2 as the experimental group. (A) Monkey serum 

from a confirmed SIV positive monkey was used as the primary antibody to confirm if 

the protein isolated was an SIV protein. The protein identified had a band around 

55kDa.(B) Monkey serum from a SIV negative monkey was used as the negative control.  
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CONCLUSION 

 

         Throughout this research process, different methods were used to characterize a 

plasmid-based DNA vaccine for SIV, and the results proved that the previously 

constructed pVAX-RTN plasmid successfully produces the Retanef protein inside Vero 

cells. The restriction digests and PCR resulted in successful identification of the identity 

and orientation of the Retanef gene sequence inside the pVAX plasmid. PCR results with 

pVAX-RTN clone 1 were only successful when the forwards RTN primer and CMV 

primer were used. For pVAX-RTN clone 2, the backwards RTN primer and CMV primer 

produced successful results. This validates that the pVAX-RTN clone 1 gene sequence 

for RTN is in the backward direction, and that the pVAX-RTN clone 2 gene sequence for 

RTN is in the forward direction. Following the conclusion made by PCR and restriction 

digests, pVAX-RTN clone 1 was used as the negative control because the results showed 

that the RTN gene sequence is backwards. This reverse gene sequence does not allow 

expression of the protein. The experimental group was pVAX-RTN clone 2, which is 

expected to successfully express Retanef protein due to its forward RTN gene sequence.  

            Localization and identification of the Retanef protein was successfully observed 

via immunofluorescence and western blotting using antibodies. However, the antibodies 

were only specific to the HA-1 tag on the Retanef protein, which does not prove that the 

Retanef protein is what was identified by immunofluorescence and western blotting. In 

order to prove that the protein identified was Retanef, serum from SIV positive monkeys 

was used in a western blot, and the results indicated that there was a reaction between 
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SIV positive serum and the isolated Retanef protein. This further proves that the protein 

expressed inside the transfected Vero cells is indeed Retanef.  

           The SIV positive serum produces a general reaction towards any SIV antigen; this 

experiment did not indicate if the protein expressed was rev, tat, or nef. Further studies 

can be conducted to isolate and determine the identity of the protein expressed. The 

results for the SIV positive serum also conclude that the protein expressed by the pVAX-

RTN plasmid is successful in reacting to an immune response against SIV. Additionally, 

the cellular and humoral immune responses can be analyzed in further studies by 

challenging non-human primates with the pVAX-RTN plasmid. The pVAX-RTN 

plasmid proves to be a good candidate for expressing Retanef protein inside Vero cells, 

and further studies should be done to observe T-cell response. The results of this study 

show that the pVAX-RTN plasmid is a good candidate for a DNA vaccine against SIV, 

however further studies need to be conducted to observe the safety and efficacy of this 

vaccine as a therapeutic and prophylactic treatment for SIV-infected non-human 

primates. 

            Since most vaccine research against HIV has focused on using structural genes, 

the results of this experiment may encourage further research on including regulatory 

proteins in future vaccines against HIV. The data collected in this experiment provides 

strong evidence that a corresponding HIV vaccine with the rev, tat, and nef regulatory 

proteins should be evaluated. The overall goal of this experiment was to contribute 

towards HIV research and finding preventative treatments and vaccines for HIV by using 

SIV as a model.  
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APPENDIX 

 

>PVAX_RTN1_CMV_CMVf Sample_Name=PVAX_RTN1_CMV_CMVf Chromat_id=10441183 

Read_id=10350013 Version=1 Length=956 

NNNNNNNNNNNAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATA

CGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATCCTTA

TCAGGCCAGGCTGGCGTAGTCGGGCACGTCGTAGGGGTAGCGCTTGCGGCTCTGCTCGTAGCAGATGCC

CAGGCCCTTCTTCAGGAAGCAGAACTGGCAGTGGTAGCAGCACTTCTTGCAGTAGCAGGTGTTGTAGCA

GGCCTCCAGGGGGCGGTACAGCTGGCTCAGGATCTCCTCGCCCAGGTTGGCGCTCTCGGGGGTGGTGG

CGTCGGCCTCCAGGATGCAGCTGCTGCGCTCGTTGCTGCTCTCCAGGCTGTTCTCCTGCTCGCGCAGGGG

GGTTTCGAGGTAGATATCCAGAATCCTGTGGCGGCGGGCGCTGTAGTAGATGCCCTCCAGGCCGCCCTT

CTCCTTGATGAAGTGGCTCATGTCGATGGCCAGCTTGTAGCTCATGGTGCGCAGGGGCACCTTGGGGCG

CACGCTCACGCCCACCAGGTCGTCGTCCTCCTCGTCGATGTCGTCCATGTTCTGCTTGCGGTAGGCCAGCT

TCTCGCGCTCCTCGGCGGGGTTGCGCCAGGGGGTGTTCATGTACTGGCCCTGGTTGTACTTCTGGCCCTC

GCAGCTCAGGCTGCTCAGGCCCTTGTCCAGGCCGCCGGGGCTCTGGCTGTAGCCGTCCTCCACCTCGCCC

AGCAGGCGGCCGTAGGTCTCGCCCCGGGCGCGCAGCAGGCGCTGGCGCAGGTCGCCGCTGGGGCGGCT

GCGGCGCATGCTGATGGCGTCGACGCCGCCACTAGTGCGGCCCAGGCCCGGGGGCGGTGGCCCCGGCC

TTCTCCCCGGTCTCCTTCTTGGCCTTCTCGGGCTGGNANNGNCGGGNGCGNTGGGG 

Figure A-1- Gene sequencing results for pVAX-RTN clone 1. This figure shows the 

direction of the TGA stop site in relation to the CMV promoter in pVAX-RTN clone 1. 

Since this is sequence is in the reverse direction to the CMV promoter, the sequencing 

results are the reverse complement of the Retanef sequence. The highlighted portion is 

the reverse complement of the TGA stop site.  
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>PVAX_RTN2_CMV_CMVf Sample_Name=PVAX_RTN2_CMV_CMVf Chromat_id=10441185 

Read_id=10350035 Version=1 Length=925 

NNNNNNNNNNNNNNAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATT

AATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTGGTACCGAGCTCGGATC

CGCCACCATGAGCAGCCACGAGCGCGAGGAGGAGCTGCGCAAGCGCCTGCGCCTGATCCACCTGCTGC

ACCAGACCATCGACAGCTACCCCACCGGCCCCGGCACCGCCAACCAGCGCCGCCAGTGGCAGCAGCTGC

TGGCCCTGGCCGACCGCATCTACAGCTTCCCCGACCCCCCCACCGACACCCCCCTGGACCTGGCCATCCA

GCAGCTGCAGAACCTGGCCATCGAGAGCATCCCCGACCCCCCCACCAACACCCCCGAGGCCCTGTGCGA

CCCCACCAAGGGCAGCCGCAGCCCCCAGGACCACCGCATCCTGGACATCTACCTGGAGAAGGAGGAGG

GCATCATCCCCGACTGGCAGGACTACACCAGCGGCCCCGGCATCCGCTACCCCAAGACCTTCGGCTGGCT

GTGGAAGCTGGTGCCCGTGAACGTGAGCGACGAGGCCCAGGAGGACGAGGAGCACTACCTGATGCACC

CCGCCCAGACCAGCCAGTGGGACGACCCCTGGGGCGAGGTGCTGGCCTGGAAGTTCGACCCCACCCTGG

CCTACACCTACGAGGCCTACGTGCGCTACCCCGAGGAGTTCGGCAGCAAGAGCGGCCTGAGCGAGCGCC

GCACCCCCAAGAAGGCCAAGGCCAACACCAGCAGCGCCAGCAACAACCGCCTGATCCCCAACCGCACCC

GCCACTGCCAGCCCGAGAAGGCCAAGAAGGAGACCGTGGAGAAGGCCNNGGGCCACCGCCCCCGGCN

NGGGGCGCCCNNNNGGCGGNNNCNANNCNTT 

Figure A-2- Gene sequencing results for pVAX-RTN clone 2. This figure shows the 

direction of the ATG start site in relation to the CMV promoter in pVAX-RTN clone 2. 

The ATG start site is in forwards orientation to the CMV promoter. 
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