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ABSTRACT

A traffic surveillance camera system is an important part of an intelligent trans-

portation system.(Zhang et al., 2013) This system is capable of performing useful object

detections on the incoming feed. These detected objects can then be used for tracking pur-

poses which forms the basis for monitoring important traffic data such as collisions, vehicle

count, pedestrian count and so on. Furthermore, other additional information such as the

weather conditions, time of day as well as date can also be extracted from a live feed. (Sun

et al., 2004) Different algorithms can yield different results for any given video input. Not

only that, various parameters such as the resolution, frames per second(fps) count, lighting

conditions in the video input also affect performance. Therefore, it is imperative to com-

pare between the various image processing and deep learning algorithms and evaluate their

performance before deploying them in real time.
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PREFACE

The video feeds have been taken from the real time camera feed from the streets of

a real city (labelled X here for confidentiality). The video data set includes clips from a

specific traffic intersection and has a regular flow of cars, trucks and pedestrians. The videos

are available in both the 10 fps and 30 fps speed.

The algorithms discussed in this paper were run on the videos mentioned above. The

videos contain recordings from both day and night time settings. For the purpose of testing

the algorithms, other traffic feeds from YouTube have also been utilized.
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SECTION 1

INTRODUCTION

The field of Computer vision has made a lot of strides over the past decade. Where

once traditional image processing techniques were dominant, with the advancement in GPUs,

cloud computing and hardware, deep learning has established itself as another key component

in building intelligent systems (Hegde et al., 2019).

There are numerous object detection as well as classification algorithms that can

be used for performing the detection and classification task. Some of these algorithms are

based on deep learning whereas some rely on more fundamental image processing techniques.

Depending on the context of where the intelligent detection/classification system will be

deployed, some algorithms might prove to more efficient or more accurate as compared to

the others.

One important consideration we need to make before deploying our traffic monitoring

software in the real field is to find a balance between speed and accuracy. The model should

be able to perform fairly accurate detections and at the same time, be fast enough to run

real time such that it does not miss any frames. Therefore, this project tests some popular

algorithms on the X video data set (The city’s name is not disclosed for confidentiality) and

evaluates their performance for various vision based tasks namely: Optical Character Recog-

nition, Object Detection, Object Tracing, Object Counter and Object Classification. The

project uses 26 frames per second videos and runs the algorithms on each frame. However,

the results that appear in this paper are screenshots of select frames from the video.
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SECTION 2

OPTICAL CHARACTER RECOGNITION

Optical Character Recognition (OCR) has become a very important and useful tool in

various fields such as school, office, industry and so on. It has significantly reduced the need

for human intervention in tasks such as converting written texts to digital format, grading

choice based papers as well as extracting useful characters and sentences from images and

videos (Mori et al., 1999). For our purposes, we only consider the OCR from videos and

images. The OCR model that was used for this study is Pytesseract.

2.1 Pytesseract

Pytesseract is an optical character recognition tool for python. It is a wrapper for

Google’s Tesseract which is an open source OCR engine. (Zelic, 2020). It is based on the

Long Short Term Memory (LSTM) architecture, which is one form of a Recurrent Neural

Network (RNN).

Figure 2.1: OCR Process Flow (Parthasarathy, 2018)
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Despite the engine’s own pre-processing pass, the user will be required to perform his

own pre-processing for better results. In this study, several pre-processing techniques were

applied for better results.

2.1.1 Pre-Processing

The Pre-processing pass consisted of the following phases, namely: Region of Interest

(ROI) extraction, Scaling, Contrast Enhancement and Thresholding.

2.1.1.1 ROI Extraction

Each individual frame in the video consisted of the traffic feed and a small section

where the date and time was displayed. This caption section was treated as the ROI and

since, the ROI was fixed for the subsequent frames, cropping of the ROI did not introduce

any problems.

Figure 2.2: Sample frame from the video feed.

The individual frames were first converted to grayscale, followed by cropping in

OpenCV and saved as an image file locally.
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Figure 2.3: Cropped Region of Interest Containing Characters

2.1.1.2 Contrast Enhancement, Filtering and Thresholding

The cropped grayscale ROI was then subjected to contrast enhancement using His-

togram equalization. The resulting image was then treated using a Gaussian filter to remove

the additional noise from the image. This was followed by thresholding, which is a basic

yet very important image segmentation technique. Using this method, the characters in

the foreground were separated from the background. Various thresholding techniques were

explored with the aid of OpenCV and Python and the results were saved locally.

Figure 2.4: Simple Binary Inverse Thresholding

2.1.2 Feeding the input into the Pytesseract Engine

The Threshold image was then passed onto the Pytesseract Engine and the results

were observed using the default segmentation mode.

2.2 Observations

The Pytesseract engine did not produce robust results when colored images were fed

into the system. In fact, for the given video frames, no output was observed when the RGB

versions were provided as input. Even the grayscale versions did not produce any output on
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their own and thus, image processing techniques such as contrast enhancement, smoothing

and thresholding had to be applied to yield some results.

Another key observation was that the output of the OCR engine was affected by

the type of the type of thresholding that was being used. The best results were produced

when the simple binary threshold technique was applied. While this output was not totally

accurate, it did yield some meaningful information, which on further fine tuning can be

improved.

The results below were obtained while applying the thresholding on the sample frame.

Figure 2.5: Different methods of thresholding
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The black text on the white foreground produced by the Binary Inverse thresholding

produced the best results. The final console output after performing all the pre-processing

is shown in Figure. 2.6:

Figure 2.6: Console output from the Pytesseract OCR engine

While the output is not totally accurate and there is still room for improvement, it

can definitely be considered useful. However, it is to be noted that this output was observed

for a single static frame of the video; applying the same technique for each and every frame

of the video did reduce the accuracy of the output.

2.3 Conclusions

Therefore, it can be concluded that Tesseract is a viable option for performing OCR on

the given video feed but only after performing several pre-processing passes locally. Tesseract

makes use of deep learning and is thus computationally expensive. So, a suggested course of

action would be to call the Tesseract API only after a reasonable time interval, say a time

interval of one minute, so as to maintain a healthy working speed and also to minimize the

inaccuracies caused by using Tesseract on each and every video frame.
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SECTION 3

VEHICLE DETECTION

Vehicle detection is an integral component of traffic surveillance (Hu et al., 2018).

Over the years, numerous approaches have been devised to tackle this problem. These

detection methods can be broadly classified into three categories: motion-based approaches,

feature-based approaches, Deep learning based approaches (including CNNs, SSDs, YOLO)

(Chen et al., 2018). For the purpose of this research, one approach was tested for each of the

first two categories. The deep-learning based approach utilized two different alogorithms.

3.1 Motion-Based Approach

3.1.1 Frame Subtraction

In this relatively simple method, the difference between two consecutive frames was

calculated to detect the moving object using OpenCV and Python. First the video was

converted to grayscale, followed by smoothing, thresholding and contour extraction. The

bounding boxes were drawn around the moving contours determined by the algorithm.

Figure 3.1: Frame Difference
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Figure 3.2: Frame Difference

Figure 3.3: Object Detection based on Consecutive Frame Difference

As we can observe Figure 3.3, the bounding boxes around the moving boxes are not

very accurate. In fact, this approach does not account for still vehicles and this algorithm

is affected by video quality, shifting pixels in between the frames, illumination conditions as

well as the presence of shadows.
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3.2 Feature-Based Approach

3.2.1 Haar Cascades

Haar Cascades are machine-learning object detection algorithm which is based on the

concept of feature detection proposed by Viola and Jones, also known as the Viola-Jones

Algorithm (Kasinski and Schmidt, 2007). The Viola-Jones algorithm uses a sliding window

to look for useful features which is then used to train a model and then use it as a classifier.

The Haar Cascades utilize the Viola-Jones algorithm to search for a specific type of

feature, known as haar like features. The Haar-like features can be classified into three major

types: edge features, line features and four-rectangle features. The Algorithm looks for the

Figure 3.4: Haar Like Features (Zelic, 2020)

haar-like features in an image as shown in Figure.3.4 and this process is optimized by using

techniques such as intergral image computation, scaling, adaptive boosting and cascading.

Adaptive boosting or adaboost is an important Machine learning technique where weaker,

complimentary features are ensembled with the stronger features to improve accuracy of the

model.
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A pre-trained haar-cascade model for vehicles was used for the research (Andrewsso-

bral, 2020). The performance of the model was analyzed for different samples and the results

were noted.

Figure 3.5: Haar Cascade Vehicle Detection for X feed

Figure 3.6: Haar Cascade Vehicle Detection for sample video
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Figure 3.7: Haar Cascade Vehicle Detection for X at night

From the figures provided above, it was observed that the haar cascade is not con-

sistent in its detections. In the X feed (Figure 3.5), the algorithm ends up detecting several

false positives and even runs into the same shadow problem that the frame difference algo-

rithm ran into, as discussed in Section 3.1.1. However, the results were much better for the

second sample video as the feed was cleaner and it did not have the artifacts that altered

the performance of the haar cascade as in the first feed. The night feed did not have the

shadow issue but still was not as accurate.

Therefore, the generic use of haar-cascades was found to be inconsistent among other

issues. For better results, the haar-cascades should be fine-tuned and possibly trained to

match a given dataset.

3.3 Deep Learning Based Approach

3.3.1 Single-Shot Multibox Detectors (SSDs)

SSDs is one of the faster and more accurate object detection algorithms in the world

of computer vision today. While detecting objects, or in this case vehicles, the algorithm will

divide the image into numerous boxes and all the boxes are passed through a single CNN at

the same time.

In other words, it will perform its computations in one shot. The other approach

would be making object proposals or using a sliding window in a frame and running a

11



Figure 3.8: SSD architecture

Figure 3.9: Detections performed by the SSD algorithm on the X Daytime feed

CNN for each sliding window. Running multiple CNNs would be an extremely expensive

computation process. Thus, the single-shot approach presented by SSDs have been found to

be faster as well as accurate, making it a suitable choice for real time computer vision tasks

(Liu et al., 2016).

In this project, the pre-trained SSD model that was used was based on the Mo-

bileNet architecture. The SSD model is a Caffe version of the original version that was

written in Tensorflow by Howard et al. (Howard et al., 2017) and was trained by chuanqi305

(chuanqi305, 2020). While the MobileNet architecture is not as fast as the ResNet or VGG

architecture, it tends to run a lot faster, which is important for real time deployment.

The model was run using the Deep Neural Network (dnn) model in OpenCV and the

observations were recorded.
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The performance of the SSD Algorithm for the daytime feed was better than that of

the methods evaluated previously. This can be observed in Figure 3.9. We can note that

the shadows are no longer detected as a moving vehicle and the shifting pixels in between

the frames too did not cause any problems. However, one major issue that was noted while

implementing this particular model was that it had major problems detecting the vehicles

in the lane heading away from the camera.

Figure 3.10: SSD algorithm on the X Night feed

For the nightime feed, the SSD algorithm did not perform as well as there was a sig-

nificant number of missed detections. Even the regions of the frame where notable accuracy

was observed during the day time feed, demonstrated signifcant number of misses at night.

3.3.2 You Only Look Once (YOLO)

YOLO is another popular and fast algorithm that is widely used for vehicle detection

as well as classification. Similar to the SSD, YOLO is also based on the single shot principle,

which uses the underlying CNN only once to reduce computation time. YOLO has been

proven to work extremely fast, with frame rates of up to 45 frames per second. Furthermore,

a lighter version of YOLO called tinyYOLO has been able to attain fps counts of up to

155 fps (Redmon et al., 2016). Also, a more recent study on YOLO-lite has shown an even

improved performance that reaches speeds of upto 244fps (Huang et al., 2018)

A YOLOv3 model was used for this project. YOLOv3 is substantially larger than the

13



basic YOLO model and more accurate as well (Redmon and Farhadi, 2018). This model was

pre-trained on the COCO dataset by the DarkNet team (Tensorflow). The model was used

with the DNN module in OpenCV and tested on both the day and night time feed from the

X dataset.

Figure 3.11: YOLO detctions on the X day time feed

Figure 3.12: YOLO detctions on the X night time feed
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As can be observed, YOLO provided the best detection results among all the algo-

rithms during both the day and night time. It was not affected by the shadows or noise

during the day and also did not have any problems detecting the vehicles moving away from

the camera.

3.3.3 Other Deep Learning Approaches

Other than SSD, the only other Deep Learning algorithm used was the YOLO (You

Only Learn Once) algorithm, which will be elucidated further in the Classification section of

the paper. More popular deep learning methods such as a Convolutional Neural Networks

were not explored as they are significantly slower as compared to the Single Pass Detection

algorithms (SSD and YOLO) and as a result, are not very convenient for real time detections.
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SECTION 4

VEHICLE CLASSIFICATION

Vehicle classification has emerged as another important application of computer vision

and AI techniques. It has found widespread application in fields like surveillance, security

system, traffic congestion, avoidance, accident prevention etc (Kamavisdar et al., 2013).

While numerous classification algorithms based on digital image processing, deep learning

and data mining have been devised, this paper uses only deep learning approaches for the

empirical study. The two algorithms that have been explored for the classification problem

are: Single-Shot Multibox Detectors (SSD) and You Only Learn Once (YOLO), both of

which are single shot algorithms that run the underlying Convolutional Neural Network

only once.

It is important to note that accurate detection is crucial for performing the classifica-

tion task properly. The performance of both the SSD and YOLO algorithm for detection has

been explained previously, so this section will only touch briefly on the classification aspect.

4.1 SSD For Classification

The MobileNet SSD consisted of 21 object labels including cars, buses and people.

As discussed before, the model tended to miss several detections. However for the detected

objects, the results were recorded. The missed detections have been circled in red.

16



Figure 4.1: Cars Classification

Figure 4.2: Bus Classification

From the results above, it was found that the model is capable of detecting different

types of vehicles but only if their scale is large enough. The algorithm does not detect or

classify relatively smaller objects such as pedestrians or even vehicles moving away from

the camera. Another issue was inconsistencies in the detections. As shown in Figure.4.3,

the algorithm labelled the same bus from Figure 4.2 as a car. To deal with this issue, the

detections were filtered out on the basis of confidence values.

17



Figure 4.3: Bus Classification

The total number of detections for different confidence thresholds was recorded. The

following result was obtained.

Figure 4.4: Detections vs Confidence

18



For a 5-minute 30 fps daytime clip from the X dataset, most of the detections were

found to be in the 0.4 to 0.7 confidence range. This resulted in mixing up between the labels.

To decrease false positives, the confidence threshold was increased to values greater than 0.7.

That however resulted in a significant number of missed detections.

4.2 YOLO For Classification

As discussed in the previous section, the YOLO algorithm demonstrated a clear

advantage when it came to accurate detections. Furthermore, YOLO demonstrated a much

better performance for classification.

Figure 4.5: YOLO Classification for Cars and Buses

As shown in the figure above, YOLO can distinguish between cars and buses without

running into any major issue, as in the case of SSD. We can also note that the confidence

of the classified objects are in the high 70s and even the 90s. This is a major improvement

over the SSD model.
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Figure 4.6: YOLO Classification on the Day Feed

Figure 4.7: YOLO Classification on the Night Feed

The YOLO model runs smoothly on the night time feed as well and does not struggle

to detect the vehicles moving away from the camera. Thus, scaling was not an issue. The

shadows during the day time caused no problems either.

4.3 Conclusion

The YOLOv3 algorithm produced the most accurate results and was not affected

by illumination, shadows, noise or scaling. The shadows and noise were not an issue for

SSD, but illumination and scaling was a challenge. Haar-cascades and frame-delta approach

struggled with false-positives and the other aforesaid issues.

20



SECTION 5

VEHICLE TRACKING AND OBJECT COUNTING

The vehicle tracking component of the project was built after the detection and

classification pass was completed. The detected objects were tracked using the Centroid-

Tracking algorithm and the counting was done using OpenCV and Python.

5.1 Centroid-Tracking

The Centroid tracking algorithm assumes we are taking in the set of x,y coordinates

for each of the objects that has been detected in each frame. Each of these bounding boxes

are assigned unique IDs and a centroid is calculated.

For each subsequent frame, centroids are calculated. However, new IDs are not as-

signed for each object. The algorithm determines an association between the old object

centroids and the new object centroids. The Euclidean distance between each pair of old

centroid and the new centroid is calculated (Fu and Han, 2012).

Figure 5.1: Euclidean distance calculation between each pair of new and old object

21



In the figure 5.1, the purple points represent the old object centroids and the yellow

points represent the new object centroids in the subsequent frame. Therefore, there are

initially two objects in the frame (purple) and in the next frame, there are three (yellow).

The distance between each of the new and old object centroids pair is calculated. The green

arrow represents the distance between the first old object centroid and the new centroids,

whereas the red represents the distance between the second old object centroid and the new

centroids,

The Centroid-tracking assumes that an object will move slightly in between frames,

but the distance between the centroids for frames Ft and Ft+1 will be smaller than all other

distances between objects. Therefore, the pairs with the minimum euclidean distance were

treated as existing objects. And, the rest were registered as new objects, assigned unique

object IDs and the centroid was computed.

Ultimately, when the objects disappeared from the frame for 50 frames, they were

deregistered. To make programming easier, each detected object was treated as a Track-

ableObject object in Python, which contained a unique ID and the centroid as its object

properties.

5.2 Object Counting

For convenience, a horizontal line was drawn across each frame. The object had to

pass the line to be counted as an object. Two counters were used in this project: one counted

the number of vehicles moving upwards (towards the top of the frame) and the other counted

the vehicles in the downward direction (bottom of the frame).

22



Figure 5.2: Counting algorithm. Yellow represents the reference line (Rosebrock, 2020). SSD
Mobilenet v2 was used for detection.

To determine if the vehicle is moving up or down, the difference between the cur-

rent y-coordinate of the current centroid and the mean of all previous centroid locations is

computed. The mean is used so that our tracking is more stable.

5.3 Conclusion

While this method did a fair job of counting and tracking the objects, it has several

drawbacks.The problem of occlusion was a major concern. When two objects appeared to

overlap with each other, the object IDs tended to get switched. Also ,it requires object de-

tection to be run on every frame, which when used with computationally expensive detectors

will slow down the performance.
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SECTION 6

CONCLUSION

Most of the evaluated algorithms were affected in some measure by factors such as

illumination, noise, shadows, scaling and even the input video. Only the results given by

YOLO was steady across the various conditions mentioned above. Using a pre-trained model

introduced inconsistencies in the study. This demonstrates the importance of training the

dataset that is very similar to the given problem firsthand, so as to improve the accuracy of

the detections and customize the model accordingly.

Thus, based on the observations, YOLOv3 was concluded to be the most robust

detection/ classification algorithm and centroid-tracking was determined to be a simple yet

effective tracker/counter for the X dataset. The Mobilenet SSD was found to have handled

noise and shadow well but struggled with consistency. Whereas, the haar-cascades and frame

difference methods provided the least accurate results. And last but not the least, Pytesseract

provided useable OCR results for the videos, although the demand for pre-processing was

very high.
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SECTION 7

POSSIBLE EXTENSIONS AND FUTURE WORK

Based on the observations, the YOLOv3 algorithm provided a very sturdy method

for both detection and classification. The results from this model can be used to extend the

project into performing other important tasks such as collision detection in a robust manner.

Also, the YOLO model can further be improved by training the model to match the dataset

for the X videos. While the MobileNet SSD that was used here had its drawbacks, researches

have suggested it is capable of performing much better(Redmon and Farhadi, 2018). Thus,

this model can be improved and trained to match the data so as to improve the results and

explore it as a possible alternative to YOLO if need be.

Future work for the project includes detecting the environmental conditions such as

weather, detecting the type of collision, that is primary or secondary collision, status of

traffic signal, the vehicles involved in the collision, estimated speed, etc.
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