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ABSTRACT 

 

In this study, a combination of thermodynamic modeling and experimental investigation of novel 

high-pressure impregnation technique were used to create thin films of sizing agents with evenly 

developed hydrophobicity across the entire thickness of cellulose substrates. In addition to the 

viability of this common sizing agent, alkyl ketene dimer (AKD), green-based edible waxes 

(carnauba wax and beeswax) were also assessed as prospects for food-based applications. 

A thermodynamic solubility modeling was carried out using the group contribution estimation 

methods (GCEM) with Peng-Robinson equation of state to gain insights on the optimal regions of 

enhanced solvating strength of the high-pressure treatments. The modeling showed that there was 

a significant increase in solubility at lower temperatures (retrograde vaporization) with operating 

pressures less than the crossover pressure – and with operating pressures higher than the crossover 

pressure, solubility increased at higher temperatures. 

Impregnation of cellulose-based materials with AKD dissolved in n-heptane cosolvent and 

supercritical carbon dioxide (scCO2), over a wide range of pressures at room temperature, 

produced a microporous and highly hydrophobic surface with an average CA of 140 ± 5o. The best 

hydrophobic performance was found in the region of optimal scCO2 solubility between 100 and 

200 bar, and achieved hydrophobic conditions quicker than those at higher and lower impregnation 

pressures. The surfaces were found to exhibit sticky hydrophobicity after long times since 

impregnation. The sizing was due to the spreading of AKD across the fiber surface and interactions 

with the cellulose substrate via hydrogen-bonding.  There was little evidence of reaction-based  
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sizing from FTIR analyses, as the characteristic ketone and ester peaks indicating reaction between 

AKD and cellulose were not observed. 

For food-grade waxes, annealing was used to augment the high-pressure impregnation (200 bar 

and 22oC) treatments – it lowered the surface energy and increased the roughness profile of the 

surface. After impregnation, the treated substrates were annealed at 80, 110, 140 and 165oC. The 

melting and recrystallization of the different components making up the wax caused formation of 

hierarchical microstructures which further improved the hydrophobicity of the surface via phase 

separation. Significant increases in hydrophobic properties were observed between 110 and 165oC. 

Two patterns of hydrophobic development were observed with the food-grade waxes – freshly 

impregnated annealed at higher temperatures produced a more stable and higher hydrophobicity, 

and delayed annealing enabled higher hydrophobicity at lower temperatures. The impregnation 

treatment offered a better resistance to mechanical wear and improved the mechanical robustness 

(more than five times) of the substrates due to strengthening of the inter- and intra-fiber bonding. 

This modified material has applications in food packaging, where frequently water-repellant 

surfaces are required. This method is preferable to traditional coating methods because it sizes 

across the entire thickness of the substrate rather than just the surface and can be used for non-

planar surfaces; uses significantly less material than traditional methods and will be an excellent 

technique for multilayered and intelligent coating. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction  

 

Cellulose paper is one of the commonest materials in everyday life [1]. It is used for everyday 

printing purposes to packaging materials for gift items and various wrappings but is very 

hydrophilic in nature due many hydroxy groups in its structure [1,2]. These potential applications 

are limited by its water-loving tendency. Cellulose papers are usually coated or modified during 

or after the paper-making process to possess desirable functionalities. The subject of coating is 

familiar to many – hardly is there any material that is not coated with another material for  

enhanced or additional functionalities [3]. No matter the mode or type of coating technique 

employed, the central reason is to add special desirable functionalities to a material (called a 

substrate in coating science). Coatings have been used for aesthetic purposes; to add enhanced 

functionalities such as water-repellency to a material surface; to improve the mechanical durability 

of a surface, inclusion of anti-microbial functionality and thermal resistive applications [4–8]. 

However, there a number of drawbacks and limitations in the existing method such as uneven 

coating distribution, use of fluorochemicals, and excessive consumption of sizing chemicals that 

may be very expensive [2,9]. 
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In this study, the application of coating for water-repellent functionality on cellulose-based 

materials (CBM) was explored. Specifically, the high-pressure impregnation of AKD (alkyl ketene 

dimer) and other food-grade waxes (beeswax and carnauba wax) dissolved in supercritical carbon 

dioxide (scCO2) was the coating technique used to modify cellulose fiber substrates. In some cases, 

especially with the food-grade waxes, additional annealing treatment was used to improve the 

hierarchical micro-/nano-structures which are critical in enhancing water-repellency 

(superhydrophobicity) [10]. Also, a thermodynamic simulation was developed to gain better 

insight of high-pressure phase equilibria of AKD in CO2 [11]. 

 

The following physical and chemical characterizations were conducted to assess the hydrophobic 

performance other functionalities (including mechanical robustness) of the surfaces: 

 

▪ scanning electron microscope (SEM) with image analysis using ImagePro 

▪ Fourier Transform Infrared Spectroscopy (FTIR) 

▪ Contact angle (CA) analysis 

▪ Atomic Force Microscopy (AFM) 

▪ Dynamic mechanical and thermal analysis (DMTA) 

 

It is believed that the findings in this study will significantly contribute to the growing efforts in 

using high-pressure impregnation methods as alternatives to traditional coating techniques [9,12–

14]. This study also includes the use of high-pressure impregnation to impart additional 

functionalities such as mechanical durability, but the primary focus is water-repellency for paper 

and packaging applications. 
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The remainder of this chapter will discuss key concepts related to this investigation. 

 

1.2 Superhydrophobicity 

 

Superhydrophobicity had been a subject of research since the early 1900s but has only received 

more attention recently due to its multifunctional purposes and  diverse applications [2,15–20], 

which include – but are not limited to – self-cleaning, dust-removing, self-healing, wall-climbing,  

anti-sticking and anti-microbial surfaces [2,10,21–27].  Superhydrophobic coatings have also been 

found to offer excellent resistance to corrosion activities [28–30]. Two types of water repellency  

found in nature are roll-off (exhibited by lotus leaves) [2,31–33] hydrophobicity and sticky 

(observed in rose petals) [2,22] hydrophobicity. Techniques used to produce superhydrophobic 

surfaces mimic these natural phenomena, and have been successfully created on different surfaces, 

ranging from paper to durable metallic surfaces [3,34,35]. Most superhydrophobic methods cannot 

be applied on CBM due to their chemical properties such as hydrophilicity, hygroscopicity and 

flexibility [1,2,36–40]. Mechanical properties of paper are likely to be affected during 

hydrophobization processes, and durability is always a major factor to be considered in the 

fabrication of superhydrophobicity [5,6]. 

 

The behavior of water droplets on CBM reveals a lot of information about its texture, chemistry, 

morphology and geometric structure of the surface [41]. The ease of modification of surface 

wetting characteristics is a desirable property of CBM because it enhances its functionality [2]. 

The wettability of a surface in contact with water is governed by many models [42], the three most 

popular ones are Young, Wenzel, and Cassie-Baxter, depending on the nature of the surface  [3,43]. 
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Young’s model, given by Equation 1.1 [44–46], describes the hypothetical behavior of water on 

a smooth surface. CA is denoted by 𝜃, and 𝛾𝑆𝑉, 𝛾𝑆𝐿, and 𝛾𝐿𝑉 are interfacial tensions developed 

between solid-vapor, solid-liquid and liquid-vapor interfaces, respectively.   

 

𝑐𝑜𝑠𝜃 =
𝛾𝑆𝑉−𝛾𝑆𝐿

𝛾𝐿𝑉
                                                               (1.1) 

 

Young’s model is not sufficient to describe droplet behavior on rough surfaces [30]. A modified 

version of Young’s model, called Wenzel’s model, developed in 1936, depicts droplet behavior on 

rough surfaces more accurately than Young’s model [3,30]. Wenzel model (Equations 1.2 and 

1.3) is given as follows: 

 

𝑐𝑜𝑠𝜃𝑤 = 𝑟𝑐𝑜𝑠𝜃                                   (1.2)  

         

Equation 2 above is called Wenzel’s model. 𝜃𝑤 is the Wenzel’s contact angle on a rough surface, 

and r is the dimensionless roughness factor (defined by the ratio of the actual area of a rough 

surface to its flat projected area). Contact angle on a flat surface is denoted by 𝜃0. 

 

𝑟 =
actual area of a rough surface 

flat projected area
         (1.3) 
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Cassie and Baxter in 1944 [30] proposed a model that describes droplet behavior on a rough, 

heterogeneous surface. The surface has two fractional areas; one is occupied by the material of the 

surface other than by air. The contact angle made on a such a surface is given by Equations 1.4. 

 

𝑐𝑜𝑠𝜃 = 𝑟𝑐𝑜𝑠𝜃0 − 𝑓( 𝑟𝑐𝑜𝑠𝜃0 + 1)        (1.4) 

 

Where r is the dimensionless roughness factor as defined in Equation 3, 𝑓  is the fractional area 

occupied by the solid-liquid interface, 𝜃 is the contact angle made on a rough heterogeneous 

surface 𝜃0 and is the contact angle made on a flat smooth surface. When the surface is completely 

liquid-filled,  𝑓 = 1. This leads to an absence of liquid-air interface – at this limiting condition, 

the Cassie-Baxter equation becomes Wenzel equation.                       

 

 

 

 

 

(a)  (c)  (b)  

  Figure 1.1: Surfaced described  by (a) Young interface  (b) Wenzel interface (c) Cassie-Baxter interface 

[3,30]. 
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The technique for fabrication of superhydrophobicity aims at reducing the surface energy by 

adding low surface energy substances such as waxes and fluorinated compounds [2,10,31,47] 

and/or increasing the roughness of the surface. Existence of hierarchical micro-/nano-structures on 

a surface promotes the development of superhydrophobicity [2,10,21,22,29,48]. Deposition of 

nanoparticles on surfaces have also been reported to promote the dual-scale roughness which 

imparts excellent water repellency characteristics on the surfaces [15,41,48–52].  

 

Hydrophobic properties of  a surface are determined by measuring  the CA, contact angle hysteresis 

(CAH) and sliding angle (SA) of the droplet on the surface [1,44,53–59]. CAs are used to 

categorize the degree of wetting of a material in contact with water [9,10,13]. A material that has 

a water CA less than 90o is hydrophilic, and water spreads and wets the surface quickly. The 

material is “hydrophobic” if the angle ranges between 90 and 150o, where a water droplet does not 

immediately spread on the surface [10]. A superhydrophobic surface has a CA of 150o and above. 

If the water droplet rolls off the surface, this is also called a self-cleaning surface, demonstrating 

the “lotus effect” as described previously [10,16]. For the superhydrophobic requirement to be 

fully met, the CAH < 10° and SA < 5o. [54,60,61]. If CAH > 10o, SA >> 5o, and CA near but less 

than 150o, the droplet is likely to be glued to the surface [22,57,60,62], and comes under the sticky 

hydrophobicity classification.  

 

Droplets that display sticky or roll-off behavior on/from surfaces are governed by two adhesion 

forces– lateral (𝐹𝐿) and retentive (𝐹𝑅) [22,54,63,64]. When a droplet sticks to a surface like that of 

rose petals, a retentive force of adhesion is developed, and will be counteracted by a lateral force 

of adhesion. The droplet sticks and stays on a surface until the  𝐹𝐿 ≥ 𝐹𝑅 [22]. The lateral force of 



7 
 

adhesion generates metastable energy and retentive force of adhesion generates barrier energy 

[22,54,63–65]. Metastable energy is the energy that enhances the ease of movement of a droplet 

laterally across a surface. Barrier energy is the energy that restricts and binds a droplet to “stick” 

to a surface. Equations 1.5 and 1.6 for calculating 𝐹𝐿 and 𝐹𝑅 [22,62–64], respectively, are given 

as follows: 

 

𝐹𝐿 = 𝜌𝑔𝑉 𝑠𝑖𝑛𝛼         (1.5) 

 

𝐹𝑅 = 𝑘𝑅𝛾𝐿𝑉(𝑐𝑜𝑠𝜃𝑟 − 𝑐𝑜𝑠𝜃𝑎)        (1.6) 

 

where 𝑅 is the characteristic length representing the shape and size of the droplet; k is a constant 

of proportionality; 𝛾𝐿𝑉 is the interfacial tension between the droplet and the air; 𝜃𝑎 is the advancing 

CA; 𝜃𝑟 is the receding CA. 

 

1.3 Sizing chemicals 

 

The word “sizing”, as used by paper industries, usually refers to two phenomena; one is enhancing 

the slurry of the paper fibers to be water-resistant and the other is addition of a viscous solution to 

the surface of paper to enhance its hydrophobicity [66–68]. To clear the ambiguity, the paper and 

packaging industries generally refer to the slurry enhancement as “internal sizing” while the latter 

is termed “surface sizing” [6,66,69,70]. The main internal sizing chemicals currently in use around    
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the world are emulsion-based [66,71,72]. Irrespective of the sizing agent used, the aim is to retain 

hydrophobic molecules in the sheet of the paper. Surface sizing aims at imparting additional water-

repellency to the internally sized paper – which establishes a hindrance toward penetration and 

spreading of the liquids through the porous structure of paper. Some of the sizing chemicals, 

commonly used in paper and packaging industries, are discussed briefly below: 

 

The use of rosin to internally size paper dates back several decades according to Hubbe [66]. Rosin 

is one of the byproducts of distillation of wood chips, made by kraft pulping processes under 

alkaline conditions. Rosin is a mixture of abietic acid (C20H30O2) and other similar wood 

components [66]. Abietic acid has three six-membered rings joined together. The hydrophobic 

nature of rosin is due to the fact that the rings contain only carbon and hydrogen [66].  

 

AKD is the commonest and most widely used  sizing agent in paper and packaging industries 

[9,71–77]. AKD (C38H72O2) is a crystallizing wax and has two alkyl groups with 14 and 20 carbons 

respectively [13]; its melting point is between 40 and 60 oC [78–81], depending on the chain length 

of the dimers. AKD can size under neutral [73] or alkaline conditions [9], and is also less reactive 

towards cellulose [9,71]. AKD may take up to two weeks to develop sufficient sizing [9,77], and  

has also been used together with other substances that are not intrinsically hydrophobic by 

themselves, such as starch [82,83]. Starch has affinity for water but its desirable property as a 

renewable organic makes it a good additive. Starch is one of the best candidates of organic fillers 

to replace inorganic fillers in paper, and it can also be used on its own as a surface agent [83]. 

AKD has been used to tune the hydrophobicity of starch microcellular foam particles added on 



9 
 

paper [70,83,84]. The addition of AKD to starch improves the performance and functionality to 

the paper [83,85]. 

 

Paraffin wax, ever since its discovery in 1830, has been used for a number of industrial and 

domestic applications ranging from illuminant materials to electrical conductors [86]. Paraffin wax 

is also known to exhibit resistance to water penetration and proofing characteristics for porous 

materials [86]. Paraffin waxes are mixtures of saturated straight-chain hydrocarbons. Solid alkanes 

are generally referred to as paraffin waxes [87]. They are excellent substances for phase change 

applications such as thermal storage materials and cooling devices in electronic gadgets [88]. Their 

properties vary with chemical compositions, which could range from 10 to more than 30 carbon 

atoms with a melting point between 46 and 68 oC [89].  

 

The need to make materials green and sustainable has popularized the use of beeswaxes in the food 

packaging industries [90]. In addition to beeswax exceptional antimicrobial properties, it also 

offers very strong resistance to water and water vapor penetration [90]. Beeswax is  made of 

different natural components, consisting mainly of long chain alcohols, fatty acids and ester 

compounds [90]. Beeswax is becoming a favorite sizing chemical in food packaging industries 

and offers great prospects for other industries such as pharmaceuticals, pulp and paper, and 

cosmetics, due to its excellent properties [90].  
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1.4 Supercritical fluids applications 

 

The use of supercritical fluids (SCF) for several chemical processes is a well-known alternative 

practice in some chemical industries and research communities [91,92,101–103,93–100]. Their 

applications extend to pharmaceuticals, pulp and paper, oil and gas, food processing, and chemical 

processes [13,98,99,104–109]. SCF exist at temperatures and pressures above their critical points. 

They possess high densities close to those of liquids, gas-like viscosities, low surface tension and 

very high diffusion coefficients, resulting in more efficient mass transfer and higher solvating 

power [9,93,114–117,95,96,106,107,110–113]. SCFs also offer new pathways to sustainable 

technologies [110]. Solubility increases with density and pressure – thus, SCF have high 

absorption capacity [93]. The unusually high mass transfer rates between a solute and a SCF are 

owing to their gas-like properties [93]. 

Table 1.1: Critical properties of various solvents [93] 

 Solvent Molecular 

weight 

(g/mol) 

Critical 

temperature 

(K) 

Critical 

pressure 

(atm) 

Critical 

density 

(g/cm3) 

CO2 44.01 304.1 72.8 0.469 

Water 18.015 647.096 217.755 0.322 

Methane 16.04 190.4 45.4 0.162 

Propane 44.09 369.8 41.9 0.217 

Propylene 42.08 364.9 45.4 0.232 

Ethanol 46.07 513.9 60.6 0.276 

Acetone 58.08 508.1 46.4 0.278 
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The use of SCF in various chemical processes such as purification, recrystallization and 

environmental mitigation, has reduced or eliminated the use of organic solvents [93]. As compiled 

by Nautiyal [93], Table 1.1 compares the properties of the most commonly used solvents in 

various chemical processes. As can be seen, CO2 has the highest density at critical conditions. 

Table 1.2 [93] shows density, diffusivity and viscosity for typical liquids, gases and SCF. In 

addition to the enhancement of physical properties of SCF at supercritical conditions, thermal 

properties are also enhanced [93].   Experimental methods for calculating density of SCF are 

tedious and difficult to carry out [105]. Equation 1.7 [105] may be used for estimating the density. 

 

𝑙𝑛𝜌 = −27.091 + 0.609√𝑇 +
39.66170

𝑇
−

3.445𝑃

𝑇
+ 0.401√𝑃       (1.7) 

 

In Equation 8, 𝜌 is the density of the SCF at a temperature T and pressure P, respectively. 

 

Table 1.2: Critical properties of various solvents [93] 

Substance Density (kg/m3) Viscosity (µPa.s) Diffusivity (mm2/s) 

Gases 1 10 1-10 

SCF 100 – 1000 50 – 100 0.01 – 0.1 

Liquids 1000 500 – 1000 0.001 
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1.4.1 Phase behavior of Carbon dioxide 

Carbon dioxide is the most commonly used supercritical fluid because of  its relatively low critical 

temperature and pressure of 31.1 oC and 73.8 bar, respectively [105]. The desirable properties of 

CO2 include non-toxic, non-explosive behavior; completely recyclable; inexpensive; and readily 

available [96,118,119]. With increasing pressure and temperature towards critical the point, the 

gaseous and liquid phases become increasingly indistinct (become supercritical phase) as shown 

in Figure 1.2. In the SCF region, the fluid has liquid-like density; gas-like viscosity; very low 

surface tension; also possessing and very high diffusion coefficients [9,93,110,120]. Optimized 

applications of substances involving SCF depend on a thorough understanding of their phase 

equilibrium [121,122].  

 

 

Figure 1.2: Phase diagram of carbon dioxide. Source: The Engineering ToolBox 
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The variation of density of CO2 with pressure at different temperatures is shown in Figure 1.3. 

Near The critical temperature, density significantly increases as pressure increases. Further away 

from critical temperature (see for example 50oC in Figure 3), the density-pressure curve is almost 

a straight line. At much higher pressures and temperatures, the fluid behaves like a gas in the 

supercritical region. At 31.1 oC and above, carbon dioxide cannot be liquefied, no matter how 

much the pressure is changed. An increase in density (or decrease in molar volume) is the most 

important property of a SCF. Since density mostly increases with pressure at constant temperature, 

solubility generally increases with pressure, especially in the SCF region [93,123–125]. 

 

 

 

 

 

 

 

 

 

1.4.2 The roles of cosolvents in supercritical fluid applications 

 

Carbon dioxide is not a very good solvent for high molecular weight compounds such as AKD 

[93,126–128]. Solubility of these high molecular weight waxes are enhanced by addition of 

Figure 1.3: Density-pressure phase diagram of Carbon dioxide. 
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cosolvents, also known as modifiers or entrainers [9,93,110,129–133]. The presence of cosolvents 

may significantly increase the chemical interactions with the polymeric substances and high 

pressure fluid systems [93,110,134]. Though CO2 has a number of desirable properties, its polar 

index is less than most of the waxes used as sizing chemicals [135]. For example, CO2 has a 

solubility parameter of 6.5 (cal/cm3)1/3 at a very high pressure of 200 bar and 35 oC which is still 

less than the solubilities of some liquids [135].  Cosolvents increase the solvating power of 

supercritical fluids either by increasing the polarity of CO2 or reducing the effective polarity of 

hydrated polymeric compounds [93,110].  According to Dobbs, Wong and Johnston [135], 

addition of a cosolvent should not only enhance the solvating strength of the supercritical fluid but 

also preserve the sensitivity of the solute with respect to temperature and pressure. 

 

1.5 Fabrication of Hydrophobic/superhydrophobic cellulose-based materials 

 

A number of methods for fabricating hydrophobic and/or superhydrophobic surfaces have been 

reported [2,3]. Due to their chemical nature, not all of the methods are applicable to cellulose 

papers [1,2]. Typically, any method to fabricate water repellency on surfaces aims at altering the 

surface energy and surface roughness [2,3,10,22,43]. Darband, Aliofkhazraei, Khorsand and 

Soskhanhar [3], in their review article on science and engineering of superhydrophobic coatings 

and surfaces, schematically demonstrated some of the methods for fabricating superhydrophobic 

surfaces, as shown in Figure 1.4. These methods are desribed briefly below: 
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Figure 1.4: Some commonly used hydrophobization techniques for cellulose substrates. 

 

Plasma treatment  involves two main steps, namely; etching of the surface and roughening of the 

etched surface [2,3]. Jiang, Tang, Clinton, Breedveld and Hess [25] carried out a two-step process 

to create superamphiphobic paper by plasma etching. In this study, oxygen plasma etching was 

used to produce multiscale roughness on the fibers by thinning the fibers. These surfaces showed 

strong repellency characteristics for low surface-tension liquids such as Hexane (23.8 mN.m-1) and 

n-heptane (20.1 mN.m-1). 

 

Dip-coating treatments for making superhydrophobic surfaces on cellulose fibers have recently 

attracted some attention due to their ease of application [2], and are also referred to as solution-

immersion methods [136]. The method is a relatively simple, and a very effective technique for 
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applying superhydrophobic coatings to diverse substrates [136]. Shenghai Zhang and Wang [136] 

carried out a solution-immersion process to fabricate superhydrophobic coatings on cellulose-

based materials. The process involved four simple steps, namely; preparation of the solution-

coating, dipping of the cellulose fibers in the solution, washing the coated fibers after being 

removed from the solution, and vacuum-drying. One main advantage of the solution-coatings is 

that they can be done by various application methods such as  dipping, spin-coating or spraying 

[2]. Dip-coating treatments may impact the strength of hydrophobized surfaces negatively, and 

therefore it would be helpful to perform some mechanical analyses alongside with the dip-

treatment.  

 

Polymerization is another area that has been extensively studied in recent years to promote 

superhydrophobicity of surfaces [2,8]. The methods range from simple to sophisticated multi-step 

procedures. Different polymerization routes such as atom transfer radical polymerization and 

radiation-induced graft polymerization have been successfully used for CBM and having with 

contact angles of 140o and above [2].  

 

Spray-coating is by far the most common method of making superhydrophobic paper [1–3]. It can 

either be a dry method (RESS) [13] or a wet method [1]. Ogihara [1] demonstrated a simple wet-

method for making superhydrophobic paper by spraying of alcohol suspension containing 

transparent SiO2 nanoparticles. The aggregation state of the SiO2 nanoparticles and SiO2 particle 

size were the two main factors that determined the hydrophobic properties. The process is simple 

and does not require any sophisticated equipment. Another simple spray method is the dissolution 

of AKD granules in acetone, and then spraying or pouring the solution onto the substrate before 
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letting the acetone evaporate  [13]. The main disadvantages of the latter method are sparse 

agglomeration of particles and uneven distribution of AKD on the substrate which affect 

hydrophobic properties adversely. 

 

Chemical vapor deposition (CVD) involves vaporization and re-deposition of the desired sizing 

chemical onto the substrate [137]. The key application of this technique rests on the possibility of 

the vapors being able to condense into small pores on the substrate surface [138].  

 

Annealing can be used to alter the morphology of a surface which could promote dual-scale 

structure [10]. The presence of hierarchical micro-/nano-structure has been linked to the 

development of superhydrophobicity on most substrates [2,10,22,41,54,139]. As a rule of thumb, 

lowering the surface energy of a rough surface or roughening a low-energy surface will improve 

the hydrophobic properties of the surface [3,139]. The surface roughness produced after 

hydrophobization may not sufficient to meet the requirement for super resistance to water 

penetration; and additional treatments may be necessary. According Zhang, Lu, Qian and Xiao 

[10], annealing of waxes at neat the melting temperatures could drastically change the surface 

morphology so as to increase the surface roughness. Zhang et al. [10] found out that emulsified 

beeswax and carnauba wax mixtures  could separate from the wax  mixture upon heating;  micron 

and submicron particles were produced as a result. In a study by Yokoyama and Sugiyama [41], 

annealing was found to accelerate the ordering of block copolymers which enhanced the 

hydrophobicity of the surfaces by thickening the surface of fluorinated domains.  
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In Rapid expansion of supercritical solutions technique (RESS), a coating mixture prepared at 

high-pressure is sprayed onto the substrates at atmospheric conditions  [13,112,140]. The 

application of RESS is predicated on the high solvating power of scCO2 to create fine particulate 

matter of the sizing solution of choice [2,13,141,142]. Due to the fast transfer of phases from a 

very high pressure to atmospheric pressure, extremely small particles can be formed on the 

substrates [143]. According to Quan, Werner, Wagberg and Turner [13], three main factors 

influence RESS which are spraying distance, pre-expansion temperature and pre-expansion 

pressure. 

 

The term impregnation refers to delivery of the desired chemical (sizing agent) directly into the 

entire thickness of the substrates rather than the surface, and in this case, directly to the fibers of 

the paper substrates [9]. Two main mechanisms used to describe impregnation are: deposition and 

molecular dispersion [110]. In deposition, CO2-solute mixture fills the pores of the solid 

polymetric matrix. During depressurization, CO2 diffuses out of the pores, leaving behind the 

solute in the matrix. For molecular dispersion, the CO2-solute mixture is dissolved in the solid-

polymeric matrix. During depressurization, as CO2 leaves, the solute is precipitated within the 

pores which may lead to swelling and/or plasticization [110]. One of the main advantages of 

supercritical impregnation is the ease of entirely removing the SCF after the process is complete.  

 

1.6 Solubility studies 

 

Accurate solubility data are integral for the development of most hydrophobization techniques 

involving supercritical fluids such as RESS, supercritical fluid extraction (SFE), particles from gas 



19 
 

saturated solutions (PGSS) and supercritical impregnation. According to Tang, Jin, Zhang and Liu 

[109], the reliability analysis of the experimental solubility set-up can be carried out by:  (1) taking 

the measurements three times within ±5% deviation and (2) verifying selected literature data. 

Another class of solutes used in supercritical fluids is heavy hydrocarbons. Poor solubility of heavy 

hydrocarbons in supercritical fluids has been reported [144,145]. However, Shi, Jing and Qiao 

[144] studied the solubility of heavy hydrocarbons with different chain lengths in supercritical 

carbon dioxide to determine regions of optimum operating conditions.  

 

According to Agustin, Lin, Kurniawan, Ju, Soetardo and Ismadji [118], availability of these 

solubility data at a wide range of pressures and temperatures is important for designing, optimizing 

and implementing supercritical processes. Semi-empirical models have also been used to evaluate 

the solubility of solutes in supercritical carbon dioxide [98,109,130]. In these methods, some 

physical properties of the solutes are needed, such as enthalpy, fusion temperature and activity 

coefficients. Because approximations are involved, care must be taken before the data are used 

and implemented. The degree of deviation of calculated data from experimental data can be 

evaluated by average absolute relative deviation (AARD) [146].  

 

Solubility also plays a vital role in high-pressure processes such as impregnation techniques – it 

promotes a faster and a more homogenous impregnation [110]. An increase in solubility at SCF 

conditions leads to enhanced mass transfer rates between a solute (sizing chemical) and a SCF 

(CO2). Therefore, increased solubility will lead to an increase in the amount of the solute 

impregnated (mass of solute intercalated within the pores of the substrate per unit area) on the 

substrate. In section 1.2, it was pointed out that low surface-energy and/or high surface roughness 
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favor the development of hydrophobicity. As the amount of the low-energy chemical on the 

substrate increases due to increased solubility in the SCF, there will be a corresponding increase 

in the hydrophobic properties of the surface – caused by a reduction in the surface energy and/or 

an increase in the surface roughness. An increase in solubility will produce an increase in the 

degree of hydrophobicity [11]. Therefore, a direct relationship can now be made between 

impregnation (mass/area) and hydrophobicity. CA is a function of the amount of solute 

impregnated onto the paper (I), which is indirectly a function of the solute’s solubility in CO2 (S). 

Mathematically, the relationships can be represented as follow in Equations 1.8 and 1.9: 

 

𝐶𝐴 = 𝑓(𝐼)            (1.8) 

 

𝐼 = 𝑓(𝑆)           (1.9) 

 

Where 𝑓 is a function. 

 

1.7 Thermodynamic modeling  

 

Information on experimental determination of solubility of AKD in scCO2 appears to be scarce in 

the literature [11]. Experimental determination of the solubilities of solids in (SCFs) at wide range 

of temperatures and pressures could be very expensive and time-consuming 

[11,12,102,113,114,119,147–149].  Although there a number of methods to experimentally 

determine the solubility, thermodynamic models may sometimes be needed to correlate the 

experimental data [107]. Therefore, it is important to use the powerful predictive capabilities of 

thermodynamic models to determine  solubilities of  various solutes from diverse applications in 
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supercritical fluids [150]. Thermodynamic models in the form of activity coefficients offer a 

number of different approaches for evaluating activity of the liquid phases [114,151]. A detailed 

description of the following activity coefficient models was given by Prausnitz, Lichtenthaler and 

Azevedo [151]: Redlich-Kister, Barker, Wohl, van Laar, non-random two liquid (NRTL), 

universal quasi-chemical theory (UNIQUAC) and Wilson’s models. These models require some 

constants that are usually regressed from experimental data. Group contribution methods are 

alternative models for  calculating activity coefficients in the absence of experimental data or 

physical constants [152–154]. They can be used for calculating activity of AKD in the liquid phase 

as its physical property constants such as critical pressure and temperature are not known. Another 

class of models is the equations of state (EOS) – applicable over a wide range of pressures and 

temperatures but may only be used for inorganic gases and hydrocarbons [155]. EOS are generally 

preferred to the above activity coefficient models because they incorporate sophisticated 

calculations that enhance their predictive capabilities [155]. EOS models also have a smooth phase 

transition and do not require the need to choose an arbitrary reference state which could interfere 

with their accuracy, but they are not good near critical conditions  [113,150,155]. EOS models do 

require some physical constants in their calculations, however. Therefore, they cannot be used for 

modeling substances whose physical property constants are not known. EOS coupled with other 

models such as conductor-like screening model – realistic solvation (COSMO-RS) will improve 

the prediction capacity accuracy [156]. In the absence of critical constants for organic solutes, EOS 

models may still be used to determine solubility by using “group-contribution based estimation of 

pure component properties” [157,158]. The critical constants can be determined by the group 

contribution method developed by Klincewicz and Reid [159] (originally developed by Lydersen 

(1955).  
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1.7.1 Fundamental Thermodynamics of Phase Equilibrium 

 

The starting point for phase equilibrium calculations is fugacity [120,155,160,161]. At 

equilibrium, the fugacity of a substance must be the same in all the phases. Equations 1.10 to 1.13 

give the fugacity relations of the phases. The solute is denoted by 1. 

 

𝑓1
𝑆 = 𝑓1

𝐿 = 𝑓1
𝑉         (1.10) 

 

𝑓1
𝐿 = 𝑥1𝛾1𝑓1,𝑝𝑢𝑟𝑒

𝐿                           (1.11) 

 

𝑓1
𝑉 = 𝑦1𝜙1

𝑉𝑃          (1.12) 

 

𝑓1
𝑠 = 𝑃1

𝑠𝑢𝑏𝜙1
𝑠 exp[

1(𝑃−𝑃1
𝑠𝑢𝑏

𝑅𝑇
]          (1.13) 

 

𝑓1
𝐿 is the fugacity of component 1 in the liquid phase; 𝑓1

𝑆 is the fugacity of component 1 in the 

solid phase; 𝑓1
𝑉 is the fugacity of component 1 in the vapor phase; 𝛾1 is the activity coefficient of 

component 1; 𝑓1,𝑝𝑢𝑟𝑒
𝐿  is the fugacity of pure (subcooled) liquid solute (often taken as the saturated 

vapor pressure, and is 𝑓1
𝑉 is the fugacity of component 1 in the vapor phase; [120]; 𝜙1

𝑉 is the 

fugacity of species 1  in the vapor phase; 𝑦1 is the mole fraction of component 1 in the vapor phase; 

𝜙1
𝑠 is the fugacity of solid which is usually close to unity due very low sublimation of high 

molecular weight compounds [108,124,153,162]; 𝑃1
𝑠𝑢𝑏 is the sublimation pressure; 𝑣2

𝑆 is the molar 

volume of pure solute; T and P are temperature and pressure, respectively. The 

expression, [
𝑣1

𝑆(𝑃−𝑃1
𝑠𝑢𝑏

𝑅𝑇
], is called Poynting factor – which is calculated from experimental values. 
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1.7.2 The phi-phi (ϕ − ϕ)  and phi-gamma (ϕ − γ) models 

 

An EOS is mostly used to obtain the fugacity of the vapor phase as functions of temperature, 

pressure and composition.  For the liquid phase, there are two ways of computing the fugacity. 

One is using the same EOS used for the vapor phase to compute the fugacity of the liquid phase, 

and the other is using an activity coefficient model to compute the liquid phase [155]. When EOS 

is used to compute both the vapor and liquid phase, it is often referred to as 𝜙 − 𝜙 model. In 𝜙 −

𝜙 model, the highest molar volume should be taken as the vapor volume while the smallest volume 

as the liquid molar volume. When EOS is used to compute the vapor and activity coefficient for 

the liquid phase, it is referred to as 𝜙 − 𝛾 model.  

 

1.7.3 Mixing rules 

 

To use cubic EOS models for predictions and correlations of phase equilibrium mixtures, 

composition-dependent parameters a and b that account for non-ideal interactions of the species 

are needed. The relations for the interaction parameters a and b are given in Equations 1.14 and 

1.15. Mixing rules are used to describe the hypothetical behavior of these interaction parameters 

in mixtures. 

 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖𝑗𝑗𝑖           (1.14) 

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖           (1.15) 

 

where 𝑥 is the molar fraction; 𝑖 and 𝑗 are the components in the solution 
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Equations 1.16 to 22 give some of the more common mixing rules: 

 

van der Waals mixing rules (VDWMR) [151,155] 

 

𝑎𝑖𝑗 = (1 − 𝑘𝑖𝑗)(𝑎𝑖𝑎𝑗)
1/2

        (1.16) 

 

Lorentz-Berthelot mixing rules (LBMR) [91]: 

𝑎𝑖𝑗 = 0.45724𝑅2𝑇𝑐𝑖𝑗
2 (

𝑎𝑖𝑗

𝑃𝑐𝑖𝑗 
)          (1.17) 

 

𝑇𝑐𝑖𝑗 = (1 − 𝑘𝑖𝑗)(𝑇𝑐𝑖𝑇𝑐𝑗)
1

2        (1.18) 

 

𝑉𝑐𝑖𝑗 = (
𝑉

𝑐𝑖

1
3+𝑉

𝑐𝑗

1
3  

2
)

3

          (1.19) 

 

𝑃𝑐𝑖𝑗 =
𝑍𝑐𝑖𝑗𝑅𝑇𝑐𝑖𝑗

𝑉𝑐𝑖𝑗
         (1.20) 

𝑍𝑐𝑖𝑗 =
𝑍𝑐𝑖+𝑍𝑐𝑗

2
          (1.21) 

 

𝑎𝑖𝑗 = (𝑎𝑖𝑎𝑗)
1

2          (1.22) 
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where 𝑘𝑖𝑗 is the fitting parameter, also known as the coupling parameter [163]; T is temperature; 

R is gas constant; 𝑇𝑐 is the critical temperature; 𝑃𝑐 is the critical pressure; 𝑉𝑐 is critical molar 

volume; 𝑍𝑐 is critical compressibility factor; a and b are interaction parameters; 𝑖 and 𝑗 are the 

components in the solution. 

 

1.8 The research motivation and goals 

 

1.8.1 Motivation for the study 

 

Superhydrophobic coating formulations are used to impart water repellency on various substrates. 

Unfortunately, several of the coating formulations (and common methods of application) cannot 

be used on CBM due to the ease of being damaged by the treatment(s) applied.   Also, the coating 

methods may be too complicated and often involve multi-step processes. Low surface energy 

organic compounds such as fluoropolymers are sometimes added to augment or tune hydrophobic 

surfaces made from many traditional methods [2]. Additional functionalities could be added 

alongside water repellency which necessitate the coating to be thin and light.  Impregnation is an 

alternative technique to from typical coating methods (which coat only the substrate surface) which 

coats the surface of every fiber making up the substrate. Impregnation methods produce coatings 

that are very thin, well distributed over the fibers, and  evenly sized through the entire thickness 

of the substrate, with less than 1 g of the sizing chemicals – much lower than that used in surface 

sizing methods [9]. Also, the weight of the coating is much lower when compared with other 

coating methods (average coating thickness of most methods is usually greater than 50 𝜇𝑚) 

[1,6,10,13,142]. Impregnation techniques are capable of rendering the CBM sufficiently water-

repellent with a single hydrophobization step and also encourage the inclusion of additional 
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functionalities to the surface due to its low coating weight. Since it coats the entire thickness of 

the substrate, impregnation can be used for non-planar surfaces  [164]. Impregnation techniques 

have a potential to improve the mechanical robustness of the CBM [5]. The U.S. Food and Drug 

Administration (FDA) recommends the use of edible waxes for food-based applications because 

of possible leaching or diffusion of the coating material into the packaged item [44].  

 

In this study, the viability of food-grade waxes as alternative sizing chemicals is also explored 

along with AKD wax which is routinely used in papermaking. Where the surface energy of the 

waxes is not significantly low to achieve the desired hydrophobicity, instead of using of 

fluoropolymers, annealing treatment is used to enhance the water repellency.  Finally, in addition 

to the experimental investigation, the robustness and predictive accuracy of thermodynamic 

modeling is investigated to optimize the performance of the waxes in supercritical medium.  

 

1.8.2 Proposed study 

 

The research goal is to develop highly water-repellent surfaces on cellulose substrates using 

supercritical impregnation methods, for food packaging applications.  With this in mind, the three 

key objectives to be pursued are: 

 

(a) Thermodynamically model the solubility of AKD solute in scCO2
 to help identify optimal 

conditions for impregnation.  The model can be used to predict unavailable experimental 

data at of AKD over a wide range of pressures and temperatures.   
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(b) Assess the hydrophobic performance of these solutes (AKD and food-grade waxes) when 

impregnated into cellulose substrates. This study will determine the most appropriate 

solutes for creating highly water-repellent surfaces, and the conditions under which these 

are obtained (includes supercritical conditions as well as annealing in some cases).  

 

(c) Examine the surface and interfacial energies of various impregnated solutes (AKD, 

carnauba wax, natural vegetable wax, paraffin wax, beeswax, bees-milk) into cellulose 

substrates, and their resulting behavior / interactions with water droplets applied to the 

surface.  The examination will reveal the mechanic pathways of the sizing and surface 

morphology together with the uniform distribution of the sizing chemicals over the fibers, 

mechanical durability, surface and interfacial energies.
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CHAPTER II 

 

THERMODYNAMIC MODELS OF ALKYL KETENE DIMER DISSOLVED IN 

SUPERCRITICAL CARBON DIOXIDE 

 

The chapter was submitted for publication to the Journal of Chemical & Engineering Data. 

 

2.1 Abstract 

 

This study investigated solubility modeling of alkyl ketene dimer (AKD) in supercritical carbon 

dioxide (scCO2). Group contribution estimation methods were used to determine the critical 

properties of AKD, followed by modeling with Peng-Robinson equation of state using van der 

Waals mixing rules.   The calculated solubilities were less accurate near the critical point, however 

showed very good agreement with the experimental data at higher pressures over a wide range of 

temperatures. Binary interaction parameters recovered from equilibrium and extraction solubility 

measurement methods at the same conditions were different. As a result, data interpretation and 

experimental set up should be considered before these results are implemented. These findings 

will assist in designing high pressure processes such as rapid expansion of scCO2 solution (RESS) 

and scCO2 impregnation of solutes into substrates. 
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2.2 Introduction 

 

It is both fascinating and expedient for researchers and experts to seek and develop alternative 

technological processes that are more efficient and environmentally friendly. New process 

pathways that produce better yields, less toxins, lower energy consumption, and more sustainable 

economic viability, are considered to be alternative technological methods [95]. The advent of 

supercritical fluids (SCF) as alternative solvents for various chemical and industrial processes has 

replaced many organic solvents and increased efficiency [92]. Though they have been a subject of 

research since the 1800s, they have only seen increased attention in the last few decades [126]. 

SCF have many applications in pharmaceutics, material and polymer industries, biotechnology, 

biomedical industry, separation processes, purification treatments, and surface modifications, 

amongst others [9,91,108,126,165]. 

 

Density of SCF is very sensitive to imperceptible changes in temperature and pressure, especially 

near the critical point. As a result, the solubility of a solute in a SCF can increase by several orders 

of magnitude by manipulating temperature and pressure, since solubility is directly proportional 

to density. SCF can diffuse much faster through solids than most liquids, and still possess 

significantly high solvation strength to solubilize the solute – owing to their gas-approaching 

viscosity, high diffusivity and liquid-like density [9]. Carbon dioxide is the most commonly used 

supercritical fluid due to its relatively low toxicity, a critical temperature of 31.1oC, and a pressure 

of 73.8 bar [105,165]. In addition, it is non-flammable, non-toxic, readily miscible with a number 

of solvents, and possesses an ease of recovery after processing. Being a small and linear molecule, 

it has a high diffusion coefficient. CO2 is not good at solubilizing solutes with high molecular 
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weights or medium / high polarity [129] – and its own very low polarity reduces solvating strength 

[133]. Cosolvents, modifiers or entrainers [93] can be added to the SCF to significantly alter its 

solvating properties and enhance its selectiveness  [93,110]. Cosolvents enable more chemical 

interactions between the solute and SCF which in turn leads to significant enhancement in 

solubility [110,129–132]. The cosolvent can be a SCF, gas or liquid, polar or non-polar [133]. 

   

Solubility data are integral both for the development and optimization of processes involving SCF 

applications [11,89,160]. The solvating power of SCF can be tuned by adjusting the operating 

parameters – temperature, pressure and mole fractions [113]. Design and implementation of high-

pressure processes requires solubility data [113,165], but unfortunately, this data is not always 

available or is too expensive to experimentally determine for the solute of interest [113]. Therefore, 

thermodynamic models are used to evaluate the solubility, and the reliability of the process 

depends on how well the models can accurately predict unavailable experimental data [11,113]. 

 

A variety of  models have been proposed for calculating the solubility of solutes in SCF 

[105,146,151,161,165,166]. Two-parameter cubic EOS models are the most commonly used due 

their better computational efficiencies and accuracies in modeling both liquid and vapor phases at 

high pressures, compared with others [167]. The EOS models often involve sophisticated 

computational calculations and procedures [150], and physical property constants such as critical 

pressure and temperature, sublimation pressure, acentric factor, and molar volumes of the 

compounds being modeled [105,165]. It is difficult to know all these physical property constants 

for a single compound, and these may be estimated using correlations and group contribution 

estimation methods (GCEM) [91,105,165,168–170]. The estimated values of these physical 
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constants can significantly affect the accuracy of the solubility predictions [105]. The main source 

of errors in using EOS models comes from the numerical values of physical property constants 

[105,171]. For example, a wrong estimate of sublimation pressure could produce an average error 

up to 35% [105].  

 

EOS models are not good for estimating operating conditions near the critical values due to the 

large variation in the density of  SCF in this region [172]. Accuracy of the EOS models can be 

increased by using more sophisticated mixing rules that account for various nonideal 

intermolecular interactions and renormalization group methods as well as scaling of nonanalytic 

equations of state  [167,173,174]. EOS models require mixing parameters that are usually fitted to 

experimental data. The parameters are 𝑎𝑚 (van de Waals energy or attractive parameters) and 𝑏𝑚 

(covolume parameters) [104,162].  

 

Regardless of the adopted thermodynamic model, the overall objectives of the modeling are: 

predictive accuracy; improved computational speed; thermodynamic consistency; and wide-range 

predictive capability [150]. Finally, the actual application should be factored in before a specific 

thermodynamic model is chosen. However, thermodynamic models that use some experimentally 

determined data (no matter how few) are generally more accurate. 

 

Alkyl ketene dimers (AKD), one of the most commonly used sizing agents [44,175], was the solute 

considered in this study, along with supercritical carbon dioxide (scCO2) as the solvent.  There are 

no solubility models developed specifically for AKD in scCO2 to the best of the authors’ 
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knowledge – only a few groups who have obtained experimental data [11,12].  AKD is not a pure 

compound, and consequently its critical conditions are not known because it decomposes before it 

reaches critical state [13].  A number of GCEM correlations have been proposed for estimating the 

critical properties, acentric factor and vapor pressure of compounds [159,169,176,177], and were 

used to predict these properties for AKD.  The solubility of AKD in scCO2 can, therefore, be 

modelled with a cubic EOS after these physical properties have been determined. 

 

AKD solubility in scCO2 was calculated using Peng Robinson equation of state (PREOS) model 

with van der Waal mixing rules. The typical structure of the AKD considered has C14 and C16 

alkyl chain lengths as shown in Figure 2.1.  Thermodynamic models were compared with 

experimental data obtained from the pioneering work of Rodriguez-Meiozoso, Werner, Knez and 

Turner [11], who studied phase behavior of AKD in scCO2 and solubility determination using 

different measurement methods. It appears there has not been newer work in the literature on AKD 

solubility in scCO2 since their study.  Mathcad was used for thermodynamic computations and  

calculations of the solute solubilities in scCO2. Mathcad was chosen due to its simplicity, powerful 

computational robustness and speed. In addition, it allowed solubility modeling to become a 

routine exercise that can be easily carried out and readily performed without the use of complicated 

programing packages.  

Figure 2.1: Molecular structure of AKD.  Note that R1 and R2 are typically in the range of C14 

– C16. 
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2.1 Model framework 

 

2.1.1. Fugacity of the solid-supercritical fluid phase equilibria 

 

The steps required to calculate the solubility are shown in Figure 2.2, and represent the various 

calculations performed to compute the solubility of AKD in scCO2 at various temperatures and 

pressures.  For the purposes of thermodynamic model development, only a binary mixture was 

considered where scCO2 and AKD were identified as components 1 and 2 respectively.  From the 

chemical potential standpoint, at equilibrium, the fugacity of the solid and supercritical phases are 

equal at the same temperature and pressure [91].  Fugacity coefficient of some solids are very close 

to unity due to very low sublimation of high molecular weight compounds [108,124,153,162]. 

After simplifying the fugacity equation, the model equation for determining the solubility of AKD 

in scCO2 is given by Equation 2.1. 

 

𝑦2 =
𝑃2

𝑣𝑎𝑝

𝑃𝜙2
𝑠𝑢𝑝 exp[

𝑣2
𝑠(𝑃−𝑃2

𝑣𝑎𝑝
)

𝑅𝑇
]     (2.1) 

 

where 𝑦2 is the solubility of AKD in CO2; 𝑃2
𝑣𝑎𝑝

 is the vapor pressure of AKD; 𝑣2
𝑠 is the molar 

volume of pure solute; 𝜙2
𝑠𝑢𝑝

 is the fugacity of the solute in the supercritical phase; T and P are 

temperature and pressure, respectively; and R is the universal gas constant. The 

expression, [
𝑣2

𝑠(𝑃−𝑃2
𝑣𝑎𝑝

)

𝑅𝑇
], is called the Poynting factor.  
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2.1.2 Vapor pressure and molar volume determination 

The vapor pressure of AKD was estimated using the functional group parameters given by Tu 

[178]. Equation 2.2 was the result when the vapor pressure for GCEM was simplified for AKD 

with 14 and 16 alkyl groups. 

Start 

Input parameters: 

 MW, density: molar volume – Equation 3  

critical properties: acentric factor – Tables 2 and 3 

End 

Calculating mixing parameters –  Equations 5 - 7, and binary interaction parameters 

(kij(𝑇)) – Equations 10, 11 and Table 1.   

 uurrrrrrdusing theb 

Fugacity relationship: Fugacity of 

solute = fugacity of  SCF at 

equilibrium, leading to Equation 1  

Use PREOS (Equation 4) to define fugacity 

coefficient, Equation 8 - 9 

Solve for y
2
, solubility of AKD in SCF, in Equation 1 

Figure 2.2: Model algorithm. 
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𝑃2
𝑣𝑎𝑝(𝑇) = 1.980 exp [8.575 −

95.597

𝑇
− 3.744 𝑙𝑛(𝑇) − 0.583𝑇] (2.2) 

 

where T is temperature in K divided by 100K. 

 

The density of AKD wax (AquapelTM 364K sizing agent) supplied by Solenis was estimated by a 

simple laboratory procedure. AKD pellets were melted in an oven and then poured into a petri dish 

of known dimensions. The liquid was allowed to solidify at room temperature, after which the net 

mass was obtained. Density of bulk AKD was calculated by dividing the net mass of solidified 

AKD by the volume of the petri dish. This density value is an estimate ‘in the absence of other 

information’, and the average value of three repeat measurements was 768 kg/m3. The molar 

volume of AKD was then calculated by Equation 2.3. 

 

𝑣2
𝑠 =

𝑀𝑊

𝜌𝐴𝐾𝐷
  (2.3) 

 

where 𝜌𝐴𝐾𝐷 is bulk density of AKD and MW is the molecular weight of the solute. 

2.1.3 Peng-Robinson Equation of State (PREOS) and mixing rules 

 

The Peng-Robinson equation of state used for the modeling of the SCF is given in Equation 2.4, 

while the mixing rules are shown in Equation 2.5. Binary interaction parameters are given in 

Equations 2.6 and 2.7. The fugacity coefficient is given in Equations 2.8 and 2.9.  
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𝑃 =
𝑅𝑇

𝑣−𝑏𝑚
−

𝑎𝑚(𝑇)

𝑣(𝑣+𝑏𝑚)+𝑏𝑚(𝑣−𝑏𝑚)
    (2.4) 

 

𝑎𝑚 = ∑ ∑ 𝑦𝑖𝑦𝑗𝑎𝑖𝑗
𝑛
𝑗

𝑛
𝑖   ,  𝑏𝑚 = ∑ 𝑥𝑖𝑏𝑖

𝑛
𝑖    (2.5) 

 

𝑎𝑖𝑗 = √(𝑎𝑖𝑎𝑗)(1 − 𝑘𝑖𝑗)  ,   𝑎𝑖 =
0.457235𝛼𝑖𝑅2𝑇𝑐𝑖

2

𝑃𝑐𝑖
  ,    𝑏𝑖 =

0.077796𝑅𝑇𝑐𝑖

𝑃𝑐𝑖
     (2.6) 

 

𝛼𝑖 = [1 + (0.37464 + 0.54226𝜔𝑖 − 0.26992𝜔𝑖
2)(1 − √𝑇𝑟𝑖]

2
  (2.7) 

 

𝜙2
𝑠𝑢𝑝 = exp [

𝑏2

𝑏
(𝑍 − 1) − 𝑙𝑛(𝑍 − 𝐵) −

𝐴

2√2𝐵
[[

2[(1−𝑦2).𝑎12+𝑦2.𝑎2]

𝑎𝑚
−

𝑏2

𝑏𝑚
] 𝑙𝑛 [

𝑣+(1+√2).𝑏𝑚

𝑣+(1+√2).𝑏𝑚
]]]  (2.8) 

 

𝐴 =
𝑎𝑚𝑃

(𝑅𝑇)2    ,  𝐵 =
𝑏𝑚𝑃

𝑅𝑇
  (2.9) 

where 𝑣 is the molar volume of the SCF: Z is the compressibility factor; 𝜔 is the acentric factor; 

and 𝑃𝑐, 𝑇𝑐 and 𝑇𝑟 are critical pressure, critical temperature and reduced temperature, respectively.  

 

2.1.4 Binary interaction parameters 

 

The binary interaction parameters 𝑘𝑖𝑗(𝑇) are determined by minimizing the objective function 

(Equation 2.10) in terms of calculated and experimental solubilities which are then used to fit 𝑎12 
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in Equation 2.11 to the experimental data. Binary interaction parameters regressed from 

experimental data of AKD/scCO2 from cloud-point and extraction methods for various 

temperatures are given in Table 2.1.  

 

∑ [𝑦𝑒𝑥𝑝 −  𝑦𝑐𝑎𝑙]
2

= 0𝑛
𝑖=0     (2.10) 

 

𝑎1,2 = 𝑎1𝑎2(1 − 𝑘1,2)  (2.11) 

 

where 𝑦𝑒𝑥𝑝 is the experimental solubility and 𝑦𝑐𝑎𝑙 is the calculated solubility from Equation 1.  

Note that 𝑦2 in Equation 1 is the same as 𝑦𝑐𝑎𝑙 in Equation 2.10. 

 

 

 

 

Table 2.1: Binary interaction parameters regressed from experimental data of AKD/SC-CO2 of cloud-point 

and extraction methods. 

AKD-CO2 System Temperature (K) 𝒌𝒊,𝒋 

Cloud-point method 323.15 -0.05754 

Cloud-point method 333.15 -0.10912 

Cloud-point method 343.15 -0.14223 

Cloud-point method 353.15 -0.17443 

Extraction method 313.15 -0.05196 

Extraction method 333.15 -0.13817 

Extraction method 353.15 -0.24207 
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2.1.5 Critical properties 

 

The critical properties of CO2 are given in Table 2.2. The results of the different GCEM used to 

determine the physical properties of AKD are given in Table 2.3. In this case, the critical 

temperature and pressure that have the best correlation of the AKD experimental data are Fedors 

and Lydersen, respectively. Acentric factor was calculated from the temperature and pressure 

using Edminster correlation [179]. Variation and over-estimation of  critical properties are well 

known in GCEM [171].   

 

Table 2.2: CO2 critical properties 

Functional 

group 
𝑇𝑐, K 𝑃𝑐, bar 𝜔 Ref 

CO2 304.21 73.8 0.225 [180] 

 

 

 

Table 2.3: Group contribution estimation of AKD critical properties.  Tb is the estimated boiling 

temperature of AKD. Corrected Tb from Stein and Brown [176] are used from sets 2-5 

Sets Tb (K) Tc (K) Pc (bar) 𝝎 Estimation 

Methods 

References 

1 1050 1333.2 21.9 1.12 Joback and Reid [169] 

2 800.2 1024.9 7.54 0.33 Lydersen [159] 

3 800.2 900.9 - 1.91 Fedors [159] 

4 800.2 944.7 9.77 1.332 Ambrose [159] 

5 800.2 1021.9 21.9 1.062 Joback and Reid [169] 

 

2.2 Results and Discussion 
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2.2.1 Modeling of cloud-point pressure determination of solubility 

 

The cloud-point solubility measurements were performed within a pressure range of 10-30 MPa, 

and temperature of 50-80oC. The experimental solubilities and pressures are plotted in Figure 2.3 

together with calculated solubilities. The prediction of the solubilities is better at higher than lower 

pressures, as confirmed by the experimental data. As Hezaze et. al. [108] pointed out, EOS models 

usually produce worse estimations of solubilities at regions near the critical pressure and 

temperature, but are more accurate further from these conditions. This is often attributed to the 

transient behavior of SCF density in this region. The calculated data showed several orders of 

magnitude lower than predicted at this region. However, this transient-behavior effect on the 

estimated solubilities can be improved if more representative data and more sophisticated EOS are 

used [153]. RESS [13] and impregnation [14] processes are often performed at higher pressures 

where the modelled data better matched the experimental data. This study will therefore be integral 

in designing such processes.  Table 2.4 compares the experimental and calculated data. The data 

at 323.15 K show good comparisons between experimental and modeling data at all pressures 

except for 11 MPa.  At 333.15 K, good agreement was found at 22 MPa and above, while a similar 

pattern is observed for the other temperatures in the higher-pressure range as well. The average 

error between actual and calculated solubilities at the higher pressures (italicized error conditions 

in Table 4) was 16%, which demonstrates a reasonably good prediction of the model for AKD 

solubilities overall.  The model was clearly able to predict a similar trend for all experimental data 

at higher densities.   
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Figure 2.4 shows isotherms of calculated solubilities at various pressures using binary interaction 

parameters regressed from cloud-point pressure solubility data. The trajectory of the solubility for 

each isotherm is similar although the solubility decreased with increasing temperature at a given 

pressure, for most pressures shown.  Upper crossover pressures [181] were observed at 

approximately 24 and 28 MPa, after which solubility began to increase when temperature 

decreased. Foster et. al. [182] reported that sufficient accurate experimental data around the critical 

point are needed for isotherms to have a common crossover pressure. For experimental data to be 

considered ‘reliable and consistent’, a plot of solubility vs pressure should have a common 

crossover pressure [182]. However, in this study, a common crossover pressure is not observed 

because of unavailability of experimental data in the vicinity of the critical point. The temperature 

range of the modelled isotherms also includes the melting point of AKD (between 313.15 and 

333.15 K [13], meaning that the solute was solid for some cases and liquid for others.  Common 

cross-over pressures are additionally not observed in these cases [182].  At 30 MPa, each 

temperature condition appeared to plateau and converge to a similar solubility. 
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Figure 2.3: Comparison of cloud-point solubility of AKD in scCO2 [16] with the modeling at a) 323.15K, 

b) 333.15 K, c) 343.15 K, and d) 353.15 K. 
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Table 2.4: Comparison of the calculated solubilities with data obtained from cloud-point determination 

method.  All AKD solubility experimental data were taken from Rodríguez-Meizoso et. al.  [11] 

Pressure 

(MPa) 

 

Experimental 

solubility 

(mg/mg) 

Calculated 

solubility 

(mg/mg) 

Standard 

deviation 

(mg/mg) 

Relative 

standard 

deviation % 

Absolute   

relative 

error % 

T = 323.15K 

11.00 9.00E-04 6.54E-06 6.32E-04 139.38 99.27 

17.00 1.70E-03 2.01E-03 2.19E-04 11.82 18.24 

21.00 3.20E-03 3.22E-03 1.13E-05 0.35 0.50 

23.00 2.70E-03 3.51E-03 5.73E-04 18.45 30.00 

25.00 4.80E-03 3.68E-03 7.94E-04 18.73 23.40 

T = 333.15K      

12 9.00E-04 1.68E-06 6.35E-04 141 99.81 

21 1.70E-03 2.63E-03 6.58E-04 30.4 54.76 

22 3.20E-03 2.99E-03 1.48E-04 4.77 6.53 

23 2.70E-03 3.29E-03 4.19E-04 14 21.93 

25 4.80E-03 3.75E-03 7.46E-04 17.5 21.98 

T = 343.15K 

15 9.00E-04 1.68E-05 6.25E-04 136.24 98.13 

25 1.70E-03 3.04E-03 9.50E-04 40.07 79.06 

25 3.20E-03 3.04E-03 1.10E-04 3.53 4.88 

25 2.70E-03 3.04E-03 2.43E-04 8.47 12.74 

27 4.80E-03 3.59E-03 8.56E-04 20.41 25.23 

T = 353.15K 

15 9.00E-04 2.13E-06 6.35E-04 140.48 99.76 

26 2.70E-03 2.77E-03 5.23E-05 136.18 2.74 

27 2.70E-03 3.19E-03 3.47E-04 113.67 18.19 

28 4.80E-03 3.56E-03 8.79E-04 85.38 25.90 
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Figure 2.4: Isotherms of calculated AKD solubility in scCO2 with binary parameters regressed from cloud-

point pressure solubility data. 

 

2.2.2 Modeling of extraction determination of solubility 

 

The experimental data obtained from extraction methods are the highest of all the solubility 

measurement methods used – three times as high as those of cloud-point temperature. Table 

2.5 compares calculated and experimental solubility data from the extraction method, and this is 

also shown in Figure 2.5.  The calculated solubility shows good agreement with experiment across 

all temperatures at higher pressures (20 MP and higher). Except for the first data point at 10 MPa, 

most calculated and experimental solubilities were the same order of magnitude. The overall 

average error for this data set between experimental and calculated solubilities, and pressures 20 

MPa and higher was 21%, as indicated by the italicized errors in the Table.  This compares well 

with the previous data set (Table 4), although is a little higher overall. The model also confirms the 

increase in solubilities for the experimental data at higher pressures for all temperatures. 
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Figure 2.6 shows isotherms of calculated solubilities using binary interaction parameters 

regressed from extraction solubility data. With increasing temperature, the predicted solubilities 

reduced, as expected, but only to about 16 MPa.  The model predicted a convergence of solubilities 

at approximately 17 – 18 MPa, after which higher solubilities were predicted for higher 

temperatures, even though these conditions were at lower densities and hence had less solvating 

power.  The crossover pressures were predicted at much lower pressures using extraction-based 

data compared with the cloud-point data (approximately 25 MPa). This trend was also observed 

experimentally with the extraction data reported, whereas the lower solubilities at higher 

temperatures was generally observed for the cloud-point data.  The dynamic setup of the extraction 

method caused the quantity of AKD dissolved to depend not only on equilibrium conditions but 

also its ability to diffuse through the SCF [16].  Consequently, the density effect was more 

important at lower temperatures with operating pressure less than the crossover pressure while the 

diffusion kinetics were dominant at higher temperatures with operating pressures higher than the 

crossover pressure [182,183].  Retrograde vaporization is a phenomenon observed between the 

lower and upper crossover pressures on a mole fraction vs pressure phase diagram, in which the 

solubility of the solute decreases with an increase in temperature [182]. On either side of this 

region, the reverse is true, i.e., the solute solubility increases with increasing temperature 

[181,183].  Retrograde vaporization was therefore observed at most pressures with the cloud-point 

solubility determinations (refer Figure 4).  Extraction solubility methods however revealed both 

retrograde vaporization and kinetic effects with an identified upper crossover pressure 17 – 18 

MPa, both experimentally and via model prediction (Figure 6). Both of these phenomena led to an 

increase in AKD solubility.   
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Figure 2.5: Comparison of extraction solubility of AKD in scCO2 [16] with the modeling at a) 313.15K, b) 

333.15 K, and c) 353.15 K. 

 

Figure 2.6: Isotherms of calculated AKD solubility in scCO2 with binary interaction parameters regressed 

from extraction method. 
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Table 2.5: Comparison of the calculated solubilities with data obtained from extraction method. All AKD 

solubility experimental data were taken from Rodríguez-Meizoso et. al.  [16]. 

Pressure 

(MPa) 

  

Experimental 

solubility 

(mg/mg) 

Calculated 

solubility 

(mg/mg) 

Standard 

deviation 

(mg/mg) 

Relative 

standard 

deviation % 

Absolute 

relative 

error % 

T = 313.15K 

10 1.20E-03 1.86E-04 7.17E-04 103.39 84.46 

15 2.20E-03 3.52E-03 9.33E-04 32.61 59.95 

20 3.70E-03 4.45E-03 5.30E-04 13.01 20.27 

25 6.40E-03 4.41E-03 1.40E-03 25.97 31.03 

T = 333.15K           

10 1.80E-03 1.67E-08 1.27E-03 141.42 100.00 

15 2.60E-03 9.71E-04 1.15E-03 64.52 62.66 

20 6.00E-03 7.44E-03 1.02E-03 15.14 23.98 

25 1.02E-02 8.82E-03 9.78E-04 10.28 13.56 

T = 353.15K 

10 1.50E-03 1.10E-09 1.06E-03 100.00 100.00 

15 2.60E-03 2.08E-05 1.82E-03 97.29 99.20 

20 7.40E-03 9.69E-03 1.62E-03 66.78 31.00 

25 1.43E-02 1.30E-02 9.19E-04 62.58 9.09 
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 2.3 The model validation 

 

The aim of this work was to study how accurately the solubility of AKD in scCO2 could be 

predicted using standard thermodynamic models, given the unavailability of its experimental 

critical properties and vapor pressure data. According to [104,144,165], a plot of ln(solubility of 

the modelled data) vs ln(density or reduced density of pure CO2) should be linear for  the model 

to be deemed “reliable”. This linear relationship was demonstrated by Khimeche, Alessi Kikic and 

Dahmani [104], in their experimental determination and correlation study of diamines solubility 

in scCO2, where a simple linear plot resulted from ln(solubility) vs ln(density of pure CO2). Figure 

2.7 shows the existence of a linear plot between ln(solubility) vs ln(density of pure CO2) for the 

modelled data correlated for cloud-point experimental data at 353.15 K and pressures from 7 – 30 

MPa. The straight line confirms the accuracy and reliability of the model and indicates very good 

agreement of calculated solubilities with the experimental data. The pure CO2 density was 

calculated from the method of Span and Wagner [184].   
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Figure 2.7: Validation of model showing linear relationship between ln(solubility) of AKD and ln(pure CO2 

density).  Data points created with the model were performed at 353.15 K and pressures between 7 and 30 

MPa. 

2.4 Justification and limitations of the model 

The aim of this work was to study how accurately the solubility of AKD in scCO2 could be 

predicted using standard thermodynamic models, given the unavailability of its experimental 

critical properties and vapor pressure data. According to [104,144,165], a plot of ln(solubility of 

the modelled data) vs ln(density or reduced density of pure CO2) should be linear for  the model 

to be deemed “reliable”. This linear relationship was demonstrated by Khimeche, Alessi Kikic and 

Dahmani [104], in their experimental determination and correlation study of diamines solubility 

in scCO2, where a simple linear plot resulted from ln(solubility) vs ln(density of pure CO2). Figure 

2.7 shows the existence of a linear plot between ln(solubility) vs ln(density of pure CO2) for the 

modelled data correlated for cloud-point experimental data at 353.15 K and pressures from 7 – 30 

MPa. The straight line confirms the accuracy and reliability of the model and indicates very good 

agreement of calculated solubilities with the experimental data. The pure CO2 density was 

calculated from the method of Span and Wagner [184].   
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Numerically, the calculated and experimental solubilities do not exactly match as demonstrated in 

Tables 4 and 5, particularly at lower pressures. Nevertheless, there is good agreement in their trend 

as well as order of magnitude, especially with the cloud-point solubility data. As pointed out by 

Rodríguez-Meizoso et. al.  [11], the variance between the solubility methods considered in the 

study could be partly due to the presence of impurities in the solute. This could cause some 

discrepancies in the estimated solubilities since the likely presence of impurities was not addressed 

by the model. There is also a possibility of human and equipment error which could further 

compound the discrepancy between the calculated and experimental solubilities. However, some 

of the likely sources of errors could be minimized if the experimental data set were much larger – 

which would lead to regression of more representative binary interaction parameters as well as 

more accurate calculated solubilities. There is much better agreement of the calculated solubilities 

with experimental data at high pressures – the region of non-ideality. Most processes involving 

scCO2 are carried out at high pressures where there are simultaneous effects of liquid-like density, 

unusually high diffusivity and significant increase in mass transfer [93]. Therefore, this model will 

be useful in predicting solubilities of solutes in these processes at the conditions mentioned.  It 

should be noted that most of the physical properties used were estimated by GCEM, which might 

also be a source of error in the calculated solubilities. 
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2.5 Conclusions 

 

This study shows a simple method to model the solubility of AKD in a supercritical medium in 

the absence of experimental physical constants. The EOS used provides reasonably good solubility 

estimates of the AKD-scCO2 system, especially at higher pressures and for all temperatures. It 

should be noted that different solubility measurement methods produced different results. 

Therefore, proper understanding of data interpretation as well as knowledge of the experimental 

kola is set up are needed before applying the results. The solubilities are poorly predicted near the 

critical point, however showed very good agreement with the experimental data at higher pressures 

over a wide range of temperatures.  Since dissolution of AKD in scCO2 is usually carried out at 

higher pressures, the model will be very useful to provide reasonable estimates of the solubilities.  

Different GCEM produce different values of the physical constants, and hence the accuracy of the 

model hinges on the type and/or combination of GCEM used. Determination of some of these 

constants experimentally will improve the predictive capacity of the model.  The findings in this 

study will complement the scarcity of experimental solubility data of AKD in scCO2. This work 

is believed to be the first attempt made in the open literature to model the solubility of AKD in 

scCO2, and paves the way for future model improvements which may include those at lower 

pressures or those with the added complexity of cosolvents within the AKD-scCO2 mixture.  
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CHAPTER III 

 

STICKY HYDROPHOBIC BEHAVIOR OF CELLULOSE SUBSTRATES IMPREGNATED 

WITH ALKYL KETENE DIMER (AKD) VIA SUB- AND SUPERCRITICAL CARBON 

DIOXIDE 

 

Kolawole Adenekan, B. Hutton-Prager, Sticky Hydrophobic Behavior of Cellulose Substrates 

Impregnated with Alkyl Ketene Dimer (AKD) via Sub- and Supercritical Carbon Dioxide, 

Colloids and Surfaces A: Physicochemical and Engineering Aspects. 560 (2018). 

 

3.1. Abstract 

Cellulose fibers were impregnated with alkyl ketene dimer (AKD) dissolved in n-heptane and 

carbon dioxide via sub- and supercritical impregnation techniques. The mechanistic pathways and 

hydrophobic performance at short and long times were investigated by contact angle (CA) 

analysis, scanning electron microscopy (SEM) with micrographs analyzed using Image-Pro 

Premier, and Fourier Transform Infrared (FTIR) analysis. The sizing development was significant 

after two days of treatment, and hydrophobic performance became uniform after two weeks 

regardless of the impregnation conditions investigated. Samples prepared at 100 and 200 bar 

produced more rapid development than those at higher and lower impregnation pressures, with the 

average CA at 200 bar and 21oC being 140±5o. ‘Sticky’ hydrophobicity was observed on surfaces 
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treated at 200 and 250 bar at long times (> 140 days), and adhesive forces between the droplet (> 

20 µL) and surface were observed at surface tilt angles between 0 – 180o. SEM micrographs of 

impregnated samples showed a reduction in substrate pore-size area (PSA) as hydrophobicity 

developed with time. There was little evidence of reaction-based sizing as the characteristic ketone 

and ester peaks were not observed in FTIR studies. The lactone ring remained intact. The 200 bar 

sample showed highest peak intensity for various hydrocarbon bonds observed – suggesting the 

optimal solubility of AKD in supercritical carbon dioxide (scCO2). Spreading of AKD across the 

fiber surfaces appeared to be the main sizing pathway, and identification of hydrogen bonding 

between AKD and cellulose fibers suggested a possible attachment method. 

 

3.2. Introduction 

 

There has, in more recent years, been a shift in research from hydrophobic surfaces (contact angle, 

CA  90o)  towards the development of superhydrophobic surfaces (CA  150o) in keeping with a 

generic theme for ‘smart’, ‘innovative’ or ‘multifunctional’ coatings [2,10,22,56,57,62]. These 

surfaces have been described as exhibiting the lotus effect [2], in line with early superhydrophobic 

studies of the lotus leaf. High water-repellency has also been reported on rose petals, though they 

have lower CA than superhydrophobic surfaces [2,22].  Surfaces that possess high water repellency 

have low surface energies and/or nano- or microscale roughness [10,25]. These properties are of 

particular importance as they impart desirable functionality on the surface such as self-cleaning; 

dust-removal; transport of microdroplets; anti-corrosion; anti-stick or anti-microbial capabilities 

[2,10,21,22].  Another area of particular interest is that of food packaging applications using paper 

substrates, where a highly water repellant surface would assist greatly in minimizing food spoilage.  
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Packaging materials are required to retain their specific properties for long times in order to 

maintain freshness of the food [90]. 

Additional measurements to quantify the hydrophobic property of a surface are contact angle 

hysteresis (CAH) and tilt angle or sliding angle (SA), especially for near or fully superhydrophobic 

surfaces [22,55,56,59,63]. CAH arises from an interfacial energy imbalance – when the required 

energy to form a new surface is less than the needed energy to separate the existing surface. It is 

determined by the difference between advancing and receding CAs. The difference in CAH for 

various hydrophobic surfaces arises from the contributing effects of physical and chemical 

modifications [54,60]. Roughening a surface physically modifies it while chemical modification 

is achieved by breaking or forming new active bonds [60]. The fabrication of mildly to highly 

hydrophobic surfaces is determined by CAH. As a rule of thumb, in addition to the CA 

requirement, true superhydrophobic surfaces also have CAH < 10o and SA < 5o [57].  If CAH > 

10o, SA >> 5o, and CA near but less than 150o, the droplet may stick to the surface like that of 

rose-petals [22,57,60,62]. Rose petals’ relatively high CAH and SA as well as its textured 

morphology favor the development of high-water adhesion [2].  

 

Droplets stay on tilted surfaces when the gravitational force is balanced by the force of adhesion 

[64]. Adhesion of a droplet to a surface is a function of CAH. Adhesion of droplets to substrates 

follows two theoretical models [64] which are: contact-area; and length of the liquid-solid interface 

models. The forces of adhesion – lateral (𝐹𝐿) and retentive (𝐹𝑅) – generate metastable and barrier 

energies respectively [22,54,63,64]. These energies arise from chemical heterogeneity, surface 

roughness, contact line topography and the area occupied by the droplet [54,60] which are 

functions of both lateral and retentive forces of adhesion. Metastable energy is developed from the 
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fraction of contact area between liquid-solid interfaces and chemical modifications and describes 

the energy that enables a droplet to laterally move across a surface. Barrier energy is the ability of 

a droplet to “stick” to a surface [22]. Surfaces where 𝐹𝐿 ≥ 𝐹𝑅 generally describe superhydrophobic 

surfaces, while surfaces where 𝐹𝑅 ≥ 𝐹𝐿 describe “sticky” hydrophobic surfaces.  

 

Cellulose (paper) substrates by default exhibit high surface energies due to high polarity from the 

–OH groups in their molecular structure, and internal sizing is frequently performed in the 

papermaking industry to improve water repellency [2]. These –OH groups have high affinity for 

water to create hydrogen bonds. Therefore, cellulose is a water-loving substance by its chemical 

nature. Preparation of hydrophobic surfaces on highly hydrophilic materials such as cellulose relies 

on utilizing the rough and porous structure to achieve sufficient hydrophobic development [2]. As 

a common practice, all the techniques and methods for increasing hydrophobicity of any material 

aim at lowering the surface energy and increasing the surface roughness [1,36].  

 

Alkyl ketene dimer (AKD), a waxy material derived from fatty acids, is a sizing agent typically 

introduced into the wet end of the papermaking process at 0.1 – 0.5%, dispersed within water-

soluble cationically modified starch [75,79]. The melting point of AKD ranges between 40 - 60oC 

depending on the dimer chain lengths which are typically 14 to 20 carbons [11,13,79]. Much of it 

is lost during the dewatering and paper-forming stages, although as little as 4% fiber surface 

coverage is required for sufficient hydrophobic development of the fibers [185]. 

 

Alternative methods of AKD sizing have been explored to develop superhydrophobic surfaces 

over cellulose fibers with more uniform distribution. Some of these methods include sub- and 
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supercritical impregnation of AKD onto cellulose fibers [9,11,13,94,117]; rapid expansion of a 

supercritical solvent (RESS) [13,74,143,186]; and the addition of specific nanoparticles in the 

AKD mixture to promote the hierarchical multi-scale roughness [1,27,41]. These methods have 

frequently resulted in substrates being more hydrophobic than those prepared via traditional 

methods. While nanoparticle addition assists in improving the surface roughness [15,29,52,110], 

impregnation methods with sizing agents promote significantly better diffusion and hence 

penetration into the substrates [23]. The agent itself will be more uniformly distributed over the 

fibers with much greater efficiency than the more traditional ‘wet-end’ methods of soaking fibers 

in a mixture of chemicals [187]. The CO2 diffusivity is a factor 100-1000 times larger than most 

liquids [188], and therefore can better penetrate into the pores of the substrate [2,151].  

 

Given the growing body of researchers using high pressure impregnation techniques to generate 

superhydrophobic surfaces, it is advantageous to explore the surface and interfacial phenomena 

surrounding these surfaces. Specifically, this study focuses on identifying (a) the surface energy 

behavior of cellulose substrates with time as a result of high-pressure CO2 impregnation treatment 

with AKD; (b) the structural changes occurring on the substrate after treatment; and (c) the 

chemical interactions occurring both on the surface and between AKD and cellulose fibers, 

providing information on possible sizing mechanistic pathways.  CA, CAH and SA studies were 

utilized to gain relevant surface energy information of the treated surfaces and also identify unusual 

surface behavior.  Scanning Electron Microscope (SEM) imaging and subsequent image analysis 

enabled structural changes with time to be identified, and Fourier Transform Infrared (FTIR) 

measurements provided key information regarding both interfacial and surface chemistry. 
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3.3. Material and Methods 

 

3.3.1 Materials 

 

AKD wax (AquapelTM 364K sizing agent) was supplied by Solenis, containing chain lengths of 

C16/C18. AKD/heptane solutions (1.8 g/L) were prepared from recrystallized AKD wax and 

analytical grade n-heptane (99.5%, Sigma Aldrich). Supercritical fluid grade carbon dioxide, 

scCO2 (<50ppm moisture, Airgas USA, LLC) was used as the carrier fluid to dissolve the 

AKD/heptane solutions, while heptane represented the cosolvent [9,11,13,127–129,135]. 

Whatman filter paper no.1 was used as the cellulose substrate in these experiments. Figure 3.1 

shows molecular structures of AKD, its fatty acids and hydrolyzed form (-keto acid), and some 

likely attachments of AKD to the cellulose substrate.   

 

3.2.2 Methods 

 

Supercritical impregnation of cellulose substrates was conducted using supercritical equipment 

built in-house. Figure 3.2 shows a schematic diagram of this set-up.  Briefly, CO2 was pressurized 

to predetermined pressures of 50, 100, 150, 200 and 250 bar, and then pumped around the 

circulating loop containing vessel 1, which held the AKD/heptane solution.  This circulating loop 

was maintained at a constant temperature of 21oC within a water bath unless otherwise indicated.  

The circulation was maintained for 10 min, and then valve V2 was opened to allow the combined 

solution into vessel 2, which held the Whatman filter paper. After 15 minutes of impregnation 

time, the CO2 was released into the fume hood during depressurization by opening valve V3, and 
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the treated paper sample collected for further analysis. The hydrophobic development was 

monitored up to 140 days after the impregnation treatment. 
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Figure 3.1: Molecular structure of (a) unreacted fatty acids making up AKD; (b) AKD; (c) hydrolyzed form 

of AKD, or b-keto acid; (d) AKD hydrogen-bonded to cellulose; and (e) reacted form of AKD covalently 

bonded to cellulose.  Note that R1 and R2 are typically from C16-C18. These diagrams are representative 

only. 
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Figure 3.2: Schematic diagram of the supercritical rig designed in-house to undertake impregnation 

studies. 

 

FTIR Spectroscopy using a Cary 630 (Agilent Technologies) was used to capture changes in the 

sizing development of the treated substrates over time. Attenuated Total Reflectance (ATR) mode 

was used, in which the incident light was totally-internally reflected and sufficiently interacted 

with the sample. Transmittance data was analyzed to identify critical peaks relating to AKD and 

chemical bonds between AKD and cellulose fibers. 

 

Sessile drop experiments enabled the determination of static and dynamic CA, using a Biolin 

Scientific OneAttension Theta CA Analyser, coupled with a single-liquid automatic dispenser, 

inbuilt NAVITAR (model 520931) and OneAttension software. The droplet volume was measured 

at 10 L for all measurements (CA, CAH and SA), while the drop rate was kept at 1 L/s. 
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Deionised water was used as the working fluid. CAH was measured by a volume-changing method 

[54,55,60,61] from 2 to 10 L. Advancing and receding CAs were measured at the same volume. 

CAH was then calculated from the difference between advancing and receding CAs. The SA was 

measured by placing a 10 L droplet volume on the treated substrate with the aid of the Biolin 

Scientific OneAttension. A tweezer was then used to lift the substrate from the stage. The SA is 0o 

when the sample is horizontal and 90o when vertical in accordance with Extrand and Moon [58]. 

Greater than 20 µL droplets were applied to treated substrates to assess the FR.   The SAs were 

estimated with respect to the horizontal and vertical directions, and not accurately positioned. The 

sample was manually shaken slowly, parallel to the SA, until the droplet became detached from 

the sample.  

 

The surface morphology of the treated cellulose samples was examined periodically after the 

impregnation treatment until complete hydrophobicity was achieved, using a JSM-5600 SEM 

(JEOL USA Inc., Peabody, MS). Samples were pre-coated for 120s with gold particles using a 

Hummer 6.2 sputter coater (Anatech USA, Union City, CA) – the coating was done under near-

vacuum conditions to ensure effective coating. The images were taken at different magnifications 

(x70, x200, x1000, x3000) using an accelerating voltage of 5kV.  

 

Image analysis was performed using Image-Pro Premier (version 9.3.3, Media Cybernetics, 

Rockville MD) to process and characterize the SEM images of impregnated substrates as the sizing 

developed with time. Changes in the microporosity of the substrate were examined and quantified 

[189]. A combination of thresholding and bitmapping techniques were used to quantify the pore-

size distribution and porosity. With thresholding, the images were converted to gray scale between 
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0 and 255.  A level of 0 indicated a pure black color while one at 255 was pure white.  Gray values 

of 0 to 62 were representative of the substrate pores for untreated cellulose at x70 magnification, 

determined by manually adjusting the threshold level within the software until all pores were 

included. Demonstration of the thresholding technique is shown in Figure 3.3. Untreated samples 

were expected to have the largest pore areas compared with impregnated samples. Bitmapping 

allowed every pixel within an image to be assigned a gray value. The proportion of pixels falling 

within the pore-size category as determined by thresholding was calculated using Equation (3.1): 

 

%𝑃𝑆𝐴 =
𝑃𝑃

𝑃𝑇𝑂𝑇
∗ 100    (3.1) 

 

In this Equation, %PSA is the percentage pore size area; PP is the number of pixels representing 

the pores; and PTOT is the total pixel size of the image. %PSA is not a measure of true porosity of 

the cellulose substrate but a technique to quantify the changes in the micro pores as hydrophobicity 

develops. 
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3.3 Results and discussion 

 

3.3.1 Surface Energy Behaviors of Treated Substrates 

 

Changes to roughness and chemical heterogeneity of a surface alter its wettability. Low energy 

surfaces with high roughness will lead to an improvement in the hydrophobic behavior of the 

surface, and these effects can be captured by CA measurements of impregnated substrates and 

compared with untreated substrates.    

 

3.3.1.1 CA development with time 

 

CA measurements were taken periodically to capture the hydrophobic development of the treated 

substrates. Figure 3.4(a) compares CA on an untreated substrate with one immediately after AKD 

impregnation treatment at 250 bar. The untreated surface started with a CA of about 30o and 

Gray levels 
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Figure 3.3: Demonstration of the thresholding technique showing a normal distribution from 

image analysis of untreated cellulose substrates. The highlighted gray values between 0 and 

62 identify the pore areas in the processed image. 
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quickly dropped to nearly zero after 3 seconds. The treated surface started with a CA of about 130o 

but equaled that of the untreated surface after 1 second; they both dropped to nearly zero after 3 

seconds. This result confirms that although there were small surface changes, there is no 

appreciable hydrophobicity created immediately after treatment. 

 

Two days later, as shown in Figure 3.4(b), CA measurements of treated cellulose over the four 

pressures investigated (50, 100, 200, 250 bar) had increased substantially. The treatments at 100 

and 200 bar created the most hydrophobic surfaces at this time, with steady-state CA values 

between approximately 118 – 124o. The highest and lowest pressure conditions indicated less 

hydrophobic development. This tends to indicate an optimal solubility of AKD/heptane in scCO2 

at the intermediate pressures of 100 – 200 bar.  

  

The hydrophobic development over much longer periods of time is shown in Figure 3.4(c). Here, 

the four treatment pressures are again compared, up to 133 days from impregnation. Between 0-

20 days there is variation observed among the different conditions; between 20-40 days these 

variations have started to settle; and from 40 days onward, all surfaces, regardless of their 

impregnation treatment, appear to have approximately similar hydrophobicity. All CAs vary 

within about 10o at 133 days. Repeatability studies of CA show a typical variation of identical  
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Figure 3.4: (a) Dynamic CA analysis immediately after AKD impregnation treatment on day zero (scCO2 / 

AKD / heptane, 250 bar), compared with untreated cellulose. (b) CA analysis of hydrophobic development 

two days after AKD impregnation treatment (scCO2 / AKD / heptane) at various pressures. (c) Rate of 

hydrophobic development of substrates impregnated with AKD at different pressures (scCO2 / AKD / 

heptane) up to 133 days after treatment. 
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conditions of  5o, as indicated by the error bars on this graph. Therefore, the apparent peaks and 

troughs shown between 0-20 days are mostly within experimental error, and describe more 

generally an increase in CA from day 0 to steady state following typical power law behavior.  

These results again suggest optimum solubility between 100-200 bar and a more rapid hydrophobic 

development to steady state values compared with 50 and 250 bar.   

 

3.3.1.2 Droplet behavior 

 

The difficulty of the droplet breaking away from the syringe on treated cellulose samples at 2-3 

days after the impregnation treatment was observed along with a much slower depth of penetration 

and resistance to horizontal spreading. Droplets placed on untreated substrates had no difficulty 

breaking away from the syringe due to the high surface energy and relatively large pore size of the 

cellulose substrates [37]. This was also reported by Hutton and Parker [9]. Figure 3.5(a)-(c) shows 

the patterns of droplet release from the syringe and confirmed the progression of the hydrophobic 

improvement of untreated and treated substrates at 250 bar. Figure 5(a) shows the behavior of the 

droplets on untreated cellulose substrates; 3.5(b) for impregnated substrates immediately after 

treatment; and 3.5(c) for impregnated substrates 154 days after treatment. The droplet behavior on 

treated substrates indicates the much lower surface energy created by AKD impregnation. 

At long times after the impregnation treatment, the behavior of the impregnated surfaces mimic 

those of rose petals where droplets stick to the surface, even when the CA does not theoretically 

indicate superhydrophobicity [22]. Figure 3.5(d) shows how the droplet appeared glued to the 

surfaces irrespective of how much it was tilted or rotated, at long times since impregnation. This 

behavior is attributed to adhesion between the surface and the droplet and the concomitant effect 
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of roughness and low surface energy [22,26]. Similar observations were reported by Wang and 

Weiss [22], where petal-like surfaces were created from lightly sulfonated polystyrene (SPS) 

ionomer particles on silica substrates by rapid evaporation of the solvent from a dilute polymer 

solution-cast onto silica. It was reported that a particle-textured surface was a necessary 

requirement for the fabrication of sticky hydrophobicity. Evaporation rate of the solvent was cited 

as one of the main factors promoting the formation of a submicron to micron particle-textured 

surface. This effect may be likened to the rapid depressurization and removal of the CO2-solvent, 

leaving behind only the solute to create a similar particle-textured surface. In this work, the average 

CA measured when sticky hydrophobicity was also observed was about 140o, and the CAH of the 

200 bar sample was 17±5o, taken 200 days after treatment. 
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Figure 3.5: Water droplet behavior on different surfaces.  (a) untreated cellulose; (b) immediately after 

impregnation treatment (scCO2 / AKD / heptane) at 250 bar; and (c) 154 days after impregnation at the 

same conditions. (d) ‘Sticky’ hydrophobicity of 10 µL droplets at various tilt angles, taken 6 months after 

treatment, the final image being at 200 bar impregnation instead of 250 bar. 
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3.3.1.3 The force of adhesion 

 

The force of adhesion of the 10 L droplet, as judged by the images in Figure 5(d), was able to 

withstand a surface tilt to any angle, and remained stuck to the surface even when slowly shaken. 

The 𝐹𝐿 developed when the surface is tilted is given by Equation (3.2) [22,63,64], where 𝜌 is the 

density of water; g is the gravitational acceleration; 𝑉 is the droplet volume; and 𝛼 is the SA. 

 

𝐹𝐿 = 𝜌𝑔𝑉 𝑠𝑖𝑛𝛼   (3.2) 

 

Equation (3.3) describes the 𝐹𝑅 [22,63,64], where 𝑅 is the characteristic length representing the 

shape and size of the droplet; k is a constant of proportionality; 𝛾𝐿𝑉 is the interfacial tension 

between the droplet and the air; 𝜃𝑎 is the advancing CA; 𝜃𝑟 is the receding CA. 

 

𝐹𝑅 = 𝑘𝑅𝛾𝐿𝑉(𝑐𝑜𝑠𝜃𝑟 − 𝑐𝑜𝑠𝜃𝑎)   (3.3) 

 

Any change in drop volume and/or SA results in a corresponding change in 𝐹𝐿. 𝐹𝑅 is characteristic 

of a surface and does not change when the droplet volume and/or tilt angle are changed. Equation 

(3.3) is based on the prediction of CAH to determine the SA [64]. Surfaces prepared at 200 and 

250 bar, and investigated at long times (>140 days) withstood a maximum of 23 L droplet volume 

when tilted to 90o, but with less retention time than 10 L tilted to the same angle. Using these 

numbers and Equation (3.2), 𝐹𝐿 was calculated to be 225 N. To create a superhydrophobic 

surface, 𝐹𝑅 must be less than 225 N to ensure droplet roll off. 
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Two common models used to describe hydrophobic surfaces are the Cassie-Baxter and Wenzel 

models. In the Cassie-Baxter model (Equation(3.4)), f is the fraction of the air-liquid interface, r 

is the rough surface area divided by flat projected area, 𝜃 is the measured CA  on the porous surface 

and 𝜃0 is the intrinsic CA on an original smooth surface [10,30,190]. The model demonstrates that 

the presence of air-pockets at the droplet-solid interface plays a vital role in the observed droplet 

behavior. When the air-liquid interface fraction is zero (f=0), the Cassie-Baxter model reduces to 

Wenzel model. According to Nicolas [26], sticky behavior of water on hydrophobic surfaces is 

governed by Wenzel theory where water droplets follow the path of surface roughness. The effects 

of capillary and Van der Waals forces favor the retentive adhesion of water to the surface [26]. 

 

  

cosθ = 𝑟𝑐𝑜𝑠𝜃0 − 𝑓(𝑟𝑐𝑜𝑠𝜃0 + 1)      (3.4) 

 

 

Balu and Breedveld [54] proposed that the fabrication of sticky and roll-off superhydrophobicity 

is determined by the difference in metastable state energy and barrier energy. If the droplet makes 

sufficient contact with a surface, this favors an increase in the energy barrier, and a corresponding 

low metastable state or lateral adhesion force. SEM studies described in Section 3.3.2 show that 

the surface had a multi-scale textured roughness, which favored the sticky hydrophobicity state 

according to Wang et al. [22]. The reluctance of the droplet to move easily on the impregnated 

surface indicated that the droplet occupied sufficient contact area and hence was not displaying 

superhydrophobicity. When the surface was tilted and lightly agitated, more air pockets replaced 

the solid-liquid contact; and the droplet fell off because the metastable energy overcame the energy 

barrier.  
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3.3.2 Structural Changes to Treated Substrates 

 

Figure 3.6 shows the SEM micrographs of untreated and impregnated cellulose fibers at x70 and 

x1000 magnifications for varying processing conditions. Visual examination of the SEM 

micrographs showed that the substrate pores were reducing with time. These changes in pore-size 

area were quantified, and are shown in Figure 3.7. The PSA decreased from 16.1% on untreated 

cellulose to 6.5%, 10 days after the impregnation treatment at 150 bar pressure. The reduction in 

PSA was matched with a significant increase in the CA, subsequently lowering the surface energy. 

The CA data shows that the 250 bar sample did not demonstrate as rapid early hydrophobic 

development compared with 100 and 200 bar (see Figure 3.4(c)). Likewise, this data had higher 

PSA values compared with 150 bar and 200 bar, at 10 days after impregnation. The PSA for the 

200 bar condition showed only a small reduction in PSA between 10 and 23 days (approximately 

2%) with a final value of just over 2%. Although there is some experimental variation in CA during 

this time, at long times, the CA has similar values to those recorded between 10-23 days.  Hence, 

porosity of around 2% seems sufficient for complete sizing development to near superhydrophobic 

values. 
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Figure 3.6: SEM micrographs of AKD impregnated substrates at (a) x70 and (b) x1000 magnifications.  

Vertical variation is with time at 150 bar pressure. Horizontal variation is with pressure at 10 days. 

These are compared with untreated cellulose substrates. Note the minimum porosity at 200 bar, 10 days, 

and the gradually reducing porosity with time at 150 bar. 
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Figure 3.7: Image analysis using the thresholding technique, showing a reduction in pore size area (PSA) 

as AKD progressively covers the cellulose substrate pores at different impregnation pressures.  The %PSA 

is based on Equation (1). 

 

Zhang, Lu, Qian and Xiao [10] pointed out that hierarchical micro-/nano-structure has a 

pronounced effect on the sizing development. Jiang, Tang, Clinton, Breedveld and Hess [25], 

however, established that micro porosity influences superamphiphobic and/or  superhydrophobic 

development more than  nanoscale roughness [25]. Dual-roughness (micro and nano) and low 

surface energy are believed to be key determinants in the fabrication of water repellency [2,13], as 

are textured surfaces [22]. The presence of AKD on the substrate lowered the surface energy, and 

observed reduction of the pores with time enhanced roughness. The sizing was attributed to the 

AKD migrating across the fiber surfaces with time, increasing the hydrophobicity of the substrate 
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and matching the observed increase in CA. Although some pores reduced in size, sufficient 

porosity was maintained. 

 

3.3.3 Surface and Interfacial Chemical Bond Identification 

 

3.3.3.1 AKD and related peak identification 

 

The same impregnated samples prepared and analyzed for CA studies underwent FTIR analysis at 

similar time periods from impregnation:  3, 9, 18 and 69 days. A baseline, plain cellulose scan 

taken on the same day as the trials was subtracted from the scans in order to identify key peaks 

relating to AKD. Those of interest were the –CH2 bending (1465-1469 cm-1) and –CH stretching 

(2850-2960 cm-1) [191]; hydrolyzed AKD or ketone peaks at 1704-1708 cm-1 [138]; ester peaks 

due to reaction of AKD with the cellulose at 1735 cm-1 [191]; and evidence of the lactone ring in 

AKD via C=C (1719-1723 cm-1) and C=O (1842-1850 cm-1) [138]. A final set of peaks of interest 

were broad bands occurring between 2500-2800 cm-1 representing –OH stretching vibration from 

unreacted fatty acids [138], and another between 3200-3600 cm-1, representing –OH stretching 

vibration from alcohol –OH [192]. This latter peak was described as being broad due to 

contributions from hydrogen bonding.   

 

Figure 3.8 shows an example of the FTIR peaks with the cellulose baseline subtracted, three days 

after AKD impregnation treatment at 50, 100, 200 and 250 bar. These scans have been vertically 

translated to separate them from each other. Some of the key peaks outlined above are identified 

on this Figure in the shaded regions. There is little evidence of ketone peaks at 1704 cm-1 or ester 

peaks at 1735 cm-1 indicating a lack of hydrolyzation of AKD and subsequent reaction with the –
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OH groups from the cellulose (refer Figure 1). Small but definite peaks appear at around 1719 cm-

1 and 1848 cm-1, which are representative of the C=C and C=O bonds present in the lactone ring, 

respectively. This is particularly obvious for the case performed at 200 bar, and also suggests that 

the AKD ring has not been broken to form -keto acid (hydrolyzed form of AKD). Strong evidence 

of bending and –CH stretching is observed in all FTIR scans, as expected given the long 

hydrocarbon tails present on AKD. No peaks relating to –OH groups from unreacted fatty acids 

were observed; however, broad peaks between 3000-3400 cm-1 were frequently observed, 

potentially indicating hydrogen bonding between –OH groups from the cellulose and C=O from 

the AKD lactone ring (not shown in Figure 3.8). 

 

Figure 3.8: Example of AKD FTIR traces obtained three days after impregnation treatment (scCO2 / AKD 

/ heptane) and varying pressures, with cellulose baseline removed. The shaded areas refer to key AKD 

peaks as described in the text. 
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3.3.3.2 Distribution of AKD through the cellulose substrate 

 

The absorbance heights representing concentration were more difficult to interpret, and essentially 

do not follow any observed trends. High pressure impregnation treatments are assumed to 

uniformly distribute the solute throughout the substrate matrix [21], and while this assumption is 

plausible, fiber porosity is itself random and deposits would therefore be randomly distributed 

within these pores. Additionally, the mechanistic pathways of AKD sizing (whether by reaction or 

spreading) are known to take up to two weeks [187], and hence there is a slow movement of AKD 

within the substrate with time. Since small portions were cut from the prepared samples for FTIR 

testing, it is possible, particularly at early times after treatment, that the portions removed may 

have contained substrate regions that were not yet populated by AKD.  Likewise, it is also possible 

that a portion removed may have contained a large AKD deposit that had not yet had time to spread 

to other regions of the substrate. This explanation is depicted in Figure 3.9, where 3.9(a) shows 

AKD uniformly dispersed onto cellulose fibers soon after impregnation, and the dotted line areas 

represent portions removed for FTIR analysis. At some time later (Figure 3.9(b)), the initial 

deposits of AKD have spread further across the fibers and again the dotted line areas represent 

possible portions removed for analysis. 

 

This AKD-spreading description is well-matched to the SEM images and analyses in Section 3.2, 

where progressive spreading with time results in a reduction in porosity. Hence direct trends such 

as increases in absorbance vs time at key wavenumbers was not expected. The only exceptions 

would be an increase in absorbance of the ketone peak representing hydrolyzation of AKD (an 

intermediate for AKD reaction with cellulose); and the ester peak demonstrating reaction of AKD 
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with cellulose –OH groups. The broad –OH bands representing hydrogen bonding between AKD 

and cellulose would register as a reduction in intensity coupled with a red-shift of the peak [193]. 

a)

b)

 

Figure 3.9: Schematic diagram demonstrating the sampling technique of cellulose substrates impregnated 

with AKD, and the potential implications on the peak intensities observed. (a) dashed square sampling 

portion of the total substrate at early times after impregnation; (b) dashed square sampling portion of the 

total substrate at long times after impregnation. The small black dots represent initial AKD deposits onto 

the cellulose fibers, and larger dots represent joining of these deposits as the AKD spreads across the 

surface. 
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3.3.3.3  Progression of key peaks with time 

 

Figure 3.10 shows absorbance vs time of key wavenumbers at different operating pressures.  

These have been graphed using the same vertical scale to better compare absorbance heights.  

Figures (a)-(c) all show appreciable absorbance peaks for most of the conditions investigated, 

indicating the presence of the long hydrocarbon chains on the AKD molecule (refer again to Figure 

1 where its structure is shown). As described earlier, there is no obvious trend for a given set of 

conditions over a period of time; however, frequently the 200 bar case featured as a more 

significant peak. Figures 3.10 (d) and 3.10 (e) show small but measurable absorbance peaks of the 

C=O and C=C lactone rings, suggesting that the ring was not broken in a reaction with the 

cellulose.  Again, the conditions at 200 bar often featured in the highest intensities observed, and 

this may indicate – as with the CA studies – that these conditions promoted optimal solubility of 

AKD/heptane solutions into scCO2 solvents. By contrast, Figure (f) showed virtually no 

absorbance activity at the ketone peak absorbance, and there was none at all of the ester peak, 

regardless of time. Finally, Figure 3.10 (g) shows the absorbances of the broad bands representing 

–OH stretching and the likely existence of hydrogen bonding. It is somewhat significant that 

intensities were more abundant at the various operating conditions tested from 18 days onwards, 

entering the time in which sizing development of AKD is considered mostly complete (refer Figure 

4(c)). Additional data at 133 days testing continued to show dominant –OH peaks in the FTIR 

traces. 
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Figure 3.10: Absorbance vs time of various AKD wavenumbers at different impregnation pressures (scCO2 

/ AKD / heptane). (a) – (c) bending or stretching modes of alkane chains on AKD; (d) – (e) evidence of the 

AKD lactone ring showing C=O and C=C respectively; (f) lack of absorbance at the ketone peak; (g) broad 

bands of –OH stretching, potentially demonstrating the existence of hydrogen bonding.     

3.3.3.4  Importance of the –OH broad-band peak 

 

Absorbance bands were compared between ‘AKD/cellulose’ and ‘only AKD’ for the 50 and 100 

bar data (Figure 3.11) in the region 2,700-3,600 cm-1. The AKD proportion towards this band 
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height was between 35-40% of the AKD/cellulose peak and is therefore significant. This 

vibrational band is not a result of unreacted fatty acids, and AKD molecules do not contain any –

OH groups. While there could potentially be some hydrolyzed AKD present from moisture 

interference after such a long time period, there was no evidence of ketone or carboxylic acid peaks 

which would additionally confirm this theory. The ‘only AKD’ traces were obtained by subtracting 

untreated cellulose from the combined AKD/cellulose trace, and if there was no hydrogen bonding 

between AKD and cellulose, then there should be no resulting intensity in this wavenumber region. 

The fact that there is a definite peak in this region indicates that the resulting ‘only AKD’ trace is 

actually a combination of AKD and hydrogen bonds between AKD and cellulose. Pure AKD wax 

FTIR traces do not contain any peaks whatsoever in this region [138]. The broad –OH band 

observed in the plain cellulose trace also shown in this Figure is a result of the many –OH groups 

on cellulose rings. Additionally, given the large degree of hydrogen bonding between cellulose 

chains, additional vibrations occur on the –OH groups which contribute to the broadening observed 

[193].  The FTIR trace of cellulose incorporating the –OH vibrations and those associated with 

hydrogen bonds, once subtracted from the AKD/cellulose trace, can only leave AKD and any 

additional hydrogen bonds between AKD and cellulose. Hence the AKD traces in Figure 11 also 

identify the presence of hydrogen bonding with the cellulose. 
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Figure 3.11: Broad band –OH stretching taken at 133 days, 50 and 100 bar impregnation pressures (scCO2 

/ AKD / heptane), showing contributions of ‘AKD/cellulose’; ‘only AKD’; and untreated cellulose. 

 

A study by Gonjo, Futami, Morisawa, Wojkic and Ozaki [193] demonstrated that the influence of 

hydrogen bonding tended to shift the wavenumber of the peak to lower values (red-shift), 

accompanied by a reduction in peak intensity and broadening of the peak. A small reduction in 

wavenumber and intensity was observed for the 200 bar case in the lower of the two wavenumbers 

observed within this region, but this was not consistent across all process conditions studied. 

Figure 10(g) however definitely shows an overall trend downwards of the average intensity over 

all conditions investigated with time, particularly from 18 days onwards, also matching relatively 

constant CA results (see Figure 4(c)).   

An important review by Nibbering, Dreyer, Kuhn, Bredenbeck, Hamm and Elsaesser [192].  

reported studies on acetic acid dimer (CH3-COOH)2 using FTIR to investigate contributions of 
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hydrogen-bonding to the overall FTIR spectra in –OH stretching peaks [192]. This system was 

used as a reference system to determine the behavior of the intermolecular hydrogen bond on non-

linear vibrational modes observed within FTIR. Three mechanisms of vibrational coupling from 

the hydrogen bonds were identified: anharmonic coupling of O—H stretching modes from high to 

low frequency; Fermi resonance of O—H stretching to fingerprint mode; and a combination of 

both. The acetic acid dimer broad spectrum between 2400 – 3400 cm-1 was further examined to 

determine the influences of the three vibrational mechanisms from hydrogen bonding on these 

peaks. The combination of hydrogen-bonding vibrational modes best described the spectra 

observed, with its most intense peak occurring at 2920 cm-1. The hydrogen bonds within the acetic 

acid dimer consist of two –C=O --- H–O–C arrangements. This combination of atoms and bonds 

can also be observed between an AKD molecule (C=O lactone ring) and an –OH group on a 

cellulose ring, connected via hydrogen bonding. It is fortuitous to note that the strongest 

contribution of hydrogen bonding in the acetic acid dimer occurred at 2920 cm-1, a strong peak 

also observed in the current AKD-cellulose system, but usually assigned alkane -CH stretching 

[191]. In Figure 11, this peak has red-shifted to 2915 cm-1 for the 50 bar case, suggesting a steady 

decrease in position across the times investigated. 

 

3.4 Conclusions 

 

High-pressure CO2 impregnation of cellulose substrates with AKD dissolved in n-heptane 

produced microporous, sticky, and near superhydrophobic substrates. The hydrophobic 

performance was not established within 24-hours but was significant 2-3 days after treatment. The 

average CA for samples impregnated at 200 bar and 21oC was 140 ± 5o, while the CAH was 17 ± 
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5o. Optimal solubility of AKD/heptane in scCO2 was found between 100-200 bar which was also 

consistent with literature data. The retentive force of adhesion developed between the droplet and 

fiber surfaces prepared at 200 and 250 bar at > 140 days was able to withstand more than 20 L 

of droplet volume when tilted to 90o.  

 

Analysis of the SEM micrographs showed a maximum reduction in pore size of about 14% when 

impregnated with AKD at 200 bar, corresponding to an increase in the CA, and potentially 

confirmed migration of AKD over the surface. The initial retention of AKD on the substrate 

together with the progressive fiber coverage with time lowered the surface energy as well as 

substantially increased the hydrophobicity of the impregnated surfaces. 

 

The presence of characteristic AKD and cellulose peaks identified with FTIR provided vital 

information on the mechanistic pathways for sizing development. Only small intensities of ketone 

and ester groups were observed, indicating a lack of hydrolyzation of AKD and direct reaction 

with cellulose –OH groups respectively. While migration of AKD over the fiber surface was the 

main sizing mechanism, hydrogen bonding between the lactone ring (C=O) of AKD and –OH 

groups on the cellulose ring appears to be a method of attachment. This work represents some 

unique insights into the sticky hydrophobicity created on cellulose surfaces impregnated with 

AKD using high pressure techniques. 
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CHAPTER IV 

 

HIGH PRESSURE IMPREGNATION AND ANNEALING OF CELLULOSE FIBERS WITH 

FOOD-GRADE WAXES: HYDROPHOBIC AND MECHANIAL PROPERTES 

INVESTIGATION 

 

This chapter will be submitted for publication to the Journal of Applied Materials and Interfaces. 

 

4.1 Abstract 

 

U.S. Food and Drug Administration (FDA) recommend the use of edible coatings for food-based 

packaging applications.  In this study, high-pressure carbon dioxide (200 bar and 22oC) was used 

to impregnate food-grade waxes (yellow beeswax and yellow carnauba wax) onto cellulose 

substrates. After the treated substrates were annealed at 80, 110, 140 and 165oC (mostly above the 

melting point of the waxes), a highly hydrophobic surface was formed, with a maximum CA being 

about 135o at 165 oC conditions. Significant increases in hydrophobic properties were observed 

between 110 and 165oC. The mechanical properties of the impregnated and annealed surfaces were 

investigated with dynamic mechanic analysis, and compared with untreated samples. The 

impregnation treatment improved the mechanical robustness of the substrates due to strengthening 
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of the inter- and intra-fiber bonding, but no observable additional improvement was found with 

the annealing. The method is novel and uses no toxic material or any substance classified as unsafe 

for direct food contact. Impregnation techniques offer an additional advantage for making ultrathin 

surfaces. 

 

4.1 Introduction 

 

Superhydrophobic surfaces can be fabricated using methods ranging from mere surface deposition 

[1] to complex processes such as plasma methods [2,25]. These methods aim at manipulating the 

surface chemistry and geometry of the substrates to which they are applied [41]. Many of these 

methods cannot be applied to cellulose-based materials (CBM) because of their hydrophilic nature 

as a result of many hydroxyl groups in their structure [1].  Typically, there are two factors that 

determine the wetting characteristics of a surface – surface roughness, and surface energy [29,41]. 

The existence of hierarchical structures has been found on most superhydrophobic surfaces [2]. 

The superhydrophobic surfaces found in nature on lotus leaves exhibit this hierarchical nano/micro 

structure which was said to be more dominant in the formation of its superhydrophobicity than 

surface energy [2,194]. Several studies have reported how to mimic the hierarchical nano/micro 

structure of lotus leaves on different surfaces [10,22]. Therefore, modification of a surface to 

achieve superhydrophobicity is accomplished by lowering the energy of a surface and/or 

enhancing its roughness [10].  Multiple treatments may be needed to achieve these properties [2]. 

These treatments are usually very expensive and often include an addition of fluoropolymers due 

to their low surface energy [2].  
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The use of edible waxes for food-based applications to replace organic and fluorine-derived 

compounds has been on the increase [44,175,195]. US. Food and Drug Administration controls 

(FDA) regulates the use of coatings in food-based products. Unfortunately, many sizing chemicals 

that are used in the fabrication of water-repellent packaging materials are not classified as food-

compatible [44], but are acceptable provided they do not come into contact with the food itself.  

However, the use of food-compatible waxes either within the coating or as a coating alternative 

provides an added level of safety for the consumer, and potentially expands the food packaging 

industry to new areas of application. Because edibles waxes have higher surface energy than 

fluorocompounds, they may require further processing for efficient performance [44].  

 

Wax coatings permitted for use in food-based applications, according to the FDA, are classified as 

‘edible coatings’ [44,175], of which beeswax is one. Beeswax is one of the few food-grade waxes 

that is is being considered as alternative sizing agents for paper and packaging products [196,197]. 

It is chemically made up of long chain hydrocarbons, alcohols, free acids and esters, and is 

naturally superhydrophobic due to the presence of internal chain methylene units (more than 95%) 

in its structure [197,198]. Beeswax is primarily composed of palmitate, palmitoleate and oleate 

esters [199,200]. Therefore, the chemical structure of beeswax is represented by that of esters – an 

approximate chemical formula for beeswax is C15H31COOC30H61 [200]. In addition to water-

repellent properties, it also possesses excellent antibacterial properties and offers some resistance 

to water vapor transmission [90]. Carnauba wax is another type of food-grade wax that is 

commonly used as fruit coating due its ability to extend shelf-life [201]. It has excellent moisture 

barrier properties and poses no threat to food items [202]. Carnauba wax contains mainly fatty 

esters (80-85%), free alcohols (10-15%), acids (3-6%) and hydrocarbons (1-3%) [203].  
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Most waxes used as sizing agents are made of different components. Upon heating, wax phases 

separate out at different temperatures – components with lower melting points flow out first [10]. 

During re-solidification, the polymorphic phase separation would likely lead to a formation of a 

new surface morphology and roughness profile.  Curing of wax-coated paper substrates at certain 

temperatures often leads to improvement in their hydrophobic properties due to phase separation 

of the waxes upon applied thermal heat load [10].  Structural and morphological changes are also 

observed with other chemicals such as proteins [196,204,205] and silica films [194]. Thermal 

treatment of protein molecules causes them to unfold as they denature, exposing their sulphydryl 

and hydroxy groups, often leading to enhancement of surface hydrophobicity [196]. Surface  

hydrophobicity of silica films can be enhanced by an annealing treatment [194]. Specifically, 

trimethylchlorosilane (TMCS) was used as a silylating (silanizing) agent for surface chemical 

modification of silica films [194]. It was reported that the heat treatment improved the adherence 

and surface hydrophobicity of the silica films [194]. Similarly, thermal treatment of metal 

acetylacetonate (Fe-acetylacetonate and Cu-acetylacetonate) with methylmethoxy silane (MTMS) 

based coating can be used to enhance the surface hydrophobicity of silica films [194]. 

Additionally, the hydrophobicity of silica aerogels can be further enhanced by heating them to 

certain temperatures [206]. The surface modification of silica aerogels is attributed to the grafting 

of methyl groups during the curing process [206].  

 

The technique of using high-solvating power of supercritical carbon dioxide (scCO2) has been 

demonstrated to be very effective in creating superhydrophobicity on CBM [13,74]. Due to their 

liquid-like density; gas-like diffusivity; gas-approaching viscosity; high mass transfer and low 

surface tension, scCO2 has enhanced capacity to insert and uniformly distribute wax components 
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onto the cellulose fiber surface [13,93]. The ultra-high solvating power of scCO2 has been reported 

as an efficient and novel method of surface-sizing CBM [9].The two main methods that use scCO2 

are rapid expansion of supercritical solutions (RESS) [13] and impregnation techniques [14] – both 

studies focused on modifying cellulose fibers with alkyl ketene dimer (AKD). 

 

In this study, the fabrication of highly hydrophobic surfaces was achieved by exploiting the 

solvating power of scCO2 to uniformly distribute the food-grade waxes onto cellulose substrates 

before curing them at different temperatures for the enhancement of surface hydrophobicity. The 

hydrophobic performance and mechanical impact of the processes was assessed by conducting the 

following characterizations: (a) the surface energy behavior of impregnated/heat-treated cellulose; 

and (b) effects of the treatment on the mechanical robustness of the surfaces.  Surface and 

interfacial properties of the substrates were investigated by CA studies.  Dynamic and Thermal 

Mechanical Analysis (DMTA) provided vital information on the mechanical properties of the 

surfaces [207]. The goal of this study was to produce highly water-repellent surfaces on cellulose 

substrates with food-grade waxes via high pressure and annealing methods, and subsequently 

investigate their mechanical properties. The findings in this study will contribute to the on-going 

research efforts in using FDA-approved edible waxes for hydrophobic modification of food 

containers or packaging materials 
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4.3 Material and Methods 

 

4.3.1 Materials 

 

Yellow Beeswax (BW) (#423) and Yellow Carnauba wax (CW) were supplied by Koster Keunen 

with melting points of 63.5 oC and 83 oC, respectively.  10 g/L solutions of the wax mixture (1:1) 

were prepared from analytical grade n-heptane (99.5%, Sigma Aldrich), while individual wax 

solutions in heptane used a concentration of 10 g/L.  Carbon dioxide (<50ppm moisture) supplied 

by Airgas USA, LLC was used as the carrier fluid to dissolve the waxes/heptane solutions, and 

heptane was the cosolvent.  The cellulose substrate used for all the experiments was Whatman 

filter paper no.1 (Sigma Aldrich).  

 

4.3.2 Methods 

 

Supercritical impregnation of cellulose substrates was conducted at 22oC and 200 bar using 

methods and equipment built in-house, and described elsewhere [14]. 

 

Heat treatments of the impregnated surfaces were performed at 80, 110, 140 and 165oC for 4 hours 

each (and 24 hours in one case) and were carried out in an oven manufactured by Precision 

Scientific Inc. Division (Winchester, Virginia). The oven is rated 1300 Watts (120 volts and 11.3 

AMP and with a frequency of 50/60 Hz) and is operable between 65 and 200 oC.  The heat 

treatment process was begun immediately after the cellulose substrates were impregnated. 
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Sessile drop CA experiments enabled the determination of static and dynamic CA, using a Biolin 

Scientific OneAttension Theta CA Analyser, coupled with a single-liquid automatic dispenser, 

inbuilt NAVITAR (model 520931) and OneAttension software. The droplet volume was 10 𝜇L 

for all CA measurements, while drop rate was ket at 1 𝜇L/s.  Deionised water was used as the 

working fluid. All CA experiments were performed within 4hr, 24 hr and 3 days after heat 

treatment or impregnation for non-annealed samples. Both CA measurements and annealing 

treatments were performed in a periodic manner to investigate the sizing mechanistic development 

with time.   

 

Thermal and mechanical properties of both treated and untreated samples were determined by 

measuring storage moduli, loss moduli and tan delta using a Q800 Dynamic Mechanical Analyzer, 

DMA (TA Instruments, DE, USA). A frequency of 1 Hz was used at a temperature range of 20–

150°C with a heating rate of 5°C/min. The film tension mode was used. The dimensions of the 

samples were 7.35–19.60 mm long, 4.06–6.06 mm wide and 0.15–0.175 mm thick after cutting 

the specimens. The time delay between sample preparation (impregnation and heat treatment) and 

DMA testing was not formally controlled but all tests were conducted within 2-3 days after heat 

treatment or impregnation for non-annealed samples. 
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4.4 Results and Discussion 

 

4.4.1 Surface Energy of Impregnated and Annealed Cellulose Substrates 

 

Hydrophobic development on a surface is linked to an increase in surface roughness and/or 

substantial decrease in surface energy [22]. The impregnation of food-grade waxes over the 

cellulose fibers lowered their surface energy and increased the surface roughness. However, 

additional annealing treatment was used to augment the surface profile of the substrates which 

further improved their hydrophobicity due to phase separation of the wax components. CA 

measurements of the impregnated surfaces with and without heat treatments were taken to quantify 

the hydrophobic properties at the surface.  

 

4.4.1.1 Surface energy of impregnated substrates prior to heat treatment  

 

Fig. 4.1 shows the CA behavior of cellulose substrates impregnated with BW-only, CW-only and 

their mixture, without heat treatment, taken immediately after the impregnation treatment. All wax 

samples exhibited a higher CA compared with untreated substrates. However, these measurements 

were still in the hydrophilic range (CA < 90o) and the substrates could not offer sufficient resistance 

to water droplet penetration with time. Wax-mixture samples had slower rates of droplet 

penetration than individual waxes. The behavior of the droplets on impregnated surfaces without 

additional heat treatment revealed inherently lower surface energy than the untreated substrate. 

Therefore, the surface energy of the treated substrates was mainly indicative of the chemical 

properties of the waxes. Other studies that used these same waxes to impart water repellency on a 

surface had to augment the hydrophobic performance with heat treatment before the surfaces 
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turned superhydrophobic [10,22]. When pure individual waxes – rather than the BW-CW 

combination – were melted and hand-coated on the substrates forming a continuous layer, the 

surfaces were almost superhydrophobic (results not shown) without an additional heat treatment. 

The impregnation technique, however, has the unique property of uniformly coating and 

distributing much smaller quantities of waxes over the cellulose fibers making up the substrates 

[9,14]. 

 

Figure 4.1: Dynamic CA analysis without annealing after impregnation (scCO2  / heptane, 200 bar and 22 

OC ) of the waxes (BW only, CW only, and BW and CW) as compared with untreated substrate. 
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4.4.1.2 Influence of heat on the hydrophobic performance 

 

After impregnation of the wax mixture (BW-CW) at 200 bar and 22 oC, the treated substrates were 

subject to additional heat treatments at 80, 110, 140 and 165 oC for 4 hours. Fig. 4.2 shows that 

annealing the “untreated substrate” at 140 oC does not improve its hydrophobic properties, as 

expected – and any changes to the surfaces with heat treatment were due to the formation of 

microstructure caused by the phase separation process of the waxes. In Fig. 4.2, it is shown that 

annealing of impregnated substrates with the wax mixture substantially improved their 

hydrophobic performance, resulting in stable CA of approximately 95o for the sample annealed at 

80oC; 129o at 110oC; 114o at 140oC; and 133o at 165oC. Each of these CA has an error of ± 5o as 

determined from previous studies. Hydrophobic properties of the samples annealed at higher 

temperatures than their melting point range of the waxes (63.5 and 83oC) further improved after 

annealing due to characteristic phase separation of individual waxes. 
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Figure 4.2: Dynamic CA analysis of impregnated BW-CW at 200 bar and 22 OC) after annealing at 80, 

105, 140 and 165 oC as compared with untreated substrates (without annealing and annealed at 140 oC. 

In a study by Zhang, Lu, Qian and Xiao [10], 10 g of molten wax mixture (carnauba and beeswax) 

in 40 mL cetytrimethyl ammonium bromide (CTAB) solution was coated on an A4 copy paper 

applied via a roll-coating method. After drying, the coated paper was then cured at different 

temperatures for 12 hours to create a new morphological structure of the wax coating layer during 

the phase separation and reorganization of the wax particles.  Surfaces coated with the wax 

mixtures turned superhydrophobic after annealing at about 60-70 oC for 12 hours.  The wax 

mixture (1:1) annealed at 60 oC had the highest CA of 167.7 ± 3.6o. The amount of wax coated on 

the paper was 10 g/m2. It was not stated whether the substrates were cured immediately after drying 

or not. In the current study, samples cured at 80 oC three days after the impregnation treatment 

were more hydrophobic that those cured immediately (see Fig. 4.3), with the best condition 
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providing a CA of approximately 118o.   The time delay of three days allowed an increase in CA 

of 23o. Although these figures are much less than that reported by Zhang. Et. al. [10], the amount 

of wax impregnated on the substrate was five times less, at approximately 2 g/m2. 

The higher CAs reported by Zhang et. al. [10] could be due to the formation and development of 

self-assembled monolayers (SAMs) of wax molecules via self-organization of long chain 

hydrocarbons of the wax onto the surfaces of the substrates. This is particularly the case with 

beeswax, which are esters with two long-chain hydrocarbons [208,209].  Consequently, the 

resultant effect of the terminal alkyl groups (tail ends) facing up while the ester groups attached to 

the surface caused the development of a highly hydrophobic surface. In this present study, 

however, the much lower quantities used and the lower CA obtain suggest that some of the terminal 

alkyl groups may have still been pointing laterally (parallel to the substrate surface).  Some days 

after impregnation treatment, an increase in CA was observed, and it is possible that with time, 

more wax molecules adopted a stand-up orientation.  According Bhushan [209], upwards-pointing  
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terminal alkyl groups are the backbone of SAM formation – and the attachment of more of these 

terminal alkyl chains enhances the hydrophobicity of a surface. 

 

 

Figure 4.3: Dynamic CA of paper substrates treated with the following conditions; 4hr after impregnation 

without annealing; 3 days after impregnation without annealing; freshly impregnated paper (annealed at 

80 oC for 24 hours); 3 days after impregnation (annealed at 80 oC for 4 hours). All impregnated substrates 

were done at (scCO2 / BW-CW / heptane, 200 bar and 22 OC ).  

 

The samples annealed at 80 and 110 oC as shown in Fig. 4.2 had significantly higher 

hydrophobicity than impregnated-only sample. The trend of the sample annealed 80 oC was stable 

but indicative of incomplete hydrophobic development.  
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The hydrophobic performance of samples annealed at higher temperatures can be described as 

“stable and fully developed”. The sample annealed at 165 oC produced the highest and most stable 

hydrophobic surface with average CA of 134o for the entire analysis time. More repetitions of CA 

measurements are needed confirm the trends of the hydrophobic performance in Fig.4.2, especially 

for 140 and 165 oC conditions. 

 

4.4.1.3 Droplet behavior  

 

Untreated “Whatman filter paper no. 1” was completely wetted within 2 seconds, and the droplet 

broke away from the syringe with ease.  For the substrate impregnated with the wax mixture 

(without heat treatment), its droplet behavior was similar to that of untreated substrates but took a 

longer time to be completely wetted. Fig. 4.4 shows the droplet behavior of the untreated substrate 

as compared with those annealed at elevated temperatures after impregnation treatment of the wax 

mixture.  The droplet behaviors of samples annealed at 80 and 110 oC follow similar trends to each 

other and were maintained at a steady CA of about 100o and 117o, respectively, for more than 90 

seconds.  At 140 oC, far away from the melting temperature range [10] and not too close to the 

boiling temperature range of BW [204], the effect of phase separation(s) and polymorphic phase 

transitions of the wax mixture appeared to be more significant in this region. The droplet 

maintained a stable and high CA beyond the duration of the experiment. Repeats of CA 

measurements will be done to confirm the trends of the droplet behavior in Fig. 4.4, specifically 

for 140 and 165 oC conditions.   
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Figure 4.4: Water droplet behavior on surfaces annealed at different temperatures after impregnation 

treatment (scCO2 / BW-CW/ heptane) at 200 bar and 22oC; (a) no heat treatment; (b) 80 oC ; c) 105 oC ; 

d) 140 oC  and (e) 165 oC. 

  

In this current study, the CA measurements showed that the surfaces were not superhydrophobic, 

but the force of adhesion was strong enough to support a 10 𝜇L droplet tilted to any direction. The 

phenomenon whereby droplets stick to the surfaces of substrates was extensively studied 

elsewhere, and is known as sticky hydrophobicity [14]. Both the impregnation and annealing 

treatments altered the surface energy. 
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4.4.2 Thermal and Mechanical Properties of the Treated Surfaces  

 

The hydrophobic properties of most waxes are mainly due their richness in esters, long-chain fatty 

acids and long-chain alkanes [10]. The components of waxes respond to heat differently. As their 

thermal properties change upon heating, their mechanical properties are also affected. In addition, 

it is likely that the high-pressure process could alter the mechanical properties. A connection has 

been found to exist between mechanical properties and how droplets penetrate CBM either by 

absorption on the surface, or by the penetration of the lumen [5,6]. Specifically, Kassem et. al. [5], 

reported that cellulose papers with low-surface-energy polymer coatings can significantly improve 

their breaking length and mechanical robustness.  In the current study, the storage modulus, loss 

modulus and tan delta of untreated, wax-impregnated and annealed impregnated substrates were 

determined. It should be noted that the DMA data are preliminary results, and further 

measurements and tests are needed to confirm the trends of the viscoelastic behavior of the 

substrates. 

 

4.4.2.1 Storage modulus 

Storage modulus is a measure of the stiffness of a material [210] – and is often referred to as the 

tendency of a material to store up the energy applied to it for a later use. Fig. 4.5 compares the 

changes in the storage modulus of untreated, impregnated-only, and cured-impregnated substrates. 

The high-pressure wax impregnation treatment increased the storage modulus of the untreated 

substrate by almost five times in the lower temperature test region (approximately 35 – 45 oC) and 

hence agrees with Kassem et.al. [27] findings on the improvement of mechanical robustness of 

cellulose papers. Subjecting the impregnated-only substrate to a curing temperature of 80oC for 4 
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hours further altered the mechanical properties. A gradual increase in storage modulus as curing 

temperature increases is a resultant effect of a tighter network structure and higher stiffness as 

Rashid, Leman, Jawaid, Ghazali and Ishak [211] pointed out.  During the annealing process (phase 

separation), the rearrangement and spreading of the waxes to more porous areas could have caused 

the gradual decrease in the storage modulus. The difference between the storage modulus of 140 

oC sample and those of other treated samples was only significant in the lower temperature region 

– for the rest of the region, the variation was within experimental errors. The excellent mechanical 

performance of hydrophobic coatings on CBM is largely attributed to their inherent structural 

features (suitable microscale roughness) [49]. Torun et. al. [49], in their study on “robust 

superhydrophobicity on paper”, reported that cellulose papers outperformed glass in resistance to 

mechanical wear, though both were treated with the same coating formulation.  
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Figure 4.5: Storage modulus of untreated paper, impregnated-only  (scCO2 / BW-CW / heptane, 200 bar 

and 22 OC )  paper (without annealing) and impregnated (scCO2 / BW-CW / heptane, 200 bar and 22 OC ) 

paper annealed at 80 and 140 oC. 
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The viscous response of a material to mechanical force imposed on it is termed “loss modulus” 
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loss under stress or deformation (energy dissipated as heat) [207,210,212]]. Fig. 4.6 illustrates how 

loss modulus of untreated, impregnated and annealed paper substrates change with temperature. 

As it can be clearly seen, the untreated substrate exhibited the lowest modulus (about 15 MPa for 
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highest across the entire temperature range investigated with an average error of about ±5 MPa. 

As a result, there would be an increase in interlocking bonding between the wax and the fiber. The 

phase separation in the melting range (for the sample annealed at 80 oC) could trigger the removal 

and migration of wax molecules from on point to another – resulting in large variation in loss 

modulus between lower and higher temperature regions compared with other annealing conditions. 

All impregnated and annealed substrates showed relatively higher values of loss modulus as 

compared with untreated substrates which suggests strong interfacial bonding to the substrate 

according to Rashid et. al. [211].    

 

Figure 4.6: Loss modulus of untreated paper, impregnated-only (scCO2 / BW-CW / heptane, 200 bar and 

22 OC )  paper (without annealing) and impregnated (scCO2 / BW-CW / heptane, 200 bar and 22 OC ) paper 

annealed at 80 and 140 oC. 
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4.4.2.3 Damping Factor 

 

The resultant effect of storage and loss modulus on a material in the “damping factor or tan delta”. 

Tan delta is a dimensionless number (the ratio of loss to storage modulus). The region or point 

where tan delta approaches a maximum value indicates the glass transition temperature [207]. 

Glass transition temperature is the temperature range where a material begins to change from a 

“glassy” or hard state to a more easily pliable (softer) or “rubbery” state [210]. At the glass 

transition temperature, there is a possibility of a reversible transition from a hard-brittle state to a 

viscous (rubbery-elastic) state. The tan delta plot in Fig. 4.5(c) does not show a maximum value, 

indicating the conditions were outside the transition region. 

 

In a study by Destro, Gramaccioli and Simonetta [213] on the investigation of thermal transitions 

in cellulose, three transition zones exist which are -30 oC; 20–25 oC and 200 –250 oC. The existence 

of multiple glass transition temperatures in nano cellulose composites has been reported elsewhere 

[214]. Rashid et. al. [211] describes a number of factors that influence the variation in tan delta, 

which include fiber breakage, fiber-matrix interlocking, matrix cracking, presence of interphase 

zone, and frictional resistance. In addition, tan delta can be used to determine the curing behavior 

of composites [211]. 

 

The tan delta plot shows no notable change between treated and untreated substrates (all within 

same experimental error) – all three curves are virtually on top of each other, except the sample 

annealed at 80 oC. Materials with lower damping factors have better load-bearing properties [211]. 

Therefore, all the treated samples will have similar mechanical durability with an average error of 
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about ±0.01. Similarly, Saba et. al. [27] attributed reduction in damping factors to an increase in 

the fiber-matrix interface bonding due to decreased mobility of molecular chains at the interface. 

The sample annealed at 80 oC (closest to the melting range of the wax mixture) had the lowest 

wax-fiber bonding because of its highest damping factor, and hence, would have lowest load-

bearing capacity.  This sample also showed the least hydrophobic development. 

 

 

Figure 4.7: Tan delta plot of untreated paper, impregnated-only (scCO2 / BW-CW / heptane, 200 bar and 

22 OC) paper (without annealing) and impregnated (scCO2 / BW-CW / heptane, 200 bar and 22 OC) paper 

annealed at 80 and 140 oC. 
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4.5 Conclusions 

 

In this work, a highly hydrophobic surface was created by impregnation of edible waxes (yellow 

beeswax and yellow carnauba wax) on paper surfaces via scCO2, followed by a heat treatment to 

augment and speed up the rate of hydrophobic development. The melting and recrystallization of 

the wax components upon heating and cooling, respectively, caused formation of hierarchical 

microstructures which further improved the hydrophobicity of the surface. CA measurements 

taken immediately and three days after treatments showed that the sizing development was 

progressive. For samples annealed immediately after the impregnation treatment, higher 

hydrophobicity was attained at higher temperatures (140 and 165 oC). Lower temperature 

annealing at 80 oC (within the melting range of the waxes) applied to samples three days after 

impregnation produced an average CA of 130o. Two patterns of hydrophobic development were 

observed. First, freshly impregnated samples needed to be annealed at higher temperatures to 

produce a more stable and higher hydrophobicity. Secondly, delayed annealing from impregnation 

treatment enabled higher hydrophobicity at lower temperatures (just around the melting range of 

the waxes).  

 

DMA properties of untreated, impregnated, annealed-impregnated substrates were assessed in 

terms of variation in storage modulus, loss modulus and tan delta with temperature. The high 

storage modulus values indicated higher stiffness of the treated substrates compared with plain 

cellulose paper. Also, they offered better resistance to mechanical wear. The loss moduli of the 

treated substrates were much higher than untreated substrates, suggesting strong bonding strength 

between the substrates and waxes. All annealed-impregnated substrates exhibited high-water 
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repellency as well as showing very high durability. The tan delta plot shows that all substrates are 

more elastic than viscous. Moreover, further investigation is needed to establish the exact relation 

between hydrophobicity, and mechanical properties, although preliminary data suggests that 

hydrophobic development may be the linked to the mechanical durability. 
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS   

 

5.1 General conclusions  

 

The goal of this study was to develop highly water-repellent surfaces on cellulose substrates using 

supercritical impregnation methods, for food packaging applications. From the goal of this study, 

three objectives were clearly defined that formed the bedrock of the findings. Therefore, from each 

objective, a set of conclusions were drawn. The main conclusions from all findings are given below 

under each objective:  

 

The first objective was to “Thermodynamically model the solubility of AKD solute in scCO2
 to 

help identify optimal conditions for impregnation".  The model was used to predict unavailable 

experimental data of AKD over a wide range of pressures and temperatures.  

 

• The Peng-Robinson EOS provided reasonably good solubility estimates of the AKD-scCO2 

system as compared with experimental data, especially at higher pressures and for all 

temperatures – typically in the regions where high-pressure hydrophobization method is 

carried out. Since dissolution of AKD in scCO2 is usually performed at higher pressures, 
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the model will be very useful to provide reasonable estimates of the solubilities at these 

conditions. 

• Solubilities were poorly predicted near the critical point (a limitation well known with EOS 

method). 

• Different group contribution estimation methods (GCEM) produced different values of the 

physical constants, and hence the accuracy of the model hinges on the type and/or 

combination of GCEM used.  Experimental determination of some of these constants will 

improve the predictive capacity of the model. 

 

 

The second objective was to “Assess the hydrophobic performance of these solutes (AKD and 

food-grade waxes) when impregnated into cellulose substrates”. This study determined the most 

appropriate solutes for creating highly water-repellent surfaces, and the conditions under which 

these were obtained (includes supercritical conditions as well as annealing in some cases).  

 

• Impregnation treatment with AKD sufficiently modified the surface energy and surface 

roughness of untreated substrates. The average CA for AKD samples impregnated at 200 

bar and 21oC was 140 ± 5o, while the CAH was 17 ± 5o. Nevertheless, for AKD, 

irrespective of the pressures investigated (from 50 to 250 bar), the hydrophobic 

development was not immediate but fully developed within 2 weeks after impregnation 

treatment. 
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• Annealing treatment further promoted the hydrophobic performance of food-grade-

impregnated paper either by increasing the rate of hydrophobic development and/or 

promoting the hierarchical surface roughness, especially for food-grade waxes that did not 

become sufficiently hydrophobic after the impregnation treatment.  

 

The third objective was to “Examine the surface and interfacial energies of various impregnated 

solutes (AKD, carnauba wax, natural vegetable wax, paraffin wax, beeswax, bees-milk) into 

cellulose substrates, and their resulting behavior / interactions with water droplets applied to the 

surface”. This examination revealed some interesting surface and interfacial energy behavior; the 

mechanistic pathways of the sizing; and the surface morphology, together with the uniform 

distribution of the sizing chemicals over the fibers.  Mechanical durability of some food-grade 

wax-treated substrates was also measured to gain an understanding of the mechanical behavior of 

these substrates. 

  

• The measured CA indicated near-superhydrophobic conditions, and the CAH influenced 

droplets being glued to the surface like that of water droplets on rose petals.  High-pressure 

impregnation with the waxes dissolved in n-heptane produced highly hydrophobic 

substrates. In some cases (especially for AKD), the droplets were sticking to the substrates, 

and were able to withstand more than more than 20 𝜇L of droplet volume tilted to any 

direction.  This means that the retentive force of adhesion was greater than the lateral force 

of adhesion. 

• SEM micrographs showed a reduction in pore size with time as the hydrophobicity 

developed, and this increase potentially confirmed migration of the waxes, especially AKD 
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over the surface. Although some pores reduced in size, sufficient porosity was maintained 

which contributed to surface roughness and high contact angles. 

• Migration of AKD over the fiber surface was the primary sizing mechanism. However, the 

migration was matched by an increase in hydrogen bonding between the lactone ring (C=O) 

of AKD and –OH groups on the cellulose rings, believed to be a possible means of 

attachment. This attachment, in turn, rendered the hydrophobic tails of AKD upward to 

promote hydrophobicity. 

• The melting and recrystallization of the food wax components upon heating and cooling, 

respectively, caused formation of hierarchical micro structures which further improved the 

hydrophobicity of the surface. 

• DMTA properties of treated, impregnated, and annealed impregnated substrates were 

assessed in terms of variation of storage modulus, loss modulus and tan delta with 

temperature. The high storage modulus values indicated higher stiffness of the treated 

substrates compared with plain cellulose paper. Also, they would offer better resistance to 

mechanical wear. The loss moduli of the treated substrates were much higher than 

untreated substrates – suggesting good bonding strength between the substrates and waxes. 

 

5.2 Recommendations for Future Work 

 

5.2.1  Future work: AKD 

 

• Subcritical hydrophobization (pressure ranges from 10-60 bar and all at 22 oC) of cellulose 

fiber for packaging applications via CO2 by impregnation of alkyl ketene dimer (AKD) and 
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investigation of its sizing development.” The hydrophobic performance will be assisted by 

annealing treatment. Characterization techniques: FTIR, CA analysis and SEM with 

ImagePro. 

• Development of sticky hydrophobicity cellulose fiber with supercritical impregnation of 

alkyl ketene dimer (AKD): investigation of parameters and factors. The development of 

“sticky” hydrophobicity will be monitored with time.  Characterization techniques: CA 

measurements, CA hysteresis, retentive and lateral adhesive forces. Heat treatment may be 

investigated whether it affects the development or not. Factors and parameters to consider 

pressures, impregnation time and concentration. 

 

5.2.3  Future work: food-grade waxes 

 

• Supercritical impregnation of cellulose fibers with vegetable wax, and enhancement of its 

surface hydrophobicity with annealing treatment: hydrophobic development, and study of 

its sizing mechanism. Characterization techniques: FTIR, DMTA CA analysis and SEM 

with ImagePro. 

• High-pressure Impregnation and Annealing of Cellulose Fibers with Food-grade Waxes: 

Hydrophobic and Mechanical properties. Characterization techniques: FTIR, DMTA, CA 

analysis and SEM with ImagePro.  (To be submitted for publication). 

5.2.3  Future work: thermodynamic modeling  

• AKD-CO2 thermodynamic solubility, modeling solubility in the vicinity of the critical 

point using UNIFAC/UNIQUAC group contribution methods. The modeling results will 

be compared with experimental data and a non-analytical model. 
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• Phase behavior of food-grade waxes dissolved in supercritical carbon dioxide in the 

presence of heptane as cosolvent. The study will involve two parts. Since most interaction 

parameters of the ternary system are not yet available in the literature, the first is the 

experimental investigation of solubility of binary pairs (i.e. food-grade wax/heptane), and 

then use an appropriate equation of state to the thermodynamic solubility modeling. 

5.2.4 Future work: multifunctional surface and other studies 

• Investigation of mechanical properties of hydrophobic surfaces (AKD/food-grade waxes) 

made from high-pressure impregnation methods. It is becoming increasingly important for 

packaging materials to be resilient and durable. Therefore, the viability of 

hydrophobization techniques need be examined not only in terms of hydrophobic 

performance but also assessing their mechanical robustness after the treatments.  

• Fabrication of multifunctional surfaces via supercritical impregnation and thermal barrier 

coatings: hydrophobic and mechanical properties. The individual performance of the 

following additives with excellent thermal barrier properties (silica aerogel, cellulose 

nanocrystals, nano titanium oxide and nanoclay) together with impregnation of AKD in 

scCO2 will be explored. Characterization techniques: thermal barrier tests, FTIR, DMTA, 

CA analysis and SEM with ImagePro. 

• A review study of some characterization techniques for superhydrophobic coatings on 

cellulose-based substrates. Due to chemical, physical and mechanical properties of 

cellulose-based substrates, some of the hydrophobization characterization techniques 

cannot be used. Some applicable hydrophobic testing techniques for cellulose-based 

substrates will be studied together with their output data and interpretation. 
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2. Solubilities of AKD in supercritical carbon dioxide using PREOS at 333.15K 
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3. Solubilities of AKD in supercritical carbon dioxide using PREOS at 353.15K 
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2 = AKD 
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Modeling of cloud-point pressure solubility determination of method 

 
1. Solubilities of AKD in supercritical carbon dioxide based on PREOS at 323.15K  
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Appendix B: CO2 density 
 

 

Temp 

(C)/ 

Pressure 

(bar) 15 16 17 18 19 20 21 22 23 

40 102.95 101.85 100.76 99.672 98.581 
97.49 96.717 

95.944 
95.171 

50 167.4 162.04 156.68 151.32 145.96 
140.6 138.94 

137.28 
135.62 

60 832.2 822.3 812.4 802.5 792.6 782.7 763.76 
310.54 293.16 

70 850.85 
842.4 

833.95 825.5 817.05 808.6 
787.07 

765.54 744.01 

80 865.4 857.86 
850.32 

842.78 835.24 
827.7 

815.1 802.5 
789.9 

90 877.7 870.8 
863.9 

857 
850.1 

843.2 
833.31 823.42 

813.53 

100 888.4 
881.98 875.56 869.14 

862.72 856.3 847.82 839.34 830.86 

110 
896.55 

890.41 884.27 878.12 871.98 
865.84 

857.92 849.99 842.07 

120 
904.7 

898.84 892.97 887.11 881.24 
875.38 

868.01 860.64 853.28 

130 912.85 907.26 901.68 
896.09 

890.51 884.92 878.11 871.3 864.48 

140 921 915.69 910.38 905.08 899.77 894.46 888.2 881.95 
875.69 

150 
929.15 924.12 

919.09 
914.06 

909.03 904 898.3 892.6 
886.9 

160 935.07 
930.18 

925.3 920.41 
915.53 910.64 905.15 

899.66 
894.16 

170 
940.99 

936.25 
931.51 

926.76 922.02 
917.2 912 

906.71 
901.43 

180 946.91 942.31 937.71 933.12 928.52 923.92 918.84 
913.77 

908.69 

190 
952.83 

948.38 943.92 939.47 
935.01 

930.56 925.69 920.82 915.96 

200 
958.75 954.44 

950.13 945.82 941.51 937.2 
932.54 

927.88 923.22 

210 963.51 959.28 955.06 950.83 946.61 942.38 937.84 
933.3 928.76 

220 968.27 964.13 959.99 955.84 951.7 
947.56 

943.14 938.72 934.3 

230 
973.03 

968.97 
964.91 

960.86 956.8 
952.74 

948.44 
944.14 

939.84 

240 
977.79 

973.82 969.84 965.87 961.89 957.92 
953.74 

949.56 
945.38 

250 
982.55 

978.66 
974.77 

970.88 966.99 963.1 
959.05 

954.98 950.92 

260 
986.51 

982.69 978.87 
975.06 971.24 

967.42 963.44 
959.46 955.48 

270 990.47 986.72 982.98 979.23 975.49 971.74 
967.84 

963.94 960.04 
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280 994.43 
990.76 

987.08 983.41 979.73 976.06 972.24 
968.42 

964.6 

290 998.39 994.79 991.19 987.58 983.98 980.38 976.64 972.9 969.16 

300 1002.4 998.82 995.29  991.76 988.23 984.7 981.04 977.38 973.72 

Temp 

(C)/ 

Pressure 

(bar) 24 25 26 27 28 29 30 31 32 

40 
94.398 93.625 92.852 92.079 91.306 90.533 89.76 89.16 88.56 

50 
133.96 132.3 130.64 128.98 127.32 125.66 124 122.9 121.8 

60 
275.78 258.4 241.02 223.64 206.26 188.88 171.5 169.28 167.06 

70 722.48 700.95 679.42 657.89 636.36 274.38 266.5 259.65 252.8 

80 
777.3 764.7 752.1 739.5 726.9 714.3 701.7 659.32 616.94 

90 803.64 793.75 783.86 773.97 764.08 754.19 744.3 718.43 692.56 

100 822.38 813.9 805.42 796.94 788.46 779.98 771.5 757.22 742.94 

110 834.14 826.22 818.3 810.37 802.45 794.52 786.6 773.84 761.08 

120 845.91 838.54 831.17 823.8 816.44 809.07 801.7 790.46 779.23 

130 857.67 850.86 844.05 837.24 830.42 823.61 816.8 807.09 797.37 

140 869.44 863.18 856.92 850.67 844.41 838.16 831.9 823.71 815.52 

150 881.2 875.5 869.8 864.1 858.4 852.7 847 840.33 833.66 

160 888.67 883.18 877.69 872.2 866.7 861.21 855.72 849.37 843.02 

170 896.14 890.86 885.58 880.29 875.01 869.72 864.44 858.41 852.38 

180 903.62 898.54 893.46 888.39 883.31 878.24 873.16 867.45 861.74 

190 911.09 906.22 901.35 896.48 891.62 886.75 881.88 876.49 871.1 

200 918.56 913.9 909.24 904.58 899.92 895.26 890.6 885.53 880.46 

210 924.22 919.68 915.14 910.6 906.06 901.52 896.98 892.07 887.15 

220 
929.88 925.46 921.04 916.62 912.2 907.78 903.36 898.6 893.84 

230 935.54 931.24 926.94 922.64 918.34 914.04 909.74 905.14 900.54 

240 941.2 937.02 932.84 928.66 924.48 920.3 916.12 911.67 907.23 

250 
946.86 942.8 938.74 934.68 930.62 926.56 922.5 918.21 913.92 

260 951.5 947.52 943.54 939.56 935.58 931.6 927.62 923.43 919.23 

270 956.14 952.24 948.34 944.44 940.54 936.64 932.74 928.64 924.54 

280 
960.78 956.96 953.14 949.32 945.5 941.68 937.86 933.86 929.86 

290 965.42 961.68 957.94 954.2 950.46 946.72 942.98 939.07 935.17 

300 970.06 966.4 962.74 959.08 955.42 951.76 948.1 944.29 940.48 
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Temp 

(C)/ 

Pressure 

(bar) 33 34 35 36 37 38 39 40 

40 87.96 87.36 
86.76 86.16 85.56 

84.96 84.36 83.76 

50 
120.7 

119.6 
118.5 

117.4 
116.3 

115.2 
114.1 

113 

60 164.84 162.62 
160.4 

158.18 
155.96 

153.74 
151.52 

149.3 

70 245.95 239.1 232.25 225.4 218.55 211.7 204.85 198 

80 574.56 532.18 
489.8 

447.42 405.04 362.66 320.28 277.9 

90 666.69 640.82 614.95 589.08 563.21 537.34 511.47 
485.6 

100 
728.66 

714.38 
700.1 

685.82 671.54 657.26 642.98 628.7 

110 748.33 
735.57 

722.81 
710.05 697.29 

684.54 671.78 659.02 

120 767.99 756.76 
745.52 734.28 

723.05 711.81 700.58 689.34 

130 787.66 
777.94 

768.23 758.52 
748.8 

739.09 729.37 719.66 

140 
807.32 

799.13 
790.94 

782.75 774.56 766.36 
758.17 

749.98 

150 826.99 820.32 813.65 
806.98 

800.31 
793.64 

786.97 780.3 

160 836.67 830.32 
823.97 

817.62 811.27 
804.92 798.57 

792.22 

170 846.35 840.32 834.29 
828.26 822.23 

816.2 810.17 804.14 

180 856.03 
850.32 

844.61 
838.9 

833.19 827.48 821.77 816.06 

190 865.71 
860.32 854.93 

849.54 844.15 838.76 833.37 827.98 

200 875.39 
870.32 865.25 

860.18 855.11 850.04 844.97 839.9 

210 
882.24 877.32 

872.41 867.5 862.58 857.67 852.75 
847.84 

220 889.09 
884.33 

879.57 874.81 870.05 865.3 860.54 855.78 

230 895.93 891.33 886.73 882.13 877.53 
872.92 

868.32 863.72 

240 902.78 898.34 893.89 889.44 885 880.55 876.11 871.66 

250 909.63 905.34 901.05 896.76 
892.47 

888.18 883.89 879.6 

260 915.04 910.84 906.65 902.46 898.26 894.07 889.87 
885.68 

270 920.45 916.35 912.25 
908.15 

904.05 899.96 895.86 
891.76 

280 925.85 921.85 917.85 913.85 909.85 905.84 901.84 
897.84 

290 931.26 927.36 923.45 919.54 915.64 
911.73 907.83 

903.92 

300 936.67 
932.86 

929.05 925.24 921.43 917.62 
913.81 

910 
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Appendix C: Symbols and Notations for Chapter Two 

 

 

Nomenclature 

𝑎, 𝑏   PREOS mixture parameters 

𝐴, 𝐵   dimensionless parameters of EOS 

𝐹   fugacity 

𝑘𝑖 ,𝑗     binary interaction parameters 

𝑃   pressure 

𝑃𝑣𝑎𝑝
   vapor pressure of AKD 

𝑅   gas constant 

𝑇   temperature 

𝑣   molar volume of the SCF-AKD mixture 

y   mole fraction 

Z   compressibility factor 

 

Greek letters 

𝛼   interaction parameter 

𝜌   density 

𝜙   fugacity coefficient  

𝜔              acentric factor  

 

Subscripts 

𝐴𝐾𝐷   alkyl ketene dimer 

𝑐   critical 

𝑐𝑎𝑙   calculated 

𝑒𝑥𝑝   experimental 

𝑖, 𝑗   component index 

𝑚   mixture 

𝑟   reduced 

1   scCO2 

2   AKD 

 

Superscripts 

𝑣𝑎𝑝   vapor 

𝑠   solute 

𝑠𝑢𝑝   supercritical 

 

Abbreviations 

AKD   alkyl ketene dimer 

EOS   equation of state 

GCEM   group contribution estimation method 

MW   molecular weight 

PREOS  Peng-Robinson equation of state 

scCO2   supercritical carbon dioxide 

SCF   supercritical fluid 



174 
 

VITAE 

 

Kolawole Adenekan 

 

Address: 228 CR 235, Abbeville, MS 38601 

Mobile: +1 362-228-4114 

E-mail: kola.adenekan@gmail.com 

 

Education 

 PhD: Chemical Engineering, University of Mississippi, Oxford, Mississippi, (2015 – 

2019). 

Dissertation: “Hydrophobization of Cellulose-based Fibers for Packaging 

Applications with Alkyl Ketene Dimers (AKD) and Food-grade Waxes via 

Supercritical Impregnation with Carbon Dioxide – Experimental and 

Thermodynamic Modeling Approaches”.  

 M.S. (partially completed): Chemical Engineering, University of Mississippi, Oxford, 

Mississippi, (2014 – 2015). 

 B.Sc.: Chemical Engineering, Process Design, University of Tehran, Tehran, Iran, 

(2004 – 2009). 

Thesis: “Implosion Demolition of High-rise Buildings”.  

 

mailto:kola.adenekan@gmail.com


175 
 

JOURNAL PUBLICATIONS (PUBLISHED, UNDER REVIEW OR IN PREPARATION) 

1. K. Adenekan and B. Hutton-Prager, Sticky Hydrophobic Behavior of Cellulose Substrates 

Impregnated with Alkyl Ketene Dimer (AKD) via Sub- and Supercritical Carbon Dioxide, 

Colloids Surfaces A Physicochem. Eng. Asp. 560 (2018) 

2. K. Adenekan and B. Hutton-Prager “Thermodynamic Models of Alkyl Ketene Dimer 

Dissolved in Supercritical Carbon Dioxide”. (Under review) 

3. K. Adenekan and B. Hutton-Prager*. “High-pressure Impregnation and Annealing of 

Cellulose Fibers with Food-grade Waxes: Hydrophobic and Mechanical properties. (To be 

submitted for publication)  

4. Kolawole Adenekan and Brenda Hutton-Prager*. “Fabrication of Hydrophobic Surfaces 

on Cellulose Fibers via Heat Treatment-Assisted Supercritical Impregnation of Vegetable 

Wax Natural”. (In preparation) 

 

DEPARMENTAL/SEMINAR RESENTATIONS  

1. K. Adenekan. “Sticky hydrophobic surfaces”, University of Mississippi, graduate school 

3-minute Thesis, 23th, October 2018. 

2. K. Adenekan “Use of Hydrocarbon Screen Spill Screening Model to assess gasoline 

vertical migration and spreading in vadose upon ozone remediation”, University of 

Mississippi, Original Research Proposal, 10th, May 2017 

3. K. Adenekan “Hydrophobization of Cellulose-based Fibers for Packaging Applications 

with Alkyl Ketene Dimers (AKD) and Food-grade Waxes via Supercritical Impregnation 

with Carbon Dioxide – Experimental and Thermodynamic Modeling Approaches”, 

University of Mississippi, Dissertation Prospectus, 17th, November 2017 



176 
 

4. K. Adenekan “Study of paper substrates impregnated with supercritical CO2 in alkyl 

ketene dimers (AKD) for paper and packaging application”, University of Mississippi, 

chemical engineering department, graduate seminar, 14th October 2016. 

5. K. Adenekan “Hydrophobization of paper substrates with alkyl ketene dimers (AKD) via 

sub/supercritical CO2 for packaging applications”, University of Mississippi, chemical 

engineering department, graduate seminar, 10th February 2016. 

6. K. Adenekan. “Intelligent coatings for package applications”, University of Mississippi, 

graduate school 3-minute Thesis, 20th, November 2016. 

7. K. Adenekan. “Selective flocculation and dispersion of Hematite Ore”, Michigan Tech. 

University, 13th December 2014. 

 

CONFERENCE PRESENTATIONS  

1. B. Hutton-Prager* and K. Adenekan. “High Pressure Impregnation of Alkyl Ketene 

Dimers (AKD) in Cellulose Substrates, Creating Novel Sticky Hydrophobic Surfaces”, 

AlChE, Orlando, FL. 2019. 

2. K. Adenekan and Brenda Hutton-Prager*. “Coating of Cellulose Fibers with Alkyl Ketene 

Dimers (AKD) for Hydrophobic Development and Study of Its Coating Mechanism using 

Supercritical Technique”. (PaperCon, Charlotte, (2018). 

WORK EXPERIENCE 

 Research Assistant – Chemical Engineering Dept., The University of Mississippi 

(2015-2019)    



177 
 

 Teaching Assistant – Chemical Engineering Dept., The University of Mississippi 

(2015-2019)        

 Tutorial Support Staff – Student-Athlete Support Center, The University of 

Mississippi (2018)        

 Research Assistant – Chemical Engineering Dept., Michigan Tech University (2014-

2015)        

 Logistics and Distribution Manager– Olowo Ijeun Woods, Abeokuta, Nigeria (2011-

2013)        

EDITORIAL BOARD MEMBER /REVIWER 

 Journal of Colloid and Surface Science 

 

 

AWARDS/SCHOLARSHIPS AND GRANTS  

 Fulfilling the Legacy Scholarship (2018 – 2019) – National Society of Black 

Engineers  

 Summer Graduate Research Assistantship Program - 2018. University of Mississippi, 

Oxford, MS 

 Fulfilling the Legacy Scholarship (2016 – 2017) – National Society of Black 

Engineers  

 BCA/Major/Fellows Scholarship (2016 – 2017) – National Society of Black 

Engineers  

 ORSP Grant: Graduate Student Council Research Grants Program - 2016. University 

of Mississippi, Oxford, MS 

 



178 
 

Professional MEMBERSHIP  

 National Society of Black Engineers 

 Society of Manufacturing Engineers 

 TAPPI – PaperCon 

 Association of Plastic Engineers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Hydrophobization of Cellulose-Based Fibers for Packaging Applications with Alkyl Ketene Dimers (AKD) and Food-Grade Waxes via Supercritical Impregnation with Carbon Dioxide – Experimental and Thermodynamic Modeling Approaches
	Recommended Citation

	tmp.1569246484.pdf.fYIeF

