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ABSTRACT 

The inclusion of 3D printing (3DP) technologies in the construction field has the potential 

to solve many structural related problems and will reduce construction cost and time. 3DcP 

technology is facing some drawbacks, such as scarcity of printable materials, accompanied by 

material science challenges, including production process, process-related material requirements, 

construction-related material requirements, and handling of non-homogeneous and time-

dependent material properties. Therefore, extensive work is needed to improve and utilize 

materials for AC applications. The two main challenges that need to be urgently investigated, to 

incorporate 3DP in construction (3DcP) applications are (1) development of the 3DcP process for 

non-homogeneous materials to facilitate the production of multilateral mason materials and (2) 

improvement of the printing process.  

Modified magnesium phosphate cement (MPC) composites have a high potential for AC 

applications due to its superior properties such as high compressive strength, rapid setting time, 

and excellent durability.  

This work aims to give more insight about the physical, mechanical, thermal, and chemical 

performance of the MPC paste composites. Our primary outcome from this research is to improve 

the MPC composites with different additives, including boric acid, GnP, and acetic acid for 

potential utilization in 3DcP applications. Furthermore, Martian and Lunar regolith simulants can 

be mixed with the MPC composites to create mortars as a possible extraterrestrial 3DP in-situ 

construction material mainly to support the NASA habitation exploration mission. 
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Before adjusting the required properties for an AC application, many aspects need to be 

studied in depth to provide a better understanding of MPC behavior under different conditions. 

The main highlights of the experimental results show that each additive can change the phase 

compositions of the MPC pastes and affect its physical and mechanical performance towards 

fitting the 3DcP requirements. Moreover, the research conducted creatively utilized artificial 

neural networks (ANN) to investigate and subsequently optimize both the MPC pastes and 

composite formulation for desirable in-service performance.  

The novel approach and terminology proposed in this dissertation are expected to provide 

critical fundamental scientific bases on a new class of construction material for both extraterrestrial 

habitats and terrestrial construction applications, where sand and clay can replace regolith. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 INTRODUCTION  

Construction industries have always been inflexible, difficult to change, slow in evolution, 

and the latest in adapting to modern technology. Although the construction industries seem 

unchangeable, many researchers have indicated that the construction industry will be engaged to 

the world of digital technology. Some examples of insertion of modern technology in the 

construction field include machine learning, virtual reality, and three-dimensional printing (3DP).  

3DP, which is also known as Additive Manufacturing (AM), is the coming soon 

technology that will change the industry world. This year, NASA announced that it will build its 

new spacecraft by assembling more than 100 3D printed parts, which will perform some lunar 

missions by the next year. Moreover, NASA aspires to build the first lunar and Martian habitat 

using 3DP technology. On Earth, a 37-square-meter house was built in a suburb of Moscow in less 

than 24 hours by using 3DP technology; and in last June, A French family has become the first 

family in the world to live into a four-bedroom 3D printed house.  

The goal of embedding AM technology in the construction industry is to reduce time and 

cost. The ability to create larger structures in a very short time may become possible with this 

technology, especially in the case of emergencies, such as the establishment of emergency shelters
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after earthquakes and natural disasters. The benefits of embedding AM in the field of construction 

are not limited to that, also, it can reduce the number of on-site labor and reduce the material 

waste. 

 

1.2 ADDITIVE MANUFACTURING (AM) 

Additive Manufacturing (AM) is a developing deposition process for creating 

manufactured objects, by placing a specific material layer by layer to obtain the acquired 3D 

object. The object which is produced by AM is a projection of a 3D software drawing. The printing 

process in AM is composed of a computerized system that connects the printing machine with the 

3D design model, such as a Computer-Aided Design (CAD) model or Additive Manufacturing 

File (AMF). 

AM has many attracting advantages such as the high quality of the products finishing, the 

accuracy of correspondence to the software models, the reduction in the time needed for 

manufacturing processes, the minimization of the number of laborers needed for fabricating 

products and the reduction in the production waste [1]. Despite the many advantages of AM, there 

are some challenges that face this technology including (1) limitation in adequate materials (2) 

difficult implementation in large structure productions and (3) high cost compared to traditional 

industry. Hence, more work is needed to utilize materials that can be used for AM technologies 

and different applications. [1,2] 

 

1.2.1 HISTORY OF 3D PRINTING 

AM term was inspired by the 3-dimensional printing (3DP) technique, which is creating 

objects by adding layer upon layer. The development of equipment and methods for AM 
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technology were established in the 1980s. In 1984, Méhauté with a group of French inventors, 

initiated the stereolithography (SLT) process to be used in AM applications [3]. Two years later, 

Chuk Hull developed the SLT process where the material layers were formed from photopolymers 

and cured by ultraviolet (UV) light lasers [4]. The process depends on creating cross sections for 

the desired object. Hull's contribution in stereolithography strategy is involved in many 

applications today [4, 5]. In 1988, S. Scott Crump improved a unique application of plastic 

extrusion called fused deposition modeling (FDM), this process is the most technology used by 

the 3DP applications until these days [6]. In 2009, the FDM 3DP procedure patents expired. 

There are several AM technologies that were determined according to the method of 3D 

printing; based on the machine used, and the material’s type and consistency which include: (1) 

vat photopolymerization, (2) material jetting, (3) Powder Bed Fusion (PBF), (4) binder jetting, (5) 

directed energy deposition, (6) and material extrusion. 

In the vat photopolymerization method, the model is constructed layer by layer, though, 

the material used should be in a liquid phase during the process. The vat polymerization process 

uses plastics and polymers, and the resin is cured and hardened using UV light. 3D Systems ProX 

950 machine is an example of  the vat photopolymerization method. The vat photopolymerization 

is known for its high-quality finishing and rapid procedure, moreover, its ability to get out 

relatively large-scale objects. On the other side, it is considered relatively expensive compared to 

the other methods [7].  

Material jetting applies a similar method of the inkjet document printing in the 2D printing 

system, but instead of dropping the ink onto a paper, the PolyJet 3D printers drops the 

photopolymer liquid onto a build sheet. The material will be projected to create a layer over layer 

until completion of the final model, and then, the object will be cured using a UV light to get the 

https://www-sciencedirect-com.umiss.idm.oclc.org/topics/materials-science/photopolymerization
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final solid shape of the sample. In the material jetting technique, a gel-like material is required 

during the process to work as a mold and to support the desired model. This technology is known 

of its high accuracy and smooth finishing; however, it is relatively slow [1,8-10].   

The PBF process is based on spreading the powder material over the previous layers. 

Some of the drawbacks of this method include the slow process, a deficiency in the structural 

properties for the produced objects and the size limitations of the products. However, it is 

relatively inexpensive compared to other methods and includes a wide range of material options 

[11]. 

In the binder jetting method, a powder-like material is used to create layers of powered 

material including plastics, ceramics, and metals. Then, a liquid bonding agent is injected 

between the layers to form the desired object. This method is considered to be cost -effective 

[12]. 

In the material extrusion process, which is also known as Fused Deposition Modelling 

(FDM), the material is dropped from a nozzle and deposited on a pre-created surface layer by 

layer, under constant pressure, and a constant speed, the bonding between layers occurs by 

applying temperature or using chemical agents. Generally, this process is used for polymers and 

plastics. Recently, cement and concrete materials have been utilizing in this method. One of the 

disadvantages of this process is the physical limitation due to the nozzle used. In addition, it 

needs a more time to complete the AM process compared to other processes [13]. 

Directed energy deposition applies similar principles to the material extrusion process, 

except that the extruder nozzle can rotate freely at multiple axes. This method is used for joining 

a new part to an existing object; it is usually used for metals such as cobalt-chromium and titanium 

[14]. 
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After the great development in the field of AM, especially in the binder jetting and material 

extrusion techniques, AM applications have been expanded to the construction industry. An 

equivalent technology to the material extrusion and inkjet printing has been developed to introduce 

the AM technology into the field of construction [15]. As the concrete is the most used material 

for construction, it has received more attention to be utilized in 3DP technologies. Recently, using 

AM technologies in construction has evolved towards delivering full-scale objects and large 

structural elements [16]. The use of AM technology in the field of construction has been called 

Additive Construction (AC). 

 

1.2.2 ADDITIVE CONSTRUCTION (AC) 

The beginning of AM application in the construction industry has taken a significant 

interest to open the door for constructing more complex architectural models that were difficult 

to be created in usual conditions and by means of traditional construction methods. AC is a 

digital controlling process of creating construction elements from building material and join 

them together to form a final structural shape. AC has alternative terms, such as 3D 

Construction Printing (3DCP), Large-Scale Additive Manufacturing (LSAM), and Freeform 

Construction (FC). Since the concrete is the most commonly used material in construction, 

concrete-extrusion technologies predominately dominate the scope of additive construction. A 

more specialized term used to refer to concrete extrusion is '3D printed Concrete'.  [2,16, and 

17]. 

The potential advantages of applying 3DCP are; saving time, decreasing the on-site labor 

requirements on site, optimizing suitable materials which reduces material waste, improving 

the high-finishing quality, allowing an increase in the structural geometrical complexity, and 
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reducing the overall construction cost, with the capability of eliminating the presence of 

traditional formworks [17,18].  

AC technology is facing some drawbacks such as scarcity of printable materials 

accompanied with material science challenges including production process, process-related 

material requirements, construction-related material requirements, and handling of non-

homogeneous and time dependent material properties. Therefore, immense work is needed to 

improve the AC processes and to utilize materials that have a potential in AC applications [2,18, 

and 19]. The main two challenges that need to be investigated to improve the quality of AC 

production are: (1) developing of 3DP process of the non-homogeneous materials in order to 

facilitate the production of multilateral mason materials (2) improving new materials that 

delivers unique specifications and properties which are needed for both the printing process and 

the construction durability [18 and 19]. 

In the extrusion-based method, which is the primary method for AC, specific process-

related characteristics are needed to evaluate, control and improve the performance of AC 

production [20], the main four process-related characteristics are:  

a) Pumpability: is the ability of the material to move through the delivery system [21]. 

b) Printability: is the yielding shear strength development of the material during the 

transformation and deposition of the 3D printing procedure [22]. 

c) Buildability: is the ability of the wet layers of the material to resist the deformation 

due to applying self-weight loading conditions as the added layers are becoming 

cumulative, this process-related characteristic controls the thickness and the 

numbers of the layers that can be obtained in a certain 3DP event [22].  
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d) Open time: is the time that the 3DP material can conserve the features mentioned 

above within a reasonable predetermined toleration specification [20,21].  

Recently, many researchers studied the possibility of obtaining high-precision concrete 

objects using AC technology. Anatasiou et al. proved mathematically that any 3D structure 

(whatever its shape) could be built by layer upon layer deposition approach [23]. Thus, many 

researchers have studied the main material properties that can affect the efficiency of printed 

products. For the concrete-like material, the rheological non-homogenous fresh properties are 

the most critical aspects that can affect the performance of the AC production. Some of these 

critical fresh properties are:  

a) Setting time: is the time required for the material to transform from the liquid or 

viscous state to the plastic state, the setting time for any concrete-like material 

depends on several factors including water content, temperature, salt amounts, and 

chemical combinations [24]. 

b) Thixotropy: is the subsequent reduction of the paste viscosity with time, when the 

sample is under shear stress. [25] 

c) Green strength: is the strength of the concrete at the early aged hardening and before 

achieving the full-time curing [26]. 

d) Workability: is the ease of handling and processing the concrete paste without any 

segregation [27]. 

 

In 3DPC, the mix design must satisfy the required fresh and hardened properties. For 

example, the required setting time and workability should be obtained, meanwhile, the mix should 

meet the required green strength to support additional layers. Jianchao et al. tried to find the 

optimal mix design for 3DP using different types of cementitious binders. The results showed that 
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the optimal mix design was related to several parameters including pumping rate, used 

temperature, and required compressive strength [28]. Also, Paul et al. studied the ability of 

different concrete mixtures to be used for AC applications. They reported that the rheological 

properties and thixotropic behavior of concrete are the most critical factors for 3DPC [29]. 

Many construction additives have been investigated to improve the material properties to 

enable better 3DP. Zhang et al. tried to develop a new concrete ink for 3DP applications. They 

investigated the effects of several additives on the fresh properties of concrete ink including 

fluidity, workability, and green strength. The results demonstrated that the buildability of the 

concrete ink was improved by using nano-clay (NC) and silica -fume (SF) by 150% and 117%, 

respectively. After trying many concrete mixtures, they were able to build 260 millimeters, in 

height, of concrete by using a mega-scale 3D printer with a nozzle diameter of 20 mm and a 

building rate of 8000 mm/min [30]. Soltan et al. designed a reinforced cementitious binder with 

short polymer fibers to be used for 3DP programs. The rheological properties (workability and 

thixotropy) were adjusted for a 3D printer with a circular nozzle of 8-13 mm diameters. In order 

to achieve good printability, they investigated the influence of many additives including; calcium 

aluminate (CA), micro silica (MS), ground silica (GS), and Attapulgite nano-clay (ANC). The 

results indicated that a small dosage of CA could increase the hardening rate and the initial flow 

of the system. Moreover, the hardening rate was increased, and the initial flowability was 

maintained by adding a small dosage of MS and GS. Finally, using small amounts of ANC can 

improve the cohesion of the mixture, but it had a slight effect on the hardening rate. [31]. Asprone 

et al. have suggested a new 3D printing technique to produce a 3 m reinforced concrete beam. 

They divided the member into different segments, and they printed each one of them separately, 

then all the parts were assembled together with the steel reinforcement. The results indicated that 
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the shear damage at the interfaces between different RC beam segments caused a large deflection, 

which led to reducing the overall performances of the RC beams [32]. Kazemian et al. reported 

that the using of SF and NC enhanced the shape-stability of 3D printed cement paste [33]. 

Due to the limited available material for AC applications, the concept of utilizing new 

materials for AC application has begun to take great global attention. Perrot et al. studied the 

possibility of using an earth-based material with the 3DP application. They used a 3D printer with 

two extruders including circular cross-section extruder of 35 mm in diameter and rectangular 

cross-section extruder of 21 x 40 mm2. The maximum flow rate was 40 L/min, while the max 

pressure in the pump was 20 bar. The results indicated that using earth-based material in 3D 

printing application was possible [34]. Ketela et al. adjusted the rheology properties of a silicate-

based slurry to study the possibility of printing this material with a 3D printer using laser 

triangulation-based 3D-scanning. After investigating the relations between the rheological 

properties and the printability of the slurry, they suggested using a printability index -to evaluate 

the extent of the mismatch between what is designed on a digital CAD and what is actually printed- 

to control and evaluate the 3D printed slurry.  The results indicated that using of silicate-based 

slurry in 3DP needed further work [35]. 

Recently, some evidence has indicated that the use of AC may reduce environmental 

pollution by reducing carbon dioxide emissions rate. Achillas et al. reported that the AC techniques 

could reduce the amount of carbon dioxide in the atmosphere. The carbon dioxide produced by 

AC is less compared to that produced by traditional construction methods, this could be connected 

to the reduction in the material waste generated by AC technologies compared to traditional 

construction technologies. Moreover, taking into consideration that AC techniques do not require 

molding and casting operations [36].  
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According to many researchers, the inclusion of AM technologies in the field of 

construction will solve many structural related problems and will reduce cost and time. 

Therefore, applying AC technologies under multiple construction conditions is becoming a 

pressing necessity. In addition, utilizing concrete alternatives which can withstand difficult 

construction conditions is becoming a demanding requirement in the field of AC; also, the 

properties of these materials must be suitable for 3DP. In the last decade, magnesium-based 

binders (MBBs) have shown a great promise to be used in different AC applications.  

MBBs exhibit many superior properties such as high compressive strength, high initial 

setting time, excellent volume stability, and excellent durability, the ability to harden at low 

temperature, low drying shrinkage, fire-proof behavior, and excellent resistance to abrasion [37 

and 38]. Therefore, MBBs are strong candidate materials for 3DP application in both 

biomedical and construction fields [39 and 40]. 

 

1.3  MAGNESIA BASED BINDERS (MBBS) 

Cement is a substance that sets and hardens which is used to bind or hold materials together 

through a chemical reaction. Cement is usually used to produce concrete by binding sand and 

gravel together. Globally, concrete is the second most consumed material after water, more than 5 

billion cubic yards of concrete are produced annually [41]. Therefore, cement has become one of 

the essential materials for all kinds of construction. Generally, cementitious binders can be 

classified as hydraulic or non-hydraulic cements. The hydraulic cement hardens due to the 

chemical reaction between the anhydrous ingredients and water, this type of cement, once initially 

set, it can continue setting and developing strength under water, such as Portland cement. For the 

non-hydraulic cement, no water is required to complete the setting and the strength development.  
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Portland cement is the most common type used in concrete production, due to its high 

mechanical properties, excellent durability, in addition to the abundant availability of its raw 

materials. The two primary raw materials used in the cement industry are limestone and clay, 

limestone (CaCO3) provides calcium (CaO), and it is decomposed at 1000 ◦C; clay provides 

silicates (SiO2), and it is decomposed at 600◦ C. Usually in the manufacturing process of OPC, the 

raw materials are heated in a rotary kiln to very high temperatures (up to 1400 ◦C) to produce the 

clinker, this process requires intense energy. Producing OPC is not only energy consuming but 

also it is associated with high carbon dioxide emissions into the atmosphere [42]. The energy 

consumed to produce 1 ton of hydraulic cement exceeds 5 billion joules of electrical power and 

fuel energy, and it generates about 0.9 ton of carbon dioxide [43].  

With the significant growing concern about global warming and environmental pollution, 

researchers focused more on studying cement-like materials and alternatives that are more 

sustainable and environmental-friendly than OPC. For instance, some of the newly developed 

cement-like materials include chemically bonded ceramics (CBCs) [43]. In general, CBCs are 

obtained from an acid-base chemical reaction, which is basically an aqueous phase formation 

between a metal cation and an oxyanion source (formula of AxO
-z

y) [44]. When the magnesium 

oxide (MgO) is used as a metal cation, magnesia-based binders are obtained.  

MgO can be formed by heating magnesite (MgCO3) at a temperature to around 750 ◦C 

[45]. The reactivity of the magnesia depends on two main factors, the calcination temperature, and 

the particle size. MgO has the ability to absorb CO2 from the atmosphere to form carbonates and 

hydroxycarbonates; this ability has led to an increasing interest in magnesia-based binders (MBB)s 

[46]. Besides, magnesium-based cement (MBC) needs much less energy for production and 
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releases less carbon dioxide compared to OPC. The mentioned earlier qualifications for MBCs 

nominate them actively to be a sustainable, and eco-friendly alternative for OPC [47 and 48]. 

Generally, the three most common types that belong to MBBs are magnesium oxysulfate 

cement (MOS), magnesium oxychloride cement (MOC), and magnesium phosphate cement 

(MPC). 

 

1.3.1 MAGNESIUM OXYCHLORIDE CEMENT (MOC) 

Magnesium oxychloride cement (MOC) or Sorel cement is a type of magnesia cement that 

is formed from the reaction between magnesium oxide (MgO) and a solution of magnesium 

chloride (MgCl2). At the beginning of the twentieth century, the attention to MOC had increased 

due to its marble-like appearance, and then it was overlooked due to the availability and the low 

price of OPC. Recently the interest in MOC has increased due to the less associated carbon dioxide 

emissions during the manufacturing process.  

There are many advantages to MOC compared to OPC including high early strength, high 

fire resistance, excellent resistance to abrasion, high compatibility with glass fibers due to its high 

alkalinity, and its ability to be used with a wide range of aggregate types and resources [49].   

When MgO dissolves in MgCl2 solution, a homogeneous gel is formed from the 

precipitation of MgCl2 salts. This gel can produce several crystalline phases depending on the 

molar ratio between magnesia and magnesium chloride and to the mixing temperature. The main 

four reaction phases that are responsible for strength and durability of MOC system are 

2Mg(OH)2•MgCl2•4H2O (phase 214), 3Mg(OH)2•MgCl2•8H2O (phase 318), 

5Mg(OH)2•MgCl2•8H2O (phase 518), and 9Mg(OH)2•MgCl2•5H2O (phase 915) [50]. The most 
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stable one among those phases is phase 518. When phase 518 is formed in the MOC system, better 

microstructure and mechanical strength will be achieved [51].  

There are many factors that can affect the performance of MOC systems such as the curing 

temperature, magnesia particle size, the molar ratio between magnesia and magnesium chloride 

(Mg/MgCl2), and the molar ratio between water and magnesium chloride (W/MgCl2). Usually, a 

high Mg/MgCl2 molar ratio is required to achieve a high-performance MOC paste, while the 

remaining magnesia (the unreacted magnesia) will work as a filler. In addition to that, a high 

W/MgCl2 is needed to improve the workability and to ensure the formation of phase 518 [52]. 

Finally, it is worth noting that despite the many advantages of MOC, its use in multiple 

applications is limited because of its very poor water resistance capacity [53]. 

 

1.3.2 MAGNESIUM OXYSULFATE (MOS) CEMENT  

Magnesium oxysulfate (MOS) cement is a type of MBCs, which is produced by the 

chemical reaction between magnesium oxide (MgO) and magnesium sulfate solution (MgSO4) [54 

and 55]. After the global pollution crisis, the attention has begun with such types of cement due to 

the low emission of carbon dioxide during their manufacture.  

MOS has many superior properties such as good fire resistance, lightweight, and good 

cohesiveness [56]. Furthermore, MOS cement has a good steel-protection property, because of the 

absence of chloride sources in its gradient [55 and 57]. Therefore, MOS has been used in many 

civil engineering applications including insulating slabs, refectory structures, and reinforced 

concrete panels [55]. On the other hand, the use of MOS cement in large-scale applications has 

been constrained due to its low compressive strength [57]. 
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The mechanical properties of MOS cement is primarily dependent on the phase 

compositions produced during the hydration reaction. Four crystalline phases exist in the MOS 

cement system including; 5Mg(OH)2.MgSO4.3H2O (5:1:3 phase), 3Mg(OH)2 .MgSO4.8H2O 

(3:1:8 phase), Mg(OH)2 .2MgSO4.3H2O (1:2:3 phase), and Mg(OH)2.MgSO4.5H2O (1:1:5 phase) 

[58]. All of these crystalline phases are highly dependent on the molar ratio between MgO and 

MgSO4 (M/MgSO4), the molar ratio between water and MgSO4 (H2O/MgSO4), and the curing 

temperature [59]. The reason for the low mechanical strength of MOS cement is the difficulty of 

obtaining stable crystalline phases at room temperature, e.g., 5.1.3 phase and 1.2.3 phase become 

stable only if the mixing temperature is more than 48 °C, and 100 °C, respectively [57]. One of 

great methods to improve the mechanical strength of MOS system is using additives. Many 

additives have been used over the years by researchers such as phosphoric acid, citric acid, tartaric 

acid, in the literature it has shown they improved the mechanical strength of MOS cement. 

 

1.3.3 MAGNESIUM PHOSPHATE CEMENT (MPC) 

Magnesium phosphate cement (MPC) is a bonding material that belongs to the chemically 

bonded ceramics (CBCs) [44, 60]. The chemical bonding in MPC is formed by an acid-base 

reaction between dead burned magnesia and phosphate [61, 62].  

Compared to OPC, MPC has many outstanding properties such as rapid setting time, high 

early strength, very good volume stability, very good durability including chemical attacks, the 

ability to harden at low temperature (about -20 °C), low drying shrinkage, fire-proof behavior, 

excellent resistance to abrasion, and excellent bonding to old concrete structures [38, 61]. 

Therefore, MPC is one of the important promising cement-like materials that can be used in several 

applications in the field of civil engineering [60,61]. Traditionally, MPC was used as a repair 
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material including rehabilitation of civil structures, concrete pavement, and damaged runways. 

Recently, MPC has been used in several applications such as treatment of wastewater [63] and 

biomedical implants. More Recently, MPC is a high potential candidate for the 3D printing 

materials for both biomedical implants and complicated building structures [39,40]. 

As previously mentioned, MPC is produced by mixing dead burnet magnesia and 

phosphate; the phosphate compounds can be used in several forms such as phosphoric acid, 

ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. In the last several 

decades, ammonium dihydrogen phosphate was used to produce MPC [61,62,64, and 65]. The 

main reaction product is a crystalline structure known as magnesium ammonium phosphate 

hexahydrate [MgNH4PO4.6H2O] or merely the mineral struvite [43]. The main problem with 

ammonium phosphate is that during the reaction an unpleasant odor is released due to the ammonia 

gas. Therefore, a new MPC system was proposed to solve this problem, which is to use potassium 

dihydrogen phosphate (KDP) instead of ammonium dihydrogen phosphate. This new system is 

better and contains a more suitable phosphate salt for MPC. The main reaction product of the new 

system has also a crystalline structure known as magnesium potassium phosphate hexahydrate 

[MgKPO4.6H2O], or simply K-type struvite. This compound is found to be isostructural with 

struvite, with the replacement of ammonia ion by the potassium ion [66]. 

The hydration mechanism of MPC to produce the K-struvite compound can be described 

by the following equation: 

MgO + KH2PO4 + 5H2O              MgKPO4.6H2O ….(1) 

The dissolution of MgO in an acid phosphate solution is taking place leading to increasing 

the solution pH which leads to the K-struvite precipitation [67]. Another formation mechanism of 

K-struvite crystals was proposed by Qiao [62]. K-struvite crystal formation depends on the 
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precipitation/dissolution reaction conditions. At first, MgO dissolves through the reaction leading 

to a continuous increasing pH of the solution. Then a crystalline structure known as 

phosphorrösslerite (MgHPO4·7H2O) begins to form and dissolves in the solution. After that 

another crystalline structure (Mg2KH(PO4)2·15H2O) starts to appear and dissolves in the solution 

to produce the K-struvite crystals. Another mechanism was proposed by Ding et al. based on 

hydrated MPC paste involving two major compounds: K-struvite and unreacted magnesia. The 

main finding in his research is that the K-Struvite is not necessary to be only in a crystalline form, 

it can be existing in crystalline and amorphous structures. On the other hand, the unreacted 

magnesia works as fine aggregates in the hardened matrix leading to better mechanical properties 

[68]. Fei Qiao et al. explained the mechanism of the exothermic reaction that produces the K-

struvite; when water is added to the magnesia and the monopotassium phosphate, phosphates 

rapidly dissolve in water, leading to form an endothermic valley. Then two exothermic peaks will 

appear, the first one due to the dissolution of magnesia in the acid solution and the second one due 

to the formation of the K-struvite [69]. 

Many previous studies have proved that the fresh and hardened properties of MPC can be 

affected by the reactivity of the magnesia, magnesia to phosphate molar ratio (M/P), and water to 

the sold ratio (W/S) [60]. For example, Biwan Xu et al. studied the effect of M/P molar ratios on 

the behavior and the microstructure of MPC. They found that high M/P ratios can reduce the 

mechanical strength and decrease the setting reaction. Conversely, using low M/P ratios can 

produce a denser microstructure and can lead to better crystallization. According to their study, 

the optimal value of M/P ratio is 4 [60]. Li et al. investigated the influence of different M/P molar 

ratios ranging from 3 to 6 on the compressive strength of MPC system. They reported that M/P 

ratio of 4 is the optimal for the compressive strength [61]. Qiao et al. studied the effects of different 
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M/P ratios ranging from 6 to 12 on the setting behavior and the compressive strength of MPC 

pastes. The results indicated that setting time decreases by increasing of M/P ratio. Moreover, as 

M/P ratio increases the compressive strength increases until it reaches a maximum at a ratio of 8, 

then it decreases with increasing M/P ratio beyond the optimum [62]. 

There are some studies in the literature which have focused on the relation between M/P 

ratio and the microstructure of the MPC paste. The microstructure of MPC specimens was 

investigated by Hongyan et al. They prepared several samples by changing the M/P ratio from 4 

to 12. The results showed that the lowest porosity, lowest intrinsic permeability, and the highest 

compressive strength were obtained when the M/P was 6 [47]. Chau et al. studied the relation 

between M/P ratio and the microstructure of the MPC paste, starting from phase identification, to 

morphology examination. According to their study, the final form of K-struvite could be obtained 

from the growth condition process which is a highly dependent on the M/P ratio. They reported 

that the mechanical strength of the MPC paste is entirely reliant on the crystallinity of the K-

struvite, while the crystallinity of the K-struvite is highly dependent on the M/P ratio. The study 

proved that the poor crystallinity was observed with low M/P ratio, while the good crystallinity 

was observed at high M/P ratios. The best crystalline structure and the best mechanical strength 

were achieved when M/P ratio was 10 [43].  

Several studies have demonstrated that the amount of water used is one of the most critical 

factors that can tailor the MPC properties. Yue et al. studied the influence of W/S ratio for a series 

of MPC specimens. They reported that the setting time has increased with increasing W/S ratio 

[70]. Yang and Wu showed that the using high W/S ratio could reduce the compressive strength 

of MPC paste [71]. Quanbing Yang et al. reported that the fluidity of MPC mortar was increasing 

rapidly by increasing the W/S ratio. Furthermore, they found that the lower the W/S ratio led to 
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higher compressive strength [72]. Xiaojie et al. investigated the effects of water content on several 

MPC properties including temperature evolution, viscosity, and mechanical strength. The results 

proved that the higher water content, the lower hydration temperature, the higher viscosity values, 

and the lower mechanical strength [73]. 

MPC binders are known for their very rapid setting, hence to increase the utilization of this 

cement alternative fin infrastructure construction applications, there is a pressing need to control 

and retard the reaction to obtain the required workability. Without the presence of a retarder in the 

MPC mixes, the setting time is in the range of 30 seconds to 15 minutes. One of the most popular 

retarders suggested for MPC mixes is borax (Na2B4O7·10H2O) besides, there are other compounds 

which could be used including boric acid (H3BO3) and sodium triphosphate (Na5P3O10).  

Halla et al. [74] examined the influence of three different retarders on the setting behavior 

of the MPC, including sodium triphosphate (STP), boric acid, and borax. The results indicated that 

a longer setting time could be achieved by using boric acid and borax, while the influence of STP 

was very limited. On the other hand, Young’s modulus and flexural strength decreased using all 

of these retarders. Moreover, Formosa et al. [75] used the boric acid to improve the setting time of 

MPC paste. They demonstrated that the using of boric acid as a setting retardant increased the 

setting time and improved the workability. Lahalle et al. [76] studied the effect of boric acid on 

the dissolution process of MPC compounds, the results reported that the boric acid did not affect 

the dissolution process of the major compounds (MgO and KH2PO4), but it slowed down the 

precipitation process of the K-struvite. 

The influence of mixing borax and polycarboxylate superplasticizer (PCE) as a hybrid 

retarder on the rheological properties, flow and setting time, of MPC specimens was studied by 

Hongo et al. [77]. They reported that the adding PCE in the mixture could delay the chemical 
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reaction by obstructing the dissolution of MgO and MKP. However, the presence of PCE and 

borax together in the mix, cannot improve the workability of the system, since the presence of 

borax prevented the absorption of PCE by MgO particles. Nevertheless, the improvement in the 

setting time due to the use of borax was not enough to handle the paste for real-life applications 

the maximum setting time that could be achieved, by using borax compound, is 7 minutes [78].  

A series of MPC specimens with different borax contents were studied by Jianming et al. 

[79], to investigate the influence of borax on the hydration and the rheological properties. 

Hydration temperature, pH value, fluidity, setting time, and compressive strength measurements 

were conducted using XRD and SEM. techniques. They concluded that the borax could decrease 

the hydration rate-or increase the setting time- by forming a thin film onto MgO surface which 

hinders the dissolution process of these MgO particles. This reduction in the hydration rate can 

decrease the water consumption by the reactants (MgO and MKP); as a result, the fluidity of the 

system had increased. 

As shown from the literature above, MPC is still facing many unresolved challenges, many 

researchers are searching for compatible additives to astound these challenges and to improve the 

overall performance of MPC such as fly ash (FA), silica fume (SF), metakaolin, slag, acetic acid 

(AA), and graphene oxide (GO) [80-84]. 

FA was used to improve the compressive and flexural strength of MPC [80]. The reported 

results showed that the using FA improved the compressive strength, and on the other hand it 

reduced the flexural strength. Also, the influence of combining FA and SF with MPC produced 

denser products and improved the mechanical strength of the system and the water resistance. The 

hypothesis for the combined effect on the results, was (1) Physically; they could work as a filler, 

so they filled the micropores and improved the mechanical strength, (2) Chemically; the silicon 
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oxide in the SF could react with MgO particles to form MgSiO3, which improved the bonding 

strength of the system and enhanced its physical properties [81]. Xu et al. [82] used two different 

designed methods to incorporate FA in MPC mortars. At first, they used the FA as a filler to replace 

the solid contents (MgO and KDP), and they used it as a reactive material to replace only the MgO.  

Using FA as a reactive material was better and led to better fresh properties, denser microstructure 

and higher compressive strengths. 

Other additives such as AA and GO were studied [83-84] to improve the setting time and 

the microstructure. AA improved the setting time and the microstructure of the system leading to 

better mechanical strength [83]. The experimental results reported by Lu et al. [84], indicated that 

GO reduced the setting time and the workability. On the other hand, adding small weight 

percentages of GO improved the mechanical strength, while using high weight percentages 

reduced the mechanical strength of the paste. 

According the literature provided, there are several factors that can play a significant role 

in tailoring the mechanical and rheological properties of MPC. These critical factors can include 

M/P molar ratio, W/S molar ratio, and physical and chemical characteristics of the used retarder.  

Many contradictions and deficiencies have been found in the literature, starting from 

understanding the MPC behavior under different conditions, and ending with the influence of 

various retarders. At first, there is an apparent contradiction in the literature regarding the optimal 

M/P molar ratio. As some studies have confirmed that the optimal value for M/P ratio is ranging 

between 4 and 6, others have confirmed that it is more than 10. Also, there were few studies that 

examined the relationship between the M/P ratio and the workability.  

On the other side, it is clear that the MPC system is susceptible to the water content 

regarding the rheological properties. In some cases, adding or dropping a small amount of water 



21 

 

 

can make a big difference in terms of initial setting time and flowability which is a great challenge 

that facing the use of MPC for various applications, especially for AC. 

Another drawback that was found from the previous studies is the calculation of the water 

content ratio for the MPC mixing proportions. The published work primarily uses the mass ratio 

between the water and the solid content to describe the amount of uses water rather than using a 

molar ratio between the water and MPC main reactant (MgO or MKP). This expression may cause 

a misinterpretation of the real impact of water content on the fundamental understanding of the 

MPC behavior. The rapid setting time of MPC is found to be one of the most significant challenges 

that are facing its utilization in various applications. However, there are only a few studies that 

have focused on the impact of several retarders on the performance of MPC. According to the 

thorough literature we conducted, there is only one study which has discussed the effect of borax 

in depth. However, there is no published research on the effect of boric acid on the chemical 

reaction of MPC and its influence on hardened and fresh properties. 

Utilizing of MPC for AC application requires specific rheological and hardened 

properties. The most critical properties that can affect the performance of the AC process are 

(1) setting time, (2) fluidity, and (3) green strength. These critical features are found to be very 

correlated to the mix design of MPC paste. Therefore, the used mix design must satisfy the 

required fresh and hardened properties.  

Before adjusting the required properties for AC application, there are many aspects that 

need to be studied in depth to provide a better understanding of MPC behavior under different 

conditions. Therefore, a fully experimental program should be established in order to study the 

effect of different factors on the performance and microstructure of MPC. This experimental 
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program must satisfy the optimization of MPC paste under different conditions including physical, 

chemical, mechanical, and electrical characterization. 

 

1.4 ARTIFICIAL NEURAL NETWORKS (ANNS) 

Artificial neural network (ANN) is an intelligent artificial system that has been used to 

solve and analyze a wide variety of mathematical and statistical problems. The idea of using 

artificial neural networks in various fields came from neural networks in animals and human brains 

[85]. ANN is very useful when used to create a model for a complex system especially when the 

relationship between the input and output groups is indirect or incomprehensible. Moreover, the 

ANN techniques have the ability to describe nonlinear relations between several variables. ANN 

consists of four main components including (1) neurons, (2) connections, (3) propagation function, 

and (4) learning rule. 

ANN is composed of several processing nodes called neurons. All of these neurons are 

connected to each other through weighted connection lines to establish an intelligent network that 

capable of producing the appropriate output. The function of these connection lines is transferring 

the outputs of several neurons to the input of the other neurons, where the input values are 

computed by the propagation functions. The learning rule is the used algorithm which adjusts and 

modifies the connection weights and threshold values during the several iterations.  

Based on connection type classification, there are two types of ANNs; feedforward neural 

networks and feedback neural networks. In the feedforward neural network, each neuron in the 

same layer is receiving the input from the previous layer and providing the output for the next 

layer to be used as input again. In the feedforward networks, all the neurons are engaged in a set 

of layers including inputs layer, middle (hidden) layers, and outputs layer. There are no 
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connections between the neurons in the same layer. Usually, feedforward neural networks are used 

for approximations and predictions.  

In feedback neural networks, each neuron is receiving the input from all the previous 

neurons and providing one output for all next neurons to be used as one of their inputs. In other 

words, if the total number of neurons is n, each neuron should have (n-1) inputs and one output. 

Usually, feedback neural networks are used as optimization tools.  

ANN can be applied to accomplish many tasks in different engineering fields such as 

designing, forecasting, prediction, statistics, clustering, and classification [86]. In order to get an 

efficient ANN model, the datasets should be divided into three groups included training, testing, 

and validation data points [87]. At first, the relationships between each node will be generalized 

by using the training datasets to achieve the initial estimation for data patterns. Then the testing 

datasets will be processed to produce approximately correct estimation for the data patterns and to 

compromise the relations between each node. Finally, the model will be validated using the 

validation datasets to ensure that the model is effective and can predict accurate outputs. 

Recently, ANN has been used widely to model many engineering experiments included 

concrete and construction areas. Many of these models have been prepared to predict the fresh and 

hardened properties of cement pastes and mortars [88]. Onal and Ozturk utilized an artificial neural 

network analysis to find the relationship between microstructural properties and compressive 

strength values of cement mortar [85]. Lee used the ANN technique to predict the mechanical 

strength of concrete cubes [89]. In the last few years, the using of ANN technique has gone further. 

Mohamed et al. utilized an ANN model to predict surface area fraction and phases correlation 

functions of cement material. Their model proved that ANN techniques are beneficial in predicting 

SEM images the related correlation functions [90]. Dias and Pooliyadda performed an ANN model 
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to estimate the mechanical strength and the flowability of high strength concrete blended with 

chemical admixtures and mineral additives [91].  

MPC is very sensitive to the water and magnesia contents, and it can be affected by 

changing the proportions between MPC components. The hardened and fresh properties of MPC 

are highly dependent on the M/P ratio, W/P ratio, and boric acid content. Practically, it is very hard 

to obtain the mechanical and fresh properties for every mixture. Therefore, it is beneficial to 

perform an ANN model that can predict several MPC properties for different paste mixtures. 

Moreover, this model will be very efficient to use these mixes for the 3D printer. The inputs of 

this model will be the required compressive strength, initial setting time, and flow, where the 

outputs will be the MPC mix proportions including M/P ratio, W/P ratio, and boric acid content 

(B/M). Thus, all inputs will be adjusted based on 3D printer requirements without wasting any 

material. 

 

1.5 NEED OF RESEARCH  

In the last decade, additive manufacturing (AM) is becoming one of the most promising 

technologies for all industries. According to several studies, the implementing of AM technologies 

in construction field has the potential to solve many structural related problems and will reduce 

cost and time. The potential advantages of applying additive construction (AC) technology are; 

saving time, decreasing the on-site labor requirements on site, optimizing suitable materials which 

reduces material waste, improving the high-finishing quality, allowing an increase in the structural 

geometrical complexity, and reducing the overall construction cost, with the capability of 

eliminating the presence of traditional formworks.  
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Despite the fact that the construction industry contributes more than 4% of the US gross 

domestic product (GDP), but it is still very far from exploiting modern technology in all of its 

fields. Compared to other industries, construction is the most time-consuming and labor-intensive 

industry all over the world. Therefore, the researchers are moving toward expanding the use of 

technology in all aspects of this field. Recently, some new/high-level technologies have been used 

in order to improve the construction industry such as drone imagery, robotics, and digital project.  

From the beginning of the twentieth century until the present time, concrete production has 

been based on the production of Portland cement (OPC). According to the U.S., Environmental 

Protection Agency; OPC industries are the third largest source of emitted carbon dioxide in the 

united states of America [92]. Moreover, some of recent studies have shown that the contribution 

of cement industries in the emission of carbon dioxide was about 4.8% of the world total [94]. 

Therefore, the global attention to the global warming, especially after the high concentration of 

carbon dioxide in the atmosphere, has led many researchers to find an alternative to OPC. Thus, 

the current trend towards finding less carbon dioxide-emitting cement industries is becoming 

increasingly desirable and should be accomplished in the next few decades [95]. 

The idea of finding an alternative to OPC is not new, in recent decades, many cement types 

have been listed as sustainable cement and can be used as an alternative to OPC including 

geopolymer cement, calcium aluminate cement, super sulfated cement, and magnesium-based 

cement [96].  

In the last few decades, Magnesium based cements (MBCs) have received significant 

attention from researchers because it is considered as eco-friendly cement. Compared to OPC, 

MBCs production is considered to be low energy consumer and low carbon dioxide emitter. From 

another point of view, MgO can absorb CO2 from the atmosphere to form hydroxycarbonate. Some 
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research has shown that during its operation, MBCs can absorb the amount of carbon dioxide 

equivalent to those emitted during its production [97].  

Several studies have been established to investigate the performance of the MPC mixes. 

From the literature we conducted, it is clear that there is a conflict in understanding and decoding 

the behavior of MPC. Besides, only few studies have investigated the influence of different 

retarders/additives on the performance of the MPC. Therefore, it is necessary to go deeper and to 

understand the behavior of the MPC system under different conditions in order for it to be used it 

for AC application. The research we are currently conducting is serving multiple transdisciplinary 

top-notch material design and technological topics. It is a proof of concept of the feasibility of 3D 

printing ordinary Portland cement (OPC) alternatives such as MPC binders, to be utilized in 

terrestrial and extraterrestrial construction applications. Fresh and hardened properties for MPC 

pristine and modified pastes and mortars have been evaluated to meet the additive construction 

requirements.  

In addition, artificial neural networks (ANN) has been utilized in a very emerging 

technological field, where the potential of connecting a customized material science research to 

real-world applications is becoming a necessity for real-time correction during a 3D printing 

process, or to predict performance-based property. Two ANN models have been optimized in this 

paper, in the first model the input is the MPC paste or mortar ingredients and the output is the 

predicted performance of interest; in the second model the input is the performance of demand and 

the output is the mix ingredients.  For this study three-layers, feed-forward error backpropagation 

ANN model is developed utilizing a TR-SEQ1 model. It is expected that the simulated results we 

have obtained are in a very good agreement with the experimental results conducted. The statistical 

accuracy measurements of the model indicated that prediction of the compressive strength, flow 
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and initial setting time using ANNs could be achieved with good accuracy, benefiting the MPC 

mix design with desirable fresh and hardened properties. 

 

1.6 OBJECTIVES  

The primary objective of this research is to utilize MPC for AC applications. The fresh and 

hardened properties of MPC paste are optimized to meet 3DP requirements.  Employing MPC in 

different applications is facing many challenges, there is a still a necessity of understanding, 

characterizing and improving the physical, chemical, mechanical, and electrical properties to meet 

the demands in need. MPC has a high potential to be utilized as an indigenous cement alternative 

for earth and planetary. The research conducted for this dissertation is expected to broaden the 

understating of cement alternatives and increase their in-situ utilization capacity in extreme 

conditions. The main objectives of this research are to an attempt to:  

1. Investigating the influence of M/P and W/P ratios on mechanical, physical and thermal 

properties and the microstructure of the MPC binders.  

2. Evaluating the effect of boric acid, acetic acid, and graphene nano platelets (GnP) on the 

mechanical, physical, thermal, and microstructures of MPC binders. 

3. Utilizing X-Ray diffraction (XRD) and Fourier-Transform infrared (FTIR) to chemically 

characterize the hydrated MPC products, Compressive Strength (CS) to evaluate the 

mechanical properties, Initial setting time (IST) and flow table tests to evaluate the physical 

properties of the plastic-state and Transient Plane Source (TPS) to evaluate the thermal 

conductivity, of the MPC pastes and composites. 

4. Decoding the correlation of the boric acid chemo-physical effect on the mechanical and 

thermal properties of the MPC binders. 
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5. Decoding the correlation of the GnP chemo-physical effect on the mechanical and thermal 

properties of the MPC binders. 

6. Optimizing the M/P and W/P molar ratios, boric acid and GnP %content, on the MPC 

composite physical and mechanical properties. 

7. Developing artificial neural network (ANN) models to bridge the gap between the binder 

fresh and hardened properties of the MPC pastes and composites. 

 

1.7 APPROACH 

Utilizing of MPC material for AC technology requires adjusting the rheological and 

hardened properties of MPC to meet the basic requirements of 3DP. The most critical properties  

that can affect the performance of the AC production are: (1) setting time, (2) fluidity, and (3) 

compressive strength. These critical features are found to be very correlated to the proportions 

between major MPC compounds, in addition to the type and content of the used 

additive/retarder. 

In order to achieve the proposed objectives, a fully experimental program has been run in 

this research. This experimental program includes physical, chemical, mechanical, and thermal 

characterization of different MPC mixtures. Therefore, several aspects of MPC paste have been 

studied in depth to provide a better understanding of the MPC behavior.  

In this research, three different additives/retarders are used to improve the performance of 

the MPC system including boric acid, graphene nanoplatelets (GNP), and acetic acid (AA).  
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1.7.1 MPC PASTE CHARACTERIZATION  

 

The three raw materials that used to prepare the MPC mixtures includes dead-burnt 

magnesia (MgO) powder, mono-potassium phosphate powder (KDP), and distilled water (H2O). 

The MPC system is described by using two parameters including (1) the molar ratio between 

magnesia and monopotassium phosphate (M/P), (2) the molar ratio between water and 

monopotassium phosphate (W/P). The main mix designs are divided into three primary groups in 

order to study the influence of each additive/retarder as follows:  

a) Group one: to study the behavior of the MPC paste with the addition of the boric acid. 

b) Group two: to study the influence of the GNP on behavior and the microstructure of 

the MPC paste. 

c) Group three: to study the influence of the AA on the performance of the MPC paste. 

 

The physical properties of the MPC mixtures are evaluated by using the initial setting time 

and fluidity. The initial setting time of the MPC pastes is measured according to ASTM C403 

standard and by using the Vicat apparatus and the needle while the fluidity is measured according 

to ASTM standard C230 and by using the flow table test.  

For the mechanical properties, each MPC mixture is placed into standard 2” cubes brass 

molds to follow the ASTM standards (C109) for compressive strength testing. After 24 hours, all 

the MPC specimens are de-molded and cured at room temperature for seven days. Then, the 

compressive strength of each cube is measured by using an 810 Material Testing System (MTS). 

The chemical characterization of the MPC pastes is determined by using the X-ray powder 

diffraction (XRD) technique in order to understand the behavior of the MPC deeply and studying 

the effect of each MPC parameters/additives. Moreover, the chemical interactions between the 
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main MPC ingredients and the used additives (boric acid, GNP, and acetic acid) are investigated 

by the Fourier transform infrared (FTIR). Then, the thermal conductivity of the MPC pastes are 

determined according to ISO22007-2 specifications and by using the Transient Plane Source 

method (TPS). Finally, the morphology and the microstructure of the MPC pastes has been 

identified using the scanning electronic microscopy (SEM). 

 

1.7.2 ANN MODELING  

Recently, the artificial neural network (ANN) approach is used in several technological 

fields to connect the material science knowledge to real-life applications. In this work, two ANN 

models have been optimized to predict the behavior of the MPC paste under different conditions. 

For the first model, the input variables are the MPC paste ingredients, and the output variables are 

the MPC paste properties. For the second model, the input variables are the MPC properties while 

the output variables are the mix ingredients. 

A simple feedforward backpropagation algorithm is applied to determine the best ANN 

model that can represent the data sets, where the optimum number of hidden nodes is determined 

by using Najjar et al. procedure [98-100]. Then, the absolute sum of square error (ASE), the main 

absolute relative error (MARE), and the R square have been calculated for each number of hidden 

nodes with 20000 iterations. Finally, all the results are collected and sorted based on the calculated 

ASE values from the lowest to the highest, and the model that has the least ASE is selected and 

validated. 
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1.8 DISSERTATION OUTLINE 

This dissertation consists of seven chapters. Chapter one presents the introduction and the 

relevant literature of this work including additive construction, magnesia-based binder, and 

artificial neural network approach. Also, the chapter presents the need for this research in addition 

to the objectives and the approach. Chapter two presents the experimental work including the used 

material, the samples preparation, and the characterization scheme. Chapter three describes the 

behavior of the MPC paste with boric acid. The chapter gives more insight about the physical, 

mechanical, thermal, and chemical performance of the MPC paste with the addition of the boric 

acid. Chapter four gives a detailed description of the MPC behavior manly with the addition of 

graphene nanoplatelets (GNP). The chapter presents the influence of the GNP on the physical, 

mechanical, and chemical properties of the MPC paste in addition to the microstructure and 

thermal conductivity analysis. Chapter five discusses the effect of acetic acid on the physical and 

mechanical properties of the MPC paste. In chapter six, three-layers, feed-forward error 

backpropagation ANN models are developed utilizing a TR-SEQ1 model. In this chapter, three 

databases are used to develop the ANN models. Two ANN models have been optimized for each 

database, in the first model the input variables are the MPC paste ingredients, and the output 

variables are the predicted performance of interest; in the second model the input variables are the 

performance of demand, and the output variables are the mix ingredients. Finally, conclusions and 

recommendations are reported in chapter seven.
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 INTRODUCTION  

This chapter presents a brief about all the used materials in this research, in addition to the 

experimental procedures that used to prepare different types of magnesium phosphate cement 

(MPC) mixtures. Besides, the chapter gives a brief about the physical, mechanical, chemical, and 

thermal characterization tests that conducted for the prepared MPC specimens including all the 

techniques and the procedures. 

 

2.2 MPC MATERIALS  

This research aims to study the behavior of the MPC paste under different conditions, and 

the influence of adding multiple additive materials. The three raw materials that used to prepare 

the MPC mixtures includes dead-burnt magnesia (MgO) powder, mono-potassium phosphate 

powder (KDP), and distilled water (H2O). Since the initial setting time of the MPC paste is very 

rapid (from 30 seconds and up to 4 minutes), the boric acid (H3BO3) is added to slow down the 

reaction rate and enhance the initial setting time of the pastes. Generally, two main parameters are 

used to describe the MPC system: (1) the molar ratio between magnesia and monopotassium 

phosphate (M/P), and (2) the molar ratio between water and monopotassium phosphate (W/P). In 

order to enhance the performance of the MPC pastes, three different additives/retarders have been  
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used and evaluated including (1) boric acid (H3BO3) as a retarder, (2) graphene nanoplatelets 

(GnP), and (3) acetic acid (AA). The main mix designs are divided into three primary groups.  

For Group one, the MPC specimens are designed and prepared by mixing the four main 

ingredients including magnesia, mono-potassium phosphate, distilled water, and boric acid, which 

later for group two and three will be a main ingredient at a fixed percentage. The main purpose of 

preparing group one is to study the influence of M/P ratio, W/P ratio, and B/M ratio on the physical, 

chemical, mechanical, and thermal behavior of the MPC paste. For group two, the MPC specimens 

are prepared to study the influence of the GnP on the behavior of the MPC paste. Therefore, the 

MPC mixtures are designed by adding several GnP dosages to the main four ingredients that 

mentioned above and by using two different techniques. In the first technique, the calculated 

amount of GnP is added to the water and dissolved using a Cole-Parmer Ultrasonic Cleaner, while 

in the second technique, the polyethyleneimine is introduced as a surfactant and used with the GnP 

to improve its solubility in the aqueous solution. For the third group, the MPC pastes are prepared 

to study the impact of the acetic acid on the MPC performance. In this group, the MPC specimens 

are prepared by adding different rates of the acetic acid concentration to the four main ingredients 

of the MPC paste. 

 

2.2.1 MAGNESIUM OXIDE (MgO) 

The Magnesium oxide (MgO) or magnesia, also known as oxomagnesium, periclase, is one 

of the main ingredients of the MPC paste. It is odorless white solid minerals that has a molar mass 

of 40.3044 g/mol. The MgO is produced from magnesium-rich brine and dolomitic lime, that fired 

in a shaft kiln [101]. Calcining magnesium oxide at different temperatures results in different types 
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of magnesia. There are three main products of magnesia, that outcome of applying heat for 

calcining at: 

a) High temperature ranges from 1500 to 2000 °C, this reduces the surface area and turns 

out to dead-burnet magnesia which has low reactivity. 

b) Medium temperatures range from 1000 to 1500 °C, this produces hard-burned 

magnesia, which has limited reactivity. 

c) Lower temperature ranges from 700 to1000 °C, that gives light-burned magnesia, 

which is reactive [102].  

Since the MPC paste is known for its very rapid setting time, the MgO type that used in 

this research is selected to be the dead-burnt magnesia (MgO) that purchased from Martin Marietta 

Magnesia Specialties, LLC. Figure 1 presents the compound structure of the MgO, while the 

chemical compositions of the used MgO powder are shown in table 1.  

Table 1. Chemical composition of the used MgO powder [103]. 

Magnesium 

Oxide (MgO) 

Silicon Oxide 

(SiO2) 

Calcium Oxide 

(CaO) 

Iron Oxide 

(Fe2O3) 

Aluminum 

Oxide (Al2O3) 

98 0.7 0.95 0.15 0.2 

 

 

Figure 1. Magnesium oxide compound structure. 
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2.2.2 MONOPOTASSIUM PHOSPHATE (KDP) 

The monopotassium phosphates are a soluble salt of potassium dihydrogen phosphate ion, 

that is used as a food additive, a fungicide, buffering agent and a fertilizer [104]. The 

monopotassium phosphates are produced by the reaction of potassium carbonate with phosphoric 

acid. It is also known as monobasic potassium phosphate, monopotassium dihydrogen phosphate, 

monopotassium monophosphate, or KDP [105].  

The monopotassium phosphate is an odorless white powder that can be both, polymorphous 

or crystals at room temperature or powder that are slightly soluble in water and insoluble in 

alcohol. The molecular formula of the monopotassium phosphate is H2KO4P, with an average mass 

of 136.085 Da.  

The KDP material that used in this research was purchased from Premier Construction 

Products Group (CPG), LLC. Waynesville, North Carolina, USA. Figure 2 shows the compound 

structures of the monopotassium phosphate, where the physical and chemical properties of the 

monopotassium phosphate are shown in table 2.  

 

Figure 2. Monopotassium phosphate compound structure. 
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Table 2. Physical and chemical charactrization of the used monopotasium phosphate [106]. 

Appearance White crystalline fine powder 

pH range from 4.2 to 4.8 

Solubility in water 25g/100ml 

Bulk density 40-50 lb/ft3 

 

2.2.3 BORIC ACID (H3BO3) 

The boric acid, also known as orthoboric acid, boracic acid, borofax, and boron hydroxide, 

is a weakly acidic hydrate of boron with a molecular formula of H3BO3 or BH3O3 and a molecular 

weight of 61.831 g/mol. The boric acid is used with the MPC paste to increase its initial setting 

time and slow down its acid-base reaction. The content of the boric acid in the MPC mixtures is 

calculated based on the mass ratio between boric acid and magnesia (B/M ratio).   

Boric acid plays many roles in chemical reactions due to its antiseptic and antiviral 

properties. Boric acid is as a flame retardant, a neutron absorber, and a precursor of other chemical 

compounds. In industry boric acid is mainly used in fiberglass production. It exists in a form of 

colorless crystals or a white powder that dissolves completely in hot water and partially in cold 

water. It is found naturally in volcanic districts in a mineral presence, called sassolite. Figure 3 

shows the compound structure of the boric acid.  
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Figure 3. Boric acid compound structure. 

In this work, the boric acid is purchased from Duda Energy, LLC, Decatur, AL, USA, with 

a purity of 99.9%. Table 3 summarizes the physical and chemical properties of the used boric acid 

powder. 

Table 3. Physical and chemical properties of the used boric acid powder [107]. 

Physical/chemical property Discerption/Measured value 

Appearance Crystalline, White Solid 

pH 5.1 at 1.8 g/l at 25 °C (77 °F) 

Melting point 160 °C 

Initial boiling point and boiling range 1860°C 

Relative density 1.440 g/cm3 

Solubility In Water: 4.7% @ 20°C; 27.5% @ 100°C 

Decomposition temperature 169±1 to HBO2 & -1 1/2 H20 at 300°C 
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2.2.4 ACETIC ACID (CH3COOH) 

In this study, the acetic acid is used with the MPC components in order to improve the 

initial sitting time and enhance the overall performance of the MPC paste.  

Acetic acid, also known as ethanoic acid, ethylic acid, and acetic acid glacial, is an organic 

compound with a chemical formula of CH3COOH, also written as CH3CO2H or C2H4O2, and a 

molecular weight of 60.052 g/mol. Acetic acid is a significant chemical reagent and a useful 

industrial material that involves in fabricating many artificial fibers and other polymeric materials. 

The acetic acid compound structure is presented in figure 4 

 

Figure 4. Acetic acid compound structure [108]. 

 

2.2.5 GRAPHENE NANOPLATELET (GnP) 

Graphene is a crystalline allotrope of carbon with 2-dimensional properties. It is a source 

of carbon consisting of a single layer of carbon atoms, each carbon atom is linked to another three 

carbon atoms on a two-dimensional plane that generates hexagonal lattice. The atomic structure of 

graphene is presented in figure 5.  

Graphene is one of the most promising additive material to be embedded with the 

composite materials in the construction field. Recently, many forms of graphene 

structures/compounds have been used to improve the material properties such as graphene oxide 
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(GO) and graphene nanoplatelets (GnP). GnP represents a new form of carbon nanoparticles with 

multifunctional properties and it consists of small stacks of graphene. It can be used to improve 

the properties of a wide range of materials due to its exclusive nanoscale size, shape, and material 

composition. Nowadays, the GnP is highly implemented as a nanoscale additive for cementitious 

materials to improve its mechanical properties. Besides, the GnP has the potential to enhance other 

properties such as electrical and thermal conductivity. Figure 6 shows the atomic structure of the 

GnP. 

 

Figure 5. Graphene atomic structure [109]. 

 

Figure 6. GnP atomic structure [110]. 
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In this research, different dosages of the GnP are used with the MPC paste to improve its 

properties. The GnP that used in this research has been purchased from XG Sciences, Inc. Lansing, 

MI 48911 - USA. It is consisting of short stacks of graphene sheets having a platelet shape with a 

density of 2.2 g/c3, average thickness of approximately 6 to 8 nanometers, typical surface area of 

120 -150 m2 /g, and average particle diameters of 50 microns [111]. The thermal, mechanical, and 

electrical properties of the used GnP are summarized in table 4.  

Table 4. Thermal, mechanical, and electrical properties of the used GnP [111]. 

  Parallel to surface Perpendicular to surface 

Thermal conductivity (W/m.K) 3000 6 

Thermal Expansion (m/m/K) 4-6 x 10-6 0.5-1 x 10-6 

Tensile modulus (MPa) 1000 NA 

Tensile strength (MPa) 5 NA 

Electrical conductivity (S/m) 107 102 

 

2.2.6 POLYETHYLENEIMINE (PEL) 

In this research, the Polyethyleneimine material is used as a surfactant to enhance the 

solubility of the graphene and improve the dispersion of the GnP in the GnP mixtures. The 

Polyethyleneimine material (C2H5N) with a molecular weight of 43.069 (g/mol) is provided by 

Acros Organics, Fisher Scientific, USA.  
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Figure 7. PLE atomic structure [112]. 

2.3 MIX DESIGN AND SAMPLES PREPARATION 

2.3.1 GROUP ONE (BORIC ACID)  

As previously mentioned, the behavior of the MPC paste specimens can be driven by three 

main factors including magnesia to phosphate molar ratio (M/P), water to solid mass ratio (W/S) 

and boric acid to magnesia mass ratio (B/M). In this paper, the author chose to represent the  MPC 

pastes ingredients in molar ratios rather than the mass ratios terminology to capture the impact of 

the different MPC mix proportions on the acid-base reaction, in addition to the influence of these 

factors on physical, mechanical, and thermal properties of the MPC system with the addition of 

boric acid as a retarder.  

The MPC pastes are prepared using the following procedures: (1) the dry powders are 

weighted and mixed for 2 minutes, (2) the boric acid is dissolved in the distilled water using a 

Fisher Scientific Thermix Stirrer Model 120s with a speed of 300 RPM for 15 minutes, and finally, 

(3) the water is added to the mixture, and further mixing is provided for more 2 minutes. Figure 8 

presents the mixing procedures of the prepared MPC specimens in this group. The mix proportions 

of the prepared MPC specimens will be discussed later in chapter III. For each specimen, the MPC 

mixture is divided into four different parts as follows:  

a) The first part is used for the flow table test. 

b) The second part is used for the initial setting time test.  

c) The third part is placed into standard 2” cubes brass molds to follow the ASTM 

standards (C109) for compressive strength testing (figure 9). After 24 hours, all the 

MPC specimens are de-molded and cured at room temperature for seven days. 
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d) The fourth part is placed into plastic molds and cured for 7 days for the XRD and the 

FTIR test. 

 

(a) Mixing of the dry powder for 2 minutes. 

 

(b) Dissolving the boric acid by the thermix stirrer with a speed of 300 RPM for 15 minutes 
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(c) Mixing of the MPC ingredients after the water addition for 2 minutes. 

Figure 8. Mixing procedures of the prepared MPC paste for group one. 

 

Figure 9. Casting procedures of the prepared MPC cubes. 

 

2.3.2 GROUP TWO (GnP) 

In this group, the MPC specimens are designed to study the influence of the GnP. The MPC 

specimens are prepared by mixing MgO, KDP, boric acid, GnP, polyethyleneimine, and the 

distilled water. The magnesia to phosphate molar ratio (M/P) has been selected to be 6 while the 

desired water content is calculated based on the molar ratio between KDP and water (W/P) and 
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has been selected to be 3.6. This W/P ratio can provide mid-range workability for the paste, and it 

can guarantee that the available water is enough for the acid-base reaction. Also, the B/M ratio of 

5% has been used for all the MPC specimens in this chapter in order to increase the initial setting 

time.  

For the control specimens, without using the GnP or the surfactant, the pastes are prepared 

using the same procedures that mentioned in the previous section. For the GnP modified MPC 

specimens, two different techniques are used to add the GnP to the mixture. At first, the desired 

GNP dosage is calculated based on the weight ratio between GnP and the total solid (MgO + KDP). 

Then, (2) the calculated amount of GnP is added to the water and dissolved using Cole-Parmer 

Ultrasonic Cleaner Model 08895-04. The ultrasonic parameters are fixed for all specimens with a 

power output of 200W and frequency of 20 kHz for 30 minutes. Finally, (3) the water is added to 

the dry powders, and further mixing is provided for 2 minutes. The sample preparations of the GnP 

modified MPC are presenting in figure 10. 
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Figure 10. Mixing procedures for GnP modified MPC paste. 

Another series of the MPC specimens are prepared using the GnP with the PLE as a 

surfactant to improve the dispersion of the GnP. The optimum amount of the PLE is found to be 

10% by the weight of GnP. For these specimens, the required amount of the surfactant and the 

GnP are added to the water and mixed mechanically for 2 minutes, and then, they are dissolved 

using the same ultrasonic procedures that mentioned above. Finally, another series of the MPC 

specimens are prepared by adding only the PLE in order to study the influence of the surfactant. 

This series is prepared by following the same procedure that mentioned above. The mix 

proportions of the GnP modified MPC specimens will be discussed later in chapter IV. 

 

2.3.3 GROUP THREE (ACETIC ACID)  

This group is prepared in order to study the influence of the acetic acids on the performance 

of the MPC paste. Also, preparing this group aims to study the influence of a hybrid retardation 

system of boric and acetic acids on several MPC properties.  
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In this group; the MPC specimens are prepared by mixing MgO, KDP, boric acid, acetic 

acid, and distilled water. Based on the study mentioned in chapter three from this research, the 

optimum B/M ratio is found to be 5%. Therefore, the B/M ratio of 5% has been used for the hybrid 

system in order to improve the initial setting time of the system. The amount of acetic acid is 

calculated based on the concentration of acetic acid in the aqueous solution (AAC).  

The MPC specimens are prepared using the following procedures: (1) the dry powders are 

weighted and mixed for 2 minutes, (2) the boric acid and the acetic acid are dissolved in the 

distilled water using a Fisher scientific thermix stirrer model 120s with a speed of 300 RPM for 

20 minutes, and finally, (3) the water is added to the mixture and further mixing is provided for 

more 2 minutes. The mix proportions of the MPC specimens with different acetic acid 

concentrations will be discussed later in chapter V. 

 

2.4 CHARACTERIZATION SCHEME 

2.4.1 PHYSICAL CHARACTERIZATION  

2.4.1.1 INITIAL SETTING TIME  

In this research, the setting time of MPC paste is measured according to the ASTM C403 

standard by using the Vicat apparatus with a movable rod that weighs 300 g, and a 1mm-diameter 

needle. The Vicat needle apparatus is shown in figure 11.  

Based on the Vicat needle test, the setting time is defined as the number of minutes elapsed 

from the start of mixing to the time that the material completely loses its plasticity which that the 

needle failed to penetrate more than 1 mm into MPC paste. For the MPC paste, the initial setting 

time is recorded every 30 seconds, due to the rapid plasticity loss. The test is performed at the 
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room temperature (25 ± 2 C0), while the initial setting time test is conducted by using the following 

procedures: 

a) The MPC paste is prepared as described in the sample preparation section, mix design 

is calculated to achieve an adequate amount for the volume of the ring of the apparatus. 

b) The timing started at the instant when all the material is mixed together. 

c) When the ring mold is filled, the paste surface was leveled with the top of the mold. 

and shacked slightly to drive out the air bubbles. 

d) The needle was released and allowed to penetrate the paste surface. 

e) This procedure was repeated every 30 seconds, due to the rapid rate of the setting time. 

f) When a penetration of 25 mm or less is obtained, the time is recorded as the initial time. 

  

 

 

Figure 11. The Vicat needle apparatus. 
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2.4.1.2 FLOW TEST  

Flow test is a method to measure the consistency and workability of fresh cement paste or 

concrete. The workability is the ease of handling and processing the concrete paste without any 

segregation. The flow of the materials is measured according to ASTM standard C230 and by 

using the flow table test. Figure 12 shows the flow table. The flow test has been conducted as 

follows: 

a) The material blend was prepared for each sample as presented before in the sample 

preparation section. 

b) A 25 mm layer thickness of blend which is the half height of the ring mold, was 

poured and tamped 20 times using a mortar tamping rod. 

c) Then the second layer was added and tamped using the same procedure for the first 

layer. 

d) The excess paste was cut off to level it with the mold top surface using a mini 

straight edge trowel. 

e) After that, the mold was lifted away from the paste. 

f) The directly started to run rotationally the flow table hand for 25 times in 15s. 

g) At this point, the final diameter will be measured which is the same as the diameter 

of the paste flow circle, in some cases the samples were overflow that means that 

the paste fell outward the plate during the rotation 

h) Finally, the flow for each MPC specimen was calculated using the following 

equation: 
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𝐹𝑙𝑜𝑤 =
𝑓𝑖𝑛𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
× 100 =  

𝐷𝑓 − 101.6𝑚𝑚

101.6𝑚𝑚
× 10  …  2.1  

 

Where; the initial diameter equals to the diameter of the flow table ring, which is 101.6mm, 

and the final diameter presents the speeded material after 25 drops of the flow table arm. 

 

 

Figure 12. The flow table. 

2.4.2 MECHANICAL CHARACTERIZATION 

The compressive strength for the casted MPC cubes is measured according to ASTM 

standard C109 and by using an 810 Material Testing System (MTS). Three different 2” cubes are 

prepared and tested for each MPC mixture. All the MPC specimens in this research are tested after 

7-days air curing with a loading rate of 0.001 in/sec. Figure 13 shows an MPC paste under the 

compression test. 
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Figure 13. Compression test of an MPC specimen. 

 

2.4.3 X-RAY POWDER DIFFRACTION (XRD)  

The phase characterization of the MPC pastes is determined using X-ray powder diffraction 

(XRD) technique, using Bruker's X-ray Diffraction and Scattering with a scanning rate of 0.2 sec 

per step, while the 2θ range is from 10 to 70. Figure 14 shows the Bruker's X-ray diffractometer.  
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Figure 14. Bruker's X-ray diffractometer. 

2.4.4 FOURIER-TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

The chemical interactions between the main MPC ingredients and the used additives (boric 

acid, GnP, and acetic acid) were investigated by the Fourier transform infrared (FTIR) technique. 

The tested material powders were prepared to be finely ground and homogenized. Then, the FTIR 

test was conducted using a Cary 630 FTIR machine provided by Agilent Technologies. The wave-

number was ranged from 4000 cm-1 to 500 cm-1. Figure 15 shows Cary 630 FTIR machine. 

 

Figure 15. Cary 630 FTIR machine. 



52 

 

 

2.4.5 SCANNING ELECTRONIC MICROSCOPY (SEM) 

The microstructure of the MPC specimens are investigated using the scanning electronic 

microscopy technique (SEM). A 7-days cured MPC specimens are prepared for the SEM without 

any polishing or gold coating techniques. The SEM technique is conducted using a Schottky FE-

SEM SU5000 that provided by HITACHI with a low kV (from 1 to 5) to avoid charging. 

 

2.4.6 THERMAL CHARACTERIZATION 

The thermal conductivity for the MPC specimens is determined using the Transient Plane 

Source method (TPS), where the thermal conductivity test is conducted according to ISO22007-2 

specifications and by using a HotDisk TPS-1500 thermal constant analyzer. The applicable thermal 

conductivity testing range is 0.01-400 W/m.K. MPC pastes 2” cubes are prepared for the thermal 

testing, which requires two identical specimens while a hot disk sensor is placed in between them. 

This thermocouple sensor can work as a heating element and also measures the temperature 

change. Prior to the thermal conductivity test, all the tested MPC pastes are cured for 7 days and 

dried in a convection oven for 24 hours to assure dryness, followed by room temperature cooling.  
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CHAPTER III 

OPTIMIZING MAGNESIUM PHOSPHATE CEMENT WITH BORIC ACID: PHYSICAL, 

MECHANICAL, THERMAL, AND CHEMICAL CHARACTERIZATION 

 

3.1. INTRODUCTION AND LITERATURE REVIEW 

As previously mentioned, magnesium phosphate cements (MPCs) are bonding materials 

that belong to chemically bonded ceramics (CBCs) [44], that is formed by an acid-base reaction 

between dead burned magnesia and phosphate. The forms of phosphate compounds are: 

phosphoric acid, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate. In the 

last several decades, ammonium dihydrogen phosphate is used to produce MPCs [61,62,64 and 

65]. The MPC main reaction crystalline product is magnesium ammonium phosphate hexahydrate 

[MgNH4PO4.6H2O]. Also, it is known as the mineral struvite [43]. The main problem associated 

with ammonium phosphate reaction is the unpleasant odor released due to the ammonia gas. 

Therefore, a new phosphate compound is proposed to solve this problem, which is the potassium 

dihydrogen phosphate (KDP) to substitute the ammonium dihydrogen phosphate. This new binder 

is better in terms of mechanical strength and contains a more suitable phosphate salt for the MPC. 

The main reaction product of the new system has also a crystalline structure known as magnesium 

potassium phosphate hexahydrate [MgKPO4.6H2O], or simply K-type struvite.
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The hydration mechanism of MPC to produce the K-struvite compound can be described by the 

following equation: 

MgO + KH2PO4 + 5H2O                 MgKPO4.6H2O ….(1) 

Some previous studies reported that the K-struvite crystal formation depends on the 

precipitation/dissolution reaction conditions [62]. Moreover, K-struvite is not necessary to present 

in a crystalline form; it can exist in amorphous structures as well [68].  

Many previous studies have proved that the physical and mechanical properties of the MPC 

can be affected by magnesia to phosphate molar ratio (M/P), water to the sold ratio (W/S), and 

physical and chemical characteristics of the used retarder. Biwan Xu et al. [60] found that the high 

M/P ratios can reduce the mechanical strength and decrease the setting reaction. Conversely, using 

low M/P ratios can produce denser microstructures and can lead to better crystallization, with an 

optimal M/P ratio of 4. Also, Li et al. [61] reported that an M/P ratio of 4 is optimal for the 

compressive strength. Qiao et al. [62] confirmed that the compressive strength increases as the 

M/P ratio increases with an optimum value of an M/P ratio of 8. Hongyan et al. [47] found that the 

lowest porosity, lowest intrinsic permeability, and highest compressive strength are obtained at an 

M/P ratio of 6. Chau et al. [43] suggested that the final form of the K-struvite could be obtained 

from the growth condition process which is highly dependent on the M/P ratio. The best crystalline 

structure and the best mechanical strength are achieved when the M/P ratio is 10. 

Several researches have studied the amount of effect of W/S on the MPC properties [70-

72]. The researchers have reported that while increasing the W/S ratio on the setting time and the 

fluidity of the MPC mortars increased as well, in which it negatively affected the compressive 

strength. 
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MPC binders are known for their very rapid setting which ranges from 30 seconds to 15 

minutes, without the addition of any retarder. Hence, in order to increase the utilization of this 

cement alternative in construction applications, there is a pressing need to control improve its 

setting time workability. One of the most popular retarders suggested in the literature [75, 76, 78, 

and 79] for MPC mixes is borax (Na2B4O7·10H2O) besides, there are other compounds which 

could be used including boric acid (H3BO3) and sodium triphosphate (Na5P3O10). Formosa et al. 

[44] demonstrated that using boric acid as a chemical retardant increased the setting time and 

improved the workability. Lahalle et al. [76] reported that the boric acid did not affect the 

dissolution process of the major compounds (MgO and KH2PO4), but it rather decelerated the K-

struvite precipitation process. Li et al. [78] found the setting time increment due to the use of borax 

is not enough to handle the paste for real-life applications, the maximum setting time achieved by 

adding 5% borax is 7 minutes. On the other hand, Jianming et al. [79] concluded that the addition 

of borax decreases the hydration rate by forming a thin film onto the MgO surface which hinders 

the dissolution process of these MgO particles. This reduction in the hydration rate can decrease 

water consumption by the reactants (MgO and MKP); as a result, the fluidity of the system is 

increased.  

According to the literature provided, at first, there is an apparent contradiction in the 

published research regarding the optimal M/P molar ratio for strength formation. As some studies 

have confirmed that the optimal value for M/P ratio is ranging between 4 and 6, others have 

confirmed that it is more than 10. Another drawback that is found from the previous studies is the 

optimum water content to solid ratio for the MPC mixing proportions. The available literature 

primarily treated the acid-base cements, such as MPC, as the OPC, in terms of expressing the 

optimum water content in mass ratio form, rather than using a molar ratio between the water and 
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MPC main reactant (MgO or MKP), which potentially reduced the sensitivity of the acid-base 

cement to the mixing water amount and generated a possible misinterpretation of the real impact 

of water content on the fundamental understanding of the MPC behavior. Moreover, there are only 

a few studies that have examined the behavior of the MPC cement over a wide range of M/P, W/P, 

and B/M molar ratios to achieve a full understanding of the MPC paste performance under different 

parameters/conditions. Finally, there are only a few studies that have focused on the impact of the 

addition of boric acid on the mechanical behavior of the MPC paste. Moreover, as far the authors 

are aware to this moment, the effect of the boric acid on thermal properties has not been reported. 

This chapter aims to give more insight about the physical, mechanical, thermal, and 

chemical performance of the MPC paste mainly with the addition of the boric acid for retardation 

behavior. Therefore, a comprehensive experimental program has been established in order to 

evaluate the effect of the different factors on the performance and microstructure of the MPC 

pastes. In the work presented in this paper, due to the sensitivity of the acid-base MPC formation 

reaction, W/P molar ratio has been used instead of W/S mass ratio to enable a better understanding 

of the mechanical and physical behavior of this material. 

  

3.2 MIX PROPORTIONS  

As previously mentioned, the behavior of the MPC paste specimens can be driven by three 

main factors including magnesia to phosphate molar ratio (M/P), water to solid mass ratio (W/S) 

and boric acid to magnesia mass ratio (B/M). In this chapter, the authors chose to represent the  

MPC pastes ingredients in molar ratios rather than the mass ratios terminology to capture the 

impact of the different MPC mix proportions (M/P, W/P, and B/M ratios) on the acid-base reaction, 

in addition to the influence of these factors on physical, mechanical, and thermal properties of the 

MPC system with the addition of boric acid as a retarder. 



57 

 

 

In this research, the MPC specimens are named by character numbers. The first number 

indicates the M/P ratio; the second two numbers refer to the W/P ratio, and the third two numbers 

indicate the B/M ratio. For example, B32250 sample indicates a specimen with M/P of 3, W/P of 

2.2 and B/M of 5%. 

A total of 39 MPC specimens are designed and prepared to study the behavior of the MPC 

paste under different conditions divided into eleven different groups. The first seven groups 

including (B2-20, B3-18, B3-22, B3-30, B6-30, B6-36, and B6-45) are designed and prepared to 

study the influence of the boric acid on the MPC pastes. For each group, M/P and W/P molar ratios 

are kept constant, while the B/M ratio is changed for each specimen. The last 4 groups, including 

W-4, W-8, W-10, and W-12, are prepared to complete the first seven groups to evaluate the 

influence of M/P and W/P molar ratio on the optimized pastes. For each one of these four groups, 

M/P and B/M ratios are kept constant, while the W/P molar ratio is changed for each specimen. 

Table 5 summarizes the mix proportions of the prepared MPC specimens. 

 

Table 5. Mix proportions of the prepared MPC specimens. 

Group  Sample ID M/P molar ratio W/P molar ratio B/M mass ratio (%) 

B2-20 

B22000 2 2.0 0 

B22050 2 2.0 5 

B220100 2 2.0 10 

B3-18 

B31800 3 1.8 0 

B31825 3 1.8 2.5 

B31850 3 1.8 5 
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B318100 3 1.8 10 

B3-22 

B32200 3 2.2 0 

B32225 3 2.2 2.5 

B32250 3 2.2 5 

B322100 3 2.2 10 

B3-30 

B33000 3 3.0 0 

B33050 3 3.0 5 

B330100 3 3.0 10 

B6-30 

B63000 6 3.0 0 

B63050 6 3.0 5 

B630100 6 3.0 10 

B6-36 

B63600 6 3.6 0 

B63625 6 3.6 2.5 

B63650 6 3.6 5 

B636100 6 3.6 10 

B6-45 

B64500 6 4.5 0 

B64525 6 4.5 2.5 

B64550 6 4.5 5 

B645100 6 4.5 10 

W-4 

B41850 4 1.8 5 

B42050 4 2.0 5 

B42450 4 2.4 5 
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B43050 4 3.0 5 

B43450 4 3.4 5 

W-8 

B83050 8 3.0 5 

B83850 8 3.8 5 

B84650 8 4.6 5 

B86050 8 6.0 5 

B87250 8 7.2 5 

W-10 

B103850 10 3.8 5 

B104650 10 4.6 5 

B105250 10 5.2 5 

W-12 B124650 12 4.6 0.05 

 

3.3 PHYSICAL PROPERTIES OF THE MPC PASTE 

3.3.1 INFLUENCE OF BORIC ACID  

Figure 16 shows the effect of the boric acid content on the initial setting time for the MPC 

pastes at different W/P and M/P molar ratios. At constant M/P and W/P ratios, as B/M ratio 

increases the initial setting time increases until it reaches the maximum of 5% ratio, then it 

decreases again upon increasing the B/M ratio. The same results are obtained for all M/P molar 

ratios. For example, for B3-22 group (M/P and W/P molar ratios of 3 and 2.2 respectively), adding 

5% of boric acid can increase the initial setting time from 3.5 to 15 minutes. Meanwhile, adding 

10 % to the same mix can increase the initial setting time to 9 minutes only. One possible 

explanation for this retardation mechanism is the ability of the boric acid to form a temporary layer 

of lunebergite (Mg3B2(PO4)2(OH)*6H2O) which coats the surface of the Mg+2 ions and hinder the 
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dissolution of the magnesium cations. This temporary layer can be destroyed when the amount of 

the magnesium cations is increasing in the solution leading to continuous dissolution of Mg+2 

particles again and forming the K-struvite. This temporary layer will be dissolved again in the 

solution and cannot be found in the reaction products of the system [44-113]. Another possible 

justification of this retardation that the lunebergite layer is hindering the precipitation process of 

the final products (K-struvite) rather than the reactant particles (Mg+2) [76].  

 

 

Figure 16. Influence of B/M ratio on the initial setting time of the MPC paste for different W/P 

and M/P molar ratios. 

On the other hand, there is an adverse effect on the initial setting time when the B/M ratio 

exceeds the 5%, due to the effect of the boric acid on the workability of the system. Table 6 

provides the measured flow results of the MPC paste with different B/M ratios. The experimental 

results demonstrate that using boric acid leads in flowability reduction of the MPC pastes. For 

example, when the M/P and W/P ratios are 3 and 1.8 respectively, adding 5% of boric acid can 

reduce the fluidity by 48%. Moreover, using the boric acid can increase the fluidity loss rate over 
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time. Although the loss of the fluidity over time is not measured, but it was observed during the 

experiments that the higher the B/M ratio used, the greater the loss of fluidity achieved. This 

observation can explain why the retardation effect of the B/M ratio of 5% is better than the B/M 

ratio of 10%. In order to give more insight about the relation between the boric acid content and 

the fluidity loss of the paste, additional two groups of MPC pastes are prepared (B2-2 and B6-45). 

These two groups are prepared with a very high-water content to grantee the MPC fluidity will 

remain very high until the initiation of the sample setting. Figure 17 illustrates the effect of the 

boric acid content on the initial setting time of overflow MPC pastes. It can be observed that the 

initial setting time increases when the B/M ratio increases. For instance, using of 2.5 %, 5%, and 

10% of boric acid in the case of B6-45 series, can increase the initial setting time by 150%, 350%, 

and 400% respectively. The reason for the fluidity loss is the negative effect of the boric acid on 

the dispersion of the Mg+2 inside the solution. 

 

Table 6. The flow measurements of the MPC pastes. 

Group  Sample ID Flow (%) 

B2-20 

N22000 Overflow 

B22050 Overflow 

B220100 Overflow 

B3-18 

N31800 132 

B31825 70 

B31850 68 

B318100 60 
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B3-22 

N32200 Overflow 

B32225 147 

B32250 116 

B322100 105 

B3-30 

N33000 Over 

B33050 Over 

B330100 Over 

B6-30 

N63000 Over 

B63050 82 

B630100 82 

B6-36 

N63600 Overflow 

B63625 145 

B63650 111 

B636100 111 

B6-45 

N64500 Overflow 

B64525 Overflow 

B64550 Overflow 

B645100 Overflow 
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. 

Figure 17. Influence of B/M ratio on the initial setting time of overflow MPC paste. 

 

3.3.2 INFLUENCE OF WATER CONTENT (W/P RATIO) 

Compared to ordinary Portland cement (OPC), the initial setting time of the MPC paste is 

quite shorter. Therefore, the influence of the water content has been studied with the presence of 

boric acid. The experimental results indicate that the water content is playing a significant role 

in determining the physical properties of the system. Figures 18 and 19 illustrate the effect of 

W/P molar ratio on the initial setting time and fluidity respectively. As expected, the initial 

setting time increases when the W/P molar ratio increases. For example, for M/P ratio of 8, 

increasing the W/P ratio from 3 to 6 can increase the initial setting time from 5 to 20 minutes. 

Meanwhile, the flow test indicates that the MPC system is very susceptible to water content. In 

some cases, adding or dropping a small amount of water can make a big difference in term of 

fluidity. For example, at M/P molar ratio of 3, changing the W/P molar ratio from 1.8 to 2.2 can 
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increase the fluidity by more than 70%. These results can indicate that the interparticle lubrication 

is increased by increasing the water content. 

 

 

Figure 18. Effect of different W/P molar ratio on the initial setting time of MPC for different 

M/P molar ratio. 

 

Figure 19. Effect of different W/P molar ratio on the fluidity of MPC for different M/P molar 

ratio. 
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3.4 MECHANICAL PROPERTIES OF MPC  

3.4.1 INFLUENCE OF BORIC ACID  

Boric acid is found to be one of the most critical factors that can affect the compressive 

strength of the MPC paste. Figure 20 illustrates the influence of the boric acid content on the 

compressive strength of the MPC paste for different M/P molar ratio. The results indicate that there 

are two different behaviors of the MPC specimens that contain boric acid. For the MPC specimens 

that have low M/P ratios (figure 20. a), the compressive strength decreases when the B/M ratio 

increases. For example, at B3-18 series (M/P of 3 and W/P of 1.8), adding 2.5% 5% and 10% of 

boric acid leads to reduce the compressive strength by 27%, 47%, and 64% respectively. By adding 

more water to the MPC mixture, the effect of the boric acid on the compressive strength is 

becoming slightly lower. For B3-22 series, adding 2.5% 5% and 10% of boric acid leads to reduce 

the compressive strength by 21%, 34% and 45% respectively. Hence, another MPC series (B3-30) 

is prepared to investigate whether the presence of the boric acid has the same influence if it used 

with a very high-water content. The results of this series can demonstrate that the presence of the 

boric acid is showing the same influence. For B3-30 series (M/P of 3 and W/P of 3), adding 5% 

and 10% of boric acid can reduce the compressive strength by 35%, 47% respectively.  

On the other side, for the MPC specimens that have high M/P ratios (figure 20. b), the 

experimental results show that the effect of the boric acid is insignificant. When the B/M ratio 

increases, the compressive strength slightly increases, then it slightly decreases when the B/M ratio 

is more than the 5%. For B6-36 series, (M/P of 3 and W/P of 3.6), adding 5% of boric acid can 

improve the compressive strength by 6%. Meanwhile, adding 10% of boric acid to the same 

mixture can reduce the compressive strength by 4%. Furthermore, the same result is obtained when 

the boric acid is used with high W/P molar ratios.   
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Figure 20. Influence of B/M ratio on the compressive strength of the MPC a) M/P ratio of 3, and 

b) M/P ratio of 6. 
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confirmed that the optimal value for M/P ratio is ranging between 4 and 6, others have confirmed 

that it is more than 10. Figure 21 shows the influence of M/P molar ratio on the mechanical strength 

of the MPC paste for different W/P molar ratio. It can be observed that for each W/P molar ratio 

there is an optimal M/P molar ratio. For W/P molar ratio of 3, the experimental results proved that 

the optimal molar ratio is 6. Meanwhile, the optimal M/P molar ratio is becoming between 6 and 

8 if the W/P molar ratio is changed to 3.8. Thus, the optimal M/P molar ratio can be affected by 

the amount of the used water. For example, the compressive strength of the MPC specimen that 

has W/P molar ratio of 3 with M/P molar ratio of 3 is found to be very low. This low strength is 

due to the high-water content which results in a larger spacing of the cement particle. Therefore, 

when the k-struvite grows, there are too far apart to bind together. Moreover, after casting the 

cement paste, the excessive amount of water will be squeezed out and evaporated leading to 

develop a lot of micro- pores/voids inside the casted cement paste. These micro-pores/voids can 

decrease the density and the compressive strength of MPC paste specimens. By increasing M/P 

ratio to 6, the amount of used water (W/P ratio of 3) is becoming adequate for the mixture because 

the additional amount of the magnesia is consuming the excess water and develop more k-struvite 

which leads to improving the compressive strength. By increasing M/P ratio to 8, the amount of 

the used water is becoming insufficient for all of these magnesia particles. Thus, the amount of 

unreacted magnesia particles will be increased, where the amount of the k-struvite will be 

decreased which leads to reducing the compressive strength of the MPC specimen. Moreover, the 

low amount of water can reduce the flowability of the system leading to poor compaction and poor 

compressive strength. As a conclusion, the optimal M/P molar ratio depends on the amount of used 

water, and this can explain the apparent contradiction that found in the literature. On the other 

hand, the published work primarily uses the mass ratio between water and solid to describe the 
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amount of the used water rather than using a molar ratio between water and KDP. This expression 

may cause a misinterpretation of the real impact of magnesia/water content on the fundamental 

understanding of the MPC behavior. 

 

Figure 21. Influence of M/P molar ratio on the compressive strength of MPC paste for different 

W/P molar ratios. 

 

3.4.3 INFLUENCE OF WATER CONTENT (W/P RATIO) 

Figure 22 shows the effect of W/P molar ratio on the compressive strength of the MPC 

system with the presence of the boric acid. Each curve in figure 22 presents a different M/P molar 

ratio. It can be observed that there is an optimal water content (W/P molar ratio) for each M/P 

molar ratio. At first, the compressive strength increases when the W/P molar ratio increases. Then, 

the compressive strength decreases when the W/P molar ratio increases. This experiment can 

indicate that the use of a low W/P ratio is not necessarily leading to improve the compressive 

strength. The compressive strength of the MPC paste is found to be very low when the amount of 

the used water is limited and may be not sufficient for the acid-base reaction.  
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On the other side, using a high-water content leads to reduce the compressive strength. For 

instance, for M/P ratio of 4, the optimal W/P molar ratio is 2.4, while using less or more than this 

value will reduce the compressive strength of the specimen. 

On the other hand, the experimental results indicate that the behavior of the MPC without 

the presence of boric acid is slightly different. Figure 23 shows the influence of W/P molar ratio 

on the compressive strength of the MPC past with/without the presence of the boric acid. It can be 

seen that the reduction in the compressive strength without the presence of the boric acid is much 

larger. For B/M ratio of 0%, changing W/P ratio from 1.8 to 2.2 can reduce the compressive 

strength by 19%. Meanwhile, adding 5% of the boric acid to the same mixture can reduce the 

compressive strength by only 4%. The reason behind this behavior is the negative effect of the 

boric acid on the fluidity of the system. Table 6 provides the flow results of the MPC specimens. 

Without using the boric acid, and for W/P ratio of 1.8, the flow of the MPC past is found to be 

132%. By increasing W/P ratio to 2.2, the MPC past is becoming too runny, and the flow table test 

cannot be conducted. As previously mentioned, the high-water content results in a larger spacing 

of the cement particles and develop a lot of micropores which can decrease the density and the 

compressive strength of the paste. On the other side, the boric acid has the ability to consume the 

excess water and reduce the fluidity of the system. For W/P ratio of 1.8, the flow value of the MPC 

past is found to be 68%. By increasing W/P molar ratio to 2.2, the flow value is increased to 116%. 

Thus, the reduction in the compressive strength due to the tremendous amount of water is 

becoming not valid. 
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Figure 22. Influence of W/P molar ratio on the compressive strength of the MPC system. 

 

Figure 23. Influence of W/P molar ratio on the compressive strength of the MPC system 

with/without the presence of boric acid. 
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3.5 PHASE ANALYSIS 

3.5.1 XRD ANALYSIS 

The XRD results of the MPC paste specimens are presented in figures 24 and 25. Many of 

the magnesium phosphate crystalline phases are investigated in this work in addition to all the 

possible magnesium potassium phosphate minerals. Table 7 summarizes all the magnesium 

crystalline phases that investigated in this research. The XRD analysis demonstrates that the main 

reaction product of the MPC system is the well-known K-struvite (MgKPO4*6H2O), in addition 

to some unreacted materials including the magnesium oxide (MgO) and the monopotassium 

phosphate (KDP). Moreover, the only magnesium phosphate crystal that found in the products is 

the K-struvite, and no any other magnesium phosphate crystalline phases are found in the final 

product including Cattiite (H44Mg3O30P2) and Newberyite (H7MgO7P) that mentioned in the 

literature. These crystalline phases could be formed during the hydration processes. Then, they 

dissolved again before the paste hardening. On the other side, the XRD analysis demonstrates that 

no boron-containing crystalline phases have appeared in the final products of including 

Luneburgite B2H18Mg3O20P2 and Szaibelyite BHMgO3. 

  

Table 7. Magnesium phosphate/potassium phosphate crystalline phases investigated in this 

work. 

Magnesium phosphate/ 

potassium phosphate 

crystalline phases 

Formula  Magnesium phosphate/ 

potassium phosphate 

crystalline phases 

Formula  

Hydroxylwagnerite H Mg2O5P K-struvite H12KMgO10P 
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Cattiite H44Mg3O30P2 Potassium magnesium 

catenaphosphate 

KmgO9P3 

Newberyite H7MgO7P Potassium magnesium 

hydrogendiphosphate 

dihydrate 

H5KmgO9P2 

Kovdorskite H7Mg2O8P K Mg0.5 (H2 P2 O7) (H2 O) H4KMg0.5O8 

P2 

Magnesium hydrogen 

phosphate 

H4Mg7O24P6 K2 Mg3 (P2 O7)2 (H2 O)10 H20K2Mg3O24 

P4 

Raadeite H8Mg7O16P2 Potassium magnesium 

hydrogendiphosphate 

dihydrate 

H5KmgO9P2 

Kovdorskite H7Mg2O8P Periclase MgO 

Holtedahlite H7Mg12O30P6 - H12Mg2O13P2 

- H13MgO9P Monopotassium phosphate H2 K O4 P 

 

The XRD analysis for the MPC pastes with low M/P molar ratio are presented in figure 24. 

All the specimens have the same M/P and W/P molar ratios while the B/M ratios are changed. 

According to the XRD results, the MPC specimen with no boric acid exhibit more k-struvite 

characteristic peaks. In other words, some of the k-struvite diffraction peaks are disappeared with 

the presence of boric acid. For example, the k-struvite peaks that located at about 23.1, 29.3, and 

37.9 2θ have appeared with the absence of the boric acid while they are clearly disappeared with 

the presence of the boric acid. This observation concludes that the existence of the boric acid leads 
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to poor crystallization growth and maybe less amount of the K-struvite phase. Furthermore, the 

MPC specimen that includes boric acid exhibits stronger KDP characteristic peak, which indicates 

that the presence of the boric acid increases the amount of unreacted KDP. There are two possible 

reasons for this observation. First the presence of the boric acid can prevent the contact between a 

huge part of the MgO and the KDP particles permanently leading to a poor crystal growth of the 

K-struvite and maybe reduce its amount. Meanwhile, this suspended/prevented amount of 

MgO/KDP will not react with the boric acid particles and appeared as unreacted materials in the 

XRD analysis. Thus, there are no boron-containing crystalline phases in the final products. Second, 

the boric acid particles have the ability to react with the MgO to form an amorphous boron-

magnesium compound.  

Figure 25 shows the XRD patterns for MPC paste specimens with high M/P molar ratio. 

The M/P and W/P molar ratios are fixed to be 6 and 3.6 respectively, while the B/M ratio is changed 

from 0 to 10%. Based on the shown XRD patterns, the MPC specimens with no boric acid and 

with 5% of boric acid exhibit stronger and sharper K-struvite characteristic peaks. This observation 

concludes that the using of moderate amount of boric acid with high M/P molar ratio MPC 

specimens does not affect the phase composition of the MPC paste. However, using a high boric 

acid content can apparently affect the crystallinity of the K-struvite and lead to poor crystallization 

growth. On the other hand, no KDP peaks are found in the final products of all specimens. Besides, 

the amount of unreacted MgO in the MPC specimen with no boric acid is found to be much higher. 

These observations can support both hypotheses mentioned above. Hence, the boric acid has the 

ability to react with the MgO particles to form an amorphous boron-magnesium compound which 

cannot be seen by the XRD analysis or prevents the reaction between a part of the MgO and the 

KDP. The reason behind the absence of the unreacted KDP peaks is the using of high M/P molar 
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ratio. The high M/P molar ratio can provide a considerable amount of MgO particles that can react 

with the boric acid to form an amorphous boron-magnesium compound, while the residual amount 

of MgO will be still enough to react with the free KDP particles to form crystal/amorphous K-

struvite structures. Moreover, the peaks of the unreacted magnesia are found to be very weak when 

a high boric acid content is added to the mixture which means that the boric acid can consume the 

MgO particles in the system. This observation can support the second hypothesis mentioned above. 

 

 

Figure 24. The XRD patterns for MPC paste with low M/P ratio. 
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Figure 25. The XRD patterns for MPC paste with high M/P ratio. 

3.5.2 FTIR 

The FTIR spectra for MPC specimens with different B/M ratios are shown in figure 26; a) 

for low M/P ratio and b) for high M/P ratio. For both cases, the FTIR spectra reveals a H-O-H 

stretching vibration at a region of 3670 to 2540 cm-1. This H-O-H stretching vibration modes are 

related to the presence of the water in the k-struvite crystals. Besides, the analysis shows a bending 

vibration mode of H-O-H in a range of 2136 to 1966 cm-1. Furthermore, the band that located at 

about 985 and 667 cm-1 indicates a stretching and a binding vibration mode of PO4
-3 in the k-

struvite crystals respectively. Finally, the results illustrate a possible vibration mode of a metal-

oxygen bond at 850 cm-1. The same observations have been reported in previous studies [114 and 

115]. In both cases (low and high M/P ratio), no new bonds have been obtained by adding the boric 

acid to the mixtures. These observations indicate that no boric acid containing crystalline structure 

has been formed during the reaction process. On the other hand, the results indicate that adding 
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the boric acid to the MPC mixtures can reduce the intensity of the observed vibration bands which 

indicates that the amount of these functional groups are decreased by adding the boric acid. 

 

 

 

Figure 26. FTIR spectra of MPC paste with different B/M ratios a) low M/P ratio and b) high 

M/P ratio. 

5001000150020002500300035004000

Wave number (1/cm)

M/P:3.0

W/P:2.2

B/M: 0%

M/P:3

W/P:2.2

B/M: 10%

a) low M/P ratio

H-O-H

stretching 

H-O-H

stretching 

H-O-H

bending 

H-O-H

bending 

PO4
-3

streching

PO4
-3

streching

PO4
-3

bending 
M-O

PO4
-3

bending 
M-O

5001000150020002500300035004000

Wave number (1/cm)

M/P:6.0

W/P:3.6

M/P:6.0

W/P:3.6

B/M: 10%

H-O-H

stretching
PO4

-3

streching
PO4

-3

bending

H-O-H

bending 

b) High M/P ratio

H-O-H

stretching

PO4
-3

streching
PO4

-3

bending

H-O-H

bending 



77 

 

 

3.6 MICROSTRUCTURE ANALYSIS 

The microstructure of the MPC paste with low and high M/P ratio are presented in figure 

27 and 28 respectively. For figure 27, the M/P and W/P ratio are fixed to be 3 and 2.2 respectively 

while the B/M ratio is changed from 0 to 10%. The SEM images of the MPC paste with no boric 

acid show a dense, mostly crystalline microstructure. Moreover, the shape of the k-struvite 

crystalline structure is found to be a bladed prism (figure 27. a). After adding the boric acid to the 

mixture (figure 3.27. b), two types of materials with very different morphology can be observed. 

The first type, the solid-line rectangle, is a solid material with a smooth and a flat surface while 

the second type, the dashed-line rectangle, is a low dense needle-like crystalline structure. Adding 

more boric acid material (figure 27. c) to the MPC mixture can also change the micro-morphology 

of the studied cement paste. Three different types of material can be observed when the B/M ratio 

is increased to 10%. As shown in the figure 27. c.1, the first type, the dashed-line rectangle, is a 

low dense scale-like needle material (figure 27. c.2) while the second type, the solid-line rectangle, 

is a solid compacted material with no any crystalline shapes (figure 27. c.3), and the third type, the 

dotted-line rectangle, is a low dense needle-like crystalline material similar to that one that 

observed in figure 27. c.2.   
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Figure 27. SEM images of MPC paste with low M/P molar ratio; a) B/M ratio of 0%, b) B/M 

ratio of 5%, and c) B/M ratio of 10%. 

Figure 28 presents the SEM images of the MPC paste with high M/P molar ratio. The M/P 

and W/P molar ratios are fixed to be 6 and 3.6 respectively while the B/M ratio is changed from 0 

to 10%. According to the SEM images, the final product of the MPC specimen with no boric acid 

is a dense short prism-like crystalline structure. This observation can explain the high strength of 

the B63650 specimen. Also, the k-struvite of the MPC specimen with 5 % of B/M ratio is found 

to be a prism-like material with a larger size than that specimen with no boric acid (figure 28. b). 

Finally, the MPC paste with 10% of B/M ratio shows two types of microstructures, the first one, 

the dashed-line rectangle, is needle shape k-struvite material while the second one, the solid-line 

rectangle is a plate-like structure with a low density and a smooth surface. 
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Figure 28. SEM images of MPC paste with high M/P molar ratio; a) B/M ratio of 0%, b) B/M 

ratio of 5%, and c) B/M ratio of 10%. 

The final conclusions from the microstructure analysis can be drawn as follows; the shape 

of the K-struvite microstructure can be in multiple forms including (1) prism-like structure, (2) 

needle-like structure, (3) scale-like needle structure, and (4) plate-like structure. The MPC 

specimens that prepared without using the boric acid are attending to produce a dense prism-like 

K-struvite structure (figure 27. a and figure 28. a). For low M/P ratio specimens, adding the boric 

acid is leading to change the morphology of the K-struvite structure due to reducing the amount 

of the available magnesia. The limited amount of magnesia will produce a needle-like K-struvite 

structure with a very low density (figure 27. b and c) in addition to a solid compacted smooth 

surface material that could be a combination of low crystallized/amorphous K-struvite structure 
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and some unreacted materials (figure 27. c.3). This can explain the weak K-struvite characteristic 

peaks that obtained when the boric acid is added to a low M/P ratio MPC paste (figure 24) and the 

low compressive strength of these specimens (figure 20 a). On the other hand, adding a moderate 

amount (B/M ratio of 5%) of boric acid to a high M/P ratio MPC mixture will not change the shape 

or the intensity of K-struvite (figure 28. b). However, a larger prism-like crystalline structure is 

observed. Finally, adding a high amount of boric acid (B/M ratio of 10%) to an MPC mixture with 

high M/P ratio is leading to change its morphology. Only a few amounts of those prism-like 

crystals can be observed while the rest of the MPC specimen morphology consists of a plate-like 

microstructure and a solid compacted material with a smooth surface. 

 

3.7 THERMAL CONDUCTIVITY AND DRY DENSITY   

Table 8 summarizes the dry density and the thermal conductivity measurements of MPC 

specimens with different boric acid dosages. It can be noted that adding boric acid reduces the dry 

density of the MPC paste due to the porosity increment. For an M/P ratio of 3, adding 5% and 10% 

of boric acid can reduce the dry density by 2.3% and 5.7% respectively. Also, adding 5% and 10% 

of boric acid to MPC pastes with an M/P ratio of 6 can reduce the dry density by 4.7% and 7% 

respectively. Although the phase analysis does not show any crystalline product containing boron 

(B), the density may indicate that the boric acid can react with one or more of the MPC components 

to produce a boron-compound which has a lower density than the original MPC reaction products.  

 Figure 29 shows the thermal conductivity of MPC as a function of boric acid % added for 

different M/P ratios. It can be observed that the thermal conductivity of the MPC paste decreases 

when the B/M ratio increases. For M/P ratio of 3, adding 5% of the boric acid does not affect the 

thermal conductivity, while increasing the boric acid content (B/M ratio of 10%) the thermal 
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conductivity reduction measured from 1.31 to 1.1 W/mk. Furthermore, increasing M/P molar ratio, 

increased the MPC specimen’s sensitivity to the boric acid addition. For an M/P ratio of 6, adding 

5% and 10% of boric acid can reduce the thermal conductivity from 1.93 to 1.78 and 1.6 W/mk 

respectively.  

 

Table 8. Experimental results for thermal conductivity test of dry MPC paste. 

Sample 

ID 

M/P W/P B/M (%) Dry Density 

(Kg/m3) 

Temperature 

(ºC) 

Thermal Conductivity 

(W/mk) 

N32200 3 2.2 0 2265.5 21.2 1.31 

B32250 3 2.2 5 2204.5 21.2 1.31 

B322100 3 2.2 10 2135.8 21.2 1.1 

N63600 6 3.6 0 2257.9 21.2 1.93 

B63650 6 3.6 5 2151.1 21.2 1.78 

B636100 6 3.6 10 2097.7 21.2 1.6 

 

        

Figure 29. Influence of boric acid content on the thermal conductivity of the MPC paste. 
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3.8 THE ROLES OF BORIC ACID IN THE MPC PASTE FORMATION 

3.8.1 RETARDATION MECHANISM 

The findings from this research demonstrate that the initial setting time of the MPC system 

is highly dependent on the boric acid content. The experimental results approve that the initial 

setting time of the pastes increases when the B/M ratio increases. The retardation mechanism of 

the boric acid can be suggested as the following; when the boric acid particles are presenting in 

the MPC solution, the boric acid dissociates to B(OH)4
- oxyanions and H+ ions. Since there is an 

evidence that the MgO particles have the ability to absorb the B(OH)4
- oxyanions [116-118], by 

adding the MgO to the solution, a part of these particles will absorb the B(OH)4
- oxyanions, while 

the other parts will dissociate to Mg+2 ions and 2OH- anion. Then, the absorbent of the B(OH)4
- by 

the MgO particles has the ability to release Mg+2 ions leading to increasing the Ph of the solution. 

As a result, a temporary surface complex ion/compound will be formed by the interaction of MgO, 

Mg+2, and B(OH)4
- [118]. This complex compound will dissociate to MgB(OH)4

+ ions which 

stabilizes the Mg+2 particles leading to increase the initial setting time of the MPC system [76]. 

Another possible reason that found in literature is the ability of boric acid to form a temporary 

layer of lunebergite (Mg3B2(PO4)2(OH)*6H2O) which can retard the hydration process of the 

system by ether hindering the contact between the magnesium and monopotassium phosphate 

particles or slow down the dissolution process of the final product [44-113].  

 

3.8.2 MPC PASTE FORMATION  

The authors of this paper have suggested two possible hypotheses that can explain the roles 

of boric acid in the formation mechanism of the MPC paste.  
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The first hypothesis indicates that the presence of the boric acid prevents the contact 

between a considerable part of the MgO particles and the KDP leading to a poor crystallization 

growth of the K-struvite and maybe reduce its amount. The boric acid can either stabilize the MgO 

particles by forming the complex ions of MgB(OH)-
4 or coat the MgO particles by forming a 

temporary layer of a lunebergite compound. As a result, a huge part of the MgO particles is 

suspended or inhibited from interacting with phosphate particles while the other part will react 

with the phosphates to produce the K-struvite. When a low M/P ratio is used to produce the paste, 

only a few amounts of the magnesium ions will react with the phosphate particles while the others 

will be suspended/prevented by the boric acid. Then, the exothermic reaction will generate a huge 

amount of heat/energy and consumes most of the available water in the system, and no further 

reaction/crystallization growth is possible. The suspended/prevented amount of the MgO particles 

will not react with the boric acid particles and appeared as unreacted materials in the XRD analysis. 

Thus, with the presence of the boric acid some of the K-struvite diffraction peaks are disappeared 

while the intensities of the others are becoming low (figure 24). Furthermore, the KDP diffraction 

peak intensity of the KDP increases when the boric acid content increases (figure 24) while only 

a few amounts of the unreacted KDP have appeared with the MPC paste with no boric acid. This 

observation can indicate that the presence of the boric acid can prevent a massive amount of the 

MgO from reacting with KDP to produce K-struvite. Therefore, the unreacted KDP peaks can be 

found when the boric acid is added to the mixture. All of these observations can conclude that the 

existence of the boric acid leads to poor crystallization growth and maybe less amount of the K-

struvite phase. 

From the microstructure analysis, the MPC paste with low M/P ratio and no boric acid 

show a dense prism-like K-struvite structure with no any other compounds (figure 27. a). After 
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adding the boric acid to the system, a needle-like K-struvite structures with a very low density 

have been observed (figure 27. b and c) in addition to a solid compacted smooth surface material 

which could be a combination of low crystallized/amorphous K-struvite and some unreacted 

materials. Thus, the compressive strength of the MPC pastes with a low M/P ratio is significantly 

reduced with the presence of the boric acid (figure 20. a). Finally, no boron-containing crystalline 

phases have been achieved from the XRD or the FTIR analysis (figure 24 and 26. a) which 

indicates that the boric acid does not react with either the MgO or the KDP particles. On the other 

side, using a high M/P ratio to produce the MPC paste can provide a considerable amount of the 

MgO particles in the system. When a moderate amount of the boric acid is added to such system, 

the boric acid will stabilize/coat a part of the MgO particles while the residual amount of the MgO 

is still enough to react with the available KDP particles to form crystal/amorphous K-struvite 

structures. Therefore, the crystallization growth of the K-struvite is not reduced by adding 5% of 

boric acid to the system (figure 25). Furthermore, no KDP peaks are found in the final products of 

these specimens (figure 25) which indicates that all the available KDP particles react with the MgO 

to produce the K-struvite. Thus, there is no reduction in the compressive strength of this specimen 

(B63650) (figure 20. b). On the other hand, using a high amount of boric acid with a high M/P 

ratio MPC paste can reduce the crystallinity degree of the K-struvite (figure 25) and can change 

its morphology. From the SEM images, only a few amounts of the prism-like crystals can be 

observed when a high boric acid content is added while the majority of the MPC specimen 

morphology consists of a plate-like microstructure and a solid compacted material with a smooth 

surface (figure 28). Since the K-struvite can exist in amorphous structures [68], the presence of 

the boric acid will reduce only the crystallinity degree of the K-struvite and incites the system to 

produce an amorphous version of the K-struvite. Therefore, the SEM images show another type of 
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micromorphology consisting of a solid compacted material with a smooth surface (figure 28. c). 

Thus, the reduction of the compressive strength of this specimen (B636100) is found to be marginal 

(figure 20. b). 

 The second hypothesis indicates that the boric acid particles have the ability to react with 

the MgO to form an amorphous boron-magnesium compound. For the MPC paste with a low 

magnesia content, the boric acid particles will react with the MgO to form an amorphous boron-

magnesium compound. This reaction will consume a lot of MgO leaving the system with a limited 

amount of the MgO particles. The residual amount of the MgO particles is not enough to react 

with the all available KDP particles leading to reduce the amount of the K-struvite. Moreover, the 

presence of the boric acid leads to poor crystal growth of the K-struvite (figure 24 and figure 27). 

Thus, the XRD analysis shows weaker K-struvite peaks and a stronger unreacted KDP peak after 

adding the boric acid (figure 24). In this case, the reduction in the K-struvite amount is not because 

the poor crystallinity of the K-struvite phase, but it is due to the limited amount of the MgO 

particles after adding the boric acid which is not enough to complete the reaction with all the free 

KDP particles. Maybe these statements can explain why the MPC paste with no BA has a more 

compressive strength, and it can explain the reason behind the huge reduction in the compressive 

strength (-45%) when the boric acid is added (figure 20. a). On the other hand, using a high 

magnesia content can provide enough amount of magnesia to react with the boric acid in addition 

to the available KDP particles. Thus, the boric acid will consume many of magnesia particles, but 

the residual is almost enough to react with the available KDP to produce a high amount of K-

struvite compound. Therefore, the unreacted MgO/KDP peaks cannot be found in the high 

magnesia content MPC final products after adding the boric acid. As a result, the reduction in the 

compressive strength of the high magnesia content MPC paste is marginal (-4%) when the boric 
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acid is added. Since no boron-containing magnesium minerals are found in the final products of 

the MPC paste, the suggested structural form for this compound will be amorphous. Moreover, 

adding boric acid to the MPC can reduce its density. Although the phase analysis does not show 

any crystalline product containing boron (B), the density may indicate that the boric acid can react 

with one or more of the MPC components to produce a boron-compound which has a lower density 

than the original MPC reaction products. It is worth mentioning that the density of the MgO 

particles (3.58 g/cm³) is higher than the K-struvite (1.71 g/cm³). Finally, if the MgO particles will 

be prevented from reacting with the KDP and it cannot react with the boric acid, much-unreacted 

magnesia should appear in the final product. The XRD result indicates that only a few amounts of 

the unreacted MgO are found when a high amount of boric acid is added to a high M/P MPC paste. 

As previously mentioned, the high M/P ratio can provide a huge amount of the MgO particles. 

This amount is much higher than the required amount of all the free KDP particles to complete the 

reaction. Therefore, all the KDP particles have reacted with the MgO while the boric acid 

consumes the residual parts to produce the amorphous boron-magnesia compound which cannot 

be seen by the XRD analysis. This amount should be much higher if the boric acid is preventing 

the reaction between the MPC main ingredients rather than reacting with the MgO. Table 9 

summarizes the shreds of evidence of each proposed hypothesis. 
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Table 9. The shreds of evidence of the proposed hypotheses. 

Characterization 

scheme 

First hypothesis Second hypothesis 

Mechanical 

characterization 

The significant reduction in the 

compressive strength of the low M/P 

ratio MPC specimens (figure 20. a) 

The significant reduction in the 

compressive strength of the low 

M/P ratio MPC specimens (figure 

20. a) 

Physical 

characterization 

- 

The reduction in the fluidly of the 

MPC paste when the boric acid is 

added (Table 6) 

Chemical 

characterization 

The low crystallinity degree of the 

K-struvite when the boric acid is 

used with a low M/P ratio MPC 

specimens (figure 24) 

The low crystallinity degree of the 

K-struvite when the boric acid is 

used with a low M/P ratio MPC 

specimens (figure 24) 

The strong unreacted KDP peaks 

when the boric acid is used with an 

MPC spacemen with low M/P ratio 

(figure 24) 

The strong unreacted KDP peaks 

when the boric acid is used with an 

MPC spacemen with low M/P 

ratio (figure 24) 

There are no boron-containing 

crystalline phases have appeared in 

the final products of the MPC paste 

(figure 24, figure 25, and figure 26) 

The weak unreacted MgO peaks 

when a high boric acid content is 

used with an MPC paste with high 

M/P ratio (figure 25) 
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Microstructure 

analysis 

The change in the morphology of the 

K-struvite when the boric acid is 

added (figure 27 and figure 28) 

The change in the morphology of 

the K-struvite when the boric acid 

is added (figure 27 and figure 28) 

 

The solid compacted material that 

observed when the boric acid is 

added (figure 27; b and c and 

figure 28; b and c) 

Density  

The reduction in the density when 

the boric acid is used (Table 8) 
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CHAPTER IV 

INFLUENCE OF GNP ON THE PROPERTIES AND THE MICROSTRUCTURE OF MPC 

PASTES 

 

4.1 INTRODUCTION AND LITERATURE REVIEW 

As previously mentioned, the MPC system is still facing many unresolved challenges such 

as the very rapid setting time, the high fluidity with a few amounts of water, and the high fluidity 

loss with time. Many researchers are searching for compatible additives to astound these 

challenges and to improve the overall performance of MPC such as fly ash (FA), silica fume (SF), 

metakaolin, slag and acetic acid (AA). [80-83]. The reported results showed that using fly ash (FA) 

and silica fume (SF) improved the behavior of the MPC cement [80]. Xu et al. [82] used two 

different designed methods to incorporate FA in MPC mortars. At first, they used the FA as a filler 

to replace the solid contents (MgO and KDP), and they used it as a reactive material to replace 

only the MgO. They found that the using of FA as a reactive material was better and led to better 

fresh properties, denser microstructure, and higher compressive strengths. Zheng et al. [81] 

demonstrated that using FA and SF together with the MPC system produced denser products and 

improved the mechanical strength of the system and the water resistance. The hypothesis for the 

combined effect on the results, was (1) Physically; they could work as a filler, so they filled the 

micropores and improved the mechanical strength, (2) Chemically; the silicon oxide in the SF 

could react with MgO particles to form MgSiO3, which improved the bonding strength of the 

system and enhanced its physical 
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properties. Jun et al. [83] reported that the used of AA improved the setting time and the 

microstructure of the system and led to better mechanical strength. 

In the last decade, graphene is becoming one of the most promising additive material to be 

embedded with the composite materials in the construction field due to its outstanding properties. 

Recently, many forms of graphene structures/compounds have been used to improve the 

construction material properties including graphene oxide (GO) and graphene nanoplatelets (GnP). 

GnP represents a new form of carbon nanoparticles with multifunctional properties consisting of 

small stacks of graphene. GnP has exclusive nanoscale size, shape, and material composition. 

Therefore, it can be used to improve the properties of a wide range of materials. Recently, the GnP 

is highly implemented as a nanoscale additive for cementitious materials to improve its mechanical 

properties. Also, the GnP has the potential to enhance other properties such as electrical and 

thermal conductivity. Wang et al. [119] reported that the using of 0.05 wt % of GnP with ordinary 

Portland cement (OPC) can increase the compressive strength by 3%–8% and improve the flexural 

strength by 15%–24%. Du et al. [120] used a polycarboxylate based superplasticizer as a surfactant 

to improve the dispersion of GnP. They reported that the optimum dispersion of the GnP could be 

obtained when the amount of the surfactant is about 15% by weight of GnP. Moreover, they 

demonstrated that the using of 1 wt% of GnP with the OPC reduced the effective porosity and the 

critical pore diameter by 37% and 30%, respectively. On the contrary, adding 2 wt% of GnP to the 

OPC has an adverse effect on both. Tong et al. [121] investigated the effect of GnPs and GONPs 

on the performance of the OPC. They found that the addition of small dosage of both can increase 

the compressive strength up to 19.9%. Generally, graphene materials are found to be very useful 

in enhancing the thermal conductivity of cementitious materials. Sedaghat et al. [122] reported 
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that the using of graphite can improve the thermal conductivity and reduce the early hydration heat 

of the OPC. Cui et al. [123] demonstrated that the addition of 5 wt% of GnP to OPC paste increased 

the thermal conductivity by 77% and reduced the specific heat by 17.7%.  

There are only a few studies that have focused on the impact of nanomaterials on the 

performance of MPC such as carbon nanotube, nano-silica, and graphene. Moreover, the influence 

of graphene material on the thermal conductivity of the MPC paste has not been reported so far. 

In 2016, Lu et al. [84] investigated the effect of the graphene oxide (GO) on the behavior of the 

MPC paste. They reported that the using of GO reduced the setting time and the workability of the 

paste. Besides, adding small weight percentages of GO can improve the mechanical strength, while 

using high weight percentages can reduce the mechanical strength of the paste. In 2019, Yue Li et 

al. [124] studied the effect of carbon nanotubes (CNT) on the mechanical and physical properties 

of the MPC cement. They used sodium dodecyl sulfate (SDS) in order to improve the dispersion 

degrees of the CNT. They found that the SDS alone has an adverse effect on the mechanical 

properties of the MPC. This adverse effect of the SDS could be countered when the CNT is added. 

Moreover, when the dispersion degrees of the CNT increases, the workability of the system 

decreases. However, the influence of GNP on the mechanical, physical, and thermal behavior of 

MPC paste/mortar has not been reported yet.  

This chapter aims to understand the behavior of the MPC paste under different GnP 

dosages including physical behavior, mechanical properties, chemical behavior, and thermal 

conductivity. Also, the influence of GnP mixing method has been investigated, and the effect of 

the used surfactant on the performance of MPC specimens has been evaluated. 
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4.2 MPC MIX PROPORTIONS 

As previously noted, the MPC specimens in this chapter are prepared by mixing MgO, 

KDP, boric acid, GnP, polyethyleneimine (PLE), and distilled water. As noted in chapter 2, the 

magnesia to phosphate molar ratio (M/P) has been selected to be 6 while the desired water content 

is calculated based on the molar ratio between KDP and water (W/P) and has been selected to be 

3.6. This W/P ratio can provide mid-range workability for the paste, and it can guarantee that the 

available water is enough for the acid-base reaction. Also, the B/M ratio of 5% has been used for 

all the MPC specimens in this chapter in order to increase the initial setting time. For the GnP 

modified MPC specimens, the amount of GnP dosage is calculated based on the weight ratio 

between GnP and the total solid (GnP/S). Besides, the optimum amount of the surfactant is found 

to be 10% by the weight of GnP. The mixing procedures and the sample preparations of the MPC 

pastes were discussed earlier in chapter II. 

The prepared MPC specimens in this chapter are divided into four different groups. The 

first group is prepared as a control specimen (B636) without adding any GnP or PLE. The second 

group is prepared by adding the GnP to the MPC mixture and without adding any PLE. This group 

consists of three MPC specimens including GD10, GD25, and GD50. The third group is designed 

by using the GnP and the PLE consisting of three MPC specimens; GS10, GS25, and GS50. 

Finally, the fourth group is prepared to study the effect of the PLE on the MPC paste. This group 

consists of three MPC specimens including SR10, SR20, and SR50. The mix proportions of the 

MPC pastes are shown in table 10. 
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Table 10. The mix proportions of the GnP modified MPC specimens. 

Sample ID M/P a W/P a B/M b (%) GnP/S c (%) PLE d (%) 

B6360 6.0 3.6 5.0 0 0 

GD10 6.0 3.6 5.0 0. 1 0 

GD25 6.0 3.6 5.0 0.25 0 

GD50 6.0 3.6 5.0 0.5 0 

GS10 6.0 3.6 5.0 0.1 10 

GS25 6.0 3.6 5.0 0.25 10 

GS50 6.0 3.6 5.0 0.5 10 

SR10 6.0 3.6 5.0 0 0.01 e 

SR25 6.0 3.6 5.0 0 0.025 e 

SR50 6.0 3.6 5.0 0 0.05 e 

a molar ratio.  

b mass ratio between boric acid and MgO. 

c mass ratio between GnP and total solid. 

d mass ratio between surfactant and GnP. 

e mass ratio between surfactant and total solid. 

 

4.3 INFLUENCE OF GNP ON THE SETTING BEHAVIOR AND THE WORKABILITY 

Setting time of cement paste is the time when the cement paste starts losing its plasticity. 

The setting time behavior for any concrete-like material depends on several factors including 

water content, temperature, salt amounts, type and amount of the used additives, and chemical 

combinations. By using the Vicat apparatus and the needle, the setting time is measured for 
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each MPC specimen and compared in figure 30. The experimental results indicate that the 

addition of the GnP can decrease the initial setting time of the MPC paste. Without using the 

PLE (Pristine GnP), adding of 0.1 wt%, 0.25 wt% and, 0.5wt% of GnP reduces the initial setting 

time by 40%, 60%, and 67% respectively. Meanwhile, the effect of the GnP is becoming less 

when the PLE is added to the mixture due to its ability to cover the GnP particles. Adding 

0.1wt%, 0.25 wt% and, 0.5wt% of GnP with the presence of the PLE reduces the initial setting 

time by 33%, 47%, and 60% respectively.  

On the other hand, the experimental results approved that the presence of the GnP can play 

a significant role in the workability of the system. Figure 31 shows the influence of the GnP content 

on the fluidity of the MPC paste. It can be observed that adding the GnP to the MPC paste reduces 

its workability. Adding 0.1wt%, 0.25 wt% and, 0.5wt% of GnP without using the PLE reduces the 

fluidity of the paste by 4.5%, 18%, and 22.5% respectively. Similarly, the fluidity of the MPC 

pastes has been reduced by adding the PLE to the mixture. Adding 0.1wt%, 0.25 wt% and, 0.5wt% 

of GnP with the PLE can reduce the fluidity by 2%, 12%, and 15% respectively. This reduction in 

the fluidity may be attributed to the presence of the GnP as a hydrophobic material which entraps 

some water inside the system [125]. Another possible reason for this reduction is the ability of the 

GnP to absorb water due to its high surface area [84, 126, and 127]. On the other side, using the 

PLE can reduce the effect of the GnP in the system due to its ability to coat the GnP particles and 

improving its solubility in the aqueous solvent. 
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Figure 30. Effect of GnP content on the initial setting time of the MPC paste. 

 

Figure 31. Influence of GnP content on the fluidity of the MPC paste. 

 

4.4 INFLUENCE OF GNP ON THE COMPRESSIVE STRENGTH 

Figure 32 shows the effect of the GnP content on the compressive strength of the MPC 

paste. It can be observed that the compressive strength is decreased with increasing the GnP 
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content. For example, adding 0.5 wt% of GnP without using the PLE (Pristine GnP) can reduce 

the compressive strength of paste by 40%. This reduction in the compressive strength can be 

attributed to the ability of GnP of hindering the reaction between the MgO and the KDP particles. 

Although there is no evidence of any chemical interaction between graphene and magnesium, there 

is an evidence of a physical interaction between the surface of graphene and magnesium ions 

(Mg+2). These types of interactions have been observed recently by using a high-resolution TEM 

[128]. Thus, the GnP can absorb some of the magnesium ions leading to reduce the amount of 

reacted magnesia and reduce the amount of the k-struvite in the system. This reduction in the 

amount of k-struvite can significantly reduce the compressive strength. 

Furthermore, the same behavior is found after using the PLE to enhance the dispersion of 

the GnP powder. As the GnP content increases, the compressive strength decreases. Adding 

0.1wt%, 0.25 wt%, and 0.5wt% of GnP with the PLE can reduce the compressive strength by 23%, 

36%, and 40% respectively. However, it can be observed that the reduction in the compressive 

strength was less when the PLE has been used in the system. This observation may be referred to 

the role of the surfactant in the system. As previously noted, the main role of the surfactant is to 

improve the solubility of the GnP in the aqueous solvents. The PLE particles have the capacity to 

be adsorbed onto the carbon surface and prevent graphene-graphene interaction. Thus, the PLE 

particles can coat the GnP surface and functionalize it noncovalently [129]. This coating of the 

graphene particles can reduce the amount of adsorbed Mg+2 onto the graphene surface and reduce 

the effect of the GnP on the compressive strength. 

 Another series of the MPC specimens are prepared by adding the PLE alone in order to 

investigate the influence of the used surfactant on the compressive strength of the paste. Although 

the amount of the used surfactant is tiny, the results demonstrate that the addition of the PLE can 
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impact the mechanical properties of the MPC paste. Figure 33 shows the effect of the PLE content 

on the compressive strength of the MPC paste. The compressive strength decreases when the PLE 

content increases. For example, using 0.05 wt% of the PLE which is the required amount to prepare 

an MPC mixture with 0.5wt % of GnP can reduce the compressive strength by 41%. However, the 

performance of the MPC specimens prepared by using the PLE and the GnP together is better than 

those specimens that prepared with the GnP alone. This discrepancy in the results can be explained 

as follows; the using of GnP powder and without using the PLE can either hinder the reaction by 

absorbing the Mg+2 particles or reduce the amount of the available water which is required to 

complete the acid-base reaction. Therefore, the amount of the k-struvite will be reduced in both 

cases leading to a considerable reduction in the compressive strength. Similarly, using the GnP 

with the PLE has an adverse influence on the compressive strength due to reducing the amount of 

reacted particles. However, the presence of the PLE can reduce the effect of the graphene by 

coating the GnP and hindering the physical interaction between the GnP and the Mg+2 particles. In 

the same manner, the presence of the GnP can also reduce the effect of the PLE by its tendency to 

absorb the PLE particles due to the electrostatic force between them [129]. Thus, adding the PLE 

with the GnP particles is better than adding the GnP alone or the PLE alone. 
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Figure 32. Influence of GnP content on the compressive strength of the MPC paste. 

 

Figure 33. Influence of PLE content on the compressive strength of the MPC paste. 
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4.5 PHASE ANALYSIS  

 

Figure 34 shows the XRD analysis of the 7-days cured MPC paste with different GnP 

contents and without using the PLE. All the three specimens have the same M/P, W/P, and B/M 

ratios while the GnP/S ratio is changed gradually. According to the literature databased for the 

XRD analysis, the results demonstrate that the main reaction product of the MPC system is the 

well-known k-struvite (MgKPO4*6H2O). Also, the XRD patterns show a firm MgO diffraction 

characteristic peaks which indicates that the MPC system has a high amount of unreacted magnesia 

content.  

It can be seen that the MPC specimen with no GnP content exhibited stronger k-struvite 

characteristic peaks which indicates that more k-struvite could be formed in this specimen. Maybe 

this observation can explain why the MPC paste with no GnP has more compressive strength. On 

the other side, the diffraction peak intensity of k-struvite for 0.025wt% of GNP specimen is weaker 

than no GnP containing specimen. The amount of crystalline k-struvite, in this case, is much lower. 

As a result, when the GnP/S ratio increases, the crystallinity of the k-struvite decreases. On the 

other hand, the amount of unreacted magnesia is found to be much higher for the GnP containing 

MPC. Therefore, adding the GnP to the MPC paste can reduce the amount of the crystalline k-

struvite and change the phase composition leading to a significant reduction in the compressive 

strength. Although the XRD results demonstrate that there is no any chemical reaction between 

the graphene and the raw materials of the MPC paste (MgO, KDP, and B), but there is a significant 

influence of GnP on the phase formation of the MPC system. The presence of GnP can reduce the 

amount of reacted particles and the amount of the crystalline k-struvite. This reduction in the final 

product is due to the tendency of the dissolved particles in the MPC system (Mg+2 and PO4
-3) to 

stick with the graphene surface during the hydration process [130 and 131]. This interaction 
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between the graphene and the MPC ingredients can reduce the amount of the reactant particles and 

produce less amount of k-struvite. Since the k-struvite is responsible for the strength and the 

durability of the MPC, the compressive strength also is decreased. 

The X-ray diffractograms for another series of MPC paste is presented in figure 35. This 

series is prepared by adding different percentages of the PLE, and without adding any GnP. All 

the MPC compound proportions are kept constant while the amount of the PLE is increased 

gradually. Based on the shown XRD patterns, there is an adverse effect of the PLE on the k-struvite 

formation. As the PLE content increases, the intensity of the k-struvite characteristic peaks 

decreases. This observation could explain the low compressive strength of these two specimens.  

Moreover, the influence of implementing the GnP with the PLE has been evaluated using 

the XRD analysis. Figure 36 illustrates the XRD diffractograms of B6360, SR50, and GS50 

specimens respectively. The MPC specimen with no GnP/PLE content (B6360) exhibits the 

strongest k-struvite characteristic peaks. After adding the PLE to the mixture (SR50), the 

diffraction peaks intensities of the k-struvite have been reduced. When the GnP and the PLE are 

used together (GS50), the diffraction peaks intensities of the k-struvite are found to be higher. 

Thus, adding the GnP and the PLE together can lead to a better k-struvite formation and stronger 

MPC pastes compared to adding the PLE or the GnP alone. This observation is attributed to the 

fact that the presence of the PLE can reduce the effect of the graphene by coating its particles and 

hindering the physical interaction between the GnP and the Mg+2 particles. In this case, the amount 

of the absorbed Mg+2 particles are becoming less leading to provide more magnesium ions in the 

system and produce more k-struvite.  
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Figure 34. XRD diffractograms of the MPC pastes with different GnP contents and without 

using the surfactant. 

 

Figure 35. XRD diffractograms of the MPC pastes with different surfactant contents. 
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Figure 36. XRD diffractograms of B636, SR25, and GS25 specimens respectively. 
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results obtained from the XRD analysis and can demonstrate that there is no any chemical reaction 

between the GnP and the MPC paste components.  

 

Figure 37. FTIR spectra of MPC paste with GnP content. 

 

4.7 MICROSTRUCTURE ANALYSIS 

The microstructure of the GnP modified MPC paste without using the PLE is presented in 
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Figure 38. The microstructure of the GnP modified MPC paste without using the PLE. 

 

After the presence of the PLE, The SEM images have not shown any GnP material. Figure 

39 shows the microstructure of the GnP modified MPC pastes with the presence of the PLE. Also, 

two kinds of material have observed using SEM. The first one, the dashed-line rectangle, is the 

typical cementitious material for the MPC paste while the second one, the solid-line rectangle, is 

a smooth surface material without any crystalline shape. The SEM analysis shows a prism-like 

(c) (d) 

(a) (b) 
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crystalline structure of k-struvite and some of unreacted MgO (figure 39. b). It should be noted 

that the prevalence of the unreacted MgO is found to be lower compared to the previous specimen. 

On the other hand, no any crystalline shapes have been observed for the smooth surface spots 

(figure 39. c and d). These smooth surface spots could be a coated GnP material by the PLE and a 

combination of unreacted MgO and amorphous k-struvite. 

 

 

 

Figure 39. The microstructure of the GnP modified MPC paste with the PLE. 

(a) (b) 

(c) (d) 
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4.8 THERMAL CONDUCTIVITY  

 The thermal conductivity test was conducted for a series of MPC specimens with different 

GnP dosages to study the effect of the GnP on the thermal behavior of the MPC paste. Table 11 

summarizes the experimental results of the thermal conductivity test where figure 40 presents the 

thermal conductivity of the MPC as a function of GnP added. It can be observed that the thermal 

conductivity of the MPC pastes increased with the increasing of GnP content. The addition of 0.1 

wt%, 0.25wt%, and 0.5 wt% of GnP improved the thermal conductivity of the pastes by 3%, 12%, 

and 16% respectively. This enhancement in the thermal conductivity is attributed to the high 

specific surface area of GnP particles which can fill the nanopores inside the system and improve 

the thermal conductivity and diffusivity of the MPC system [128]. 

 

Table 11. Experimental results for thermal conductivity test of dry MPC paste. 

Sample ID 

Dry Density 

(Kg/m3) 

Temperature 

(ºC) 

Thermal 

Conductivity 

(W/mk) 

Thermal 

Diffusivity 

(mm2/s) 

Disk Res. 

Ω 

B6360 2204.475 21.2 1.776 0.689 13.46 

GD10 2265.498 21.2 1.824 0.7383 13.49 

GD25 2219.73 21.2 1.987 0.7745 13.44 

GD50 2250.242 21.2 2.062 0.9248 13.45 
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Figure 40. Influence of GnP content on the thermal conductivity of the MPC paste.
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CHAPTER V 

USING A HYBRID SYSTEM OF BORIC AND ACETIC ACID TO ENHANCE THE INITIAL 

SETTING TIME OF THE MPC PASTE. 

 

5.1 INTRODUCTION AND LITERATURE REVIEW   

In the last few decades, magnesium phosphate cement (MPC) was known for rapid 

rehabilitation of the concrete structures [62]. Traditionally, MPC was used as a repair material 

including rehabilitation of civil structures, concrete pavement, and damaged runways. This 

because the MPC has very rapid setting time in addition to its computability with a wide range of 

construction material [38]. For instance, the MPC material is known for its excellent bonding to 

old concrete structures [46]. 

As previously mentioned, the setting time of the MPC system is very rapid. Usually, the 

MPC paste/mortar cannot be used without a retarder. This because the maximum initial setting 

time that can be obtained for an MPC mixture with an adequate flowability is not more than 4 

minutes. The most popular retarders suggested for MPC mixes is the boron compounds including 

borax (Na2B4O7·10H2O) and boric acid (H3BO3). Occasionally, even with the use of a retarder, the 

setting time of the MPC paste may not enough to use the paste in the various applications. Based 

on the study that mentioned in chapter three from this research, by using the boric acid, the 

maximum setting time for the MPC paste with an adequate flowability and acceptable compressive 

strength is in a range of 15 to 18 minutes. Furthermore, a similar result has been achieved when 

the borax is used to retard the MPC paste. Li et al. [78] found that the improvement in the setting 
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time due to the use of borax was not enough to handle the paste for real-life applications the 

maximum setting time that could be achieved, by using borax compound, is 7 minutes. Thus, 

searching for new compatible additives/retarder to control and retard the reaction without affecting 

the other properties is still desperately needed. 

There are only a few studies that have focused on the impact of new additives/retarders on 

the initial setting time of the MPC paste. Tan et al [77]. used a hybrid system of borax and 

polycarboxylate superplasticizer (PCE) to improve the fluidity loss and increase the setting time 

of the MCP paste. They reported that the PCE can delay the reaction of the MPC by improving the 

stability of the magnesium-based borate layer which can prevent the dissolution of the MPC ions.  

Jun et al. [83] reported that the used of acetic and boric acid together improved the setting time 

and the microstructure of the system and leaded to better mechanical strength.    

In this chapter, the acetic acid is used with the boric acid to enhance the initial setting time 

of the MPC system. At first, the acetic acid is used alone to investigate its influence on the MPC 

paste behavior. Then, a hybrid system of acetic and boric acids is used with different MPC mixtures 

to improve the setting behavior of the MPC. The study includes physical, mechanical, chemical, 

and thermal characterization of the MPC paste with different acetic acid dosages in addition to its 

microstructure.  

 

5.2 SPECIMENS PREPARATION 

In this chapter, the MPC specimens are prepared by mixing MgO, KDP, boric acid, acetic 

acid, and distilled water. Based on the study mentioned in chapter three from this research, the 

optimum B/M ratio is found to be 5%. Therefore, the B/M ratio of 5% has been used for the hybrid 

system in order to improve the initial setting time of the system. The amount of acetic acid is 
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calculated based on the concentration of acetic acid in the aqueous solution (AAC). Three different 

series of MPC paste are designed and prepared to study the influence of acetic acid. For each series, 

the M/P, W/P, and B/M ratios are kept constant, while the acetic acid concentration is changed for 

each specimen. The first series (A3) is prepared to investigate the influence of using acetic acid 

alone on the MPC paste behavior. In this series, no boric acid is used with the MPC paste while 

the AAC is increased gradually from 0 to 7.5%. The second and the third series (AB3-22 and AB6-

36) are used to investigate the influence of the hybrid system on low and high M/P ratio MPC 

specimens. In the second series; the M/P, W/P, and B/M ratios are selected to be 3, 2.2, and 5% 

respectively while the AAC is changed from 0 to 7.5%. In the third series; the M/P, W/P, and B/M 

ratios are selected to be 6, 3.6, and 5% respectively and the ACC in increased gradually from 0 to 

7.5%. By selecting these W/P molar ratios, both series are having almost the same fluidity. The 

mix proportions of the acetic acid modified MPC specimens are shown in table 12. 

  

Table 12. The mix proportions of the acetic acid modified MPC specimens. 

MPC-Series Sample ID M/P a W/P a B/M b (%) AAC c (%) Flow 

A3-22 

A32200 3 2.2 0 0 Over 

A32225 3 2.2 0 2.5 Over 

A32250 3 2.2 0 5 Over 

A32275 3 2.2 0 7.5 Over 

AB3-22 

AB3225000 3 2.2 5% 0 116 

AB3225025 3 2.2 5% 2.5 116 

AB3225050 3 2.2 5% 5 110 



115 

 

 

AB3225075 3 2.2 5% 7.5 109 

AB6-36 

AB6365000 6 3.6 5% 0 111 

AB6365025 6 3.6 5% 2.5 109 

AB6365050 6 3.6 5% 5 106 

AB6365075 6 3.6 5% 7.5 106 

▪ a molar ratio.  

▪ b mass ratio between boric acid and MgO. 

▪ c acetic acid concentration in the aqueous solution. 

 

5.3 INFLUENCE OF ACETIC ACID ON THE MPC SETTING BEHAVIOR 

Figure 41 shows the influence of using acetic acid with/without the presence of boric 

acid on the initial setting time of the MPC paste. At first, the acetic acid is used alone in order 

to investigate its influence on the initial setting time. It can be seen, that the addition of the 

acetic acid can increase the initial setting time of the pastes. The setting time test indicates that 

the initial setting time of the pastes increases by increasing the concentration of the acetic acid. 

For example, using an acetic acid concentration of 5% can increase the initial setting time of 

the paste from 3 minutes to 12 minutes. On the other hand, the addition of the acetic acid alone 

has the ability to increase the volumetric expansion/cracks of the MPC specimens during the 

curing process. Figure 42 shows the MPC cube specimens prepared with different acetic acid 

concentrations. As shown in the figure, when the AAC increases, the expansion cracks of the 

cube surfaces increase. Moreover, it can be observed that using 7.5% of AAC can cause a high 

volumetric expansion of the paste during the curing process leading to early failure of the MPC 

specimen. On the contrary, adding the boric acid to the same mixtures can prevent these 
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expansion cracks. Figure 43 shows the MPC cube surfaces of an MPC specimen with 7.5% of 

acetic acid and 5% of the boric acid. It can be observed that the volumetric expansion cracks 

are disappeared when the boric acid is added.  

 

 

Figure 41. Influence of using acetic acid with/without the presence of boric acid on the initial 

setting time of the MPC paste. 

 

Figure 42. Expansion cracks of MPC specimens with different AAC. 
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Figure 43. MPC paste with 5% of B/M ratio and 7.5% of ACC. 

 

After achieving these observations, only the hybrid system is used to retard the MPC 

paste. Moreover, the using of both acids to retard the MPC system is found to be more efficient. 

For example, at M/P and W/P ratios of 3 and 2.2 respectively, using an AAC of 5% can increase 

the initial setting time from 3.5 to 12 minutes, while adding 5% of boric acid to the same mixture 

can increase the initial setting time from 12 to 31 minutes. Thus, using a hybrid system of both 

acids is found to be more efficient regarding the initial setting time. Furthermore, the hybrid 

system of both acids is evaluated with a high M/P ratio MPC paste. Figure 44 illustrates the 

influence of AAC on the initial setting time of a high M/P ratio MPC paste with the presence 

of the boric acid. Based on the experimental results, the hybrid retardation system is found to 

be very active to improve the setting behavior of an MPC paste with high M/P ratio. For 

example, the initial setting time of the paste has increased from 15 minutes to 45 minutes by 

adding 7.5 % of acetic acid and 5% of boric acid to the mixture. 
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Figure 44. Influence of using acetic acid with boric acid on the initial setting time of the MPC 

paste. 

 

5.4 COMPRESSIVE STRENGTH 

Since the using of both acids can prevent the volumetric expansion cracks and increase the 

initial setting time efficiently, only the influence of the hybrid system on the compressive strength 

of the MPC paste has been studied and illustrated in this research. As previously mentioned, the 

optimal B/M ratio of 5 % is used with different AAC while the influence of the hybrid system has 

been studied with low and high M/P ratio MPC paste (AB3-22 and AB6-36 series respectively). 

Figure 45 show the influence of the hybrid retardation system on the compressive strength 

of AB3-22 and AB6-36 series respectively. For both series, the compression test illustrates that 

the compressive strength of the MPC paste decreases when the AAC increases. Moreover, 

increasing the AAC can decrease the initial stiffness and the toughness of the MPC specimens. For 

B3-22 series, adding 2.5%, 5% and 7.5% of AAC can decrease the compressive strength by 2%, 

60%, and 87% respectively. For AB6-36 series, adding 2.5%, 5% and 7.5% of AAC can decrease 
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the compressive strength by 35%, 45, and 53% respectively. Thus, the influence of the acetic acid 

on the compressive is much higher with these MPC specimens that has low M/P ratio. Therefore, 

the using of the acetic acid is more suitable with high M/P molar ratio. For example, adding 5% 

of AAC with M/P, W/P, and B/M ratios of 6, 3.6, and 5% respectively can increase the initial 

setting time to 25 minutes and reduce the compressive strength to 31 MPa which can meet the 

requirement to use the MPC paste for a wide range of real-life applications.  

 

 

Figure 45. Influence of acetic acid concentration on the compressive strength of the MPC paste 

with the presence of the boric acid. 

 

5.5 PHASE ANALYSIS 

Figure 46 show the XRD results for MPC specimens with no acetic acid, 2.5% of AAC, 
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characteristic peaks which indicates that a lot of unreacted magnesia has been existed in the MPC 

pastes. On the other hand, the XRD analysis demonstrates that no acetate-containing crystalline 

phases have formed during the reaction process. However, the using of the acetic acid can change 

the phase compositions of the MPC paste specimens. It can be seen that the MPC specimen with 

no acetic acid exhibit stronger k-struvite characteristic peaks. Furthermore, some of the k-struvite 

diffraction peaks are disappeared when the boric acid is added. For example, the k-struvite peaks 

that located at about 21.2, 27.6, 33.5, and 34.3 2θ are disappeared when the AAC is 7.5%. This 

observation concludes that the existence of the acetic acid leads to poor crystal growth and maybe 

less amount of the K-struvite phase. On the other side, the MPC specimen that has high AAC 

exhibits stronger KDP characteristic peak which indicates that the presence of the acetic acid 

increases the amount of unreacted KDP. With increasing the AAC, the amount of the unreacted 

MgO and KDP increase where the amount of the K-struvite decreases. Thus, the using of the acetic 

acid can prevent the contact between the MgO and KDP particles leading to reduce the amount of 

the K-struvite. Since the K-struvite is responsible for the strength and durability of the MPC paste, 

reducing the amount of the K-struvite will reduce the compressive strength of the MPC specimens. 

 

Figure 46. The XRD patterns for MPC paste with low M/P ratio. 
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5.6 THERMAL CONDUCTIVITY  

 Thermal conductivity test is conducted for different MPC specimens in order to study the 

influence of the acetic acid on the thermal behavior of the MPC paste. Table 13 summarize the 

results of the thermal conductivity test of the MPC paste with different AAC where figure 47 

presents the thermal conductivity and diffusivity of the MPC paste as a function of acitic acid 

added. The experimental results indicate that the thermal conductivity of the MPC paste decreases 

when the AAC increases. The addition of 2.5% and 7.5 % of AAC can decrease the thermal 

conductivity from 1.31 to 1.29 and from 1.31 to 0.96 W/mk respectively. Besides, the thermal 

diffusivity decreases by 28% when the AAC is 7.5%. This reduction in the thermal behavior may 

be attributed to the effect of the acetic acid on the dry density of the MPC paste. The dry density 

of the tested MPC specimens are shown in table 13. It is clear that the using of the acetic acid can 

decrease the dry density of the MPC specimens by increasing the internal voids. One possible 

reason of this reduction is the high thermal expansion of the acetic acid-containing specimens 

which can provide more voids in the paste and decrease its density. For example, adding 7.5% of 

AAC can reduce the dry density of the paste by 9%. 

Table 13. Experimental results for thermal conductivity test of dry MPC paste. 

Sample ID Dry Density 

(Kg/m3) 

Temperature 

(ºC) 

Thermal 

Conductivity 

(W/mk) 

Thermal 

Diffusivity 

(mm2/s) 

B32250 2204.48 21.2 1.31 0.727 

AB3225025 2135.82 21.2 1.29 0.610 

AB3225075 2013.78 21.2 0.96 0.523 

 



122 

 

 

 

Figure 47. Influence of acetic acid concentration on the thermal conductivity of the MPC paste.
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CHAPTER VI 

ARTIFICIAL NEURAL NETWORKS (ANNS) 

 

6.1 INTRODUCTION AND LITERATURE REVIEW   

 

Artificial neural network (ANN) is an intelligent artificial system that has been used to 

solve and analyze a wide variety of mathematical and statistical problems. The idea of using 

artificial neural networks in various fields came from neural networks in animals and human brains 

[85]. ANN is very useful when used to create a model for a complex system especially when the 

relationship between the input and output groups is indirect or incomprehensible. Moreover, the 

ANN techniques have the ability to describe nonlinear relations between several variables. ANN 

consists of four main components including (1) neurons, (2) connections, (3) propagation function, 

and (4) learning rule. 

ANN is composed of several processing nodes called neurons. All of these neurons are 

connected to each other through weighted connection lines to establish an intelligent network that 

capable of predicting the appropriate output. The function of these connection lines is transferring 

the outputs of several neurons to the input of the other neurons, where the input values are 

computed by the propagation functions. The learning rule is the used algorithm which adjusts and 

modifies the connection weights and threshold values during the several iterations. 

Based on connection type classification, there are two types of ANNs; feedforward neural 

networks and feedback neural networks. In the feedforward neural network, each neuron in the 

same layer is receiving the input from the previous layer and providing the output for the next 
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layer to be used as input again. In the feedforward networks, all the neurons are engaged in a set 

of layers including inputs layer, middle (hidden) layers, and outputs layer. There are no 

connections between the neurons in the same layer. Usually, feedforward neural networks are used 

for approximations and predictions. In feedback neural networks, each neuron is receiving the 

input from all the previous neurons and providing one output for all next neurons to be used as one 

of their inputs. In other words, if the total number of neurons is n, each neuron should have (n-1) 

inputs and one output. Usually, feedback neural networks are used as optimization tools. ANN can 

be applied to accomplish many tasks in different engineering fields such as designing, forecasting, 

prediction, statistics, clustering, and classification [86]. In order to get an efficient ANN model, 

the datasets should be divided into three groups included training, testing, and validation data 

points [87]. At first, the relationships between each node will be generalized by using the training 

datasets to achieve the initial estimation for data patterns. Then the testing datasets will be 

processed to produce approximately correct estimation for the data patterns and to compromise the 

relations between each node. Finally, the model will be validated using the validation datasets to 

ensure that the model is effective and can predict accurate outputs. 

Recently, ANN has been used widely to model many engineering experiments included 

concrete and construction areas. Many of these models have been prepared to predict the fresh and 

hardened properties of cement pastes and mortars [88]. Onal and Ozturk utilized an artificial neural 

network analysis to find the relationship between microstructural properties and compressive 

strength values of cement mortar [85]. Lee used the ANN technique to predict the mechanical 

strength of concrete cubes [89]. Alilou et al. used the ANN technique to predict the compressive 

strength of concrete after 28 days by using the third day compressive strength as an input [132]. 

Chopra et al. developed an ANN model to predict the compressive strength of concrete. They 
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reported that the using of ‘Levenberg-Marquardt’ algorithms to predict the concrete compressive 

strength can provide more than 95% accuracy [133]. Alshihri et al. evaluated the accuracy of 

predicting the compressive strength of lightweight concrete (LWC) using the ANN technique. 

They reported that the ANN technique is a sufficient tool for predicting the compressive strength 

of LWC [134]. In the last few years, the using of ANN technique has gone further. Dias and 

Pooliyadda developed an ANN model to estimate the mechanical strength and the flowability of 

high strength concrete blended with chemical admixtures and mineral additives [91]. Mohamed et 

al. utilized an ANN model to predict the surface area fraction and the phases correlation functions 

of cement material. Their model proved that the ANN techniques are beneficial in predicting the 

SEM images and the related correlation functions [90]. However, there is no 

mathematical/statistical model is found in the literature which describes the physical and the 

mechanical behavior of the MPC material. 

MPC is very sensitive to the water and magnesia contents, and it can be affected by 

changing the proportions between MPC components. The hardened and fresh properties of MPC 

are highly dependent on the M/P ratio, W/P ratio, and B/M ratio. Moreover, these properties can 

be highly affected by using one or more of the compatible additives. On the other side, artificial 

neural network (ANN) has been utilized in a very emerging technological field, where the potential 

of connecting a customized material science research to real-world applications is becoming a 

necessity.  

In this chapter, three databases have been used to develop the ANN models. For each 

database, two ANN models have been optimized, in the first model the input is the MPC paste or 

mortar ingredients, and the output is the predicted performance of interest; in the second model 
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the input is the performance of demand, and the output is the mix ingredients. For this study three-

layers, feed-forward error backpropagation ANN model is developed utilizing a TR-SEQ1 model.  

 

 

6.2 EXPERIMENTAL PROGRAM  

As previously mentioned, the behavior of the MPC paste specimens can be driven by three 

main factors including magnesia to phosphate molar ratio (M/P), water to solid mass ratio (W/S) 

and boric acid to magnesia mass ratio (B/M). In this paper, the authors chose to represent the MPC 

pastes ingredients in molar ratios rather than the mass ratios terminology to capture the impact of 

the different MPC mix proportions (M/P and W/P ratios) on the acid-base reaction. 

The selected MPC specimens for the ANN models are prepared using different proportions 

of the MPC main ingredients including magnesia to phosphate molar ratio (M/P), water to 

phosphate ratio (W/P), and boric acid to magnesia ratio (B/M). Moreover, two different additives 

are used to improve the performance of the MPC system including graphene nanoplatelets (GnP), 

and acetic acid (AA). The content of each additive is calculated based on different criteria such as; 

GnP to total solid ratio (GnP/S), and AA concentration (AAC) in the aqueous solvent. For each 

MPC specimen, one of the proportions between the main MPC ingredients/additives is changed 

while all the others are kept constant in order to investigate the influence of that proportion on the 

physical and mechanical properties of the MPC paste. 

The mechanical and physical properties of several MPC paste mixtures are measured and 

recorded by following a comprehensive experimental program. The measured physical properties 

are: (1) the workability; which measured by the flow table test, and (2) the initial setting time of 

the fresh mixtures which measured by the Vicat approach. The mechanical properties of the MPC 

pastes are represented by the compressive strength of the 2" cube specimens which measured by 
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the 810 Material Testing System (MTS). Figure 48 shows the three testing machines for the 

prepared MPC specimens. 

 

   

Figure 48. MPC testing program; a) Initial setting time test, b) flow table test, and c) 

compression test. 

 

6.3 DATABASE DESCRIPTION 

Since the mechanical and the physical properties are measured for three times of every 

MPC mixture, a total of 138 data sets are collected and used to develop the ANN models. Each 

data set consists of 8 different parameters/properties including (1) M/P molar ratio, (2) W/P molar 

ratio, (3) B/M mass ratio, (4) AAC, (5) GnP/S ratio, (6) flow, (7) initial setting time, and (8) 

compressive strength. If one or more additives are not used in any data set, a value of 0% would 

be reported. The 138 data sets can be classified based on the used additives as follows: (1) 72 data 

sets with different B/M ratios, (3) 42 data sets with different AAC and 5% of B/M ratios, and (4) 
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24 data sets with different GnP/S and 5% of B/M ratios. Table 14 summarizes the range of each 

MPC parameters/properties. 

Table 14. The ANN modeling range of each MPC parameters/properties. 

 M/P 

ratio 

W/P 

ratio 

B/M 

Ratio 

(%) 

AAC 

(%) 

GnP/S 

ratio 

(%) 

Flow 

(%) 

Initial 

setting 

time 

(min) 

Compressive 

strength 

(MPa) 

Minimum 

value 

2 1.5 0 0 0 10 1 3.4 

Maximum 

value 

10 5.2 10 7.5 0.5 150 60 55 

 

In this work, three different databases are used to develop the ANN models. In the first 

database (database # 1), each physical or mechanical MPC property is the average of three different 

measurements for the same MPC mixture. As a result, the 138 data sets are shortened to become 

46. Then, the 46 data sets are divided into three different groups including training, testing, and 

validation data sets. The 46 data sets can be classified based on the used additives as follows (1) 

42 data sets with different B/M ratios, (2) 14 data sets with different AAC, and (3) 8 data sets with 

different GnP/S ratios. In the second database (database # 2), the available 46 data sets have been 

manipulated to overcome the lack of sufficient data that represents the influence of the used 

additives. In other words, there is not enough data to describe the MPC behavior when the acetic 

acid or the GnP is added. For example, there are only 14 data sets available to describe the MPC 

behavior using acetic acid and only 8 data sets available to describe the influence of the GnP. 
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Therefore, all the data sets are divided based on the additive’s classification. Then, some of the 

data sets are repeated in order to increase their weight and let the neural network understand their 

influence. These new data sets have been built as follows: 

(1) The 24 data sets for different B/M ratios have been repeated for two times. 

(2) The 14 data sets for different acetic acid concentrations have been repeated for three 

times. 

(3) The 8 data sets for different GnP/S ratios have been repeated for three times.     

As a result, a total of 114 data sets are achieved and used to develop another two ANN models. In 

the third database (database #3), all the available 138 data sets are sorted and used to develop the 

ANN models.   

After sorting and classifying the data sets, two ANN models are developed and presented 

for each database. In the first models (ANN1-1, ANN2-1, and ANN3-1 for database #1, 2, and 3 

respectively) the input variables are the MPC paste ingredients while the output variables are the 

predicted performance of interest. In the second models (ANN1-2, ANN2-2, and ANN3-2 for 

database #1, 2, and 3 respectively) the input variables are the performance of demand and the 

output variables are the mix ingredients. Table 15 summarizes the input and the outputs of ANN1-

1, ANN2-1, and ANN3-1 models while table 16 summarizes the input and the outputs of ANN2-

2, ANN2-2, and ANN3-2 models. 
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Table 15. Input/outputs of ANN1-1, ANN2-1, and ANN3-1 models. 

Input Outputs 

M/P molar ratio Flow (%) 

W/P molar ratio Initial setting time (min) 

B/M ratio (%) Compressive strength (MPa) 

AAC (%) - 

GnP/S ratio (%) - 

 

Table 16. Input/outputs of ANN1-2, ANN2-2, and ANN3-2 models. 

Input Outputs 

Flow (%) M/P molar ratio 

Initial setting time (min) W/P molar ratio 

Compressive strength (MPa) B/M ratio (%) 

- AAC (%) 

- GnP/S ratio (%) 

 

6.3 REGRESSION MODELS 

 

In this work, a set of linear regression models are developed using Excel application in 

order to evaluate the efficiency of the used data sets in predicting the behavior of the MPC paste. 

Furthermore, this model can be used as a reference to evaluate the efficiency and the performance 

of the developed ANN models. Since a developing of one linear regression model to predict multi-

outputs is not possible, one linear regression model is developed for each output. The same 47 data 
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sets that used for the ANN models are used to develop the linear regression prediction models. The 

developed regression models are divided into two main groups. In the first group, a total of three 

regression models are developed to predict the mechanical and the physical properties of the MPC 

pastes using the MPC paste ingredients as an input. Table 17 shows the input and the outputs of 

the developed regression models in the first group. In the second group, a total of 5 regression 

models are developed to predict the mix ingredients and by using the MPC properties as an input. 

Table 18 shows the input and the outputs of the developed regression models of the second group. 

 

Table 17. Input/output variables of the first group regressions models. 

Model ID Input Outputs 

LN1 

M/P ratio 

(%) 

W/P 

ratio (%) 

B/M ratio 

(%) 

AAC 

(%) 

GnP/S ratio 

(%) 

Flow (%) 

LN2 

M/P ratio 

(%) 

W/P 

ratio (%) 

B/M ratio 

(%) 

AAC 

(%) 

GnP/S ratio 

(%) 

Initial setting time 

(min) 

LN3 

M/P ratio 

(%) 

W/P 

ratio (%) 

B/M ratio 

(%) 

AAC 

(%) 

GnP/S ratio 

(%) 

Compressive 

strength (MPa) 
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Table 18. Input/output variables of the second group regressions models. 

Model ID Input Outputs 

LI1 Flow (%) 

Initial setting time 

(min) 

Compressive strength 

(MPa) 

M/P ratio (%) 

LI2 Flow (%) 

Initial setting time 

(min) 

Compressive strength 

(MPa) 

W/P ratio (%) 

LI3 Flow (%) 

Initial setting time 

(min) 

Compressive strength 

(MPa) 

B/M ratio (%) 

LI4 Flow (%) 

Initial setting time 

(min) 

Compressive strength 

(MPa) 

AAC (%) 

LI5 Flow (%) 

Initial setting time 

(min) 

Compressive strength 

(MPa) 

GnP/S ratio 

(%) 

 
Table 19 summarizes the statistical measurements of the developed regressions models. 

The statistical analysis indicates that the available data cannot be represented using a set of linear 

regression models. Generally, the prediction of the physical and mechanical properties of MPC by 

using a set of regression models is not accurate. At first, the ANOVA test indicates that these three 

regression moles are significant. The significance F values are calculated to be 2.9x10-10, 6.3x10-

13, and 4.9x10-06 for LN1, LN2, and LN3 models respectively. These low values indicate that the 

models are significant in term of predicting experimental data sets. 

On the other hand, these models are not accurate in predicting the required output; and 

especially for the compressive strength. The R2 is calculated to be 0.69, 0.77, and 0.49 for LN1, 

LN2, and LN3 models respectively. On the other hand, predicting the mix proportions of the MPC 
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paste by using its properties cannot be performed by using the regression models. From the 

conducted ANOVA test, all the regression models of the second group have very high significance 

F values. These high values indicate that the developed models are not significant in term of 

predicting the required output. Moreover, the R2 of these five models is very low. For the second 

group models, the R2 is calculated to be 0.07, 0.16, 0.01, 0.74, and 0.02 for LI1, LI2, LI3, LI4, and 

LI5 respectively. 

 

Table 19. Statistical measurements of the developed regressions models. 

Model ID R2 Standard Error Significance F 

LN1 0.69 17.908 2.9x10-10 

LN2 0.77 5.292 6.3x10-13 

LN3 0.49 9.043 4.9x10-06 

LI1 0.07 2.408 0.109 

LI2 0.16 1.020 0.016 

LI3 0.01 1.939 0.473 

LI4 0.74 1.266 3.9x10-13 

LI5 0.02 0.013 0.230 

  

6.4 ANN MODEL DEVELOPMENT 

In this research, the different ANN models are developed and evaluated by using four 

different steps. In the first step, the available data sets are sorted based on the maximum and the 

minimum values for each parameter, and classified into three different groups including training, 
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testing, and validation. Then, the maximum number of hidden nodes (HN) is calculated using the 

following equation: 

𝑀𝑎𝑥. # 𝑜𝑓 𝐻𝑁 =  
# 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎+# 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎−# 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

# 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠+# 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠+1
 …. Eq (2) 

this equation can provide a good estimation of the maximum number of hidden nodes ± 1 in order 

to afford a stopping criterion regarding the maximum number of hidden nodes for each ANN 

model. In the second step, the feed-forward back-propagation algorithm is applied, and the 

optimum number of the hidden nodes are determined by using Najjar et al. procedure [98-100]. 

This step includes three different stages as follows: (1) the neural network is trained and tested 

using the selected data sets, while the number of the hidden nodes is changing from 1 to the 

calculated maximum number of hidden nodes ± 1 for each network, (2) the performance of each 

network is investigated based on the statistical measurements including the average of the square 

error (ASE), the main absolute relative error (MARE), and the coefficient of determination (R2), 

and (3) all the nural networks are collected and sorted based on the calculated ASE value from the 

lowest to the highest and the neural network that has the least ASE value is selected. In the third 

step, the selected neural network is validated using the validation data sets. In the fourth step, all 

the available data sets are used to train the model (training all) to improve the accuracy of the 

predicted value [98-100]. 

 

6.5 ANN NETWORK DEVELOPMENT OF DATABASE #1 

A total of 47 data sets are used to develop the first two ANN models (ANN1-1 and ANN1-

2). As previously noted, the 48 data sets are sorted based on the maximum and the minimum values 

for each parameter and divided into three groups as follows; (1) 24 data sets as a training, (2) 12 

data sets as a testing, and (3) 10 data sets as a validation data set. By using the Eq (2), the maximum 
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number of hidden nodes is calculated to be 3.67. Since the Eq (2) provide an estimation value, the 

maximum number of hidden nodes is selected to be 5. Finally, the adaptive technique is used to 

find the optimum number of hidden nodes, and the best network is selected to represent the data.  

 

6.5.1 ANN1-1 MODEL   

 ANN1-1 model is developed to predict the fresh and the hardened properties of the MPC 

pastes including flow, initial setting time, and compressive strength. The input and the outputs of 

this model are summarized in table 15. All the data sets are normalized and scaled in a range of 0-

1 due to using of the sigmoidal function. Moreover, the data sets that contain the maximum or the 

minimum of each variable have been included in the training data. The ANN model procedures 

for training and testing data sets have been run for five times by changing the number of initial 

nodes from one to five. Then, the best ANN model is selected based on the ASE value of testing 

data sets. The optimum number of HN is found to be five, and it is calibrated after 20000 iterations. 

As a result, the selected ANN model consists of five input nodes in the input layer, five nodes in 

the hidden layer, and three output nodes in the output layer. The corresponding statistical 

measurements for this model are ASEts of 0.0129, R2ts of 0.84, and MAREts of 31.88 for testing 

data sets; and ASEtr of 0.0025, R2tr of 0.93, and MAREtr of 15.85 for training data sets. Then, the 

model is validated and the statistical measurements for the validation data sets are calculated to be 

ASEval of 0.013, R2val of 0.77, and MAREval of 23.6. Table 20 shows the statistical 

measurements of the ANN1-1 model.      
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Table 20. Statistical measurements of ANN1-1 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

Ts/val 

ASE 

Com. 

Training-

testing 5-5-3 

With 

20000 

iterations 

15.85 31.88 0.93 0.84 0.0025 0.0129 0.0154 

Training- 

validation 

15.85 23.6 0.93 0.77 0.0025 0.0130 0.0155 

Training 

all 

17.28 NA 0.89 NA 0.0042 NA NA 

 

Figure 49 shows a comparison between the actual and the predicted data sets of ANN1-1 

model for the flow, the initial setting time, and the compressive strength respectively. The 

graphical accuracy shows that the ANN1-1 model is accurate in predicting the different MPC 

properties. The low scatter of data points around the equality line indicates that the ANN1-1 model 

is capable of predicting the physical and the mechanical properties of the MPC pastes. For the 

initial setting time prediction, the reason for the points gathering in a range of 0 to 15 minutes is 

the nature of the available data sets. The MPC paste is known for its rapid setting time. Therefore, 

most of the data sets have shown short initial setting time. Furthermore, the graphical accuracy 

figures show a good agreement between the actual and the predicted values of the validation data 

sets. On the other hand, the training all technique is applied to improve the accuracy of the selected 

ANN model. In this technique, all the available data sets are used to train the model while no 

testing or validation data is presented. The ANN results approved that the training all techniques 
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is able to improve the efficiency of the selected model and enhance the overall performance. The 

corresponding statistical measurements for the training all network are ASE(trall) of 0.0042, 

R2
(trall) of 0.89, and MARE(trall) of 17.28. The graphical accuracy of the training all network is 

shown in figure 50. 

 

  
 

 

Figure 49. ANN1-1(tr-ts-val) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 
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Figure 50. ANN1-1(training-all) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

A
ct

u
al

 f
lo

w
 (

%
)

Predicted flow (%)

a)

Training All

0

10

20

30

40

50

60

0 10 20 30 40 50 60
A

ct
u

al
 i

n
it

al
 s

et
ti

n
g
 t

im
e 

(m
in

)
Predicted intial setting time (min)

b)

Training All

0

10

20

30

40

50

60

0 10 20 30 40 50 60

A
ct

u
al

 C
o

m
p

re
ss

iv
e 

S
tr

en
g
th

 (
M

P
a)

Predicted Compressive Strength (MPa)

c)

Training All



139 

 

 

6.5.2 ANN1-2 Model   

ANN1-2 model is developed to predict the mix proportions between different MPC paste 

components in addition to three different retarder/additives. The input of this model is the MPC 

physical and mechanical properties including (1) flow (%), (2) initial setting time (min), and (3) 

compressive strength (MPa), where the outputs are: (1) M/P molar ratio, (2) W/P molar ratio, (3) 

B/M ratio (%), (4) AAC (%), and (5) GnP/S ratio (%). The input and the outputs of this model are 

summarized in table 16. The optimum number of HN is found to be 2, and it is calibrated after 200 

iterations. The corresponding statistical measurements for ANN1-2 model approved that the ANN 

technique is not capable to predict the desired outputs of this model. For example, the statistical 

measurements of the training data are ASEtr of 0.064, R2tr of 0.24, and MAREtr of 349.0. For 

testing data sets, the statistical measurements are ASEts of 0.031, R2ts of 0.35, and MAREts of 

335.73. The reason behind these results is attributed to the fact that each material property could 

be achieved by using multiple mix proportions. This non-uniqueness in the data sets can affect the 

efficiency of the neural networks. Furthermore, training the best ANN model using all the available 

data sets cannot improve the accuracy of the selected model. The statistical measurements of the 

training all network are calculated to be as follows: ASE(trall) of 0.043, R2(trall) of 0.28 and 

MARE(trall) of 336.46. Table 21 shows the statistical measurements of the ANN1-2 model.    
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Table 21. Statistical measurements of the ANN1-2 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

Ts/val 

ASE 

Com. 

Training-

testing 3-2-5 

With 200 

iterations 

349.00 335.73 0.24 0.35 0.064 0.031 0.095 

Training- 

validation 

349.00 323.27 0.24 0.34 0.064 0.032 0.096 

Training 

all 
336.46 NA 0.28 NA 0.043 NA NA 

 

Figure 51 shows a comparison between the actual and the predicted data sets of ANN1-2 

model for M/P, W/P, B/M, AAC, and GnP/S respectively. The graphical accuracy shows that the 

ANN1-2 model is inaccurate in predicting the mix proportions of the MPC paste ingredients. For 

example, for predicting M/P molar ratio, most of the predicted data points are in a range of 4 to 6. 

This wrong prediction is attributed to the fact that most of the available data sets have this range 

of M/P ratio while only a few data sets with M/P ratio of less or more than these values are 

available. Thus, training the model with a few data sets is not enough to let the network understand 

the real impact of each variables. Furthermore, there is no significant enhancement has been 

observed in the model accuracy after using the training all technique.  
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Figure 51. ANN1-1(tr-ts-val) model predictions accuracy for a) M/P ratio (%), b) W/P ratio (%), c) 

B/M ratio (%), d) AAC (%), and e) GnP/S ratio (%). 
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Figure 52. ANN1-1(training all) model predictions accuracy for a) M/P ratio (%), b) W/P ratio (%), 

c) B/M ratio (%), d) AAC (%), and e) GnP/S ratio (%). 
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6.6 ANN NETWORK DEVELOPMENT OF DATABASE #2 

As previously mentioned, database #2 has been built by repeating some of the data sets to 

give it more weight in the neural network process. All the data sets in this database are sorted based 

on the maximum and the minimum values for each parameter and divided into three groups 

including 69, 25, and 20 data sets as training, testing, and validation respectively. By using the Eq 

(2), the maximum number of hidden nodes is calculated to be 10.1. Since the Eq (2) provide an 

estimation value, the maximum number of hidden nodes is selected to be 11. Then, the optimum 

number of hidden nodes are determined using the adaptive technique and the best network which 

can represent the data has been selected based on the statistical measurements.  

 

6.6.1 ANN2-1 MODEL   

 ANN2-1 model has been optimized to predict the physical and mechanical properties of 

the MPC paste by using the MPC ingredients as inputs. Table 15 shows the inputs and the outputs 

of the ANN2-1 model. The ANN model procedures for training and testing data sets have been 

run for 11 times by changing the number of initial nodes from 1 to 11. Then, the best ANN model 

has been selected based on the ASE value of the testing data sets. The optimum number of HN is 

found to be 11, and it is calibrated after 20000 iterations. The neural network for testing data sets 

yields an ASEts of 0.0087, R2ts of 0.88, and MAREts of 27.96. Similarly, the statistical 

measurements of the training data sets are calculated to be ASEtr of 0.0008, R2tr of 0.97, and 

MAREtr of 5.4. After obtaining these results, the model has been validated using the validation 

data sets, and the statistical measurements are found to be as ASEval of 0.0086, R2val of 0.85, and 

MAREval of 25.14. All the statistical measurements of training, testing, and validation of ANN2-

1 model are summarized in table 22.  
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Table 22. Statistical measurements of the ANN2-1 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

Ts/val 

ASE 

Com. 

Training-

testing 5-11-3 

With 

20000 

iterations 

5.4 27.96 0.97 0.88 0.0008 0.0087 0.0095 

Training- 

validation 

5.4 25.14 0.97 0.85 0.0008 0.0086 0.0094 

Training 

all 

6.735 NA 0.98 NA 0.0007 NA NA 

 

Figure 53 shows the graphical comparison of the predicted data sets for flow, initial setting 

time, and compressive strength of ANN2-1 model respectively. The graphical accuracy shows a 

good agreement between the actual and the predicted values for all the outputs. Moreover, The 

ANN2-1 model is found to be very accurate in predicting the different MPC properties. The low 

scatter of data points around the equality line indicates that the ANN1-1 model is able to predict 

the physical and the mechanical properties of the MPC pastes. On the other hand, the training all 

technique is applied for this database to improve the accuracy of the selected model. As previously 

mentioned, all the available data sets are used to train the model while no testing or validation data 

is presented. The ANN for training all process yields an ASE(trall) of 0.0007, R2
(trall) of 0.98, and 

MARE(trall) of 6.735. The graphical comparisons of the predicted data sets for training all network 

are shown in figure 54. As shown in the graphical accuracy figures using of the raining all 
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technique has improved the accuracy of the model. For example, all the predicted data for the 

compressive strength are closer to the equality line when the training all technique is used.   

 

  

 

Figure 53. ANN2-1(tr-ts-val) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 
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Figure 54. ANN2-1(training all) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 
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6.6.2 ANN2-2 MODEL   

ANN2-2 model is developed to predict the mix proportions between different MPC paste 

components by using the measured MPC properties as inputs. Table 16 summarizes all inputs and 

outputs of this model. The optimum number of HN is found to be 11, and it is calibrated after 

20000 iterations. As a result, the selected ANN model consists of 3 input nodes in the input layer, 

11 nodes in the hidden layer, and 3 output nodes in the output layer. 

 The ANN2-2 model shows a better performance than the ANN1-2 model. The 

corresponding statistical measurements for ANN2-2 model are ASEts of 0.006, R2ts of 0.9, and 

MAREts of 305.4 for testing data sets, and ASEtr of 0.0038 R2tr of 0.89, and MAREtr of 323.13 

for training data sets. Although, the both models (ANN1-2 and ANN2-2) are having the same 

inputs/outputs, but the using of database #2 to develop the ANN2-2 model improves the prediction 

accuracy. The reason behind these results is attributed to replicating the acetic acid and the GnP 

data sets. These replications can modify the weight of these data sets and supply more information 

to the used algorithm. For example, both of R2tr and R2ts are increased from 0.35 and 0.24 to 0.9 

and 0.89 respectively when database #2 has been used. Besides, the statistical measurements of 

the validation data sets in this model are becoming much better. Table 23 summarizes the statistical 

measurements of the ANN2-2 model while figure 55 shows its graphical accuracy. The graphical 

accuracy shows a good agreement between the actual and the predicted values for most of the 

outputs, and the low scatters of the data points around the equality line indicates that the ANN2-1 

model is able to predict the proportions between different MPC components/additives by using the 

fresh and hardened properties. However, the model is not much accurate in predicting the high and 

low B/M ratio. One possible reason for that is the lake of the data sets that have high and low 

percentage of B/M ratio. On the other hand, training all technique is used to improve the accuracy 
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of the model. The statistical measurements indicate that using all the data to train the ANN model 

can improve its accuracy. The statistical measurements of the training all model are ASE(trall) of 

0.0035, R2(trall) of 0.91 and MARE(trall) of 304.4. Figure 56 shows a comparison between the 

actual and the predicted parameters for ANN2-2(training all)  

 

Table 23. Statistical measurements of the ANN2-2 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

ts/val 

ASE 

Com. 

Training-

testing 3-11-5 

With 

20000 

iterations 

305.4 323.13 0.89 0.90 0.0038 0.006 0.009 

Training- 

validation 

305.4 271.8 0.89 0.82 0.0038 0.0038 0.003 

Training 

all 

303.4 NA 0.92 NA 0.0035 NA NA 
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Figure 55. ANN2-2(tr-ts-val) model predictions accuracy for a) M/P ratio, b) W/P ratio, and c) 

B/M ratio, d) AAC ratio, and e) GnP/S ratio. 
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Figure 56. ANN2-2(training all) model predictions accuracy for a) M/P ratio, b) W/P ratio, and c) 

B/M ratio, d) AAC ratio, and e) GnP/S ratio. 

2

4

6

8

10

2 4 6 8 10

A
ct

u
al

 M
/P

 r
at

io

Predicted M/P ratio

a)

Training all

1.4

2.4

3.4

4.4

5.4

1.4 2.4 3.4 4.4 5.4

A
ct

u
al

 W
/P

 r
at

io

Predicted W/P ratio

b)

Training all

0

2.5

5

7.5

10

0 2.5 5 7.5 10

A
ct

u
al

 B
/M

 r
at

io
 (

%
)

Predicted B/M ratio (%)

c)

Training all

0

2.5

5

7.5

0 2.5 5 7.5

A
ct

u
al

 A
C

C
 (

%
)

Predicted ACC (%)

d)

Trainin

g all

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

A
ct

u
al

 G
N

P
/S

 r
at

io
 (

%
)

Predicted GnP/S ratio (%)

e)

Training all



151 

 

 

6.7 ANN NETWORK DEVELOPMENT OF DATABASE #3 

Database #3 consists of 138 data sets; each three data sets represent three different 

measurements of the MPC properties for the same mixture. As a result, a total of 138 data sets are 

collected and sorted based on the maximum and the minimum values for each variable and divided 

into three groups including 83 data sets for training, 31 data sets for testing, and 24 data sets for 

validation. The maximum number of hidden nodes is calculated to be 12.3; therefore, the 

maximum number of hidden nodes is selected to be 13. Then, the optimum number of hidden 

nodes is determined using the adaptive technique. 

 

6.7.1 ANN3-1 MODEL   

 ANN3-1 model has been developed to predict the fresh and the hardened properties of 

different MPC mixtures by using the MPC mix proportions as inputs. All the inputs and the outputs 

of this model are summarized in Table 15. In order to determine the best ANN model, the neural 

network is trained and tested for 13 different times. Then, the best network is selected based on 

the ASE value of the testing data sets. For ANN3-1 model, the optimum number of HN is 

determined to be 13, and it is calibrated after 1100 iterations. The statistical results show that the 

ANN3-1 model is very accurate in predicting the MPC’s physical and mechanical properties. For 

ANN3-1 model, R2ts, R2tr, and R2val are calculated to be 0.96, 0.99, and 0.95 respectively. 

Moreover, the model yields an average square error (ASE) of 0.0017, 0.00066, and 0.0018 for 

testing, training, and validation respectively. All the statistical measurements of ANN3-1 model 

are summarized in table 24.  
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Table 24. Statistical measurements for ANN3-1 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

ts/val 

ASE 

Com. 

Training-

testing 5-13-3 

With 

1100 

iterations 

6.40 9.96 0.99 0.96 0.00066 

0.001

7 

0.0023 

Training- 

validation 

6.40 8.10 0.99 0.95 0.00066 

0.001

8 

0.0025 

Training 

all 

7.99 NA 0.97 NA 0.00103 NA NA 

 

Figure 57 shows a comparison between the actual and the predicted data sets of ANN3-1 

model for flow, initial setting time, and compressive strength respectively. It can be seen that a 

good agreement between the actual and the predicted values are achieved for all the outputs; while 

the low scatter of the data points around the equality line can demonstrate the high accuracy of the 

ANN3-1 model in predicting the desired outputs. Furthermore, using all the data sets to train the 

model leads to more accurate results. The ANN for training all process yields an ASE(trall) of 

0.0013, R2
(trall) of 0.97, and MARE(trall) of 7.99. Figure 58 shows the graphical comparisons of 

the predicted data sets for the training all network.   

.   
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Figure 57. ANN3-1(tr-ts-val) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 
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Figure 58. ANN3-1(training all) model predictions accuracy for a) flow (%), b) initial setting time 

(min), and c) compressive strength (MPa). 
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6.7.2 ANN3-2 MODEL   

As previously noted, ANN3-2 model is developed to predict the mix proportions between 

different MPC paste components/additives, while the MPC properties are used as inputs. Table 16 

summarizes all inputs and outputs of the ANN3-2 model. The optimum number of HN is found to 

be 13, and it is calibrated after 3000 iterations. The model has a final structure of 3 input nodes in 

the input layer, 13 nodes in the hidden layer, and 3 output nodes in the output layer.  

ANN3-2 model shows a better performance than the ANN1-2 model but worse 

performance than the ANN2-2 model. The ANN3-2 model has an ASEts of 0.011, R2ts of 0.72, 

and MAREts of 311.66 for testing data sets, and ASEtr of 0.0032 R2tr of 0.94, and MAREtr of 

326.33 for training data sets. Furthermore, the statistical measurements of the validation data sets 

are not as required. For the validation data sets, the corresponding statistical measurements are 

ASEval of 0.0099, R2val of 0.64, and MAREval of 356.06. All the statistical measurements of the 

ANN3-2 model are shown in table 25.  

Figure 59 shows a comparison between the actual and the predicted data sets of ANN3-2 

model for M/P ratio, W/P ratio, B/M ratio, AAC, and GNP/S ratio respectively. As seen in the 

figures, the model is not much accurate in predicting the mix proportions of the MPC paste. The 

model is not able to predict the M/P ratio correctly. Besides, the model has a major problem in 

predicting the B/M ratio. As previously mentioned, the reason behind the bad predictions is 

attributed to the possibility of getting the same property value by using multiple mix proportions. 

However, the overall performance of the model is acceptable as experimental results predicter and 

inverse problem solver. On the other hand, the accuracy of this model can be significantly 

improved by using the training all technique. The statistical measurements of the training all model 
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are yielding ASE(trall) of 0.0036, R2(trall) of 0.94 and MARE(trall) of 326.28. Figure 61 shows a 

comparison between the actual and the predicted parameters for ANN3-2(training all)  

 

 

Table 25. Statistical measurements of the ANN3-2 model. 

Model ANN 

Structure 

MARE 

tr 

 

MARE 

ts/val 

R2 

tr 

R2 

ts/val 

ASE 

tr 

ASE 

ts/val 

ASE 

Com. 

Training-

testing 

3-13-5 

With 3000 

iterations 

326.66 311.66 0.94 0.72 0.0032 0.011 0.014 

Training- 

validation 

326.66 356.06 0.94 0.64 0.0032 0.0099 0.013 

Training 

all 

326.28 NA 0.92 NA 0.0036 NA NA 
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Figure 59. ANN3-2(tr-ts-val) model predictions accuracy for a) M/P ratio, b) W/P ratio, and c) 

B/M ratio, d) AAC ratio, and e) GnP/S ratio. 
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Figure 60. ANN3-2(training all) model predictions accuracy for a) M/P ratio, b) W/P ratio, and c) 

B/M ratio, d) AAC ratio, and e) GnP/S ratio. 
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6.8 MODELS COMPARISON  

As previously showed, a total of twelve different ANN models have been developed in 

order to represent the available data. Six ANN models are performed to predict the physical and 

mechanical properties of the MPC paste including (1) ANN1-1(tr-ts-val), (2) ANN1-1 (training all), (3) 

ANN2-1(tr-ts-val), (4) ANN2-1 (training all) (5) ANN3-1(tr-ts-val), and (6) ANN3-1 (training all). The other six 

models are optimized to predict the mix proportions of the MPC paste by using the physical and 

mechanical properties as input variables. These models are: (1) ANN1-2(tr-ts-val), (2) ANN1-2 (training 

all), (3) ANN2-2(tr-ts-val), (4) ANN2-2 (training all) (5) ANN3-2(tr-ts-val), and (6) ANN3-2 (training all). Since 

the performance of the training all models are better for all cases, two ANN training all models 

have been selected to represent the data. The first model is selected to predict the MPC physical 

and mechanical properties while the other is selected to predict the MPC mix proportions.  

Based on the statistical measurements and the graphical accuracy figures, ANN2-1 (training 

all) model has been selected to predict the physical and the mechanical properties of the MPC pastes. 

The model has the lowest measured error including ASE and MARE in addition to the highest R2. 

Table 26 shows the statistical measurements for all the ANN training all models that used to predict 

different MPC properties. 

Table 26. Statistical measurements of ANN1-1(training all), ANN2-1(training all), and ANN3-

1(training all) models. 

Model ANN Structure MARE R2 ASE 

ANN1-1(training all) 5-5-3 17.28 0.89 0.0042 

ANN2-1(training all) 5-11-3 6.735 0.98 0.0007 

ANN3-1(training all) 5-13-3 7.99 0.97 0.00103 



160 

 

 

On the other hand, ANN2-2(training all) model has been selected in order to predict the mix 

proportions of the MPC pastes. The model has been selected due to its low ASE and MARE 

measurements in addition to its high R2. Table 27 summarizes the statistical measurements for all 

the ANN training all models that used to predict the mix proportions of MPC pastes. 

 

Table 27. Statistical measurements of ANN1-2(training all), ANN2-2(training all), and ANN3-

2(training all) models. 

Model ANN Structure MARE R2 ASE 

ANN1-2(training all) 3-2-5 336.46 0.28 0.043 

ANN2-2(training all) 3-11-5 303.4 0.92 0.0035 

ANN3-2(training all) 3-13-5 326.28 0.92 0.0036 

 

After selecting the best ANN models to represent the experimental data sets, the models 

are used for sensitivity analysis and data simulations.   

 

 

6.9 SENSITIVITY ANALYSIS AND DATA SIMULATION 

Many previous studies have proved that the physical and chemical properties of MPC paste 

could be influenced by several factors include magnesia to phosphate molar ratio (M/P), water to 

the sold ratio (W/S), boric acid to magnesia ratio (B/M), and the physical and chemical 

characteristics of the used additives. In this research, a new expression is used to describe the 

amount of the used water. The water content is calculated based on phosphate to water molar ratio 

(W/P). This expression can provide more reliable information about the impact of the water 
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content. Moreover, two different additives are used in this research to enhance the performance of 

the MPC paste. The first additive is selected to be the acetic acid, this additive is used to enhance 

the initial setting time of the MPC paste. The content of the acetic acid is calculated based on its 

concentrations in the aqueous solvent (AAC). Since the MPC system is very sensitive to the water 

content, adding or dropping a small amount of water can make a big difference in term of fluidity. 

Therefore, the graphene nanoplatelets (GnP) is selected to control the fluidity of the system in case 

of using high water content. The amount of this additive is calculated based on the graphene 

nanoplatelets to the total solid ratio (GnP/S).  

In this section, ANN2-1 model has been used for sensitivity analysis and data simulations. 

These processes involve changing the value of one input while keeping all other input parameters 

constant. These processes are applied to the three desired MPC output properties including flow, 

initial setting time, and compressive strength. 

Sensitivity analysis is performed by changing one variable and keeping all the other 

variables constant. Figure 61 shows the flow prediction of the MPC paste based on a) B/M ratio, 

b) W/P molar ratio, c) AAC, and d) GnP/S ratio. At first, B/M ratio is changed from 0 to 10% 

while all the other variables are kept constant (figure 61.a). In figure 61.b, W/P ratio is changed 

from 3 to 4.6 while the other parameters are kept constant. Then, AAC is changed from 2.5 to 

7.5% and all the others variable are kept constant (figure 61.c). Finally, in figure 61.d, the flow 

prediction is conducted based on changing the GnP/S from 0.1 to 0.5 % and keeping the other 

variable constant. For all cases, it can be seen that the ANN2-1 model is capable to predict the 

flow of the MPC efficiently. Furthermore, the model did not generate any strange or negative 

output.  
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Figure 61. ANN2-1 model prediction of flow based on a) B/M ratio, b) W/P molar ratio, c) 

AAC, and d) GnP/S ratio. 

In the same manner, the ANN2-1 model is used to predict the initial setting time of the 

MPC by changing the proportions between the MPC paste components. Figure 62 shows the 

prediction of initial setting time based on a) B/M ratio, b) W/P molar ratio, c) AAC, and d) GnP/S 

ratio. The sensitivity analysis indicates that the ANN2-1 model is very consistent in predicting the 
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initial setting time. For example, the model confirms that the optimum B/M ratio for the initial 

setting time is around 5% which is the same finding of the experimental results. Moreover, the 

model can predict the initial setting time in the presence of acetic acid or graphene nanoplatelets 

efficiently. For example, the model can predict that increasing the ACC will enhance the initial 

setting time of the paste.  

    

    

Figure 62. ANN2-1 model prediction of initial setting time based on a) B/M ratio, b) W/P molar 

ratio, c) AAC, and d) GnP/S ratio. 
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Finally, the ANN2-1 model is found to be very accurate in predicting the compressive 

strength. Figure 63 shows the prediction of compressive strength based on a) B/M ratio, b) W/P 

molar ratio, c) AAC, and d) GnP/S ratio. figure 64.a is performed by fixing all the MPC variables 

and changing only the B/M ratio. It can be seen that the model is able to predict that increasing the 

boric acid content can decrease the compressive strength. Furthermore, for M/P molar ratio of 10 

and by using the ANN model, the optimum W/P molar ratio is found to be 4.6. it is worth to 

mention that the same results can be achieved from the experimental results. Also, the model shows 

an accurate prediction if the acetic acid or the graphene nanoplatelets is added to the mixture. For 

example, increasing the acetic acid concentrations in the MPC paste can reduce its compressive 

strength. 
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Figure 63. ANN2-1 model prediction of compressive strength based on a) B/M ratio, b) W/P 

molar ratio, c) AAC, and d) GnP/S ratio.
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS  

In the last few decades, magnesium phosphate cements (MPC) has received significant 

attention from researchers due to its superior properties such as the high early strength, rapid 

setting time, very good volume stability, fire-proof behavior, good resistance to abrasion, and 

excellent bonding to old concrete structures. Moreover, the MPC is considered as eco-friendly 

cement. Compared to OPC, MBCs production is considered to be low energy consumer and low 

carbon dioxide emitter.  

This research aims to give more insight about the physical, mechanical, thermal, and chemical 

performance of the MPC paste mainly with the addition of the boric acid for retardation behavior. 

On the other hand, two different additives have been used to enhance the performance of the boric 

acid including (1) graphene nanoplatelets (GnP), and (2) acetic acid (AA). Then, the influence of 

each additive on the MPC paste has been studied and evaluated. Finally, the experimental results 

are collected and employed to develop an artificial neural network (ANN) model that can describe 

the behavior of the MPC paste under different conditions.  

 

7.1.1 CONCLUSIONS BASED ON CHAPTER III (INFLUENCE OF BORIC ACID) 

As previously mentioned, the behavior of the MPC paste specimens can be driven by three 

main factors including magnesia to phosphate molar ratio (M/P), water to solid mass ratio (W/S) 

and boric acid to magnesia mass ratio (B/M). In this chapter, the authors chose to represent the  
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MPC pastes ingredients in molar ratios rather than the mass ratios terminology to capture the 

impact of the different MPC mix proportions (M/P, W/P, and B/M ratios) on the acid-base reaction, 

in addition to the influence of these factors on physical, mechanical, and thermal properties of the 

MPC system with the addition of boric acid as a retarder. Based on the experimental results and 

observations of this chapter, the following conclusions can be made: 

1. The behavior of the MPC paste can be greatly influenced by several factors including 

M/P ratio, W/P ratio, and B/M ratio. Using the molar ratio between water and 

monopotassium phosphate compound (W/P) to calculate the amount of the used water 

can provide better understanding of the MPC behavior under different conditions. 

2. The presence of the boric acid greatly influences the physical behavior of the MPC 

paste. The boric acid can significantly decrease the workability of the system and 

increase the fluidity loss with time. On the other hand, using B/M ratio of 5% can 

undoubtedly improve the initial setting time of the MPC paste, while adding more than 

5% can reduce the initial setting time due to increase the fluidity loss of the MPC paste. 

3. The MPC system is found to be very susceptible to water content. Adding or dropping 

a small amount of water can make a big difference in term of fluidity. For M/P ratio of 

3, changing W/P ratio from 1.8 to 2.2 can increase the fluidity by more than 70%. 

4. The presence of boric acid changes the mechanical behavior of the MPC system. The 

compressive strength can be significantly reduced when the boric acid is added to an 

MPC paste with low M/P ratio. On the other side, the reduction of the compressive 

becomes marginal if the boric acid is added to an MPC paste with high M/P molar ratio.  

5. The optimal M/P molar ratio can be affected by the amount of the used W/P, while the 

optimal W/P molar ratio can be affected by the amount of the used M/P ratio. The 
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experimental results improve that for each W/P molar ratio there is an optimal M/P 

molar ratio and for each M/P molar ratio there is an optimal W/P molar ratio. 

6. The boric acid can change the impact of the water content on the mechanical 

behavior of the MPC paste. For M/P ratio of 3, the reduction in the compressive 

strength due to increasing the W/P molar ratio from 1.8 to 2.2 is 19%. Adding 5% of 

boric acid to the same mixtures can reduce the compressive strength by only 4%. 

7. The XRD analysis demonstrates that the only magnesium phosphate crystal that exists 

in the final products of the MPC system is the well-known K-struvite, where no other 

magnesium phosphate crystalline phases are found including Cattiite (H44Mg3O30P2) 

and Newberyite (H7MgO7P). On the other side, no boron-containing crystalline phases 

are appeared in the final products of the system including Luneburgite B2H18Mg3O20P2 

and Szaibelyite BHMgO3. These crystalline phases could be formed during the 

hydration processes and dissolved again during the hydration process. 

8. The microstructure of the MPC paste is greatly influenced by adding the boric acid. 

The boric acid can prevent the reaction between the MgO and the KDP and reduce the 

amount of the K-struvite in the final product. Moreover, the presence of the boric acid 

with the MPC system leads to a considerable reduction in the crystallinity degree of K-

struvite. 

9. The FTIR analysis demonstrate that no new crystalline product has been achieved when 

the boric acid is added to the MPC system. However, adding the boric acid is reducing 

the intensity of the observed vibration bands. 

10. The SEM images demonstrate that the microstructure of the K-struvite can be in several 

forms including prism-like microstructure, needle-like microstructure, and plate-like 



169 

 

 

microstructure. Furthermore, adding the boric acid to the MPC paste can change its 

morphology and reduce the crystallinity of the K-struvite.   

11. The boric acid has the ability to reduce the thermal conductivity of the MPC paste due 

to the reduction in the dry density. Moreover, this reduction becomes more obvious 

when the M/P ratio is becoming high.  

 

7.1.2 CONCLUSIONS BASED ON CHAPTER IV (INFLUENCE OF GNP) 

In chapter IV, the GNP modified MPC specimens are prepared by using two different 

techniques: (1) the GNP is added to the mixture directly by using the sonication process, and (2) 

the GnP is added with using the polyethyleneimine (PLE) as a surfactant to improve the dispersion 

of the GnP. The behavior of the GnP modified MPC specimens is studied to investigate the 

influence of the GnP on the physical, chemical, mechanical, thermal, and microstructure properties 

of the MPC paste. The following conclusions can be drawn:   

1. The presence of the GnP can significantly affect the physical and the mechanical properties 

of the MPC. The GnP can significantly reduce the initial setting time, the fluidity and the 

compressive strength. For example, adding 0.5 wt% of GnP can reduce the initial setting 

time, the fluidity, and the compressive strength by 67%, 19%, and 40% respectively. These 

reductions are due to the ability of GnP to absorb Mg+2 ions and reduce the amount of the 

final products. 

2. Using the PLE to enhance the dispersion of the graphene can reduce the effect of the GnP 

on the fresh and hardened properties of the MPC paste. The presence of the PLE alone has 

an adverse effect on the compressive strength. However, using the PLE with the GnP is 

better than using the GnP alone. This observation can be attributed to the role of the 
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surfactant inside the aqueous solvent. The PLE can cover the GnP particles leading to 

reduce its ability to absorb the Mg+2 particles.  

3. Both the GnP and the surfactant can change the phase compositions of the MPC paste. 

Although the XRD results demonstrated that there is no any chemical reaction between the 

graphene and the main ingredients of the MPC paste (MgO, KDP, and B), but the presence 

of the GnP reduced the amount of the reacted particles and reduced the amount of the 

crystalline k-struvite in the system. This reduction in the k-struvite is due to the tendency 

of the dissolved particles (Mg+2 and PO4-3) to stick with the graphene surface during the 

hydration process. 

4. The FTIR analysis demonstrated that no new crystalline product could be achieved when 

the GnP is added. However, adding the GnP can reduce the intensity of the observed 

vibration bands.  

5. The GnP has the ability to improve the thermal conductivity of the MPC paste due to its 

high surface area. The addition of 0.1 wt%, 0.25wt%, and 0.5 wt% of the GNP improves 

the thermal conductivity of the paste by 3%, 12%, and 16% respectively. 

 

7.1.3 CONCLUSIONS BASED ON CHAPTER V (INFLUENCE OF AA) 

In chapter V, the acetic and the boric acids are used to improve the initial setting time of 

the MPC system. At first, the acetic acid is added alone to investigate its influence on the MPC 

paste behavior. Then, a hybrid system of both acids is added to different MPC mixtures to enhance 

the setting behavior of the MPC. Based on the finding of this research, the following conclusions 

can be made:  
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1. Using the acetic acid alone can increase the volumetric expansion/cracks of the MPC 

specimens during the curing process. Adding 7.5% of acetic acid can destroy the 

MPC paste sample during the reaction process due to the volumetric expansion.  

2. Adding the acetic acid to the MPC mixtures can enhance the initial setting time of the 

paste by preventing the reaction between MgO and KDP particles. For example, using 

an acetic acid concentration of 5% can increase the initial setting time of the paste 

from 3 minutes to 12 minutes. 

3. Using the boric acid with the acetic acid can prevent the volumetric expansion cracks. 

Moreover, using a hybrid system of both acids is found to be more efficient regarding 

the initial setting time. 

4. The acetic acid has the ability to decrease the compressive strength of the MPC paste.  

5. Using the acetic acid can change the phase compositions of the MPC paste. Based on 

the XRD analysis, it can be seen that the MPC specimen with no acetic acid exhibit 

stronger k-struvite characteristic peaks. This observation concludes that the existence 

of the acetic acid leads to poor crystal growth and maybe less amount of the k-struvite 

phase. On the other side, the MPC specimen that has high AAC exhibits stronger KDP 

characteristic peak which indicates that the presence of the acetic acid increases the 

amount of unreacted KDP. 

6. The experimental results indicate that the thermal conductivity of the MPC paste 

decreases when the AAC increases. For example, adding 2.5% and 7.5 % of AAC can 

decrease the thermal conductivity from 1.31 to 1.29 and from 1.31 to 0.96 W/mk 

respectively. One possible reason of this reduction is the high volumetric expansion of 
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the acetic acid-containing specimens which can provide more voids in the paste and 

decrease its density and its thermal conductivity. 

 

7.1.4 CONCLUSIONS BASED ON CHAPTER VI (ANN) 

The work in chapter VI aims to predict the behavior of the MPC paste by using the mix 

proportions of its main ingredients in addition to two different additives including acetic acid (AA) 

and graphene nanoplatelets (GnP). The relation between the MPC properties and its mix 

proportions is highly non-liner. Therefore, performing a mathematical model to predict the MPC 

behavior is very difficult. The statistical measurements and the graphical accuracy plots 

demonstrate that the ANN approach is capable of predicting the MPC physical and mechanical 

properties by using its mix proportions. Moreover, The ANN approach is able to predict the 

behavior of the MPC paste by using different additives/retarders.  

By developing several ANN models to predict the MPC behavior, the result shows that using of 

the training-all technique can improve the accuracy of the ANN model when the number of the 

available data sets is not enough to train the network.  

On the other hand, the ANN results demonstrate that the manipulation of the available data sets 

can improve the accuracy of the ANN models. After replicating the AA and the GnP data sets for 

three times, the R2 of the ANN1-1 and ANN2-1 models is increased from 0.89 to 0.98 respectively. 

 Furthermore, the statistical measurements approve that the ANN technique can predict the 

MPC mix proportions by using its physical and mechanical properties as input variables. For 

example, the ASE, MARE, and R2 of the ANN2-2(training-all) model are found to be 0.0035, 303.4, 

and 0.92 respectively. The problem of such inverse data sets is the discontinuity and the non-
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uniqueness. Therefore, modeling of such data sets is not possible in many cases especially when 

the data sets are collected from experimental measurements.  

The proposed models can significantly provide a great insight about the MPC behavior under 

different conditions. At first, the ANN2-2 model can be used to provide initial guesses of the MPC 

mix proportions by using the desired material properties. Then, these proportions can be used as 

input variables of the ANN1-2 model to check the given mix proportions. Besides, the proposed 

ANN models can be used for several real-life applications such as MPC paste casting and 3D-

printing application. 

 

7.2 RECOMMENDATIONS 

Based on the finding of this research, the following recommendations and future works are 

needed to provide more understanding of some related aspects of the MPC behavior:  

1- The boric acid retardation mechanism of the MPC paste can be deeply understood by 

conducting the XRD test during the reaction processes of the MPC system. This can 

provide more information about the phase forming and the real impact of the boric acid 

during the acid-base reaction. 

2-   A rheological study of the MPC paste under different conditions is highly recommended 

to understand the impact of the boric and the acetic acids on the fluidity loss of the MPC 

material. Conducting such studies may solve the fluidity loss problem of the MPC and 

provide more information to use this material for the 3DP techniques. 

3- Studying the change in the phase compositions of the MPC paste with time is highly 

recommended to understand the impact of each additive on the mechanical behavior of the 

MPC system.  
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4- Studying the effect of acetic acid on the volume expansion of MPC paste is recommended 

to understand the real impact of this additive on the MPC behavior. 

5- Studying the mechanical and chemical behavior of the acetic acid modified MPC paste 

after 28 days is recommended to provide full understanding of the MPC behavior when 

this additive is used.
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