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ABSTRACT

H. L. Montgomery proved a formula for sums over two sets of nontrivial zeros of the Riemann

zeta-function. Assuming the Riemann Hypothesis, he used this formula and Fourier analysis

to prove an estimate for the proportion of simple zeros of the Riemann zeta-function. We

prove a generalization of his formula for the nontrivial zeros of the Dedekind zeta-function

of a Galois number field, and use this formula and Fourier analysis to prove an estimate for

the proportion of distinct zeros, assuming the Generalized Riemann Hypothesis.
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1 INTRODUCTION

For s ∈ C, we let s = σ + it where σ, t ∈ R. The Riemann zeta-function is initially

defined as a Dirichlet series over the positive integers and an Euler product over the primes:

ζ(s) =
∞∑
n=1

n−s =
∏

p prime

(1− p−s)−1 (1.1)

for σ > 1. The equality, proved by Euler, follows from the Fundamental Theorem of Arith-

metic. Riemann proved that ζ(s) can be continued analytically to C\{1} with a simple pole

at s = 1. Riemann also proved that ζ(s) satisfies the functional equation

π−
s
2 Γ( s

2
)ζ(s) = π−

1
2
(1−s)Γ(1

2
)(1− s))ζ(1− s). (1.2)

From the poles of Γ(s) at s = 0,−1,−2,−3, . . ., he observed that ζ(s) has simple zeros at

s = −2,−4,−6, · · · . These are called the trivial zeros of the zeta function. He further noted

that ζ(s) has infinitely many zeros in the critical strip, 0 ≤ σ ≤ 1, which are known as

the non-trivial zeros of ζ(s). We denote the nontrivial zeros of ζ(s) as ρ = β + iγ. From

the functional equation, if ρ is a nontrivial zero then so is 1 − ρ. Since ζ(s) = ζ(s̄), if ρ is

a nontrivial zero then so is ρ̄. From this, Riemann observed that the zeros are symmetric

about the real axis and about the line σ = 1
2
. He made the following famous conjecture.

Riemann Hypothesis. All nontrivial zeros of ζ(s) in the critical strip are on the critical

line σ = 1
2
.
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Riemann introduced the zeta function as tool to study the prime numbers. Logarith-

mically differentiating the Euler product for ζ(s) we have

d

ds
log ζ(s) =

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns

for σ > 1, where the von Mangoldt function Λ(n) = log p if n = pk for a prime p and k ∈ N

and Λ(n) = 0 otherwise. Using Riemann’s ideas, in 1896, Hadamard and de la Vallée Poussin

independently proved that ∑
n≤x

Λ(n) ∼ x

as x → ∞ by carefully studying the zeros of ζ(s). The key is to show that ζ(s) has no

nontrivial zeros on the line σ = 1 (so that ζ′

ζ
(s) has no poles on the line σ = 1). This

asymptotic formula is equivalent to:

Theorem 1.1 (Prime Number Theorem). As x→∞, we have

∑
p≤x

1 ∼ x

log x

where the sum runs over the primes p.

This theorem was originally conjectured by Gauss and Legendre. The properties of ζ(s)

described above and the history of the Prime Number Theorem can be found in Davenport’s

book [Dav00].

Much effort has gone into studying the nontrivial zeros ρ = β+ iγ of ζ(s). It is known

that

N(T ) :=
∑

0<γ≤T

1 =
T

2π
log

T

2π
− T

2π
+O(log T ) (1.3)

as T → ∞. This was conjectured by Riemann and proved by von Mangoldt [Dav00]. Here

the zeros are counted with multiplicity meaning that a zero with multiplicity m is counted m

times in the sum. In a now famous paper, Montgomery [Mon73] studied the pair correlation
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of the zeros of ζ(s) assuming the Riemann Hypothesis. We now describe Montgomery’s

theorem and a corollary. The main goal of my thesis will be to generalize Montgomery’s

results to the Dedekind zeta-function of a Galois number field.

1.1 Montgomery’s Theorem.

We assume the Riemann Hypothesis in this section so that the nontrivial zeros can

be written ρ = 1
2

+ iγ. From (1.3), the average spacing between consecutive γ ∈ (0, T ] is

≈
length

(
(0, T ]

)
# γ ∈ (0, T ]

≈ T
T log T

2π

=
2π

log T

as T →∞. So the sequence
{
γ log T

2π

}
has average spacing equal to 1 as T →∞. With this

in mind, Montgomery was interested in studying sums like

∑
0<γ,γ′≤T

R

(
(γ − γ′) log T

2π

)

where γ and γ′ run over the imaginary parts of two sets of nontrivial zeros of ζ(s).

Montgomery defined the function

F (α) = F (α, T ) =
2π

T log T

∑
0<γ,γ′≤T

T iα(γ−γ
′)w(γ − γ′), where w(u) =

4

4 + u2
,

where α and T ≥ 2 are real. Here γ and γ′ run over the imaginary parts of two sets of

nontrivial zeros of ζ(s). He was interested in this function because, for R, R̂ ∈ L1(R), one

can show that

∑
0<γ,γ′≤T

R

(
(γ − γ′) log T

2π

)
w(γ − γ′) =

T log T

2π

ˆ
R
F (α) R̂(α)dα. (1.4)
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Here R̂ is the Fourier transform of R defined as

R̂(α) =

ˆ
R
R(u) e−2πiuαdu.

Using the definition of the Fourier transform, we will prove the analogue of (1.4) for the

zeros of the Dedekind zeta-function in Chapter 2 and the same proof can be used to prove

(1.4).

Montgomery [Mon73] proved the following theorem about the function F (α).

Theorem 1.2. Assume the Riemann Hypothesis. For real α and T ≥ 0, we have that F (α)

is real, F (α) ≥ 0, and F (−α) = −F (α). For α ∈ [0, 1] we have

F (α) =
(

1 + o(1)
)
T−2α log T + α + o(1)

as T →∞.

We will prove an analogue of this theorem for the zeros of the Dedekind zeta-function.

Originally Montgomery proved this theorem for α ∈ (0, 1) but it was later extended to

α ∈ [0, 1] by Goldston and Montgomery [GM87]. Julia Mueller [Mue83] was the first to

observe that F (α) ≥ 0 for all α ∈ R. We will give a modification of her proof for the zeros

of the Dedekind zeta-function in Chapter 2.

The importance of Montgomery’s theorem is that we can now estimate the right-hand

side of (1.4) for a function R ∈ L1(R) with supp(R̂) ⊆ [−1, 1]. With these conditions, for

most nice functions R, Montgomery’s theorem implies that

∑
0<γ,γ′≤T

R

(
(γ − γ′) log T

2π

)
w(γ − γ′) =

T log T

2π

(
R̂(0) +

ˆ 1

−1
|α|R̂(α)dα + o(1)

)
. (1.5)

We will prove a similar formula for the zeros the Dedekind zeta-function.

4



We state one of the several important corollaries that Montgomery derived from his

theorem and (1.5). Let

N s(T ) = #
{

0 < γ ≤ T : ρ = 1
2

+ iγ is a simple zero of ζ(s)
}
.

Choosing the Fourier pair

R(u) =
(sin πu

πu

)2
, R̂(α) = max(1− |α|, 0)

in (1.5), he proved the following estimate for N s(T ) which shows that asymptotically at least

two thirds of the nontrivial zeros of ζ(s) are simple.

Corollary 1.3. Assume the Riemann Hypothesis. Then

N s(T ) ≥
(

2

3
+ o(1)

)
N(T )

as T →∞.

It was later observed by Montgomery and Taylor [Mon75] and Cheer and Goldston

[CG93] that the constant 2/3 can be very slightly improved using a more complicated choice

of Fourier pair R and R̂. We prove a generalization of Corollary 1.3 for the Dedekind zeta-

function of a Galois number field K over Q that applies to distinct zeros instead of simple

zeros. The answer will depend on the degree [K : Q] of the number field.

1.2 Properties of the Dedekind zeta-function

Let K be a number field (a finite extension of Q) where m = [K : Q] the degree of

K. We let OK be the ring of integers of K. The Dedekind zeta-function is initially defined

as a Dirichlet series over nonzero ideals I in OK and an Euler product over the prime ideals
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P in OK :

ζK(s) =
∑
I⊂OK
I 6=0

1

N(I)s
=
∏

P⊂OK

(
1− 1

N(P )s

)−1

for σ > 1. The equality follows from the fact that OK is a PID, so each I ∈ OK can be

written uniquely as I = P `1
1 P

`2
2 · · ·P

`k
k for prime ideals P1, ..., Pj and `i ∈ N. Hecke proved

that ζK(s) can be continued analytically to C \ {1} with a simple pole at s = 1, and he

calculated the residue (which depends on the algebraic properties of K and is known as the

class number formula for K). We can also write ζK(s) as Dirichlet series over the integers:

ζK(s) =
∞∑
n=1

rk(n)

ns

where rK(n) = #{I ⊂ OK | N(I) = n}, is the number of ideals in OK with norm n. It is

known that 0 6 rK(n) 6 dm(n) with dm(n) is the number of ways to write n as the product

of m = [K : Q] positive integers.

Hecke also proved that ζK(s) satisfies the functional equation: there exist r1, r2 ∈ N

with r1 + 2r2 = m such that

π−m
s
2 ζK(s)Γ

(s
2

)r1+r2
Γ

(
s+ 1

2

)r2
= π−m

1−s
2 ζK(1− s)Γ

(
1− s

2

)r1+r2
Γ

(
1− s+ 1

2

)r2
.

(1.6)

Here r1 is the number of real embeddings of K and r2 the number of pairs of complex

embeddings so that m = r1 + 2r2. From the poles of Γ(s) at s = 0,−1,−2,−3, . . ., it can

be seen that ζK(s) has a zero at s = 0 of order r1 + r2 − 1, zeros at s = −2,−4,−6, · · · of

order r1 + r2, and zeros at s = −1,−3,−5, . . . of order r2. These are called the trivial zeros

of ζK(s). The Dedekind zeta-function also has infinitely many zeros in the critical strip,

0 ≤ σ ≤ 1, which are known as the non-trivial zeros of ζK(s). We will denote the nontrivial

zeros of ζK(s) as ρ = β + iγ. From the functional equation, if ρ is a nontrivial zero then so

is 1− ρ. Since ζK(s) = ζK(s̄), if ρ is a nontrivial zero then so is ρ̄. Therefore the nontrivial
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zeros are symmetric about the real axis and about the line σ = 1
2
. The analogue of the

Riemann Hypothesis is believed to hold for ζK(s).

Generalized Riemann Hypothesis. All nontrivial zeros of ζK(s) in the critical strip are

on the critical line σ = 1
2
.

Logarithmically differentiating the Euler product, we write

d

ds
log ζK(s) =

ζ ′K
ζK

(s) = −
∞∑
n=1

ΛK(n)

ns
,

where ΛK(n) is a generalization of the von Mangoldt function. It follows from the Euler

product that ΛK(n) = 0 unless n is a prime power and also that

0 ≤ ΛK(n) ≤ mΛ(n)

for all n ∈ N. At s = 1, ζK(s) has a complicated residue but
ζ′K(s)

ζK(s)
has a simple pole at s = 1

with residue −1. Landau used this and the fact that ζK(s) has no nontrivial zeros on the

line σ = 1 to prove that ∑
n≤x

ΛK(n) ∼ x,

as x→∞. This asymptotic formula is equivalent to:

Theorem 1.4 (Landau’s Prime Ideal Theorem). As x→∞, we have

∑
P⊂OK
N(P )≤x

1 ∼ x

log x

where the sum runs over the prime ideals P in OK with norm N less than or equal to x.

The above properties of the Dedekind zeta-function can be found in Narkiewicz’s

book [Nar04]. In this thesis, we are interested in studying the nontrivial zeros ρ = β + iγ of

7



ζK(s). It is known that [IK04]

NK(T ) :=
∑

0<γ≤T

1 =
mT

2π
log

T

2π
+OK(T ) (1.7)

as T → ∞ where m = [K : Q]. Assuming the Generalized Riemann Hypothesis so that

the nontrivial zeros can be written ρ = 1
2

+ iγ, from (1.7) we see that the average spacing

between consecutive γ ∈ (0, T ] is

≈
length

(
(0, T ]

)
# γ ∈ (0, T ]

≈ T
mT log T

2π

=
2π

m log T

as T →∞. So the sequence
{
γm log T

2π

}
has average spacing equal to 1 as T →∞. Following

Montgomery, we study sums like

∑
0<γ,γ′≤T

R

(
(γ − γ′)m log T

2π

)

where R is a function and γ and γ′ run over the imaginary parts of the nontrivial zeros of

ζK(s). For this reason, we make the following definition.

Definition 1.5. Let K be a number field with m = [K : Q]. For any α ∈ R and T ≥ 2 we

define

FK(α) =
2π

mT log T

∑
0≤γ,γ′≤T

T imα(γ−γ
′)w(γ − γ′)

where w(u) =
4

4 + u2
and γ, γ′ run over the ordinates of the nontrivial zeros of ζK(s).

We now state some basic properties of FK(α).

Proposition 1.6. Let K be a number field. Then we have

1. FK(α) is even which means that Fk(−α) = Fk(α).

2. FK(α) ≥ 0 for all α ∈ R.

8



3. If f, f̂ ∈ L1(R) then

∑
0≤γ,γ′≤T

f
(

(γ − γ′)m log T

2π

)
w(γ − γ′) =

mT log T

2π

∞̂

−∞

f̂(α)FK(α) dα

where w(u) is the weight function in Definition 1.5 and f̂(u) =
∞́

−∞
f̂(x)e−2πixudx de-

notes the Fourier transform of f .

If K is a Galois number field over Q, then our analogue of Montgomery’s Theorem

(Theorem 1.2) for the nontrivial zeros of ζK(s) is:

Theorem 1.7. Let K be a Galois number field over Q with degree m = [K : Q], and assume

the Generalized Riemann Hypothesis for ζK(s). For real α and T ≥ 0, we have that FK(α)

is real, FK(α) ≥ 0, and FK(−α) = −FK(α). For α ∈ (− 1
m
, 1
m

) we have

FK(α) = mT−2m|α| log T +m|α|+ o(1)

as T →∞.

We now state a corollary about the proportion of distinct nontrivial zeros of ζK(s).

We count zeros in our sums with multiplicity, meaning that if a zero has multiplicity ` then

it appears ` times in our sequence. We will let µγ be the multiplicity of a 1
2

+ iγ of ζK(s).

Recall that

NK(T ) =
∑

0<γ≤T

1 ∼ mT log T

2π

and the number of distinct zeros of ζK(s) with 0 < γ ≤ T is given by

Nd
K(T ) =

∑
0<γ≤T
γ distinct

1 =
∑

0<γ≤T

1

µγ
= #{0 < γ ≤ T : ζK(1

2
+ iγ) = 0}.

9



We want to use Theorem 1.7 to count the proportion of distinct zeros of ζK(s) by comparing

the ratio of Nd
K(T ) to NK(T ). To do this, we define another sum

N∗K(T ) =
∑

0<γ≤T

µγ

and we notice that Cauchy’s inequality implies that

NK(T )2 =

( ∑
0<γ≤T

1

)2

=

( ∑
0<γ≤T

1
√
µγ

√
µγ

)2

≤
∑

0<γ≤T

1

µγ

∑
0<γ≤T

µγ

= Nd
K(T ) ·N∗K(T ).

Therefore

Nd
K(T ) ≥ NK(T )2

N∗K(T )
(1.8)

and so an upper bound for N∗K(T ) gives a lower bound for Nd
K(T ).

Corollary 1.8. Let K be a Galois number field over Q with degree m = [K : Q], and assume

the Generalized Riemann Hypothesis for ζK(s). Then, as T →∞,

N∗K(T ) ≤
(
m+

1

3
+ o(1)

)
NK(T )

and therefore

Nd
K(T ) ≥

(
3

3m+ 1
+ o(1)

)
NK(T ).

This shows that, assuming the Generalized Riemann Hypothesis for ζK(s), at least a

proportion of 3
3m+1

of the nontrivial zeros are distinct.

10



2 PROOF OF PROPOSITION 1.6

In this chapter, we use Fourier analysis to prove Proposition 1.6.

Proof of Proposition 1.6, part 1. We want to show that Fk(−α) = Fk(α) for all real numbers

α. We know that

Fk(α) =
2π

mT log(T )

∑
0≤γ,γ′≤T

T imα(γ−γ
′)w(γ − γ′).

Therefore

Fk(−α) =
2π

mT log(T )

∑
0≤γ,γ′≤T

T−imα(γ−γ
′)w(γ − γ′)

=
2π

mT log(T )

∑
0≤γ,γ′≤T

T imα(γ
′−γ)w(γ′ − γ)

= Fk(α)

since w(u) is even.

To prove Proposition 1.6, part 2, we first need some lemmas.

Lemma 2.1. If g(u) = e−2|u| for u ∈ R, then ĝ(x) = 4
4+4π2x2

= w(2πx) where w(u) is the

function in Definition 1.5.

11



Proof. If g(u) = e−2|u|, then for x ∈ R we have

ĝ(x) =

∞̂

−∞

e−2|u|e−2πiuxdu

=

∞̂

0

e−2ue−2πiuxdu+

oˆ

−∞

e2ue−2πiuxdu

=

∞̂

0

e−u(2+2πiux)du+

oˆ

−∞

eu(2−2πiux)du

=
1

2 + 2πix
− 1

2− 2πix

=
4

4 + 4π2x2

= w(2πx),

as claimed.

Before stating the next lemma, we define a function related to FK(α):

FK(X,T ) =
∑

0<γ,γ′≤T

X i(γ−γ′)w(γ − γ′), (2.1)

where X > 0, T ≥ 2, and γ, γ′ run over the ordinates of two sets of nontrivial zeros of ζK(s).

Lemma 2.2. We have

FK(X,T ) =

∞̂

−∞

∣∣∣∣∣ ∑
0<γ≤T

X iγeiγu

∣∣∣∣∣
2

e−2|u|du,

so therefore FK(X,T ) ≥ 0.

Proof. Expanding the square

∣∣∣∣∣ ∑
0<γ≤T

X iγeiγu

∣∣∣∣∣
2

=

( ∑
0<γ≤T

X iγeiγu

)( ∑
0<γ′≤T

X−iγ
′
e−iγ

′u

)
=

∑
0<γ,γ′≤T

X i(γ−γ′)ei(γ−γ
′)u.

12



Therefore, by Lemma 2.1, we have

∞̂

−∞

∣∣∣∣∣ ∑
0<γ≤T

X iγeiγu

∣∣∣∣∣
2

e−2|u|du =
∑

0<γ,γ′≤T

X i(γ−γ′)

∞̂

−∞

ei(γ−γ
′)ue−2|u|du

=
∑

0<γ,γ′≤T

X i(γ−γ′)

∞̂

−∞

e−i2π(
γ′−γ
2π

)ue−2|u|du

=
∑

0<γ,γ′≤T

X i(γ−γ′)w(γ′ − γ)

=
∑

0<γ,γ′≤T

X i(γ−γ′)w(γ − γ′)

= FK(X,T ),

since w(u) is even.

Proof of Proposition 1.6, part 2. Notice that Lemma 2.2 implies

FK(α) =
mT log T

2π
FK(Tmα, T ) ≥ 0.

Hence FK(α) ≥ 0 for all α ∈ R, as claimed.

13



Proof of Proposition 1.6, part 3. Since f ∈ L1(R), by the Fourier inversion theorem we have

∑
0≤γ,γ′≤T

f

(
(γ − γ′)m log T

2π

)
w(γ − γ′) =

∑
0≤γ,γ′≤T

 ∞̂

−∞

f̂(α)e2πi(γ−γ
′)m log T

2π
αdα

w(γ − γ′)

=
∑

0≤γ,γ′≤T

 ∞̂

−∞

f̂(α)e(log T )
miα(γ−γ′)

dα

w(γ − γ′)

=
∑

0≤γ,γ′≤T

 ∞̂

−∞

f̂(α)T imα(γ−γ
′)dα

w(γ − γ′)

=

∞̂

−∞

f̂(α)

( ∑
0≤γ,γ′≤T

T imα(γ−γ
′)w(γ − γ′)

)
dα

=
mT log(T )

2π

∞̂

−∞

f̂(α)FK(α)dα

as claimed.

This completes the proof of Proposition 1.6.
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3 PROOF OF COROLLARY 1.8

In this chapter, we use Theorem 1.7 and Fourier analysis to prove Corollary 1.8. We

postpone the proof of Theorem 1.7 until a later chapter. We begin by stating and proving

some lemmas.

Assuming the Generalized Riemann Hypothesis for ζK(s), Theorem 1.7 states that

FK(α) =
(

1 + o(1)
)
mT−2m|α| log T +m|α|+ o(1)

as T →∞ if K be a Galois number field over Q with degree m = [K : Q] and α ∈ (− 1
m
, 1
m

).

Recall that the Dirac delta function, δ0(u), satisfies
´
R
f(u)δ0(u) du = f(0) for all nice

functions f . The function mT−2m|α| log T in Theorem 1.7 acts like the Dirac delta function

as we see in the following lemma. This implies that FK(α) ≈ m|α|+ δ0(α) for α ∈
(
− 1
m
, 1
m

)
.

Lemma 3.1. Let g be a even function with g(n) bounded for n = 0, 1, 2. Then

ˆ ∞
−∞

g(α)
(
mT−2m|α| log T

)
dα = g(0) +O

( 1

log T

)
,

as T →∞.
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Proof. We prove the lemma using integration by parts. Since g is even

ˆ ∞
−∞

g(α)
(
mT−2m|α| log T

)
dα = 2m log T

∞̂

0

g(α)T−2mαdα

= 2m log T

∞̂

0

g(α)e−2mα log Tdα

=
[
− g(α)e−2mα log T

]∣∣∣∞
0

+

∞̂

0

g′(α)e−2mα log Tdα

= g(0) +

[
− g′(α)e−2mα log T

2m log T

]∣∣∣∣∣
∞

0

+

∞̂

0

g′′(α)e−2mα log T

2m log T
dα

= g(0) +

 g′(0)

2m log T
+

∞̂

0

g′′(α)e−2mα log T

2m log T
dα


= g(0) +OK

(
1

log T

)
,

as claimed.

Lemma 3.2. Let K be a Galois number field over Q with degree m = [K : Q], and assume

the Generalized Riemann Hypothesis for ζK(s). Then for even functions f ∈ L1(R) with

supp(f̂) ⊂ (− 1
m
, 1
m

), we have

∑
0<γ,γ′≤T

f
(

(γ − γ′)m log T

2π

)
w(γ − γ′) =

mT log T

2π

f̂(0) + 2m

1/mˆ

0

α f̂(α)dα + o(1)


as T →∞.

Proof. We first use Proposition 1.6, Part 3 and that supp(f̂) ⊂ (− 1
m
, 1
m

) to see that

∑
0≤γ,γ′≤T

f
(

(γ − γ′)m log T

2π

)
w(γ − γ′) =

mT log T

2π

∞̂

−∞

f̂(α)FK(α) dα

=
mT log T

2π

1/mˆ

−1/m

f̂(α)FK(α) dα

(3.1)
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Now we use Theorem 1.7 and Lemma 3.1, to deduce that

1/mˆ

−1/m

f̂(α)FK(α) dα =

1/mˆ

−1/m

f̂(α)
(
mT−2m|α| log T +m|α|+ o(1)

)
dα

= f̂(0) +

1/mˆ

−1/m

m|α|f̂(α) dα + o(1)

= f̂(0) + 2m

1/mˆ

0

αf̂(α) dα + o(1)

(3.2)

since f (and f̂) is even. Combining equations (3.1) and (3.2), we deduce the theorem.

Lemma 3.3. If we let f(u) =

(
sin(πu)

πu

)2

then f̂(v) = max(1− |v|, 0)

Proof. If we let f̂(v) = max(1− |v|, 0) =


1− |v|, |v| ≤ 1,

0, otherwise,

then by the Fourier inversion theorem f(u) =
∞́

−∞
f̂(v)e2πiuvdv. So,

f(u) =

1ˆ

−1

(1− |v|)e2πiuvdv =

0ˆ

−1

(1 + v)e2πiuv +

1ˆ

0

(1− v)e2πiuv

=
2

4π2u2
−
(
e2πiu + e−2πiu

4π2u2

)
=

(
sin(πu)

πu

)2

,

as claimed. To see this, note that

(
sin(πu)

πu

)2

=

(
eπiu−e−πiu

2i

)2
(πu)2

=

(
e2πiu − 2eπiu−πiu + e−2πiu

4π2u2

)
=

2

4π2u2
−
(
e2πiu + e−2πiu

4π2u2

)
.

17



In order to apply Theorem 1.7, we want a function whose Fourier transform is sup-

ported on (−1
m
, 1
m

). Let f(u) =

(
sin(πu)

πu

)2

, be the function from the previous lemma. If we

let ĥ(v) = βf̂(βv), then supp(ĥ) ⊆ [−1
β
, 1
β
].

What is h? By the Fourier inversion theorem

h(u) =

ˆ

R

ĥ(v)e2πiuvdv

= β

1
βˆ

− 1
β

f̂(βv)e2πiuvdv

=
β

β

1ˆ

−1

f̂(x)e2πiu(
x
β
)dx

= f

(
u

β

)
.

Here we used the substitution x = βv in the second integral. So we have proved the following

lemma.

Lemma 3.4. If h(x) =

(
sin πx

β
πx
β

)2

then ĥ(v) = βmax(1− |βv|, 0).

We can now prove Corollary 1.8.

Proof of Corollary 1.8. Observation: for any h ∈ L1(R) with h(0) = 1 and h(x) ≥ 0 for all

x, we have

N∗K(T ) =
∑

0<γ≤T

µγ ≤
∑

0<γ,γ′≤T

h
(

(γ − γ′)m log T

2π

)
w(γ − γ′).

To see this inequality, note that h(0)w(0) = 1, there are µγ terms with γ = γ′, and the other

terms are positive. We estimate the sum on the right-hand side using Theorem 1.7 and the

Fourier pair in Lemma 3.4 with β > m. Note that, for this choice of h, we have h(0) = 1,

18



h(x) ≥ 0 for all x, and supp(ĥ) ⊆ [−1
β
, 1
β
] ⊂ (−1

m
, 1
m

). Since ĥ(α) = βmax(1− |βα|, 0)

∑
0<γ,γ′≤T

h
(

(γ − γ′)m log T

2π

)
w(γ − γ′) =

βT log T

2π

ĥ(0) + 2β

1/βˆ

0

α ĥ(α)dα + o(1)


=
βT log T

2π

β + 2β2

1/βˆ

0

α (1− βα)dα + o(1)


=
βT log T

2π

β + 2β2

1/βˆ

0

(α− βα2)dα + o(1)


=
βT log T

2π

(
β + 2β2

( 1

2β2
− β 1

3β3

)
+ o(1)

)
=
βT log T

2π

(
β +

1

3
+ o(1)

)
=

(
β +

1

3
+ o(1)

)
NK(T ).

Therefore, letting β → m+, we have

N∗K(T ) ≤
(
m+

1

3
+ o(1)

)
NK(T ).

This proves the first assertion in Corollary 1.8. To prove the second assertion, we note that

the inequality (1.8) gives

Nd
K(T ) ≥ NK(T )2

N∗K(T )
≥
( 1

m+ 1
3

+ o(1)

)
NK(T ) =

(
3

3m+ 1
+ o(1)

)
NK(T ).

This completes the proof of Corollary 1.8.

i
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4 PAIR CORRELATION FOR THE SELBERG CLASS

In a now well known paper, Selberg [Sel92] introduced an axiomatic class of L-

functions that he conjectured satisfied the Riemann Hypothesis. This is now called the

Selberg class, we will denote it by S. The Dedekind zeta-function of a number field is an

element of S.

In a subsequent paper, Murty and Perelli [MP99] proved a version of Montgomery’s

theorem for pairs of zeros of L-functions in S in terms of the coefficients of the Dirichlet

series of the logarithmic derivative of elements of S. We use their work to prove our Theorem

1.7.

The Selberg class S is defined by the following axioms.

1. (Dirichlet Series). Every L ∈ S has a Dirichlet series

L(s) =
∞∑
n=1

aL(n)

ns
,

absolutely convergent for Re(s) = σ > 1.

2. (Analytic continuation). There exists a (minimal) integer mL ≥ 0 such that

(s− 1)mLL(s) is an entire function of finite order.

3. (Functional equation). L ∈ S satisfies a functional equation of type

Φ(s) = wΦ(1− s),
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where

Φ(s) = N s

r∏
j=1

Γ(λj s+ µj)L(s)

with N > 0, λj > 0, Re(µj) ≥ 0, and |w| = 1. Here L(s) = L(s).

4. (Ramanujan hypothesis). For every ε > 0, aL(n)� nε.

5. (Euler product). L ∈ S satisfies

log L(s) =
∞∑
n=1

bL(n)

ns
,

where bL(n) = 0 unless n = pm with m ≥ 1, and bL(n)� nθ for some θ < 1
2
.

.

In addition, we say the degree dL of L ∈ S is

dL = 2
r∑
j=1

λj,

we write

−L
′

L
(s) =

∞∑
n=1

ΛL(n)

ns
; ΛL(n) = bL(n) log n,

and we define

ψL(x) =
∑
n≤x

|ΛL(n)|2.

With this notation, Murty and Perelli [MP99] proved the following formula.

Proposition 4.1. Let L ∈ S and assume that L satisfies the analogue of the Riemann

Hypothesis. Let

an(x) = min

((n
x

) 1
2
,
(x
n

) 3
2

)
and w(x) =

4

4 + x2
.
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Then

2π
∑
|γ|≤T

∑
|γ′|≤T

xi(γ−γ
′)w(γ − γ′) = 2 d2L

T log2 T

x2
+

2T

x

∞∑
n=1

|ΛL(n)|2 an(x)2

+O

(
x log2 x+

T log T log
1
2 x

x
+
(T
x

) 1
2

log T log x+ log3 T

)
(4.1)

uniformly for T ≥ x > 1 where γ, γ′ run over the ordinates of two sets of nontrivial zeros of

L(s).

Proof. This is equation (30) in Murty and Perelli [MP99]. The proof follows Montgomery’s

original argument for the zeros of ζ(s) in [Mon73].
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5 PROOF OF THEOREM 1.7.

In this section we prove Theorem 1.7. The fact that FK(α) is even, real-valued, and

non-negative follows from Proposition 1.6. Moreover, it follows from the properties of ζK(s)

in the introduction that ζK(s) is in the Selberg class. Moreover, the left-hand side of (4.1)

equals 4πFK(x, T ) where FK(X,T ) is the function defined in (2.1). Therefore Proposition

4.1 implies that

2πFK(x, T ) = = m2 T log2 T

x2
+
T

x

∞∑
n=1

ΛK(n)2 an(x)2

+OK

(
x log2 x+

T log T log
1
2 x

x
+
(T
x

) 1
2

log T log x+ log3 T

) (5.1)

We prove Theorem 1.7 by estimating the sum on the right-hand side and then relating

FK(x, T ) to FK(α). We do this using partial summation and the following lemma.

Lemma 5.1. Let K be a Galois extension of Q. Then

∑
n≤x

ΛK(n)2 = [K : Q]x log x+OK(x)

as x→∞.

Proof. This follows from the proof of Lemma 5.2 of Milinovich and Turnage-Butterbaugh

[MTB14].
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Lemma 5.2. Let K be a Galois extension of Q and let m = [K : Q]. Then, for x ≥ 1, we

have
∞∑
n=1

ΛK(n)2an(x)2 = mx log x+OK(x).

Since

an(x) = min

((n
x

) 1
2
,
(x
n

) 3
2

)
,

the sum
∞∑
n=1

ΛK(n)2an(x)2 =
1

x

∑
n≤x

nΛK(n)2 + x3
∑
n>x

ΛK(n)2

n3
.

Using Lemma 5.1 and partial summation, we show that

∑
n≤x

nΛK(n)2 =
m

2
x2 log x+OK(x2) (5.2)

and that ∑
n>x

ΛK(n)2

n3
=
m log x

2x2
+OK

(
1

x2

)
. (5.3)

This implies that

∞∑
n=1

ΛK(n)2an(x)2 =
1

x

(m
2
x2 log x+OK(x2)

)
+ x3

(
m log x

2x2
+OK

(
1

x2

))
= mx log x+OK(x),

as stated in Lemma 5.2.

It remains to prove (5.2) and (5.3).
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Proof of (5.2). Let S(x) =
∑
n≤x

Λ2
K(n) = mx log x + OK(x). Then by summation by parts,

for all j ∈ N we have

∞∑
n≤x

Λ2
K(n)nj = tjS(t)

∣∣∣x
1−
− j

xˆ

1

S(t)tj−1dt

= xj S(x)− j
xˆ

1

(
mtj log t+OK(tj)

)
dt

= mxj+1 log x+OK(xj+1)− jm
xˆ

1

tj log tdt+OK

j xˆ

1

(tj)dt


= mxj+1 log x+OK(xj+1)− jm

 tj+1

j + 1
log t

∣∣∣x
1
−

xˆ

1

tj

j + 1
dt

+OK

(
jxj+1

j + 1

)

= mxj+1 log x+OK(xj+1)− jm

j + 1
xj+1 log x+OK

(
jmxj+1

(j + 1)2

)
+OK(xj+1)

= mxj+1

(
1− j

j + 1

)
log x+OK(xj+1)

= mxj+1

(
1

j + 1

)
log x+OK(xj+1)

=
m

j + 1
xj+1 log x+OK(xj+1).

Thus, for j = 1, we have

m

2
x2 log x+OK(x2),

which proves (5.2).
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Proof of (5.3). Again let S(x) =
∑
n≤x

Λ2
K(n) = mx log x + OK(x). Then by summation by

parts, for all j ≥ 2 we have

∞∑
n>x

Λ2
K(n)

1

nj
=

1

tj
S(t)

∣∣∣∞
x−

+ j

∞̂

x

S(t)
1

tj+1
dt

=

(
m

tj−1
log t+OK

( 1

tj−1

)) ∣∣∣∣∣
∞

x−

+ j

∞̂

x

(m
tj

log t+OK

(
1

tj

))
dt

=
m log x

xj−1
+OK

( 1

xj−1

)
+ jm

∞̂

x

log t

tj
dt+OK

j ∞̂
x

1

tj
dt


=
m log x

xj−1
+OK

( 1

xj−1

)
+ jm

 1

1− j
log t

tj−1

∣∣∣∣∣
∞

x

+
1

j − 1

∞̂

x

1

tj
dt


+OK

(
j

(j − 1)xj−1

)
=
m log x

xj−1
+OK

( 1

xj−1

)
+

jm

j − 1

log x

xj−1
+OK

(
jm

(j − 1)2xj−1

)
+OK

(
j

(j − 1)xj−1

)
=

m

xj−1

(
1− j

j − 1

)
log x+OK

( 1

xj−1

)
=

m

xj−1

(
1

j − 1

)
log x+OK

( 1

xj−1

)
=

m

j − 1

(
log x

xj−1

)
+OK

( 1

xj−1

)
.

Thus, for j = 3, we have

m

2

log x

x2
+OK

(
1

x2

)
.

This completes the proof of (5.3).

Combining (5.1) and Lemma 5.2, we have

2πFK(x, T ) = = m2 T log2 T

x2
+mT log x

+OK

(
T + x log2 x+

T log T log
1
2 x

x
+
(T
x

) 1
2

log T log x

)
.
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Setting x = Tmα for α ≥ 0 and then dividing by mT log T , we derive that

FK(α) = mT−2mα log T +mα

+OK

(
1

log T
+ α2Tmα−1 log T +

√
αT−mα

√
log T + αT−

1
2
− 1

2
mα log T

)
.

If we assume that 0 ≤ α < 1
m

, then all the error terms go to zero as T → ∞. Since

FK(−α) = FK(α), we have shown that

FK(α) = mT−2m|α| log T +m|α|+ o(1)

for α ∈ (− 1
m
, 1
m

). This proves Theorem 1.7.
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