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Abstract 

The main challenge of reducing carbon dioxide (CO2) to value-added products lies in designing 

more efficient catalysts that are long-lived, selective, and operate near the thermodynamic 

potential for the reaction. In this work, mononuclear and dinuclear Re complexes containing 

diamine ligands linked to a pendant anthracene moiety have been synthesized and studied for both 

electrocatalytic and photocatalytic CO2 reduction. Electrocatalytically, the performances of both 

catalysts were studied in N,N-dimethylformamide (DMF) and acetonitrile (MeCN) solutions to 

determine their turnover frequencies (TOFs) for CO2 reduction. Catalyst performance was 

compared to previously reported rhenium systems, and both systems studied here were shown to 

outperform the benchmark catalyst, Re(bpy)(CO)3Cl, in electrochemical and photochemical CO2 

reduction to carbon monoxide (CO). 
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Introduction 

 Carbon dioxide (CO2) is an integral component of our ecosystem. From being one of the 

primary reactants of natural photosynthesis by which all living organisms depend for survival to 

playing a vital role in regulating Earth’s surface temperature through the greenhouse gas effect, 

CO2 is an important gas in our atmosphere.[1] However, since the Industrial Revolution, the 

demand for natural resources such as coal, oil, and natural gas as fuels for combustion energy has 

skyrocketed resulting in a significant increase in the concentration of CO2 in the atmosphere 

(Figure 1). This elevation of atmospheric CO2 has led to harmful consequences, namely climate 

change, ocean acidification, and melting of polar ice caps.[2] 

 

 

Figure 1. Atmospheric CO2 concentrations (in ppm) measured at the Mauna Loa Observatory over 

the last six decades (1958 – 2018).[3] 
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Figure 2.  Energy consumption in the United States by energy source for the year 2017.[4] 

 

 In 2017 alone, total energy consumption of the United State of America was 97.7 quadrillion 

Btu among which 89% of the energy consumed was in the form of nonrenewable sources (Figure 

2). The consumption of fossil fuels (coal, oil, and natural gas) results in CO2 emissions in the 

atmosphere as a primary by-product of their combustion. Carbon dioxide is a greenhouse gas, 

whose ongoing accumulation in the atmosphere has been linked to climate change and other 

environmental concerns. 

 By 2050, the Energy Information Agency (EIA) projects a 56% increase in energy 

consumption.[5] There has been a significant increase in CO2 levels from 280 ppm to over 400 ppm 

during the last few decades which is above the desired threshold for atmospheric CO2 

concentration.[3] In this context, one strategy being pursued by the scientific community to alleviate 

greenhouse gas emissions and find alternative fossil fuel replacements is to generate renewable 

fuels. The concept of storing energy in the form of chemical bonds and reducing CO2 back into 

useful products hails from natural photosynthesis. Using a similar mechanism as found in plants, 
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catalysts must be designed and developed for CO2 reduction in order to facilitate the conversion 

of carbon dioxide into a sustainable chemical fuel. In this manner, the fuel will be burned as usual, 

but in a closed carbon cycle where the CO2 by-product following combustion can be reduced back 

into the fuel, avoiding its accumulation in the atmosphere. Fuels generated by natural or artificial 

photosynthesis are thus carbon-neutral and do not result in a net increase in CO2 emissions. 
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Natural and Artificial Photosynthesis 

 Natural photosynthesis is the process of capturing energy in the form of sunlight to drive the 

conversion of carbon dioxide and water into complex organic compounds such as glucose which 

is a building block of living organisms. In this process, water oxidation occurs in Photosystem II 

to evolve oxygen and provide protons and electrons for the reductive half-reaction that is 

ultimately CO2 reduction in the Calvin cycle (Figure 3). Notably, the oxygen released in the 

atmosphere is an environmentally benign, indeed beneficial, by-product of water oxidation.[6] 

While this work is focused on the development of catalysts for CO2 reduction, other groups are 

working on developing better catalysts for the water oxidation reaction as well. 

 

Figure 3. Basic representation of natural photosynthesis.[6] 

 

Figure 4. Mechanism of Photoelectrochemical Cell (PEC).[10] 

C6H12O
6 
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CO2 Reduction 

 CO2 can be reduced to many useful fuels such as methanol, formic acid, carbon monoxide, and 

ethylene as depicted in Figure 5, which can be used as commodity chemicals and fuels. Carbon 

monoxide, the most common CO2 reduction product, can be used commercially as a component 

of syngas (CO and H2) in the Fischer-Tropsch process to produce long chain hydrocarbons that 

make up diesel and jet fuels.[13] Although CO is a harmful gaseous product, it frequently serves as 

a vital raw product used in many industrial processes.  

 

 

Figure 5. Various products that can be generated from carbon dioxide.[11,12] 

 

Table 1: Thermodynamic potentials for CO2 reduction to various products at pH 7.[11,14] 

Electrochemical reduction of CO2 in the presence of a proton 

source (aqueous solution, pH 7, V vs. NHE) 

Selected reduction reactions of CO2                          E0 / V 
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Thermodynamically, it is more efficient to reduce CO2 at a potential that is close to the 

thermodynamic potential of the specified reaction (Table 1). Conversion of CO2 to CH4 is more 

thermodynamically favorable than conversion of CO2 to CO since CO2 reduces at -0.24 V for CH4 

and at -0.53 V for CO at pH 7. However, kinetically, it is easier to transfer 2 electrons and 2 protons 

in a system rather than 8 electrons and 8 protons, so it is rare that catalysts reduce CO2 by more 

than 2 electrons. The one-electron reduction of CO2 to CO2•- is an energetically demanding 

process, because the resulting CO2 radical anion is a very unstable and reactive intermediate. Thus, 

multiple electron reduction pathways are available and at substantially lower potentials.[15]  

 Selectivity is an important factor for a catalyst, because proton reduction is a competing 

reaction to CO2 reduction. The thermodynamic potential for proton reduction occurs at -0.42 V at 

pH 7, making it an easier reaction than carbon dioxide reduction to CO, which occurs at -0.53 V. 

Since, our objective is to perform carbon dioxide reduction, it is incredibly important for our 

catalyst to be selective for CO2 reduction in the presence of a proton source, which is needed as 

each of the reactions are proton-coupled reductions (Table 1). We note that proton-coupled 

electron transfer (PCET) can avoid the formation of high-energy radical species that would be 

produced by single electron transfer, which may allow access to lower overpotentials.[12]  

 

 

CO2 + e- →	CO2.-                                                                 -1.90 

CO2 + 2H+ + 2e- →	CO + H2O                                    -0.53 

CO2 + 2H+ + 2e- →	HCO2H                                        -0.61 

CO2 + 6H+ + 6e- →	CH3OH + H2O                             -0.38 

CO2 + 8H+ + 8e- →	CH4 + 2H2O                                 -0.24  
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Rhenium metal catalysts and Previous works: 

 Transition metals possess the capability to perform the catalytic reduction of CO2 due to their 

ability to adopt multiple redox states and form coordination complexes.[7] A number of different 

metals have been employed in transition metal complexes, which have been widely investigated 

for catalytic CO2 reduction. Rhenium-based catalysts are well-known in the literature due to their 

durability and superior catalytic activity and selectivity. One of the most common and extensively 

studied transition metal catalysts is the rhenium (2,2’-bipyridyl)-based system, originally reported 

by Lehn and co-workers in 1983.[16] Many mononuclear catalysts derivatives based on the 

benchmark catalyst, Re(bpy)(CO)3Cl, have been developed for electro- and photocatalytic CO2 

reduction over the last four decades. However, significantly less studied are dinuclear systems that 

may allow for the accumulation of multiple reducing equivalents at lower potentials to facilitate 

the efficient multielectron reduction of carbon dioxide. 

 

 

Figure 6. Monomeric and dimeric catalysts developed by the Rieger Group.[17] 
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 Dinuclear rhenium complexes with 1,2-bis(4,4′-methyl-[2,2′]bipyridyl)-ethane and 1,2-

bis(4,4′-methyl-[2,2′]bipyridyl)-dodecane as bridging ligands, and (dmb)Re(CO)3X (dmb is 4,4’-

dimethyl-2,2’-bipyridine) were synthesized and their photocatalytic performances were studied 

and compared by the Rieger Group.[17] They first synthesized a series of mononuclear complexes 

of the type (dmb)Re(CO)3X, where X = Br–, NCS–, MeCN, and P(OEt3), along with their dinuclear 

analogues. Through UV-Vis absorption spectra of the mononuclear and dinuclear complexes, they 

found that alkyl linkers did not have a significant effect on the first reduction potential or 

quenching of the excited state by a sacrificial donor. Here, they tried to demonstrate the relation 

of the lifetime of one-electron reduction (OER) species and the dissociation of ligand X. The 

lifetime of the OER species is greatly reduced when X is a good leaving group. At low 

concentrations, complexes with the weakly bound ligand like Br– have a short OER lifetime and 

does not show significant bimetallic interactions. On the other hand, at high concentrations, 

strongly bound ligands like NCS– can show higher catalytic performance when the proximity of 

metal center is achieved through a covalent linkage, even though it has a short OER lifetime. In 

presence of a weakly bound ligand, the increased number of alkyl linkers have no effect on the 

catalytic activity, yet in the presence of bridging ligands to give a dinuclear complex, an increase 

in catalytic activity compared to the mononuclear complex is observed. They were able to 

successfully demonstrate that the adjustment of the proximity of two metal centers based on 

determining the lifetime of the OER intermediate follows a bimetallic pathway where the dinuclear 

rhenium complexes show higher photocatalytic performance as they can react more efficiently due 

to being covalently linked. 
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Figure 7. A dinuclear rhenium-based supramolecular assembly developed by the Kubiak Group 

which is accessed by hydrogen-bonding interactions via amide functionality.[16] 

  

 The Kubiak Group designed a supramolecular complex by the addition of methyl 

acetamidomethyl group at the 4,4’-position of a 2,2’-bipyridyl ligand, studied and compared their 

electrocatalytic activity with that of the model complex [(dmb)Re(CO)3Cl].[16] The linkage of 

methyl acetamidomethyl groups was found to show an improved electrochemical behavior. 

Trifluoroethanol (TFE) was added as a proton source and shown to further enhance the catalytic 

activity. They carried out detailed studies on their supramolecular complex to account for the 

possible formation of a dimer in MeCN. Through infrared spectroelectrochemical (IR-SEC) 

studies, they were able to confirm the formation of a hydrogen bonded dimer by evaluating the 

lower shift in frequencies. They also performed IR-SEC studies to determine the co-products of 

CO2 reduction which were found to be CO and CO32-, suggestive of reductive disproportionation 

of CO2. Though the formation of a dimer was theoretically determined to raise the potential due to 

the additional reduction process involved in the cleavage of metal-metal bonds, the CVs show that 
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the supramolecular complex performs CO2 reduction at a much lower overpotential than the model 

complex (dmb)Re(CO)3Cl.  

 

 

Figure 8. Dinuclear rhenium complex with a phenolic proton relay at the bridge in close proximity 

to the metal center active sites, which was developed by the Siewert Group.[18] 

 The Siewert Group synthesized a dinuclear a-diimine rhenium complex with a proton 

responsive ligand (4-tert-butyl-2,6-bis(6-(1H-imidazol-2-yl)phenol) in close proximity to the 

metal center for studying the effect of a proton responsive ligand on electrochemical CO2 

reduction.[19] Through IR spectroscopy, they found that the H and Me substituted ligands have 

similar effects with both displaying a CO stretching frequency lower than the benchmark catalyst. 

CVs of the catalyst in DMF with added water displayed a slight shift in the second reduction peak 

with enhanced catalytic current at lower overpotentials with increasing concentrations of H2O. 

This behavior is hypothesized to occur due to the catalyst favoring CO2 reduction over OH-bond 

cleavage at the ligand. Higher catalytic activity of this dimeric complex having a proton responsive 

ligand in close proximity to the active metal center demonstrates that the bridging phenol can act 

as a proton relay and participate in the proton-coupled reduction of CO2 during catalysis. 
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Figure 9. Mononuclear and dinuclear rhenium catalysts synthesized and studied by the Jurss 

Group.[7] 

 
 With relatively limited examples from the literature of dinuclear rhenium catalysts for CO2 

reduction as described above, the Jurss Group synthesized rigid mononuclear and dinuclear 

rhenium complexes bearing an anthracene chromophore, in which the rhenium active sites are held 

in close proximity in order to study the effects of one metal active site versus two and compared 

their electrocatalytic activity with the benchmark catalyst.[7] The dinuclear rhenium complex was 

found to have two isomeric forms, a symmetric cis conformer and an asymmetric trans conformer, 

as determined by NMR and IR spectroscopy. In electrochemical studies, the cis conformer (cis-

Re2Cl2) displayed a higher catalytic activity and was found to operate through a different 

mechanism for CO2 reduction to CO compared to the trans conformer (trans-Re2Cl2). Indeed, the 

cis-Re2Cl2 catalyst displayed the highest catalytic activity with a turnover frequency (TOF) of 35.3 

s-1, the catalytic activity of the mononuclear catalyst were comparable to that of trans-Re2Cl2 with 

a TOF of ~20 s-1. All three catalysts were seen to outperform the benchmark catalyst 

Re(bpy)(CO)3Cl which had a TOF of 11.1 s-1 under the same conditions. This result show that two 

metal actives can be better than one, and that the pendant anthracene may also lead to improved 

catalysis. The mononuclear and dinuclear rhenium catalysts were investigated in the presence of 

different proton sources in order to explore their effect on electrocatalytic CO2 reduction. It was 

cis-Re2Cl2 trans-Re2Cl2 anthryl-Re Re(bpy)(CO)3Cl
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postulated that the symmetric structure of cis-Re2Cl2 makes the orientation of the dinuclear 

complex suitable for a cooperative bimetallic pathway, which increases the catalytic rate for CO2 

reduction.  

 The anthracene-functionalized catalysts developed by the Jurss Group were further tested for 

their photocatalytic activity by collaboration with the Delcamp Group in the Department of 

Chemistry and Biochemistry at the University of Mississippi. One of the benefits of using rhenium-

based catalysts for CO2 reduction is that they are known to possess a unique property in which 

they can act as both the photosensitizer and CO2 reducing catalyst. In the dinuclear systems, one 

metal center can act as a photosensitizer whereas the other can be used as the catalyst. Indeed, both 

cis- and trans-Re2Cl2 were found to have a higher reactivity than the mononuclear catalysts as the 

two rhenium centers can cooperate efficiently by being covalently linked together. The di-rhenium 

catalysts performed significantly better (~4X higher TON) than the benchmark catalyst when the 

relative concentration of Re active sites was held constant. Despite the structural differences of 

cis-Re2Cl2 and trans-Re2Cl2, the initial rates displayed by these catalysts were comparable to each 

other with both being faster (~6X higher TON) than the mononuclear complexes. A comparison 

of the anthracene-substituted monomer (anthryl-Re) with the benchmark catalyst 

Re(bpy)(CO)3Cl also shows that the anthracene itself actually has a negative impact on 

photocatalytic activity (Figure 12). This work is being communicated in the peer-reviewed 

literature and is currently under revision. 
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Figure 10. TON for CO production vs time for 0.1 mM cis-Re2Cl2, 0.1 mM trans-Re2Cl2, 0.2 

mM anthryl-Re, and 0.2 mM Re(bpy)(CO)3Cl.  

 

Mechanism of Electrocatalytic CO2 Reduction 

 From extensive mechanistic studies, Re(bpy)(CO)3X-type catalysts are known to follow a 

single-site monometallic pathway during electrocatalysis where a catalyst in its initial state gets 

reduced by one-electron to form an anionic species. After the loss of chloride (or similar anionic 

monodentate ligand, X), a second reduction takes place to form the catalytically-active 

intermediate with an open coordination site for CO2 activation. However, in certain cases, for 

example, in supramolecular assemblies or covalently-linked active sites or at relatively high 

catalyst concentrations, the catalyst can also operate through a competing bimetallic pathway.[16] 

In the bimetallic pathway, the one-electron reduced (OER) catalyst reacts with another OER 

catalyst to form a dimer (a dinuclear species containing a metal-metal bond), which gets reduced 

by one-electron to form the catalytically-active intermediate following metal-metal bond cleavage.  
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Figure 11. Mechanism for reduction of Re(bpy)(CO)3X-type catalysts to form the catalytically-

active intermediate (F) as proposed by Kubiak and coworkers.[16] 

 

   

 

Figure 12. The effect of photosensitizer on a metal ligand complex for enhancement of CO2 

reduction.[19]  

 

 Under photocatalytic conditions with these catalysts, different mechanistic steps are observed 

and photosensitizers can have a substantial effect on the activity of the catalyst. Photosensitizers 

often have large delocalized π systems, which lowers the energy of LUMO orbitals.[20] 
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Photocatalytic CO2 reduction can be performed in two ways. In a sensitized catalytic cycle, 

photosensitizers are activated by a photon source first and then reduced by excited state quenching 

with a sacrificial electron donor molecule. The catalyst gets reduced by the reduced photosensitizer 

molecule, which subsequently can react with carbon dioxide. Upon the addition of a second 

electron in the system, the reduced catalyst reduces CO2 to CO and regenerates the catalyst as 

illustrated in Figure 6. In a non-sensitized catalytic cycle, light excites the catalyst, which then 

gets reduced by the sacrificial electron donor before it can activate carbon dioxide. Upon the 

addition of a second electron in the system, the reduced catalyst reduces CO2 to CO and regenerates 

the catalyst. In a sensitized photocatalysis, an external photosensitizer such as fac-Ir(ppy)3 needs 

to be employed for the activation of the complex for CO2 reduction whereas in a non-sensitized 

photocatalysis, the catalyst itself serves as a photosensitizer for light absorption and CO2 reduction.  

 One of the main benefits of using the anthracene-based polypyridyl ligand in our complex is 

that these catalysts possess a long-lived excited triplet state. When appropriate light is shined on 

the complex bearing a pendent anthracene, the electrons get excited to its higher energy state where 

metal-to-ligand charge transfer (1MLCT) takes place. Since rhenium is a heavy metal and has 

significant spin-orbit coupling, intersystem crossing occurs to generate the triplet MLCT excited 

state which is lower in energy. This excited state continues to be funneled downhill to an 

anthracene-based triplet excited state that is exceptionally long-lived as the transition from the 

triplet organic chromophore back to the singlet ground state is a spin forbidden process without 

the benefit of significant spin-orbit coupling. The long-lived excited state facilitates reductive 

quenching with a sacrificial donor, such as BIH, and makes photocatalysis more efficient. These 

basic photophysical processes and their relative energies are shown in Figure 15. 
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Figure 13. Excited state energetics and reaction with sacrificial donor BIH to form a reduced 

anthracene-functionalized rhenium species. 

 

                           

Figure 14. Mononuclear and dinuclear rhenium catalysts synthesized and studied in this work. 

 

 It has been previously reported in literature that extending the π framework by making the 

polypyridyl ligand coplanar to rigid anthracene moiety increased the lifetime of anthracene excited 

state. Enhancing the lifetime of triplet state theoretically should have a positive impact of the 

photochemical performance of this type of catalysts. By this work, we wanted to see how a 
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coplanar and freely rotating mononuclear and dinuclear Re catalysts works for catalytic CO2 

reduction.  

 

Results and Discussion 

 Synthetic routes for preparing the mononuclear (1f) and dinuclear (2d) rhenium catalysts 

containing a pendant anthracene functional group that can be coplanar with the bipyridine are 

shown below in Synthetic Schemes 1 and 2. Detailed procedures, characterization of the 

intermediates and final complexes, and associated references can be found in the Experimental 

section of the Supplemental Information.[7, 21-26] 

 

 

Synthetic Scheme 1 

 

 

 

 
 

1f 
 

1e 
 

1d 
 1c 

 
1b 
 

1a 
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Synthetic Scheme 2 

 

 

Materials and methods 

 All the synthetic procedures were performed in an inert atmosphere using standard Schlenk 

techniques unless otherwise mentioned. Toluene was dried with a Pure Process Technology 

solvent purification system. Anhydrous N,N-dimethylformamide (DMF) was purchased from Alfa 

Aesar packed under argon. The rhenium precursor Re(CO)5Cl was purchased from Stream and 

stored in a glovebox. All other chemicals were reagent or ACS-grade, purchased from commercial 

vendors and used without further purification. All the NMRs (1H and 13C) were obtained using a 

Bruker Advance DRX-500 spectrometer operating at 500 MHz (1H) and 126 MHz (13C). Thin-

layer chromatography was done on Sigma T-6145 pre-coated TLC Silica gel polyester sheets 

which was visualized using UV lamps. The deactivated silica column was made by using (100:1) 

MeOH:TEA (triethylamine). All chemical shifts are reported in ppm. The cis and trans isomers 

2a 
 

2d 
 

2c 
 

2b 
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could not be separated for our dinuclear catalyst. Hereafter, the mixture of cis and trans isomers 

were subjected for further investigation.  

 

Photocatalysis 

 Photocatalytic experiments were performed with a 150 W Science tech SF-150C Small 

Collimated Beam Solar Stimulator equipped with an AM 1.5 filter. The conditions employed for 

all experiments involved 0.1 mM catalyst, 10 mM 1,3-dimethyl-2-phenyl-2H-benzimidazole 

(BIH), and 5% triethylamine (TEA) in stirred CO2-saturated solutions of either MeCN or DMF as 

specified. Headspace analysis was performed using a gas tight syringe with stopcock and Agilent 

7890B Gas Chromatograph. Quantitation of CO was made using an FID detector whereas H2 was 

quantified using a TCD detector. Calibration was done using the standards purchased from 

buycalgas.com.  

Table 2: TON of CO displayed by the mononuclear rhenium complex (catalyst 1f) in MeCN and 

DMF at different time intervals. 

Time (hr) TONCO (MeCN) TONCO (DMF) 

0.33 35 3.5 

0.66 84 10 

1 111 17 

2 127 29 

4 130 32 
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Figure 15. TON for CO production vs time for 0.1 mM mononuclear Re complex (1f) in MeCN 

and DMF solutions. This data was collected by Shakeiya Davis. 

 

 Table 2 and Figure 15 illustrates the effect of different solvent system on the photocatalytic 

activity of the metal complexes. This illustrates that the performance in MeCN is almost 5 times 

better than that in DMF.   

Table 3. Comparison of TON of evolved CO by mononuclear and dinuclear Re catalysts in MeCN. 

Catalyst TON 

Mononuclear (1f) 109 

Dinuclear (2d) 159 
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Figure 16. TON for CO production for 0.1 mM mononuclear (1f) and dinuclear (2d) Re catalysts 

in MeCN solutions containing BIH and TEA. Data collected by Shakeiya Davis. 

 

 After the mononuclear catalyst was determined to show a greater durability and performance 

in MeCN, we compared the TON for CO for both of our catalysts in MeCN. Table 3 shows that 

the TON for the dinuclear complex is greater than that of the mononuclear complex. Figure 16 

also shows that both of our catalysts are active for a long period of time. Higher TON for the 

dinuclear catalyst 2d is consistent with the hypothesis that the presence of two metal centers 

enables more efficient accumulation of reducing equivalents for improved CO2 conversion.[25] A 

photosensitizer pathway can be generally used to describe this difference in TON between the 

mononuclear and dinuclear rhenium complexes. In the dinuclear Re2Cl2 system (2d), the catalyst 

functions through an intramolecular pathway in which one rhenium complex acts as a 

photosensitizer and the other acts as both photocatalyst and electrocatalyst. The durability of such 

complexes is thought to arise from a shorter lifetime of the one-electron reduced intermediates as 

photocatalysis is more efficient with two metal center covalently linked.[26]  

 

1 2

Catalyst TON

1 109

2 154

Average of 2 runs

Conditions: 0.1 mM cat, no 
Ir(ppy)3, BIH, TEA, MeCN, CO2, 
LED lamp, stirring

-----dinuclear 
 

-----mononuclear 
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Electrocatalysis 

 Electrochemistry was performed with a Bioanalytical Systems, Inc. (BASi) Epsilon 

potentiostat. A three-electrode cell employing a glassy carbon disk (3 mm dia.) working electrode, 

a platinum wire counter electrode, and a silver wire quasi-reference electrode was used for the 

cyclic voltammetry studies. Cyclic voltammetry was employed to study the turnover frequencies 

(TOF). Controlled potential electrolysis was employed to study the efficiency and life span of the 

metal complex. Electrochemistry was conducted in anhydrous DMF and MeCN containing 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6) supporting electrolyte. Solutions were 

degassed thoroughly with argon or carbon dioxide for at least 30 min before collecting data and 

all cyclic voltammograms (CVs) were started at the most positive potential and cycled through the 

most negative potential and back. Ferrocene was added at the end of experiments as an internal 

standard to reference the potential. 

 

B 
 

A 
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Figure 17. CVs of 0.5 mM mononuclear Re complex (1f) under Ar (black) and CO2 (red) in 0.1 

M TBAPF6/(DMF or MeCN) using different proton sources. (A-DMF, B-MeCN, C-DMF-5% 

TFE, D-DMF-5% MeOH, E-DMF-5% H2O, D-MeCN-5% TFE, G-MeCN-5% MeOH, H-MeCN-

5% H2O, I-MeCN-Phenol).  
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Figure 18. CVs of 0.5 mM dinuclear rhenium complex (2d) under Ar (black) and CO2 (red) in 0.1 

M TBAPF6/(DMF or MeCN) using different proton sources. (J-DMF, K-MeCN, L-DMF-5% 

TFE, M-DMF-5% MeOH, N-DMF-5% H2O, O-MeCN-5% TFE, P-MeCN-5% MeOH, Q-MeCN-

5% H2O, R-MeCN-Phenol). 

 

Both the mononuclear (1f) and the dinuclear (2d) rhenium complexes were subjected to cyclic 

voltammetry under of argon and catalytic conditions (under CO2), separately. From the cyclic 

voltammograms under argon, we can see three reduction peaks for the mononuclear complex in 

absence of any proton sources. The first and the most positive peak represents a ligand-based 

reduction, the middle peak represents metal-based reduction, and the third and most negative peak 

represents an anthracene-based reduction on the basis of an earlier report.7 All of the data 

represented in the table below are directly derived from the CVs presented in Figures 17 and 18.  

 

Table 4. CO2 reduction potentials and (icat/ip) values at second reduction peak of the mononuclear 

catalyst 1f from cyclic voltammetry in anhydrous DMF/0.1 M Bu4NPF6 solutions. 

Proton Source Ep,c icat/ip 

R 
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None -2.46 2.87 

5% TFE -2.32 3.12 

5% MeOH -2.43 2.67 

5% H2O -2.22 3.98 

 

The mononuclear catalyst 1f was investigated with DMF in presence of different common proton 

sources. The comparison can be seen in Table 4. The catalyst showed no significant changes in 

activity when the proton sources were introduced.  

 

Table 5. CO2 reduction potentials and (icat/ip) values at second reduction peak of the dinuclear 

catalyst 2d from cyclic voltammetry in anhydrous DMF/0.1 M Bu4NPF6 solutions. 

Proton Source Ep,c icat/ip 

None -2.38 7.45 

5% TFE -2.37 5.92 

5% MeOH -2.32 6.09 

5% H2O -2.26 1.15 

The dinuclear catalyst 2d was investigated with DMF in presence of different common proton 

sources. The comparison can be seen in Table 5. The catalyst showed detrimental catalytic activity 

when the proton sources were introduced. Compared to the mononuclear Re complex, the 

dinuclear Re complex displayed a higher catalytic activity which can be explained in terms of the 

presence of two active metal sites versus one. 
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Table 6. CO2  reduction potentials and (icat/ip) values at second reduction peak of the mononuclear 

catalyst 1f from cyclic voltammetry in anhydrous MeCN/0.1 M Bu4NPF6 solutions. 

Proton Source Ep,c icat/ip 

None -2.52 1.17 

5% TFE -2.08 5.94 

5% MeOH -2.10 5.22 

5% H2O -2.04 2.14 

5% Phenol -2.32 4.66 

 

The mononuclear catalyst 1f was investigated with MeCN in presence of different common proton 

sources. The comparison can be seen in Table 6. The catalyst showed a significant increase the 

catalytic activity when the proton sources were introduced at a reduced catalytic potential value. 

Table 7. CO2 reduction potentials and (icat/ip) values at second reduction peak of the dinuclear 

catalyst 2d from cyclic voltammetry in anhydrous MeCN/0.1 M Bu4NPF6 solutions. 

Proton Source Ep,c icat/ip 

None -2.35 3.82 

5% TFE -1.82 7.80 

5% MeOH -1.88 5.26 

5% H2O -1.91 3.32 

5% Phenol -1.84 2.04 
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The dinuclear catalyst 2d was investigated with MeCN in presence of different common proton 

sources. The comparison can be seen in Table 7. The catalyst showed higher activity when the 

proton sources (5% TFE and 5% MeOH) were introduced. While, the catalytic activity decreased 

with other added proton sources, it is important to note the decrease in catalytic potentials too. 

Compared to the mononuclear Re complex, the dinuclear Re complex displays a higher catalytic 

activity in presence of 5% TFE. 

Scan rate dependent cyclic voltammetry in DMF (Mononuclear complex 1f) 
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Scan rate dependent cyclic voltammetry in MeCN (Mononuclear complex 1f) 

 

 

Scan rate dependent cyclic voltammetry in DMF (Dinuclear complex 2d) 
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Scan rate dependent cyclic voltammetry in MeCN (Dinuclear complex 2d) 

 

 

Figure 19. Mononuclear and dinuclear rhenium complexes: Cyclic voltammograms at different 

scan rates with 0.5 mM rhenium complexes under Ar atmosphere in DMF or MeCN solutions, as 

indicated, containing 0.1 M TBAPF6. The scan rate dependence is shown next to each series of 

cyclic voltammograms in the plot of current (µA) versus the square root of the scan rate ((mV/s)1/2). 

A linear fit is observed which confirms that the systems are homogeneous and diffusion controlled. 
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Figure 20. Representative TOF versus scan rate graph for dinuclear complex 2d in DMF (A2), 

MeCN (B2). 

 

Table 8. Summary of electrocatalysis obtained from cyclic voltammetry in DMF solutions. 

Catalyst TOF (s-1) (DMF) 

mononuclear-ReCl (1f) 17.3 

dinuclear-Re2Cl2 (2d) 17.8 

cis-Re2Cl2 35.3 

trans-Re2Cl2 22.9 

anthryl-Re 19.2 

 

 

 

 

B2 
 

A2 
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Table 9. Summary of electrocatalysis obtained from cyclic voltammetry in MeCN solutions. 

Catalyst TOF (s-1) in MeCN 

mononuclear-ReCl (1f) 5.9 

dinuclear-Re2Cl2 (2d) 9.2 

 Electrochemistry was performed on both of our metal complexes to test for catalytic properties. 

The catalytic system was found to be diffusion controlled. From the cyclic voltammograms of the 

complexes in different solvents and with different added proton sources, MeCN with 5% TFE was 

found to produce the highest catalytic current in CO2-saturated solutions with both the 

mononuclear (1f) and dinuclear (2d) catalysts. After calculations were performed to determine 

turnover frequencies (TOF), the TOFs were plotted versus the scan rate to obtain maximum scan 

rate independent TOF values (as shown in Figure 20). Since our metal complexes were soluble in 

both DMF and MeCN, we wanted to study the catalytic activity in these two different solvents. 

The results show that our metal complex is more catalytically active in DMF solutions in 

comparison to MeCN. The TOFs obtained for both the mononuclear and dinuclear Re2Cl2 

complexes in DMF (~18 s-1) are comparable to the TOFs of the previously reported catalysts with 

TOFs of trans-Re2Cl2 (22.9 s-1) and anthryl-Re (19.2 s-1).[7] 
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Conclusions 

 We have synthesized and studied novel polypyridyl mononuclear and dinuclear rhenium 

complexes containing a pendant anthracene chromophore. The catalytic rates were measured by 

cyclic voltammetry for mononuclear- and dinuclear rhenium catalysts (1f and 2d, respectively) 

with estimated TOFs of 17.3 and 17.8 s-1, respectively. The TOFs obtained for both the 

mononuclear and dinuclear Re catalysts in DMF (~18 s-1) are comparable to the TOFs of related 

and previously reported systems which had measured TOFs for trans-Re2Cl2 (22.9 s-1) and 

anthryl-Re (19.2 s-1).7 Results obtained from the electrochemistry and photocatalysis data confirm 

that both of our catalysts show notable activity for CO2 reduction. Photocatalysis data show that 

our catalysts are very active with higher TONs of 109 and 159 for the mononuclear and dinuclear 

rhenium complexes, respectively. When compared with the TON results of the previously studied 

rigid mononuclear and dinuclear complexes (TONs as high as ~80), the photocatalytic activity 

displayed by our second-generation catalysts (1f and 2d) are comparatively higher which 

demonstrates that an unhindered rotation has a positive impact on the photocatalytic activity, 

consistent with our initial hypothesis. Both mononuclear (1f) and dinuclear (2d) Re complexes 

show a higher catalytic activity in MeCN in presence of 5% TFE. Some of the future works include 

obtaining better 13C NMRs, obtaining Faradaic efficiencies for the dinuclear-Re2Cl2 (2d) complex, 

and establishing a procedure to separate the cis and trans isomers in order to compare their 

electrocatalytic and photocatalytic performances for CO2 reduction. 

 

 

 

 



 35 

References 

(1) A First Course in Atmospheric Radiation – G.W. 

Petty http://sundogpublishing.com/products/a-first-course-in-atmospheric-radiation-g-w-

petty (accessed Nov 2, 2018). 

(2) Bennett (NOAA), J. Ocean Acidification http://ocean.si.edu/ocean-life/invertebrates/ocean-

acidification (accessed Nov 2, 2018). 

(3) User, S. Daily CO2 https://www.co2.earth/daily-co2 (accessed Nov 2, 2018). 

(4) EIA projects world energy consumption will increase 56% by 2040 - Today in Energy - U.S. 

Energy Information Administration 

(EIA) https://www.eia.gov/todayinenergy/detail.php?id=12251(accessed Nov 2, 2018). 

(5) U.S. Energy Information Administration (EIA) - Total Energy Monthly 

Data https://www.eia.gov/totalenergy/data/monthly/ (accessed Nov 2, 2018). 

(6) Barber, J.; Tran, P. D. From Natural to Artificial Photosynthesis.  Soc. 

Interface 2013, 10 (81). 

(7) Yang, W.; Sinha Roy, S.; Pitts, W. C.; Nelson, R. L.; Fronczek, F. R.; Jurss, J. W. 

Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium 

Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorg. 

Chem. 2018, 57(15), 9564–9575. 

(8) Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. 

Conversion of Light Energy to Proton Potential in Liposomes by Artificial Photosynthetic 

Reaction Centres. Nature 1997, 385 (6613), 239–241. 



 36 

(9) Steinberg-Yfrach, G.; L Rigaud, J.; Durantini, E.; Moore, A.; Gust, D.; Moore, T. Light-Driven 

Production of ATP Catalysed by F0F1-ATP Synthase in an Artificial Photosynthetic 

Membrane. Nature 1998, 392, 479–482. 

(10) Robert, M. Proton-Coupled Electron Transfer. Energy Environ. Sci. 2012, 5 (7), 7695–

7695. 

(11) Finn, C.; Schnittger, S.; Yellowlees, L. J.; Love, J. B. Molecular Approaches to the 

Electrochemical Reduction of Carbon Dioxide. Chem. Commun. 2012, 48 (10), 1392–1399. 

(12) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and 

Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. 

Rev. 2009, 38 (1), 89–99. 

(13) Nikparsa, P.; Mirzaeia, A. A.; Atashi, H. Effect of Reaction Conditions and Kinetic Study 

on the Fischer-Tropsch Synthesis over Fused Co-Ni/Al2O3 Catalyst. J. Fuel Chem. 

Technol. 2014, 42, 710–718. 

(14) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. 

Rev. 2007, 107 (6), 2365–2387. 

(15) Liyanage, N. P.; Dulaney, H. A.; Huckaba, A. J.; Jurss, J. W.; Delcamp, J. H. 

Electrocatalytic Reduction of CO2 to CO With Re-Pyridyl-NHCs: Proton Source Influence on 

Rates and Product Selectivities. Inorg. Chem. 2016, 55 (12), 6085–6094. 

(16) Machan, C. W.; Chabolla, S. A.; Yin, J.; Gilson, M. K.; Tezcan, F. A.; Kubiak, C. P. 

Supramolecular Assembly Promotes the Electrocatalytic Reduction of Carbon Dioxide by 

Re(I) Bipyridine Catalysts at a Lower Overpotential. J. Am. Chem. Soc. 2014, 136 (41), 

14598–14607. 



 37 

(17) Bruckmeier, C.; Lehenmeier, M. W.; Reithmeier, R.; Rieger, B.; Herranz, J.; Kavakli, C. 

Binuclear Rhenium(I) Complexes for the Photocatalytic Reduction of CO2. Dalton 

Trans. 2012, 41 (16), 5026–5037. 

(18) Wilting, A.; Stolper, T.; Mata, R. A.; Siewert, I. Dinuclear Rhenium Complex with a Proton 

Responsive Ligand as a Redox Catalyst for the Electrochemical CO2 Reduction. Inorg. 

Chem. 2017, 56 (7), 4176–4185. 

(19) Huckaba, A. J.; Sharpe, E. A.; Delcamp, J. H. Photocatalytic Reduction of CO2 with Re-

Pyridyl-NHCs. Inorg. Chem. 2016, 55 (2), 682–690. 

(20) Schindler, J.; Zhang, Y.; Traber, P.; Lefebvre, J.-F.; Kupfer, S.; Demeunynck, M.; Gräfe, 

S.; Chavarot-Kerlidou, M.; Dietzek, B. A Ππ* State Enables Photoaccumulation of Charges 

on a π-Extended Dipyridophenazine Ligand in a Ru(II) Polypyridine Complex. J. Phys. 

Chem. C 2018, 122 (1), 83–95. 

(21) Wada, T.; Muckerman, J. T.; Fujita, E.; Tanaka, K. Substituents Dependent Capability of 

Bis(Ruthenium-Dioxolene-Terpyridine) Complexes toward Water Oxidation. Dalton 

Trans. 2011, 40 (10), 2225–2233. 

(22) Egbe, D. A. M.; Amer, A. M.; Klemm, E. Improved Synthesis of 4-Bromo-2,2’-Bipyridine: 

A Start Material for Low-Molecular-Weight Model Compounds. Designed Monomers and 

Polymers 2001, 4(2), 169–175.  

(23) Wenkert, D.; Woodward R.B. Studies of 2,2’-Bypyridyl N,N’-Dioxides. J. Org. Chem. 

1983, 48, 0022-3263. 

(24) Bair, J. S.; Harrison, R. G. Synthesis and Optical Properties of Bifunctional Thiophene 

Molecules Coordinated to Ruthenium. J. Org. Chem. 2007, 72 (18), 6653–6661. 



 38 

(25) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an Efficient Photocatalytic 

System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies. J. 

Am. Chem. Soc.2008, 130 (6), 2023–2031. 

(26) Genoni, A.; Chirdon, D. N.; Boniolo, M.; Sartorel, A.; Bernhard, S.; Bonchio, M. Tuning 

Iridium Photocatalysts and Light Irradiation for Enhanced CO2 Reduction. ACS 

Catal. 2017, 7 (1), 154–160. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

Experimental synthesis  

All the succeeding synthetic procedures were prepared according to the relative literature 

procedures. [7,21-26] 

2,2’-Bipyridyl N-Oxide (1b): A solution of (7 g, 44.82 mmol) 2,2-bipyridine in 25 mL of 

chloroform was prepared in a 100 mL two neck round bottom flask and stirred at 0oC in air for 35 

mins. Another solution of (9.156 g, 53.05 mmol) m-chloroperbenzoic acid in 87 mL of chloroform 

was prepared and added to the flask dropwise using a dropping funnel over a period of 80 mins. 

The mixture was allowed to stir at room temperature for 14 hours. The resulting solution was 

washed three time with 5% Na2CO3 solution and extracted three times with chloroform. The 

chloroform layer was evaporated to dryness which resulted in a brown oily product. The remaining 

unreacted reactants which was in the residual oil was treated with boiling hexane. The hexane layer 

was carefully removed using the process of decantation and rotary evaporation. The greyish brown 

product was left to dry under the house vacuum overnight which obtained a percentage yield of 

70%.  

4-Nitro-2,2’-bipyridyl N-Oxide(1c): (1 g, 5.81 mmol of 2,2’-Bipyridyl N-Oxide) was dissolved 

in 12.5 mL of H2SO4 and the mixture was stirred and heated in air at 100oC. 3 mL concentrated 

HNO3 was dripped over several minutes and the reaction was heated under reflux for 3 days at 70 

oC. After cooling the solution, it was poured in ice and then cooled in the ice bath. The addition of 

NaOH pallets in the solution to neutralize at pH 9 is highly exothermic so extreme precaution was 

taken. The resulting precipitate was filtered through the glass frit, washed with cold distilled water 

and left to dry on air for a day which obtained a percentage yield of 35%.  
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4-Bromo-2,2’-bipyridine (1d): (1.54 g, 7.06 mmol) of 4-Nitro-2,2’-bipyridyl N-Oxide was 

dissolved in 25 mL of glacial acetic acid. After the solution was degassed for 35 mins, 5 mL acetyl 

bromide was added to the mixture with constant stirring under nitrogen which yielded a yellow 

precipitate. After 20 mins, 5 mL of phosphorous tribromide was added to the resulting solution 

which caused the precipitate to re-dissolve. The solution was heated under reflux for 2.5 hours at 

118 oC. After cooling to room temperature, the solution was decanted, and the remaining sticky 

product was dissolved in ice cold water. The acidic solution was neutralized to pH 9 using NaOH 

pallet which was then extracted with DCM three times. The DCM layer was then evaporated to 

dryness to obtain the product with a yield of 79%. 

 

Mononuclear catalyst (1f) 

4-(anthracen-9-yl)-2,2’-bipyridine (L1) (1e): (1.148 mL of 1.5 M) K2CO3 and 1.88 mL of 

ethanol were degassed together in a round bottom flask for 30 mins. (0.15 g, 0.675 mmol) 9-

Anthraceneboronic acid and (0.2 g, 0.85 mmol) 4-bromo-2,2’-bipyridine along with 5 mL of 

anhydrous toluene was degassed separately in a two neck round bottom flask for 15 mins. The 

degassed solvents were added into the main mixture and the reaction mixture was heated for a day 

at 1000C.  After the reaction was completed and cooled at room temperature, 1.94 mL of saturated 

aqueous NH4Cl and 1.94 mL of H2O were added which was then extracted several times with 

DCM and evaporated to dryness to get yellow powder. A silica gel chromatography column was 

run with 5:1 Hx:EtOAc for purification which obtained a yield of 62%. 1H NMR (500 MHz, 

DMSO-d6): d 9.24 (d, J = 5.55 Hz, 1H), 9.10 (d, J = 5.95 Hz, 1H), 9.01 (s, 1H), 8.87 (s, 1H), 8.84 

(d, J = 8.1 Hz, 1H), 8.27 (m, J = 8.35, 9.2 Hz, 4H), 7.88 (d, J = 5.5 Hz, 1H), 7.78 (m, J = 7.0, 6.6 
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Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.58 (ddd, J = 7.2, 8.0, 6.35, 7.5, 6.25, 8.3, 7.05, 7.4 Hz, 6H), 

7.44 (d, J = 7.8 Hz, 1H).  

Re [L1] (CO)3Cl (1f): (50 mg, 0.15 mmol) 4-(anthracen-9-yl)-2,2’-bipyridine was stirred in 5 ml 

of toluene and degassed for 15 mins. After 15 mins, (54.25 mg  0.15 mmol) Re(CO)5Cl was added 

in the mixture under the positive pressure of N2 which was then refluxed at 115 oC overnight. The 

precipitated metal ligand complex was then filtered and washed with hexane which obtained a 

yield of 78%.  1H NMR (500 MHz, DMSO-d6): d 8.96 (d, J = 4.25 Hz, 1H), 8.79 (s, 1H), 8.61 (d, 

J = 2.9 Hz, 1H), 8.57 (d, J = 7.6 Hz, 1H), 8.41 (s, 1H), 8.21 (d, J = 8.25 Hz, 2H), 8.02 (t, J = 7.3, 

8.35 Hz, 1H), 7.57 (m, J = 6.1, 8.3 Hz, 5H), 7.49 (d, J = 7.0, 6.7 Hz, 4H). 13C NMR (126 MHz, 

DMSO-d6): d 198.32, 190.59, 156.38, 155.83, 153.30, 151.10, 140.74, 131.84, 131.15, 130.60, 

129.25, 128.89, 128.44, 127.59, 127.47, 127.22, 126.22, 126.06, 125.22.  

1,8-bis(neopentylglycolatoboryl)anthracene (2b): A solution of (0.75 g, 4.05 mmol ) 1,8-

dichloroanthracene, (2.3 g, 10 mmol)  bis(neopentyl-glycolato)diborane, (0.083 g, 0.08 mmol) of 

Pd2(dba)3,  ( 0.1525 g, 0.32 mmol) of 2-Dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl and 

(4.15 g, 50.5) mmol of NaOAc in 35 mL of anhydrous 1,4-dioxane was heated at 90 oC under N2 

for two days. The product was rotavaped to dryness. Toluene was added to the flask and the 

insoluble precipitate was filtered off. After the volume of the toluene was reduced, 6 mL of hexane 

was layered on the toluene and allowed to stand for 1 day in the fridge to generate crystals. The 

crystals were then collected in the frit using vacuum filtration which obtained a yield of 74%. 

 

Dinuclear complex 

1,8-di([2,3’-bipyridin]-4yl)anthracene (L2) (2c) : 0.776 mL of 1.5 M K2CO3 and 1.5 mL of 

ethanol were degassed together in a round bottom flask for 30 mins. (0.078 g, 0.194 mmol) 1,8-
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bis(neopentylglycolatoboryl)anthracene and (0.11 g, 0.467 mmol) 4-bromo-2,2’-bipyridine along 

with 5 mL of anhydrous toluene was degassed separately in a two neck round bottom flask for 15 

mins. The degassed solvents were added into the main mixture and the reaction mixture was 

allowed to reflux for a day at 100 oC.  After the reaction was completed and cooled at room 

temperature, 1.94 mL of saturated aqueous NH4Cl and 1.94 mL of H2O were added which was 

then extracted several times with DCM and evaporated to dryness to get yellow powder. Two 

different silica gel chromatography were run to obtain two different pure enantiomers. The first 

column was run with 5:1 Hx:EtOAc whereas the second deactivated column was run with 2.5:1-

Hx:EtOAc which obtained a yield of 46%. 1H NMR (500 MHz, DMSO-d6): d 9.12 (s, 1H), 9.02 

(q, J = 13.05, 6.1, 7.8 Hz, 4H), 8.91 (d, J = 8.25 Hz, 1H), 8.86 (m, J = 5.05, 5.3 Hz, 1H), 8.76 (d, 

J = 5.4 Hz, 1H), 8.66 (d, J = 13.85 Hz, 1H), 8.39 (dd, J = 8.75, 7.9, 8.25,6.6 Hz, 2H), 8.25 (m, J = 

7.65, 6.75 Hz, 1H), 8.11 (s, 2H), 7.80 (dt, J = 4.0, 4.65, 3.3, 6.4, 6.65 Hz, 4H), 7.73 (m, J = 6.9, 

5.9 Hz, 1H). 

 

Re2 [L2] (CO)6Cl2 (2d): (50 mg, 0.103 mmol) 1,8-di([2,3’-bipyridin]-4yl)anthracene was stirred 

in 5 mL of toluene and degassed for 15 mins. After 15 mins, (24.33mg, 0.206 mmol) Re(CO)5Cl 

was added in the mixture under the positive pressure of N2 which was then refluxed at 115 oC 

overnight. The precipitated metal ligand complex was then filtered and washed with hexane which 

obtained a yield of 61%. Here, we were unable to separate two distinct isomers, therefore, all the 

characterization and experimental studies were performed using this isomeric mixture. 1H NMR 

(500 MHz, Acetone-d6): d 8.85 (s, 1H), 8.76 (s, 1H), 8.65 (m, J = 9.35, 4.4, 4H), 8.94 (d, J = 7.9 

Hz, 2H), 8.33(d, J = 4.8 Hz, 2H), 8.28(d, J = 8.55 Hz, 2H), 7.96 (t, J = 7.55, 7.9 Hz, 2H), 7.71(m, 

J = 6.85, 8.4 Hz, 2H), 7.65 (d, J = 7.6 Hz, 3H) , 7.42 (m, J = 4.6, 7.7 Hz, 2H). 
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1H NMR data  
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13C NMR data 
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