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ABSTRACT 

 
This project investigates the synthesis and physical properties of polyethylene 

glycol monomethyl ether (MePEGn where n=3 or 7) based polymer electrolytes. The 

two polymer electrolytes explored in the experiments were designed from two 

different MePEG chains that varied in their overall length and degree of 

polymerization. The first MePEG backbone contained three polymerized ethoxy 

groups and the second contained seven. Both MePEGn polymers were modified by 

substituting an imidazolium group in place of the alcohol functional group at the end 

of the PEG chain. This modification was made to create a polymer electrolyte with an 

attached positive charge that could facilitate the movement of hydroxide ions. These 

polymer electrolytes were synthesized in order to study various physical properties, 

such as ionic conductivity and viscosity, in anhydrous conditions to characterize the 

viability of the MePEG derivatives as alkaline anion exchange membrane fuel cells 

(AAEMFCs) polymer electrolyte membranes.  
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INTRODUCTION 

 

Fuel cells are electrochemical devices that can directly convert chemical 

energy into electricity. An exciting alternative fuel source, fuel cells are remarkable 

for their clean production of energy using fairly simple reactions. The most 

commonly exploited reaction to power a fuel cell is the combination of hydrogen and 

oxygen to form water.  

2 H2 (g) + O2 (g) → 2 H2O (l)  E0 = +1.23V  

 

Through combining these two molecules in a closed system, the cell is able to 

generate a usable form of energy (electricity) while the only by product is water. Fuel 

cells can be used as power sources for a wide range of applications, such as 

transportation or residential power and are a viable alternative to combustion engines 

and batteries. The key issues impeding the common adoption of fuel cells are: 

combatting the need for expensive, rare-earth electrocatalysts that facilitate these 

simple reactions, generating hydrogen from renewable sources, creating a hydrogen 

infrastructure, and improving the overall efficiency of fuel cells to enable their 

operation at higher temperatures to be more tolerant of carbon monoxide in the 

hydrogen fuel stream. In order to operate at higher temperatures, the fuel cell 

electrolyte will have to be more capable of conducting H+ ions at much lower water 

concentrations. Thus, we have been developing new membrane materials that conduct 

ions without water. 
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The most common catalyst used in fuel cells currently is the expensive 

transition metal, platinum. With the current cost of platinum being well-over twenty 

thousand dollars per kilogram, it is apparent that there is a need for a cheaper 

alternative. In order to substitute a less expensive catalyst material, fuel cell 

efficiency must be improved at higher temperatures. One method to improve the high 

temperature efficiency is to improve conductivity of the electrolyte at low water 

concentrations.  

The most studied form of polymer electrolyte fuel cells is the proton exchange 

membrane fuel cell (PEMFC). Proton exchange membrane fuel cells use an acidic 

polymer membrane as its electrolyte with platinum-based electrodes. The polymer 

membrane electrolyte has the responsibility of conducting hydrogen cations (H+) 

from the anode to the cathode. Nafion, is a widely used commercial polymer 

electrolyte that has good chemical stability and high conductivity when wet. The 

main drawback with this type of electrolyte is the cost of the fuel cell due to the need 

to incorporate a noble-metal catalyst, usually platinum.  

Another type of fuel cell architecture is the alkaline fuel cell (AFC). In these 

hydroxide ion conducting fuel cells, the most common electrolyte that has been used 

is a solution of potassium hydroxide in water in the Alkaline Fuel Cell geometry 

(AFC). This solution offers high efficiency, especially for the Oxygen Reduction 

Reaction (ORR) at the cathode, but requires a purified oxygen stream and has the 

potential of leaking a highly caustic liquid. In addition, alkaline fuel cells using 

potassium hydroxide electrolytes tend to precipitate carbonates on the electrodes 

when exposed to air (e.g. to provide oxygen for the cathode reaction). These 
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byproducts are introduced into the system from atmospheric carbon dioxide reacting 

with the strongly basic electrolyte.  

 
 

Figure 1. Formation of carbonate precipitant in alkaline conditions 

 

The extremely basic electrolyte absorbs any carbon dioxide introduced to the 

system, which leads to precipitation of sodium carbonate in the basic medium, and a 

reduction in conductivity due to the increasing presence of solid material in the 

conduction pathway. To avoid facing these issues, Alkaline Fuel Cells typically use 

pure oxygen (instead of air) which leads to a significant increase in cost. Most fuel 

cell architectures make use of air at the cathode as a source of oxygen. Despite these 

issues, early alkaline fuel cells using liquid electrolyte have been used to power space 

crafts during the Apollo and Space Shuttle space missions, where pure oxygen would 

already be available. To increase the potential uses of Alkaline Fuel Cells the 

durability and chemical stability needs to increase. One way to attempt to achieve 

these goals is to use a polymer based electrolyte.  

Alkaline anion exchange membrane fuel cells (AAEMFCs) use a polymer 

electrolyte to separate the anode from the cathode within a fuel cell and conduct 

hydroxide ions (OH-) between the two electrodes. In addition, these electrolyte 

membranes have the potential to block the absorption of CO2 into the alkaline 
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electrolyte allowing the fuel cell to breath air as a source of oxygen. At the cathode, 

the reduction of oxygen molecules produces hydroxide ions that move through the 

electrolyte towards the anode. At the anode, hydrogen gas is oxidized to release 

electrons and protons that react with the hydroxide ions to form water. These 

electrons move through a circuit to produce a current and generate electricity that can 

be harnessed for work. The main advantage of using an Anion Exchange Membrane 

is the improved efficiency of the oxygen reduction reaction (ORR) while in an 

alkaline environment. This improvement could potentially lead to the use of less 

expensive, non-platinum group metal catalysts.  

 

 

O2 (g) + 2 H2O (l) + 4 e- → 4 OH– (aq)  E0 = +0.401 V vs S.H.E 

2 H2 + 4 OH– (g) → 4 H2O (l) + 4 e–    E0 = –0.8277 V vs S.H.E 

2 H2 (g) + O2 (g) → 2 H2O (l)    E0cell = +1.23 V 

 

Figure 2. Hydroxide-Conducting Fuel Cell (AAEMFC). Figure adapted from 

Reference.1 
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The polymer electrolyte we are exploring consists of a polymer backbone with 

a covalently-attached cationic group to assist in the movement of free hydroxide ions. 

These electrolytes must have a high degree of ionic conductivity and chemical 

stability to function as an AAEMFC electrolyte. The study of AAEMFCs is fairly 

new and relatively unexplored, as proton exchange membranes were more thoroughly 

explored earlier. Thus, there is not a lot of experimental data for anion conducting 

polymer electrolytes that has been reported in the chemical literature. In this project, 

we have studied the synthesis, ion transport, and viscoelastic properties of the 

MePEG-based, hydroxide-ion conducting polymer electrolyte.  

In order to test the physical property of ionic conductivity, we used AC-

impedance spectroscopy using an Electrochemical Potentiostat (PAR Model 283) and 

a lock-in amplifier. Conductivity (Siemens/cm) is the ability of a material to allow 

ions to diffuse through it. Conductivity is the inverse value of resistivity (ohm•cm), 

which is a temperature-dependent property, that is also dependent on the mechanism 

of the ionic conduction through the material.  

The conductivity of our polymer electrolyte samples was measured using AC-

impedance spectroscopy on standardized conductivity electrodes. This 

“spectroscopic” method applies an alternating-current potential and measures the 

phase and magnitude of the current response through the sample to determine the real 

and imaginary components of impedance through the material. Resistance is the real 

component of impedance within the electric circuit that manifests from the opposition 

to a current under an applied voltage.  We are primarily using this experimental 

method to measure the resistance in a sample, while being able to separate the 
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resistance of the material from the capacitances that arise from electrical contact with 

the electrolyte material, and the double layer capacitance formed at the electrode 

interface. This comparison, as a function of the applied frequency, can be shown 

graphically with a Nyquist plot (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Typical Nyquist plot for conductivity where RAB is the measured bulk 

resistance. Figure adapted from Reference.2  

 

 

ω 



  16 

From a system with no Faradaic current (i.e. a pure ion conductor), the typical 

Nyquist plot forms the shape of a half circle at high frequencies, where the measured 

diameter, represented by RAB in Figure 3, and is the real (x-axis) component of 

impedance, is the bulk resistance of the material. The Zim shown on the y-axis of the 

graph is representative of the capacitance of the sample, because this is the 

component of the current response that is 90° out-of-phase with the applied voltage 

(i.e. capacitance). While the Zre shown on the x-axis represents the component of the 

impedance that is in-phase with the applied voltage, and corresponds to the resistance.  

By taking the reciprocal value of the diameter (conductance is measured in 

Siemens = ohm–1) and dividing by an experimentally determined geometric factor for 

the electrode, the ionic conductivity can be calculated. The geometric factor of the 

electrode was determined experimentally before measurements had been taken by 

calibration with low conductivity standards.3   

Conductivity has the units of Siemens per centimeter (S/cm). The ionic 

conductivity was measured at varying temperatures and these values were compared 

on an activation plot. By taking the logarithm of conductivity and graphing it against 

the inverse of the temperature, an Arrhenius activation plot can be constructed.  The 

slope of this plot yields the activation energy for the ionic transport process.  

Another commonly used unit of ionic mobility is the molar equivalent 

conductivity (), which can be calculated by dividing the measured conductivity 

(S/cm) by the ionic concentration (mol/cm3) of the polymer electrolyte. The molar 

equivalent conductivity allows for an easier comparison of the actual ionic mobility in 

solutions that are different concentrations, or are different polymers. 
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To determine the viscosity and fluidity of the material, a Rheometer 

instrument was used (Brookfield DV-III rheometer with cone and plate geometry). 

The cone and plate method is used to measure shear stress between two surfaces. 

Viscosity is the physical property of a liquid to resist flow due to shear stress. This 

property is temperature dependent and typically increases with temperature.4 To take 

measurements, the liquid is placed in a plate and a shallow cone is rotated across the 

surface. Different cones can be used to measure viscosity depending on how viscous a 

material is. For our experiments, a CPE-40 cone was used. Viscosity is measured in 

poise (P) or centipoise (cP) and fluidity is the reciprocal of viscosity (fluidity = 

viscosity–1).  

 

 

 

 

Figure 4. Cone and Plate Rheometer setup defining spherical coordinates and 

boundaries. Figure Adapted from Reference.5 
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EXPERIMENTAL 

Polymer Electrolyte Synthesis 

Both polymers used in these experiments were synthesized in the lab starting 

with a polyethylene glycol monomethyl ether backbone (Me(PEG)nOH).  

 

 

Scheme 1: Synthesis of MePEGnIm+ OH– 
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Synthesis of MePEG3-mesylate 

Monomethyl polyethylene glycol MW = 164 g/mol (20.0 g, 0.122 mol) was 

mixed with triethylamine (C6H15N, 12.32 g, 0.122 mol) in an Erlenmeyer flask that 

was subsequently cooled in an ice bath. Methanesulfonyl chloride (CH3SO2Cl, 13.98 

g, 0.122 mol) was added into the solution drop-wise with stirring while in the ice 

bath. The solution was then capped and allowed to stir in the ice bath for two hours. 

 

 

Figure 5. General structure of the polyethylene glycol monomethyl ether. 

Monomethyl polyethylene glycol (MW = 164 g/mol) has a n-value of 3. 

 

 

The reaction mixture was extracted with water and dichloromethane (CH2Cl2) 

and then moved to a separatory funnel, and allowed to separate into two layers. The 

less dense aqueous layer was retained and extracted twice more with 40 ml 

dichloromethane, and the organic fractions were combined and dried with 2 grams of 

anhydrous sodium sulfate (Na2SO4). The product was recovered by rotary 

evaporation yielding 17.322 g (58.6% yield). 
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Figure 6. 1H NMR Spectrum of Me(PEG)3OH. 
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Figure 7. 1H NMR Spectra of Me(PEG)3–mesylate. 
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The result of this reaction was the conversion of the alcohol group (MePEG–

OH) to a methanesulfonate substituent (MePEG–OSO2CH3), also referred to as a 

mesylate. The mesylate group is a phenomenal leaving group and was placed on the 

polymer chain to facilitate nucleophilic substitution of the mesylate to give an 

imidazole substituent in the next synthetic step. The result of this synthesis was 

confirmed using 1H NMR, and comparing the signals and integrations of the newly 

added R–OSO2CH3 hydrogens to the methyl hydrogens on the polyether portion of 

the polymer backbone MePEG–OSO2CH3. 

Comparing Figure 6 and Figure 7, a new singlet peak appears at 2.93 ppm. 

This peak is assigned to the three methyl hydrogens of the mesylate substituent. In 

fact, the integration of the two methyl peaks gives a 3.23:3 ratio (93%) of the peak 

areas which is very close to the ideal (3:3 or 100%) ratio, confirming that this reaction 

has essentially gone to completion.  

 

 

Figure 8. Structure of Mesylated MePEG. 
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Synthesis of MePEG3-Imidazolium+ CH3SO3– 

In the second step of this synthesis, the MePEG3–mesylate 

(MePEG3OSO2CH3,17.32 g, 0.0715 mol) was combined with 1-methylimidazole 

(C4H6N2, 5.87 g, 0.0715 mol) at a one-to-one mole ratio in an external water bath 

kept at room temperature. This solution was allowed to stir for twenty-four hours.  

This addition of the substituent was confirmed by 1H NMR comparing the N-

methyl group of the imidazole to the PEG-methyl in the original polymer backbone, 

once again looking for a one-to-one peak area ratio. A near one-to-one peak area ratio 

was obtained from the spectra. Comparing Figure 7 and Figure 9, a new singlet peak 

appears at 3.44 ppm. The integration of the two methyl peaks gives a 3.75:4.34 ratio 

(87%) which is very close to the ideal (3:3 or 100%) ratio. Another indication of 

successful attachment of the imidazole group was the gain of three aromatic hydrogen 

peaks observed from 7.0 ppm to 8.2 ppm. These hydrogens corresponded to the 

letters b, c, and d on the labeled imidazole ring on the spectrum. All three of these 

peaks gave nearly the same integration value due to each carbon in the imidazole ring 

being unsaturated and having one hydrogen attached.  
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Figure 9. NMR Spectra of Me(PEG)3Imidazole 

 

The addition of the imidazole group on the polymer backbone created a 

positively-charged, and covalently-attached, imidazolium group, which requires a 

negatively-charged counter-ion. Immediately after the second step, the counter-ion in 

solution was methanesulfonate (CH3SO3–). In the next step of the synthesis, the 

methanesulfonate ion was ion-exchanged for the hydroxide anion (OH–).  
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Ion exchange of MePEGn–Imidazolium+ methanesulfonate– (MePEG3-

Imidazolium+ CH3SO3–) to MePEGn–Imidazolium+ hydroxide– (MePEG-Im+ 

OH–) 

The methanesulfonate counter ion (CH3SO3–) of the previous product, 

MePEGn–Im+, was ion-exchanged from a methanesulfonate (CH3SO3–) ion to a 

hydroxide (OH–) ion using an anion exchange resin column. In order to exchange the 

negatively-charged counter-ions, a strongly basic exchange column was used. The 

column was filled with 160 mL of Amberlite IRA-400 chloride-form, strongly-basic 

ion exchange resin. After rinsing the column and resin with nanopure water, the 

column was charged with 150 mL of 4.0 M solution of sodium hydroxide (NaOH), 

and then rinsed with nanopure water until the pH was around 8.0.  

The MePEGn–Im+ CH3SO3– obtained from the previous step was slowly run 

through the column as a solution in water, and then rinsed with nanopure water until 

the pH of the effluent was back to around 8.0. The original eluent and rinse eluent 

were combined into one large fraction of water solution. Getting the column back to a 

more neutral pH ensured that all of the MePEGnIm+ OH– product had been 

completely eluted through the column. Ethanol was then added to the combined 

eluent to reduce the boiling point and the ethanol/water solvent was removed by 

rotary evaporation at 70 °C for about 2 hours.  

To assay the effectiveness of the ion-exchange step, a small amount (100 mg) 

of MePEGnIm+ OH– product was titrated with a 0.0153 M solution of 

methanesulfonic acid to the equivalent point at a pH of 7.00. The solution was titrated 

to an equivalent point pH of 7.00 because it was a strong acid-strong base titration. 
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By converting the volume of acid added to reach the equivalence point (22.8 mL) to 

moles, we determined that the ratio of OH– to MePEGn was 86% indicating a 

successful exchange of the CH3SO3– ion for the hydroxide ion. 

After these steps, the polymer electrolyte, methyl-poly(ethylene-1-

methylimidazolium) hydroxide (MePEGn–Im+ OH–], had been synthesized to 

completion. This synthesis was completed using MePEG3OH and MePEG7OH, 

commonly referred to as mPEG three and seven, as the polymer backbone. 

 

 

Figure 10. Structure of MePEG–methylimidazolium hydroxide. 

 

Conductivity Measurements 

The conductivity measurements were performed using a PAR 283 potentiostat 

equipped with a Perkin-Elmer 5210 lock-in amplifier. All trials were run in a Faraday 

cage to shield the sample from outside electromagnetic fields. Before experiments 

with the polymers began, the geometrical constant of the measuring electrode was 

determined to be 0.0121 using a KCl solution.6,7 Dried, degassed samples of the 

MePEGn–Im+ OH– polymer electrolytes were applied onto an electrode and sealed 
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upright in a vacuum cell connected to a vacuum pump and temperature controlled 

water circulator.  

 

Figure 11. Setup for conductivity trials with custom built electrodes in a 

Faraday cage. 

 

The trials were run from 1 kHz to 100 KHz frequencies. Each measurement 

was obtained through multiple trials to ensure that the sample was completely dry. If 

the sample was not dry, this could affect the conductivity values. The conductivity 

values were obtained from a Nyquist plot generated in the computer program Power 

Suite. On the Nyquist plot, high frequency semicircles were generated from the AC-

impedance data and the diameter of the semicircle was taken as the bulk resistance of 
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the material. By taking the inverse of the resistance and dividing by the geometrical 

factor for the electrode, the conductivity was calculated.  

 

 

Figure 12. Nyquist Plot of Me(PEG)7-IM taken at 303.15 Kelvin. 

 

(281300 ohm)-1 = 3.555 x 10-6 S 

3.555 x 10-6 S / 0.0121 cm = 2.938 x 10-4 S/cm 

log (2.938 x 10-4) = -3.532 
 

Figure 13. Calculating the log () from the diameter of the Nyquist plot in 

Figure 12. 
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Conductivity measurements were obtained at 10°C increments between 10-

90° Celsius, as shown in Figure 14. By taking the logarithm of the conductivity 

values, the results were graphed against the inverse of the temperature to give an 

Arrhenius activation plot for ionic conductivity. From the Arrhenius plot, the 

activation energy for the ionic conductivity process could be determined by finding 

the slope of the line. 

 

Temperature (℃) PEG-3 (S/cm) PEG-7 (S/cm) 

10 4.036 x 10-5 1.086 x 10-4 

20 7.096 x 10-5 1.811 x 10-4 

30 1.442 x 10-4 2.938 x 10-4 

40 2.028 x 10-4 3.882 x 10-4 

50 3.357 x 10-4 6.026 x 10-4 

60 4.550 x 10-4 1.125 x 10-3 

70 7.516 x 10-4 1.710 x 10-3 

80 1.600 x 10-3 5.176 x 10-3 

90 3.750 x 10-3 7.464 x 10-3 

 

Figure 14. Conductivity Measurements for MePeg Imidazolium Polymers. 

The largest conductivity values were measured at 90 C.  
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Figure 15. Arrhenius Activation Plot for MePeg3 Imidazolium, best fit line 

shown. The slope yielded an activation energy of 44.82 kJ/mol. 

 

 

 

 

 

Figure 16. Arrhenius Activation Plot for MePEG7–Imidazolium+ OH– 

polymer electrolyte, best fit line shown. The slope yielded an activation energy of 

44.61 kJ/mol. 
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Viscosity Measurements 

The viscosity measurements were obtained using a Brookfield DV-III Ultra 

Rheometer. The sample was measured using a CPE-40 cone and connected to a 

closed-loop water temperature regulator. Sample viscosity was measured from 10-90° 

Celsius in increments of 10° Celsius. Viscosity was measured by this instrument in 

centipoise (cP). The specific rheometer technique used for these measurements was 

cone and plate. Cone and plate viscometers are used to measure viscosity of non-

Newtonian fluids. They consist of a flat plate and a rotating cone that measures the 

torque on the cone as a function of the rotational speed. The instrument uses this 

measurement of sheer to calculate the sample viscosity. Several rotational rates were 

used when taking viscosity measurements. At higher temperatures, higher rotational 

rates were used as the sample became more viscous. Taking the reciprocal of the 

viscosity yields fluidity, which can be graphed against the temperature to form a 

Fluidity Activation Plot.  
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Figure 17. Fluidity Activation Plot for Me(PEG)3-Im. 
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Figure 18. Fluidity Activation Plot for Me(PEG)7-Im. 
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RESULTS AND DISCUSSION 

 

Ionic Conductivity 

Figures 15 and 16 show Arrhenius activation plots for ionic conductivity for 

the MePEG3–Im+ OH– and MePEG7–Im+ OH– polymer electrolytes synthesized from 

MePEG3OH and MePEG7OH. Comparing the two polymer backbones, the longer 

PEG chain showed greater ionic conductivity at all temperatures measured. This 

behavior is counterintuitive to conventional polymer chemistry, but has been seen in 

many previous studies in our lab and in Murray’s Lab.8 This behavior is most likely 

due to the greater fluidity of the longer PEG chain, which increases the rate of 

rearrangement of the polymer electrolyte.  

Interestingly, both of the PEG-based polymer electrolytes tested yielded 

higher conductivities than the H+ conducting polymer electrolytes previously tested in 

our lab.4,9 At 20° Celsius, the PEG3 electrolyte showed a conductivity of 1.81 x 10-5 

(S/cm) and the PEG7 electrolyte showed a conductivity of 1.81 x 10-4 (S/cm).  

Both values show fairly high conductivity; the ionic conductivity of a 0.1 mM 

KCl solution at this temperature was measure to be 3.80 x 10-3 (S/cm). The 

conductivity values increased with temperature as expected, because as an activation 

process, conductivity increases with increasing temperature according to the 

Arrhenius equation. These results also agree with the Stokes-Einstein and Nernst-

Einstein equations which together predict that with an increase in fluidity, 

conductivity should also increase. This result will be further explored in the next 

section discussing fluidity. From the line of best fit, the equation obtained from the 
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PEG3 polymer yielding an activation energy for ionic transport of 44.82 kJ/mol. This 

value was calculated using the Arrhenius relation shown in figure 16. This is a similar 

activation energy barrier to other H+ conducting polymer electrolytes prepared in our 

laboratory, and is thought to be related to the activation barrier to rearrangement of 

the PEG segmental units. The activation energy calculated from the PEG7 polymer 

data was 44.61 kJ/mol, which showed slightly greater mobility than the PEG3 

polymer. Due to having a similar activation energy as the previously measured H+ 

conducting polymer electrolytes, we decided to compare fluidity vs temperature, as 

shown in Figure 17 and 18, in order to determine if the electrolyte was conducting 

ions via polymer segmental motion. 

 

Figure 19.  Arrhenius relation for thermally activated conduction. 

 

 

Viscosity 

Viscosity measurements were obtained using a cone and plate viscometer, 

with viscosity measurements being given in centipoise (cP). Viscosity is a physical 

property that is dependent on temperature. Both electrolytes showed a decrease in 

viscosity with increasing temperature. The longer polymer chain was shown to be 

more viscous at all temperatures measured, both electrolytes followed a similar 



  36 

pattern as temperature was increased. The results of these measurements are shown in 

Figure 20 and 21 on a viscosity vs temperature plot.  

 

Figure 20. Viscosity vs Temperature plot for PEG3 based electrolyte. 

 

Figure 21. Viscosity vs Temperature plot for PEG7 based electrolyte. 
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The reciprocal value of viscosity is fluidity. Fluidity is the physical property 

of a substance that allows it to flow. At higher temperatures, both of the electrolytes 

showed the highest values of fluidity. This was also the case for ionic conductivity, 

which had the highest values at high temperatures. Therefore, it was shown that ionic 

conductivity increased with fluidity. The Stokes-Einstein equation (Figure 22) and the 

Nernst-Einstein equation (Figure 23) predicted that higher fluidity results in a larger 

ionic diffusion coefficient, and a higher ionic conductivity due to the increase in ionic 

mobility. This prediction held true during the experiments.  

 

 
 

Figure 22. Stokes-Einstein Equation 

 

 

 Ion = 
𝑭𝟐

𝑹𝑻
[𝒛+

𝟐 𝑫+𝑪+ + 𝒛−
𝟐 𝑫−𝑪−]   

Figure 23. Nernst-Einstein Equation 

 

Walden Plot 

Figures 24 and 25 show Walden Plots (log molar equivalent conductivity vs. 

log fluidity) for both of the polymer electrolytes with a linear best fit applied. Using 

Angell’s approximation of Walden plot data,10 we understand that Walden Plots are 

good descriptors of ionic mobility in electrolytes with ion-ion interactions. That is, 
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the Walden plot shows how the ionic mobility (molar equivalent conductivity) of a 

material increases as the fluidity of the material increases. As previously 

demonstrated, the ionic conductivity of a material should increase as the fluidity 

increases. The Walden plot is useful for determining the correspondence between the 

ionic mobility and fluidity. 

The slope of a Walden Plot () is a value between 0 and 1 where 1 represents 

ideal behavior (fluidity and viscous drag are the only forces impeding ionic motion). 

If the value of the slope falls below 1, this indicates that factors other than viscosity 

impede ion mobility (i.e. the ionic conductivity is decreasing faster than the fluidity is 

decreasing). If the value is above 1, this indicates that the solution possibly shows 

superionic characteristics, and there may be a unique conductivity mechanism 

assisting the ionic mobility.  

We constructed Walden plots with an “ideal” Walden line (=1), shown in 

Figures 26 and 27, to compare with the data from both polymer electrolytes. Each 

point on a Walden plot corresponds to an independent measurement of both the ionic 

conductivity and viscosity of a polymer sample. If the data on the Walden plot lies on 

the ideal line, the material can be classified as a strong electrolyte. However, we have 

typically found that our H+ conducting electrolytes fall below the ideal line, and we 

have understood this indicates that our acids are weak acids in the polymer medium.  

The Walden data obtained from our measurements of conductivity and 

viscosity in our MePEG3–Im+ OH– and MePEG7–Im+ OH– polymer electrolytes is 

located within the lower left region of the Walden plot, which indicates either a weak 

electrolyte or the presence of ion-pairing in the electrolyte. Electrolytes in this region 
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have an ionic conductivity that is much smaller than the ideal value of an electrolyte 

with the same viscosity. This means that there are factors negatively impacting the 

ionic conductivity other than viscosity and viscous drag on the mobile ions. Although 

the specific factors were not experimentally determined, the decreased conductivity 

could be due to ion pairing, or specific binding of the ions within the matrix. We plan 

to explore these factors in a future project. 

 

 

 

Figure 24. Walden Plot for PEG3 based electrolyte. 
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Figure 25. Walden Plot for PEG7 based electrolyte. 
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Figure 26. Example Walden Plot showing different ionic liquid regions. Figure 

Adapted from Reference.11 
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Figure 27. Walden Plot with PEG 7 (red) and PEG 3 (blue) compared to an “ideal” 

Walden line (black).   
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CONCLUSION 

 

In this thesis, we have prepared two PEG-based hydroxide conducting 

polymer electrolytes differing in polymer lengths (MePEG3 and MePEG7) in order to 

study the ionic conductivity as a function of the structure of our polymer electrolytes. 

As we expected, the polymer with the greater fluidity showed a higher ionic 

conductivity. Interestingly, the larger MePEG7 polymer had the largest fluidity and the 

largest ionic conductivity. This is atypical for polymers, as typically, the larger 

polymer has slower transport properties. However, we have found in our group that 

the concentration of free volume in a polymer greatly increases the transport 

properties in those polymers, and the MePEG7 has a larger concentration of free 

volume than does the MePEG3 polymer. 

Through a comparison of the conductivity of the polymer electrolytes at 

various temperatures, we were able to quantitatively determine the activation energy 

for the ionic transport process. We also found that viscosity increases with MePEGn 

chain length which agrees with results from previous research.5 The MePEG3 and 

MePEG7 both reached their highest conductivity values at 90 C. These values were 

4.54 x10-5 S/cm and 9.90 x10-5 S/cm, respectively. Graphs of the PEG electrolytes on 

a Walden plot gave results that were below the ideal Walden line, classifying the 

liquids as weak electrolytes. 
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