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ABSTRACT 

The Baird’s tapir, the largest terrestrial mammal in Central America and a crucial seed 

disperser and ecosystem engineer, has experienced a 50% loss of habitat in its geographic range 

during the past 30 years.  Efforts to conserve this species need to consider factors that have 

contributed to its endangerment, such as how human presence and human-mediated habitat 

change may influence tapir behavior, body condition, and disease susceptibility.  In this thesis I 

had two goals: 1) understand how human disturbance affects tapir activity patterns, and 2) 

noninvasively determine the association of disturbance with tapir health.  I first compared the 

activity patterns of tapirs, humans, and jaguars between sites with and without timber extraction 

and between camera stations varying in human activity.  Second, I investigated the association of 

human activity with putative parasite counts found in field-collected feces and the relationship of 

putative parasite counts to tapir body condition.  As part of the parasitological study I compared 

parasites from tapirs with those found in domestic animals, and I compared the effectiveness of 

ethanol and formalin for long-term preservation of fecal samples.  Tapir activity did not 

significantly differ relative to timber extraction or human activity.  Tapirs were nocturnal in all 

sites with >80% of all tapir captures occurring between 1900 and 0500 hours; however, the 

occasional occurrence of daytime activity at all study sites suggests the potential for tapir 

habituation to, or tolerance of humans.  While human activity was moderately correlated with a 

reduction in body condition, the associations between human activity and parasite load, and 

parasite load and body condition were not significant.  There are similarities in parasite eggs and  
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worms from tapir fecal samples to those typically found in horses, but not those of cattle.  

Formalin-stored samples exhibited higher parasite richness and averaged more total eggs than 

ethanol-stored samples; however, the total worms found did not significantly differ between the 

chemicals.  Given the connection between human activity and negative health outcomes for 

tapirs in protected areas of Northwestern Belize, research needs to expand to encompass the 

more fragmented habitat that tapirs may utilize across their range. 
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CHAPTER I: 

HUMAN DISTURBANCE AND THE ACTIVITY PATTERNS OF BAIRD’S TAPIR 

(TAPIRUS BAIRDII) AND JAGUARS (PANTHERA ONCA) IN PROTECTED AREAS OF 

NORTHWEST BELIZE. 

Introduction 

When humans are viewed as a threat, wild animals may change their behavior to avoid us 

(Frid & Dill 2002, George & Crooks 2006, Larson et al. 2016, Vistnes & Nellemann 2008).  

Avoidance can take the form of spatial movement away from anthropogenic disturbance, or 

temporal partitioning such that humans and wildlife use the same habitat but at different times 

(Nix et al. 2018). Where a pervasive human footprint negates the opportunity for complete 

spatial separation (Frid & Dill 2002, Gaynor et al. 2018) and humans are mostly active during 

the day, normally diurnal species may shift to nocturnal movement and foraging to minimize 

interaction with us (Bridges & Noss 2011, Gaynor et al. 2018, Rowcliffe et al. 2014).  Although 

hunting and harassment are well known drivers of change in wildlife activity, nonlethal human 

activities can also affect behavior (Gaynor et al. 2018, Frid & Dill 2002, Larson et al. 2016). As 

both lethal and nonlethal human activities impact wildlife activity pattern, an understanding of 

how human presence influences wildlife activity is necessary for the planning and management 

of protected areas (Massara et al. 2018). 

 Large herbivores are often hunted for sustenance and are harassed by humans to deter 

them from foraging on crops. Simultaneously, these prey species may experience hunting 
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pressure from natural predators, like big cats.  At the same time, the large predators themselves 

may be persecuted and as such show avoidance behavior of humans. Thus, despite anthropogenic 

threats, prey species may opt to associate more with humans when the risk of non-human 

predation is even greater, especially if predators avoid humans (the “human shield”, Atickem et 

al. (2014) or “predator shelter” (Shannon et al. (2014) hypothesis). For example, moose (Alces 

alces) choose birthing sites near long stretches of road avoided by bears in Yellowstone National 

Park (Berger 2007).  Alternatively, natural predation pressure could increase in human disturbed 

areas. For example, predation rate increases when pumas (Puma concolor) stop feeding on their 

kills sooner in response to human voices (Smith et al. 2017), and consequently must kill prey 

more often in home ranges with greater human density (Smith et al. 2015).  Such fitness 

tradeoffs faced by prey and predators require long-term field study to elucidate, and are likely 

idiosyncratic to particular ecological communities, making them impractical targets for 

conservation management. However, if the activity patterns of prey and predators are indicative 

of their interactions under different disturbance regimes, camera trapping may be an efficient 

means of monitoring direct and indirect behavioral disturbance effects on species of conservation 

concern (Oberosler et al. 2017, Patten 2018).  

 Tapirs (Perissodactyla, Tapiridae) are a tropical, herbivorous taxon of great conservation 

concern. Tapirs disperse the seeds of rainforest plants and create depressions in the soil for 

wallowing, thus acting as ecological engineers (Garcìa et al. 2012, Garcìa-Marmolejo et al. 

2015, O’Farrill et al. 2013, Paolucci et al. 2019). However, their large size and wide ranging 

movements make them susceptible to mortality by human-related causes, and the populations of 

all four tapir species are declining (www.iucnredlist.org).  
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 The endangered Baird’s tapir (Tapirus bairdii) is the largest terrestrial mammal in a 

Neotropical biodiversity hotspot (Garcìa et al. 2016).  The species’ historic range covered all of 

Central America and into South America (Garcìa et al. 2016), most of which currently 

experiences varying degrees of human activity, such as: settlement and road construction, 

agricultural development, ecotourism, and archaeological and biological research activities in 

protected areas.  Human exploitation has reduced the species’ range by 50% in the past 30 years 

(Schank et al. 2015) due to deforestation for timber extraction and the creation of agricultural 

fields (Garcìa et al. 2012, Garcìa et al. 2016). Mortality due to vehicle collision is also a 

conservation concern for tapir populations in Belize (Poot & Clevenger 2018) and Brazil (Medici 

& Desbiez 2012) and is more likely to occur at night when poor visibility constrains drivers 

ability to slow soon enough to avoid impact with tapirs that are crossing roads.  

 Tapirs may innately fear humans because they were hunted by ancient civilizations 

(Black et al. 2012, Emery 2004, Tykot 2002), and are still hunted presently by Amazonian tribes 

(Robinson & Bennett 2013, Welch 2014) and elsewhere throughout Central and South America 

(de Azevedo Chagas et al. 2015, Garcìa et al. 2016, Koster 2006), despite legal protections 

(Garcìa et al. 2016, Stanton 2012).  Retaliatory killing of crop-raiding tapirs has been recorded in 

Belize, Mexico, and Nicaragua (Waters 2015). In Belize, where the Baird’s tapir is protected by 

national laws for its status as a national symbol (Waters 2015), it remains legal to shoot any tapir 

that threatens crops (Liverpool 2000, Waters 2007).  While tapir hunting has been reported in 

villages surrounding the area of the current project (Waters 2007), there is miniscule, if any, 

hunting pressure on tapirs at all study sites (M. J. Kelly, pers. comm., September 8, 2017). Due 

to the large size of adult tapirs, they are rarely killed by jaguars, and are not considered a 

significant part of the jaguar diet in Belize (Harmsen et al. 2011).  Nevertheless, the threat posed 
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by jaguars to young or weak tapirs, and the risk of significant injury if attacked, would suggest 

that tapir should avoid them.  Pumas in Central America have been found to primarily prey on 

small to medium sized animals including coati, raccoon, great curassow, peccary and white-

tailed deer (Azevedo et al. 2016, Hernández-SaintMartín et al. 2015), and so were not examined 

as potential predators in this study. 

 Generally, humans, tapirs, and jaguars are thought to prefer different activity periods. 

Human activity in habitat reserves is typically diurnal (e.g., 78-100% of camera captures, 

Massara et al. 2018).  Tapirs are thought to restrict daytime activity to avoid the risk of 

hyperthermia (Cruz et al. 2014, Eisenberg 1989 in Foerster & Vaughan 2002), and forage most 

actively during crepuscular periods (Carbajal-Borges et al. 2014, Cruz et al. 2014, Foerster & 

Vaughan 2002, Pérez-Irineo & Santos-Moreno 2016).  Jaguars are often cathemeral but may 

exhibit a more crepuscular or nocturnal pattern as reflective of their main prey species in a 

particular habitat, when avoiding high daytime temperatures (Astete et al. 2008), or in response 

to human disturbance (Foster et al. 2010). 

 The objectives of this study were to: 1) Describe the activity patterns of these three 

species (i.e., tapirs, jaguars, humans) over four years in four areas of NW Belize protected from 

hunting but varying in the level of anthropogenic impact on the habitat, 2) Determine if there is a 

relationship between tapir activity pattern and human-mediated habitat alteration (specifically 

timber extraction), and 3) Investigate whether tapir activity patterns appear to be directly or 

indirectly influenced by the timing and rate of human activity.  Because human disturbance is 

highly variable, it is difficult for wildlife to habituate to us (Buchholz & Hanlon 2012), 

potentially inducing greater chronic stress than natural predation risk (Zbyryt et al. 2018), we 
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predicted that both tapirs and jaguars would become more nocturnal in sites with logging and 

with high human activity.  

 

Methods 

Study area 

This study was conducted across four sites in the Orange Walk District of Northwest 

(NW) Belize (Fig. 1.1 & Table 1.1).  Two of the sites, Hill Bank (HB 17°35’27.96” N, 

88°41’59.64” W) and La Milpa (LM 17°50’26.28” N, 89°1’5.88” W) are within the 260,000-

acre (1,052 km2) Rio Bravo Conservation and Management Area (RBCMA).  Timber extraction 

occurs at HB but not at LM.  Gallon Jug (GJ 17°33’33.48” N, 89°2’21.48” W) is a 33,000 acre 

(133.5 km2) private agricultural estate with more than 900 head of cattle, a coffee plantation, 

timber extraction and an eco-lodge.  Yalbac Ranch and Cattle Company (YB 17°25’00” N, 

88°57’00” W) manages 131,117 acres (458 km2) of the Yalbac and Laguna Seca lands for 

timber extraction.  Broadleaf forest is the most prevalent habitat type at each site with pine 

savannah in the SE section of Hill Bank.  The average minimum and maximum temperatures are 

20.5ºC and 31.3ºC, respectively, and the rainy season runs from June to December, with an 

average annual rainfall of 1524 mm (National Meteorological Service of Belize 2018).  The 

northwestern portion of Belize averages 12 hours and 16 minutes of daylight per day throughout 

the year (US Naval Observatory 2016).  Elevation across the four sites ranges from 4 to 250m 

above sea level.  
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FIGURE 1.1.  The colored circles on the map correspond to 112 camera trap station locations 
for the four study sites in NW Belize in 2016.  Together, the orange, purple, and red circles 
represent the extractive logging area, with the pink circles representing the unlogged area.  The 
location of Belize within Central America is shown in the inset, with Belize highlighted in 
yellow. 
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Sampling design 

In 2014 and 2015, I worked as a member of the VA Tech Jaguar Project assisting with 

camera trap surveying at GJ, LM, YB, and HB.  For the current study, I also used survey data 

that was collected before and after the field seasons I participated in.  From 2013-2016, between 

22-36 camera trap stations were established at GJ, LM and HB (see Table 1.2 for camera types) 

for a minimum survey period of two-three months per site (Table 1.1).  Camera surveying of 

Yalbac began with 9 camera trap stations in 2014 and increased to a total of 21 stations by 2016.  

Cameras were arranged in a grid with each camera approximately 2-3 km apart based upon the 

home range of the native cat species, primarily jaguar and puma.  This camera grid spacing has 

been successfully used in studies of other tapir species (Cruz et al. 2014, Linkie et al. 2013).   

 

 

 

TABLE 1.2 Models of trail cameras used in the 2013-2016 camera surveys. 
 

Brand Model 

Moultrie Digital Multicam II Game Camera 
Game Spy D40 
M-550 Trail Camera 

Reconyx PC85 RapidFire Pro 
HC500 HyperFire 
PC800 HyperFire Pro 
PC90 Covert Pro 
PC900 Professional 
PC800 Professional 
RC55 RapidFire 

HCO Scoutguard SGC860C 

Panthera V4 
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Camera traps consisted of two cameras facing each other across a trail, road, or an old 

logging road.  Cameras were placed on tree trunks or stakes about 35 cm off the ground and were 

not baited.  Cameras remained active 24 hours per day and were set to take 3 photos when 

triggered by motion with a 15 second delay between trigger events.  Date and time were recorded 

on each image allowing for each species to be classified based on the period of most frequent 

activity during the diel cycle (Table 1.3).  Camera stations were checked every 10-14 days to 

replace batteries and exchange memory cards.  A given species was considered present in a 

photo if any identifiable part of the animal was visible (e.g. human foot, tapir ear, or jaguar tail).  

To reduce pseudoreplication and the inclusion of non-independent data points in statistical 

analyses, images of the same species were considered independent capture events if they 

occurred at least 30 minutes apart, as suggested by Linkie & Ridout (2011), or if they could be 

identified as distinctly different individuals. 

 
 

 

 

 

 

 

 
Statistical analyses 

All statistical analyses were run in RStudio version 1.0.136 (RStudio Team 2016).  To 

correct for changing day length across each study season, image capture times were converted to 

solar time using the ‘solaR’ R package (Perpiñán 2012).  Tapir, jaguar, and human activity 

TABLE 1.3 Species’ activity pattern in each survey area were assigned a classification based on 
what percentage of that species’ total captures fell within a given time period.  These 
classifications were adopted from Massara et al. (2018). 
 

Classification Percentage of total captures Time period between: 
Nocturnal > 60% 1 h after sunset to 1 h before sunrise 
Crepuscular 50% 1 h before and after sunrise and sunset 
Diurnal > 60% 1 h after sunrise to 1 h before sunset 
Cathemeral Approximate uniform activity  Throughout the 24 h diel cycle 
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patterns were classified using nonparametric kernel density estimation, which treats images as 

random samples from an underlying continuous distribution (Ridout & Linkie 2009).  The Rao 

spacing test (Agostinelli 2017) was used to test the null hypothesis that captures were randomly 

distributed across the 24-hour cycle before categorizing each species as diurnal, nocturnal, or 

cathemeral.  The R package ‘overlap’ (Meredith & Ridout 2018, Ridout & Linkie 2009) was 

used to estimate the coefficient of overlap measure (∆).  A coefficient of overlap value of 1 

signifies complete overlap in activity patterns of two species and a value of 0 signifies no shared 

period of activity.  Ten thousand bootstrap samples were used to obtain 95% confidence 

intervals.   

 Ridout and Linkie (2009) suggested using the ∆"1 estimator for coefficient of overlap 

when the smallest sample size is less than 75 and  ∆"4 when the smallest sample size exceeds 75.  

As sample sizes in this study varied depending on how the data was pooled, both estimators were 

used for all activity pattern comparisons.  The difference between the ∆"1 and ∆"4 values (average 

difference = 0.58%, SD = 0.42%) was not great enough to impact the biological inferences made 

from the results, and therefore, for consistency I present only ∆"4 values.   

 To achieve ample sample sizes for activity pattern comparisons at each study site and 

across the entire region, the data were pooled two different ways: 1) tapir, jaguar and human 

records were each pooled by site across all four years (e.g., GJ 2013-2016), and 2) species 

records of all four sites were pooled within each year to characterize activity patterns at the 

regional scale (e.g., GJ+YB+HB+LM in 2014).    

Data were also pooled to compare species activity patterns relative to the practice of 

timber extraction.  GJ, YB, and HB data were pooled together as the logging area and compared 

to LM, the only site without logging.  Lastly, to account for differences in human activity at 
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individual camera stations (for instance, those on main roads vs. hiking trails), the frequency of 

human records per trap night (human activity) at each station was calculated and the stations 

were divided into two groups.  High human activity camera stations averaged 1 or more human 

records per trap night with anything less than that being considered a low trap rate (Fig. 1.2; see 

Table 1.4 for types of human activity per study site per survey year). 

To test for statistical differences in activity pattern distributions of each species between 

high and low human activity and between logged and unlogged areas (e.g., tapir in logged vs. 

unlogged areas) I used the Mardia-Watson-Wheeler W test from the R package ‘circular’ 

(Agostinelli 2017).  This nonparametric test allows for comparison of two circular distributions 

and assumes that the test statistic “W” follows a 𝜒2 distribution.  A randomization test was used 

to evaluate the difference in activity pattern overlap of tapirs with jaguars and with humans in 

logged/unlogged areas and at high/low human trap rate camera stations.  For all statistical 

analyses alpha = 0.05. 

 
 

Figure 1.2 Histogram of the frequency of human activity per camera station.  There were 379 total 
camera stations active during the camera survey from 2013-2016.  Of those, 55 exhibited a 
frequency of 1 or more humans per day and were classified as high human activity stations.  The 
remaining 324 stations averaging less the 1 human capture per day were classified as low activity.   
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Results 

From 2013-2016, across all study sites there were 546 independent captures of tapirs, 

1099 of jaguars, and 14,181 of humans (Table 1.5) with 25,664 total trap nights (Table 1.1).  LM 

had the fewest detections of tapirs each year, with an average sample size of 12.25 tapirs/year 

(SD = 5.8), followed by YB with 27.25 tapirs/year (SD = 22.0), GJ with 36.75 tapirs/year (SD = 

16.4) and HB with most tapir detections on average at 60.25 tapirs/year (SD = 23.8) (Table 1.5).  

Of the 546 tapir captures, only 336 tapir photos were clear enough to determine tapir sex.  Of 

these 76.5% were males and 23.5% were females.  Only 3 of the 79 females captured on camera 

showed accompanying juveniles, and none of those young had the pelage markings that would 

indicate that they were less than six months old (Nowack 1999).   

 At all four sites, and across all four years, kernel density estimates of tapir activity pattern 

showed an overall tendency towards nocturnal behavior (Figs. 1.3 & 1.4) with the majority of 

tapir captures occurring between 1900 h and 0500 h (GJ – 87%, LM – 88%, HB – 93%, YB – 

96%) and activity peaks between 0230 h to 0330 h and 2000 h to 2100 h.  At all study sites, 

humans exhibited a diurnal pattern with multiple activity peaks from 0800 h to 1800 h.  Overall, 

jaguars showed a nonrandom distribution of activity across the 24-hour day-night cycle (Table 

1.6), but this pattern did not meet the criteria established by Massara et al. (2018) to label felid 

species as being cathemeral, crepuscular, diurnal or nocturnal (Table 1.3).  When broken down 

by site, jaguars were cathemeral with a pattern of steady activity throughout the 24 hours of a 

day at all sites with the exception of YB where jaguars exhibited more nocturnal activity (59%) 

than diurnal (24%) or crepuscular (17%).  
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TABLE 1.5 Number of records for each species at each study site by survey year.  Independent 
records were totaled for each site and are listed in the column under each species along with the total 
number of photos taken shown in parentheses.  Researchers were included in the human records. 
 

 
Study Site 

 
Survey 
Year 

 
# of Photos 

 
    Baird’s Tapir  

Tapirus bairdii 
Jaguar  
Panthera onca 

Human  
Homo sapiens 

 
 
GJ 

2013 12 (48) 75 (253) 907 (3131) 
2014 52 (269) 151 (566) 1332 (12,420) 
2015 32 (387) 84 (454) 1429 (7154) 
2016 51 (389) 93 (464) 2542 (11,450) 

 Totals 147 (1093) 403 (1737) 6210 (34,155) 
 

 
 
YB 

2013 - - - 
2014 17 (92) 47 (108) 350 (2330) 
2015 28 (140) 23 (110) 394 (2058) 
2016 64 (571) 68 (389) 761 (5506) 

 Totals 109 (803) 138 (607) 1505 (9894) 
 

 
 
HB 

2013 37 (254) 98 (274) 354 (5555) 
2014 62 (439) 119 (415) 267 (3917) 
2015 68 (756) 54 (183) 1337 (7760) 
2016 74 (417) 64 (296) 586 (2389) 

 Totals 241 (1866) 335 (1168) 2544 (19,621) 
 

 
 
LM 

2013 19 (81) 40 (121) 1281 (10,488) 
2014 16 (174) 44 (141) 1255 (8304) 
2015 10 (79) 75 (328) 577 (4183) 
2016 4 (22) 64 (437) 809 (6140) 

 Totals 49 (356) 223 (1027) 3922 (29,115) 
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FIGURE 1.3 Estimates of the overlap in daily activity patterns of Baird’s tapirs with (a) jaguars 
and (b) humans in four study sites in NW Belize: GJ, YB, HB, and LM.  The solid lines are kernel 
density estimates for tapirs and the dashed lines are those of jaguars and humans.  The shaded 
region in each plot represents the coefficient of overlap.  The estimate of overlap ∆"4 is given in the 
top of each plot with 95% bootstrap confidence intervals in parentheses. 
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FIGURE 1.4 Regional estimates of the daily activity patterns of Baird’s tapirs with (a) jaguars 
and (b) humans across four study sites in NW Belize by survey year.  The solid lines are kernel 
density estimates for tapirs and the dashed lines are those of jaguars (left) and humans (right).  
The shaded region in each plot represents the coefficient of overlap.  The estimate of overlap ∆"4 
is given in the top left of each plot with 95% bootstrap confidence intervals in parentheses. 
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TABLE 1.6 Number (and %) of independent captures of tapirs, jaguars and humans in logged and 
unlogged study sites, camera stations with low and high frequency of human activity, as well as the 
entire region from 2013 to 2016.  The Rao’s spacing test was used to determine if each species 
exhibited a uniform activity pattern (cathemeral) throughout the day.  Values with an * varied 
significantly from the uniform distribution (alpha = 0.05).  Exact p-values were not displayed with 
Rao’s spacing test.  The bolded Rao test statistic values (U) indicate that jaguars at the unlogged 
study site and the low-human-frequency camera stations exhibited a cathemeral activity pattern.  At 
all study sites and at the logged sites, jaguars showed a nonrandom pattern of activity, but did not 
meet the required criteria to categorize the activity pattern as cathemeral, nocturnal, diurnal or 
crepuscular (Table 1.3). 
 

Species Area Nocturnal Crepuscular Diurnal Rao's Test 

 

 

Tapir 

Unlogged 39 (79.59) * 6 (12.24) 4 (8.16) U = 180 

Logged 395 (79.32) * 80 (16.06) 23 (4.62) U = 191 

Low 371 (78.44) * 76 (16.07) 25 (5.29) U = 188 

High  62 (83.78) * 10 (13.52) 2 (2.70) U = 207 

All  434 (79.49) * 86 (15.75) 27 (4.95) U = 192 

 

 

 

Jaguar 

Unlogged 86 (38.57) 47 (21.08) 90 (40.36) U = 134 

Logged 429 (48.97) 152 (17.35) 295 (33.68) U = 140 

Low 395 (43.84) 173 (19.20) 333 (36.96) U = 135 

High  120 (60.61) * 26 (13.13) 52 (26.26) U = 148 

All  515 (46.86) 199 (18.11) 385 (35.03) U = 140 

 

 

 

Human 

Unlogged 150 (3.82) 383 (9.77) 3389 (86.41) * U = 278 

Logged 520 (5.07) 1197 (11.67) 8542 (83.26) * U = 322 

Low 135 (2.53) 332 6.23) 4860 (91.23* U = 299 

High  535 (6.04) 1248 (14.10) 7071 (79.860* U = 317 

All  670 (4.72) 1580 (11.14) 11,931 (84.13) * U = 332 
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At all sites, the tapir-jaguar activity overlap was high (∆"$ > 0.60; Fig. 1.3).  Tapir-human 

overlap was higher in GJ and LM than in HB and YB.  YB had the highest overlap of tapirs with 

jaguars (∆"$ = 0.75), and the lowest overlap of tapirs with humans (∆"$ = 0.11).  Activity pattern 

overlap was similar across all years except 2014 in which there was a 9% average increase in 

tapir-jaguar overlap (∆"$ = 0.72) and in 2015 a 3% average decrease in tapir-human overlap (∆"$ = 

0.16) (Fig. 1.4). 

There was no significant difference in the tapir activity pattern distribution between 

logged and unlogged sites (W = 0.06, df = 2, p = 0.97; Fig. 1.5a).  However, jaguars in logged 

sites showed significantly more nocturnal activity between 2400 and 0500 hours than at the 

unlogged site (W = 7.20, df = 2, p < 0.05; Fig. 1.5b).  Human activity pattern distributions also 

significantly differed between these areas, with humans at the unlogged site exhibiting a second  

peak in activity between 1500 and 1800 hours that was not observed at the logged sites (W = 

27.70, df = 2, p < 0.001; Fig. 1.5c).  Between logged and unlogged sites, there was not a 

significant difference in tapir-jaguar overlap (randomization test, p = 0.33) and tapir-human 

overlap (randomization test, p = 0.59) (Fig. 1.6).    
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FIGURE 1.5 Estimates of the overlap in daily activity pattern of single species between areas with 
(dashed line) and without (solid line) extractive logging: a) tapirs, b) jaguars, and c) humans.  The 
shaded region in each plot represents the coefficient of overlap.  The estimate of overlap ∆"4 is given 
in the top of each plot with 95% bootstrap confidence intervals in parentheses. 
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There was also no significant difference in the pattern of tapir activity between camera 

stations of high and low human trap rate (Mardia-Watson-Wheeler test; W = 3.60, df = 2, p = 

0.17; Fig. 1.7a).  Jaguars again showed a significant difference in activity pattern, with jaguars at 

high human activity camera stations exhibiting more nocturnal activity between 2400 and 0500 

hours and less daytime activity between 0600 and 1900 hours relative to low human activity 

camera stations (W = 15.38, df = 2, p < 0.001; Fig. 1.7b).  A significant difference was also 

observed in humans at high and low human activity stations (W = 856.3, df = 2,  p < 0.001).  

Humans activity at high activity cameras stations was spread more broadly throughout the 24 

hours of the day, whereas at low human activity stations human activity exhibited a distinct peak 

 
 

FIGURE 1.6 Estimates of overlap in daily activity pattern of tapirs with a) jaguars and b) humans at 
sites with (GJ, HB, YB) and without extractive logging (LM).  The solid lines are kernel density 
estimates for tapirs and the dashed lines are that of jaguars and humans.  The shaded region in each 
plot represents the coefficient of overlap.  The estimate of overlap ∆"4 is given in the top of each plot 
with 95% bootstrap confidence intervals in parentheses. 
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FIGURE 1.7 Estimates of the overlap in daily activity pattern of single species between camera sites 
with low (solid line) or high (dashed line) frequency of human activity: a) tapirs, b) jaguars, and c) 
humans.  The shaded region in each plot represents the coefficient of overlap.  The estimate of 
overlap ∆"4 is given in the top of each plot with 95% bootstrap confidence intervals in parentheses. 
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just before noontime (Fig. 1.7c).  There was no significant difference in tapir-jaguar 

(randomization test, p = 0.17) or tapir-human (randomization test, p = 0.41) activity pattern 

overlap between high and low human trap rates (Fig 1.8). 
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DISCUSSION 

Timber extraction & human trap rate 

We found no significant difference in tapir activity pattern between the logged and 

unlogged areas or between camera trap stations exhibiting high or low human trap rates.  

However, both jaguars and humans have significantly different activity patterns between these 

areas, suggesting that jaguars may be altering their behavior in response to human activity.  

Similarly, Massara et al. (2018) found that the ocelot (Leopardus pardalis), another Neotropical 

cat species, adopted a more nocturnal pattern of activity in areas where the landscape had 

 
 

FIGURE 1.8 Estimates of overlap in daily activity pattern of tapirs with a) jaguars and b) humans 
at camera stations with a low or high frequency of human activity.  The solid lines are kernel 
density estimates for tapirs and the dashed lines are that of jaguars and humans.  The shaded region 
in each plot represents the coefficient of overlap.  The estimate of overlap ∆"4 is given in the top of 
each plot with 95% bootstrap confidence intervals in parentheses. 
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anthropogenic alterations due to human settlements and agriculture. The high overlap of tapir-

jaguar activity patterns in all activity pattern comparisons (∆"$ > 0.60) implies that tapirs are 

indifferent to the presence of this predator and suggests that it is unlikely that tapirs are relying 

on human activity to shield them from jaguars. The increased nocturnal pattern of jaguars in YB 

results in an increase in tapir-jaguar activity overlap (∆"$ = 0.75) and the lowest tapir-human 

overlap (∆"$ = 0.11) of the four study sites, providing support that both jaguars and tapirs are 

potentially altering their behavior in response to the human presence at that site.  

 Despite the expectation that tapirs would exhibit a nocturnal activity pattern in the logged 

sites and at camera stations with a high human trap rate, tapirs were nocturnal at all sites. This 

suggests that even low levels of human disturbance/presence may impact tapir activity.  

However, the ∆"$tapir-human overlap (11-24%, Figs. 1.3 and 1.4) shows that tapir avoidance of 

humans is not absolute.  Tapirs occasionally exhibit diurnal activity (best visualized in Fig. 1.4, 

years 2013 and 2014).  Of the 546 tapir captures, 25 (5%) occurred between 0700 h and 1700 h.  

Over half of those 25 tapirs were active in GJ and YB, which have the highest human densities 

per km2 of the four sites (Table 1.2) and the highest average human trap rate per camera over the 

cumulative years of this study, suggesting potential habituation or tolerance.   

In the case of true habituation, tapirs would have been expected to maintain a crepuscular 

activity pattern.  This is especially so as this study occurred during the rainy season in Belize, 

which in Costa Rica has been found to correlate with tapir activity becoming more crepuscular 

and diurnal (Foerster & Vaughan 2002).  Tapirs in all study areas have maintained a bimodal 

activity pattern reflective of crepuscular activity, but both activity peaks have shifted about 1.5 h 

into the nocturnal period of time.  Although Foerster & Vaughan (2002) suggested that tapirs 

become nocturnal to avoid hyperthermia, Cruz et al. (2014) did not find an effect of temperature 
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on lowland tapir activity patterns in Argentina.  The cameras in our study were not calibrated for 

temperature monitoring. Despite the lack of difference in tapir activity pattern at high and low 

human activity camera station and between the logged and unlogged areas, the nocturnal activity 

observed in this study differs from what has previously been found of Baird’s tapirs in areas with 

little to no human disturbance (Carbajal-Borges et al. 2014, Pérez-Irineo & Santos-Moreno 

2016).  This suggests that tapirs are behaviorally responding to human activity.  

Because all captured tapir images were of adult males and females, and large-sized 

juveniles, it is possible that our findings are not representative of females with small young that 

are more susceptible to predation.  The high ∆"$ tapir-jaguar activity pattern overlap observed in 

the current study is similar to a study by Harmsen et al. (2011) in the protected Cockscomb 

Basin Reserve of south-central Belize.  A positive relationship was found between tapir and 

jaguar activity patterns, although in that study area jaguars exhibited a nocturnal activity pattern 

(Harmsen et al. 2009).  Interestingly, the cathemeral jaguar activity pattern exhibited at most 

study sites in the current study in NW Belize aligns with that of prior studies in areas lacking 

anthropogenic influence (Ecuador - Blake et al. 2014, Mexico - Hernández-SaintMartín et al. 

2013, Bolivia - Romero-Munoz et al. 2010).  In areas with human presence and anthropogenic 

change, jaguars have shown either nocturnal or diurnal activity patterns (Brazil - Astete et al. 

2008, Belize - Dobbins et al. 2017).  It is possible that the human-mediated change in the current 

study sites is not enough to elicit a change in jaguar activity patterns, or it could be that jaguars 

have habituated to the levels of human activity and human-mediated habitat changes in this part 

of Belize and are thus indifferent.  Finally, as logging season usually finishes in late May or early 

June (around the time the camera trapping study starts), it is possible that, since logging trucks 

are not present during camera surveys, the season when tapirs and jaguars are most likely to 
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avoid humans has been missed.  Expanding the camera survey to encompass the logging season 

would allow for a future study comparing species activity during active and in-active logging. 

 

Future considerations 

Much of Belize (~74%) is suitable tapir habitat (Schank et al. 2015) and Baird’s tapirs 

appear tolerant of human activity in the absence of direct persecution by humans.  Despite 

exhibiting an overall nocturnal activity pattern, evidence of diurnal tapir activity at all sites 

suggests that there is potential for tapir habituation to frequent human activity related to 

ecotourism, agriculture, and, perhaps most notably in the Neotropics, sustainable logging 

practices.  A possible benefit of wildlife habituation or tolerance is that, though it may result in 

changes to wildlife activity, individual animals may look to use suitable habitat in the vicinity of 

humans.  This would be advantageous in countries where wildlife reserves bring in substantial 

revenue from ecotourism and viewing wildlife in native habitat (Lynam et al. 2012, Malo et al. 

2011).  For example, in our GJ study site, white-tailed deer and ocellated turkeys are 

commonplace, showing little fear of humans, and the area is well-known by tourists for its 

wildlife viewing.  However, for appropriate conservation of large tropical mammals, we must 

also consider the adverse impacts that accompany habituation and an increased tolerance to 

humans.   

In the presence of humans, wildlife may alter their behavior or activity pattern (Frid & 

Dill 2002, Gaynor et al. 2018, George & Crooks 2006, Larson et al. 2016, Vistnes & Nellemann 

2008).  For instance, after closing the largest protected area in Thailand for 6+ months, 

researchers observed a 45% increase in leopard (Panthera pardus) detection rates and a shift 

from nocturnal to diurnal activity in the absence of visitors (Ngoprasert et al. 2017).  Similarly, 
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in Argentina, guanaco (Lama guanicoe) sightings at a World Heritage Site are less likely on days 

with high visitor numbers, suggesting that guanacos actively seek undisturbed areas (Malo et al. 

2011).  Any such deviation from typical behavior comes with inevitable tradeoffs resulting in 

changes to resting or foraging habits, territory marking, and/or seeking out mates (Gaynor et al. 

2018, Larson et al. 2016).   

Yet, the effects of human disturbance on animals are not always visible or predictable.  

Lunde et al. (2016) found that impala (Aepyceros melampus) foraging near main roads of 

Serengeti National Park exhibited higher stress hormone levels than those near less-traveled 

roads.  In the presence of humans, wildlife may exhibit heightened vigilance, which reduces the 

amount of time spent on other fitness enhancing behaviors (Gaynor et al. 2018, Larson et al. 

2016).  However, some ungulate species have been found to exhibit decreased vigilance after 

prolonged exposure to human stimuli (Brown et al. 2012), which could potentially leave them 

more susceptible to predation.  Conversely, predators that follow their habituated prey can be 

seen as a threat to farming communities and local settlements, potentially putting predators into 

direct conflict with people (Morrison et al. 2016).   

Additionally, habituation is not always exhibited by all species in the same region.  In 

Thailand, sambar (Rusa concolor) and red muntjac (Muntiacus muntjak) experience poaching 

pressure and as such avoid roads and villages, while Asian tapirs (Tapirus indicus) experience 

little to no hunting pressure, and thus are not sensitive to roads and human settlements (Lynam et 

al. 2012).  Furthermore, while dispersal and migration in highly fragmented ecosystems are 

challenging (Morrison et al. 2016), habituation can make these even more arduous and 

potentially deadly behaviors.  If wildlife habituate to humans with nonlethal intentions (e.g., 

tourists, researchers, and other inhabitants of forest reserves) and then travel outside a protected 
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area, then wildlife will not know to avoid humans that see them as a nuisance, threat, and source 

of revenue and/or food.  Traversing fragmented landscapes also exposes wildlife to the potential 

for vehicular collisions, which in Belize and Brazil are a substantial threat to the viability of tapir 

populations (Poot & Clevenger 2018, Medici & Desbiez 2012).   

Indeed, Baird’s tapirs occupy habitat adjoining heavily impacted areas, for example near 

Belize’s international airport (Poot & Clevenger 2018).  The dark coloration and lack of pelage 

markings on adult tapirs makes them difficult to see in low lighting.  Additionally, Colino-

Rabanal et al. (2018) found that nights with brighter moonlight correlate with an increase in 

ungulate-vehicle collisions in three out of the four ungulate species they studied, presumably due 

to the increase in ungulate movement on nights with better visibility.  Brown et al. (2012) found 

that increased vehicle traffic resulted in lower vigilance of elk (Cervus canadensis) and 

pronghorn (Antilocapra americana).  This, in combination with our findings that Baird’s tapir 

exhibit activity peaks during nocturnal hours, suggests that they might inadvertently suffer 

greater road mortality than if they were crepuscular.   
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CHAPTER II: 

THE ASSOCIATION OF PARASITE LOAD AND BODY CONDITION OF BAIRD’S 

TAPIRS WITH THE FREQUENCY OF HUMAN ACTIVITY IN A NEOTROPICAL 

FOREST. 

Introduction 

The health (ability to maintain physiological homeostasis, Ryser-Degiorgis 2013) of an 

individual animal is a product of its genetics, behavior (Wittrock et al. 2019), and the availability 

and quality of resources in relation to stressors (Clutton-Brock & Sheldon 2010, Ryser-Degiorgis 

2013), such as predation (Weinstein & Lafferty 2015) and disease (Cross et al. 2009, Hing et al. 

2016).  These same factors also affect population dynamics (Bonenfant et al. 2009, Cross et al. 

2009), through their impact on recruitment (Irvine 2006), dispersal, and population densities 

(Clutton-Brock & Sheldon 2010).  Human alteration of natural habitats, for example through 

habitat restructuring (Cove et al. 2013, García-Marmolejo et al. 2015), habitat fragmentation 

(Garcìa et al. 2016, Rhodes et al. 2017), pollution and the introduction of invasive species 

(Larson et al. 2016, Martin et al. 2011) and novel predators (Atickem et al. 2014, Shannon et al. 

2014), is well known for causing rapid changes in animal health with negative population-level 

conservation outcomes (Hing et al. 2016, Frid & Dill 2002). 

 Even in the absence of anthropogenic habitat destruction or species community alteration, 

however, human activity can be harmful to wildlife, especially if the disturbance is chronic (Hing 

et al. 2016, Jolles et al. 2015, Zbyryt et al. 2018).  For instance, impala (Aepyceros melampus) in 
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Serengeti National Park exhibit higher stress hormone levels when foraging near high-traffic 

roads than near less-traveled roads (Lunde et al. 2016).  Similarly, Formenti et al. (2018) found 

Apennine chamois (Rupicapra pyrenaica ornate) to maintain elevated stress hormone levels 

during months when hikers and domestic sheep (Ovis aries) and goats (Capra hircus) were 

present.  Elevated androgens and glucocorticoids can weaken immune function and make 

animals more susceptible to parasitic infection and/or disease (Beldomenico & Begon 2015, 

Jolles et al. 2015, Glaser & Keicolt-Glaser 2005).  These studies substantiate the rising concern 

of conservation and public health entities regarding the cross-transmission of parasites and 

diseases between domestic animals and wildlife (Hing et al. 2016, Martin et al. 2011, Weinstein 

& Lafferty 2015).   

 Cross-transmission of parasites and disease from domestic animals to wildlife has been 

detrimental to wild ungulate populations including bighorn sheep (Ovis canadensis) in the 

United States (Jolles et al. 2015), Alpine chamois (Rupicapra rupicapra) in Switzerland (Jolles 

et al. 2015; Martin et al. 2011), and elk (Cervus canadensis) and bison (Bison bison) in the 

United States and Canada (Meagher & Meyer 1994).  Such infections may be tolerated without 

obvious harm under ideal conditions (Hart & Hart 2018, Irvine 2006, Weinersmith & Early 

2016), but result in reduced body condition under stressful conditions (Coulson et al. 2018).  

Among free-living ungulates a negative relationship between ungulate body condition and 

parasite load has been shown in feral horses (Equus ferus) in Nova Scotia (Debeffe et al. 2016), 

Soay sheep (Ovis aries) in Scotland (Coltman et al. 2001), moose (Alces alces) in Norway 

(Davidson et al. 2015), and red deer (Cervus elaphus) in Scotland, the latter species’ body 

condition suffering greatly from even low level infection with gastrointestinal nematodes (Irvine 
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et al. 2006).  In contrast, there have been no studies of the effect of parasites on the body 

condition and population viability of wild Neotropical ungulates.  

 Neotropical ecosystems are experiencing high rates of land use change in the form of 

deforestation for timber extraction, urban expansion (Rhodes et al. 2017), and agriculture 

(García-Marmolejo et al. 2015, Taber et al. 2016).  For large, wide-ranging ungulates the 

reduction in resources and increased proximity to humans can amplify hunting pressure (Taber et 

al. 2016) and expose native ungulates to novel diseases via livestock (Medici et al. 2006, Walker 

& Morgan 2014).  However, there is limited understanding of how these factors are affecting 

Neotropical ungulate populations, and anthropogenic impacts on Neotropical ecosystems are 

expanding faster than field studies can generate informative results (Taber et al. 2016).   

 Monitoring the body condition of free-living wildlife is difficult.  Capture and handling 

of wild ungulates is costly, often requires personnel trained in the use of veterinary 

pharmaceuticals, can result in animal and handler injury (Quse & Fernandes-Santos 2014) and 

may not be permitted by government agencies, local communities or landowners.  Close 

inspection of only hunter-killed animals may be informative, but may also skew our perception 

of population dynamics, since hunters preferentially target larger individuals whose impressive 

horns or antlers may be the product of better health (Allendorf & Hard 2009).  The use of 

remotely captured images removes the potential for this bias and provides a noninvasive way to 

score body condition of individual animals (Pérez-Flores et al. 2016, Schiffman et al. 2017, Wolf 

et al. 2018).  Camera trap surveys of wildlife occurrence and abundance are now widespread in 

the tropics (Schank et al. 2017) and may provide a means of monitoring ungulate population 

viability, particularly in zones of cohabitation with domestic livestock and/or chronic disturbance 

by people, when species of conservation concern are at risk. 
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 Baird’s tapirs are endangered Neotropical ungulates that are difficult to observe given 

their dense habitat and elusive behavior (Garcìa et al. 2016).  Baird’s tapirs eat the roots, leaves, 

stems, bark, flowers, fruits and seeds (Garcìa et al. 2012; O’Farrill et al. 2006; O’Farrill et al. 

2013) of some 90+ species of ferns, vines, palms and hardwood trees (Cove et al. 2013; Naranjo 

2009).  Thus, they play a crucial role in tropical forest ecosystems as seed dispersers (Garcìa et 

al. 2012, O’Farrill et al. 2013).  Suitable habitat in the tapir’s geographic range is heavily 

fragmented (Garcìa et al. 2016), and there is concern that some populations may become 

genetically isolated (Mangini et al. 2012, Naranjo & Bodmer 2002), making those populations 

more susceptible to parasitic infection and disease (Medici et al. 2006).  Additionally, there is 

evidence of parasite cross-transmission between domestic cattle and tapirs in Mexico (Cruz et al. 

2006, Romero-Castañón et al. 2008).  As conservationists attempt to secure a landscape of 

protected reserves for Baird’s tapir, with wildlife corridors to connect them (Mendoza et al. 

2013), practical methods for monitoring the condition and health of wild-living tapirs are 

urgently needed.  Thus, using noninvasive camera trap surveys is an ideal approach to monitor 

the behavior and body condition of Baird’s tapirs.  

 The objectives of this study were to determine if the frequency of human activity in NW 

Belize correlates with 1) fecal parasite load of tapirs and 2) tapir body condition, 3) to compare 

two chemicals for long-term preservation of fecal samples in field studies, 4) to investigate more 

thoroughly the types of parasites harbored by Belizean tapirs, and 5) if any parasites may be 

shared with domestic horses and cattle. 
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Methods  

Sample collection  

 Tapir fecal samples were collected while walking trails encompassed by a camera survey 

grid in May-July of 2017 at the Gallon Jug (GJ), La Milpa (LM) and Yalbac (YB) study sites, 

such that each transect was visited every 2-3 days.  A fourth site (Hill Bank) was not accessible 

due to hurricane damage. A detailed description of these sites and the camera grid is provided in 

Chapter 1.  Forty-two total tapir fecal samples were collected (Figure 2.1), with an estimated 

12km walked per sample collected during the course of six weeks. Horse and cattle fecal samples 

were collected from pastures in GJ after the direct observation of a cow or horse defecating.  For 

collection of all species’ fecal samples, the sample was collected from the center of the dung pile 

and processed by the following protocol. 

Tapir feces are distinct and have large boli with partially digested plant matter.  Enough 

boli (2-3 depending on size) to fill a 284 mL plastic screw-top container were collected from the 

center of the dropping pile.  Samples were processed following protocol used by Mikota & Gage 

(2006) to process elephant fecal samples as follows: a) Water was added to fill the container, b) 

the container was shaken vigorously for one minute to homogenize the fecal mixture, c) a metal 

spoon was used to break up large pieces if necessary, after which the container was shaken for an 

additional 30 seconds, and repeated until homogenized, d) the fecal mixture was filtered through 

a wire mesh strainer (0.8 mm) into a plastic cup, while using a spray bottle to rinse large debris 

and allow small debris and fine sediment to pass through the strainer, and e) the filtrate was 

allowed to settle in the cup for 5 hours before carefully pouring off the water layer.   

The fecal sediment was sub-sampled for three purposes: 1) DNA extraction, 2) 

preservation of parasites in ethanol, and 3) preservation of parasites in formalin. For DNA 
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extraction, from the sediment, two 150 mg samples were placed in replicate bead beating tubes 

from ZYMO Research Quick DNA Fecal/Microbiome DNA Miniprep kits (Zymo Research, 

Irvine, CA) with 750 µL of Shield Reagent (Zymo Research, Irvine, CA) and vortexed for two 

minutes.  The Shield Reagent guarantees preservation of DNA for 1 month at ambient 

temperatures.  Due to delays in exporting the samples from Belize to the USA, they were held at 

ambient temperatures (in Belize) for 6 months before they could be refrigerated at -20ºC.  In the 

USA, DNA extractions from fecal samples were completed following the protocol of ZYMO 

Research Quick DNA Fecal/Microbiome DNA Miniprep kits (Zymo Research, Irvine, CA).  The 

remaining sediment was weighed and divided between two 15 mL plastic centrifuge tubes, one 

containing 10% formalin and the other 95% ethanol.  Two different storage solutions were used 

to investigate their relative preservation abilities for worms and eggs/embryonic larvae (Hu et al. 

2016, Nielson et al. 2010).  Samples in both storage solutions were used to quantify parasite 

load.   

 

Parasite Quantification 

 To isolate parasite eggs, embryonic larvae and worms from the fecal sediment, each 

sample was gently shaken (resuspended) and then 1 mL of the resuspended fecal sample was 

added to 14 mL of sugar solution (700 g table sugar and 1 L reverse osmosis (RO) water) in a 15 

mL glass centrifuge tube and topped off with sucrose solution such that a glass coverslip adhered 

to the liquid when placed on the tube’s opening.  Each sample underwent centrifugation for 10 

minutes at 2000 rpm in a swinging bucket centrifuge (International Equipment Company, 

model# HNS11).  The parasites that floated to the top were transferred with the coverslip to a 

glass microscope slide.  After allowing the contents to become still for 10 minutes, each slide 
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was systematically examined at 100X magnification on a compound microscope (Olympus 

Optical Corporation, Limited, model# BX40F4).   

Quantification of parasite eggs was done as follows.  In horse and cattle samples, eggs 

were first categorized to the lowest taxonomic level possible by using the veterinary manual by 

Foreyt (2013).  Then, eggs were counted for each taxonomic category.  Unidentified eggs (from 

tapir samples) were photographed and counted after being described by shape, size, color, 

thickness of wall, and appearance of cell mass.  Worms were measured and described based on 

appearance of external features, as internal features were not clearly discernable.   

The sediment of each centrifuged tube was then examined to quantify nematode worms 

in the following way.  First, the sugar solution supernatant was poured off of each sample.  Then, 

the fecal sediment in each centrifuged tube was resuspended in RO water using a knitting needle 

to scrape the sediment plug from the bottom of the tube.  The resuspended sediment was poured 

out into a glass petri dish that had been marked with 1 cm wide lanes and allowed to settle before 

being viewed at 35X magnification under a dissection microscope (Labomed Incorporated, 

model# 4144000).  Worms were separated by morphotype into 1.5 mL Eppendorf tubes 

containing 100% ethanol and stored at -20°C.  Worms were categorized into 6 worm 

morphologies (Table 2.1).  Fecal parasite load was measured as the sum of all types of eggs and 

worm morphologies (except worm morphology D) in a 1 mL sample of formalin-stored tapir 

feces.  If there were any worm morphotypes found in a 1 mL ethanol-stored fecal sample that 

were not found in the corresponding formalin-stored sample, then those worm counts were added 

to the formalin sample count to obtain a total parasite burden value.  Sequencing results 

identified worm morphology D as nonparasitic of animals, so morphology D counts were 

excluded from total parasite load. 
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TABLE 2.1 Descriptions of the six-nematode worm morphotypes observed in both formalin and 
ethanol preserved tapir fecal samples.  Each line of the scale in these photos represents 10 µm. 
 

Worm Morph Type Description Photo at 100X 
magnification 

A Clear protrusion from mouth; long, 
slender body with amber coloration 
& smooth sides 

  
B Long, slender body with amber 

coloration & smooth sides; mouth 
protrusion absent 

 
C Body shaped as an elongated tear 

drop, with mouth parts at the wider 
end; amber coloration with a 
darkened body cavity posterior to 
mouth; smooth sides  

D Clear; smooth body with a short tail 

   
E Clear; smooth body with a long, 

whip-like tail 

 
F Clear; smooth body with long whip-

like tail and ridges along sides of 
body 
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Individual worm lysis & PCR 

 Individual worms pulled from the ethanol-preserved samples were placed in 0.2 mL PCR 

strip tubes.  Before lysing the worms, the ethanol was allowed to evaporate until the worms were 

fully dry.  Following the methods of Chalasani (2016) a lysis mastermix (LMM) solution was 

created containing 0.3 µL of proteinase K (Viagen Biotech, Inc., cat# 501-PK) and 19.7 µL of a 

direct-to-PCR mousetail lysis solution (Viagen Biotech, Inc. cat# 101-T) per worm.  Twenty µL 

of the LMM was added to each 0.2 mL sample tube containing a worm.  The samples were 

incubated at 55°C for 16 hours, followed by a heat inactivation at 85°C for 1 hour.  The lysed 

samples were then diluted with 180 µL of sterile water per sample before using 2 µL for PCR. 

A PCR mastermix (PMM) was created consisting of 5.0 µL sterile water, 4.0 µL 5X 

GoTaq Flexi buffer (Promega, #M891A), 3.2 µL dNTPs, 1.6 µL MgCl2 (Promega, #A351H) 1.0 

µL of 20mg/mL BSA, 0.5 µL of both the forward and reverse primer (10 µM) and 0.2 µL of 

GoTaq Flexi DNA polymerase (Promega, #M829B) per sample.  Sixteen µL of the PMM was 

used with 4 µL of DNA per sample.  Two primer pairs targeting the 18S rRNA region of 

nematodes were used for PCR (Table 2.2).  The settings for the NEM primer pair were 95°C for 

3 mins to start, then 95°C for 1 min, 52°C for 30 sec, 72°C for 1 min repeated 40 times followed 

by 72°C for 5 min and then 12°C infinitely.  The second pair was the 18S primer set, which 

again began with 95°C for 3 mins.  Then, 95°C for 1 min, 55°C for 30 sec, and 72°C for 1 min 

repeated 40 times followed by a final elongation at 72°C for 5 min and 12°C infinitely.  Negative 

and positive (from fecal DNA samples) controls were used in each PCR.    

PCR products were loaded alongside a 100bp ladder into 2% agarose gel containing 

GelRed (Pheonix Research, #RGB-4103).  TAE buffer was used for electrophoresis.  Samples 

were electrophoresed at 110 volts for 35 minutes and then the gel was viewed under UV light.  
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exoSAP-IT (Affymetrix, #75001) was used to cleanup positive PCR product before sending for 

Sanger sequencing at the Yale DNA Analysis Facility on Science Hill.  

 
 
TABLE 2.2 Primer sequences used to amplify the 18S rRNA region of individual nematodes pulled 
from tapir fecal samples.   
 
Primer name 3’-5’ sequence  Fragment 

length (bps) 
Reference 

NEM1217F CGN BCC GRA CAC YGT RAG 402 Huggins et al. 2017 
NEM1619 R GGA AAY AAT TDC AAT TCC 

CKR TCC 

18S 965 F TTG ATC CCG CCA TAG ACT 
AGC GG 

646 Powers et al. 2009 

18S 1573 R TAA TGC AGG GAC GGG AAA 
CAT 

 

 

Body condition scoring 

 The photo data used in Chapter 1 were also used to score the body condition of individual 

tapirs.  Only tapirs whose body was fully photographed (in a single image or in series) were 

scored.  All females were excluded from statistical analyses as there was no way to determine if 

a female was pregnant, and the weight gained during pregnancy may have interfered with body 

condition assessment.  To prevent pseudoreplication, only scores of males that were individually 

identifiable by scar patterns were used. 

Using the scale refined by Pérez-Flores et al. (2016), body condition was scored by 

visually assessing the presence of fat and muscle associated with the bone structure of six 

anatomical regions (head, neck, shoulder, spine, ribs, pelvis).  Each anatomical region was 

scored on a scale of 1-5 with each number corresponding to the following categories of 

condition: emaciated (1), thin (2), fair (3), good (4), and obese (5).  The scores of all 6 
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anatomical regions were totaled for each tapir and overall body condition was assessed by the 

following total point ranges set by Pérez-Flores et al. (2016): obese (28-30), good (22-27), fair 

(16-21), thin (10-15), and emaciated (6-9).  See Figure 2.2 for photo examples of the overall 

body condition categories observed in this study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a 
 

 
b 
 

 
c 
 

 
d 
 

FIGURE 2.2 Examples of tapirs scored from the current study as (a) thin, (b) fair, (c) good, and (d) 
obese body condition.  None of the tapirs in this study were found to be emaciated.  Moving 
through the photos from (a) to (d), the most noticeable changes in condition can be seen with the 
increase in muscle and fat present around the neck, the upper shoulder, and along the ribs.  
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Frequency of Human Activity 

 Due to the variability in human usage of roads and trails across field seasons, the human 

trap rate (the frequency of human records per trap night) was calculated every year from 2013-

2017 for each individual camera trap station.  The 2017 data were only used in the comparison of 

human trap rate to parasite load.  Comparisons of body condition to parasite load use body 

condition scores from tapirs captured in 2013-2016.  Each scored tapir was assigned the human 

trap rate corresponding to the station and year in which the tapir was photographed.  For clarity, 

for the remainder of this chapter I will refer to human trap rate as simply human activity.   

 

Statistical Analyses  

 The frequency of human activity at camera stations where tapir body condition was 

scored and at the stations nearest to fecal collection locations did not meet the assumption of 

normality required for parametric statistical tests.  This same problem was encountered with the 

body condition score data as well.  The normal distribution could not be achieved even after the 

data were transformed using square root and logarithmic transformations; therefore, the 

nonparametric Kendall’s tau correlation was used to test for a relationship between fecal parasite 

load relative to body condition and to human activity.   

To do so, each scored male tapir was assigned the parasite load of the nearest fecal 

sample, and human trap rate (from 2017) was assigned to each fecal sample based on the camera 

station nearest to where it was collected.  Kendall’s tau correlation was also used to test for a 

relationship between body condition and human activity, using the human trap rates that 

corresponded to each camera station in the year that the tapir being scored was photographed.  

Differences in sample preservation between ethanol and formalin were assessed with four 
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different comparisons: 1) parasite richness in ethanol versus in formalin, 2) overall egg count/mL 

per chemical (all parasite eggs regardless of different egg types), 3) overall worm count/mL per 

chemical, and 4) pairwise comparison of individual worm morphologies.  ANOVA was used to 

test parasite richness.  As overall egg and worm counts and counts of the individual worm 

morphologies were not normally distributed before or after being transformed, the nonparametric 

Wilcoxon signed-rank test was used to assess egg and worm counts in ethanol and formalin. 

 

Results 

Parasite load, body condition & human activity 

Parasite load and body condition did not have a significantly directional relationship (Fig. 

2.3) (Kendall’s tau correlation: rt = - 0.10, p > 0.05, n = 29), nor did parasite load and human 

activity (Fig. 2.4) (rt = 0.02, p > 0.05, n = 42).  Body condition score of identifiable male tapirs 

negatively correlated with human activity at the stations at which they were photographed 

(Kendall’s tau correlation: rt = -0.37, p < 0.01, n = 29; Fig. 2.5a).  Though there was a smaller 

effect when unidentifiable males are included in the analysis, the relationship remained 

significantly negative (rt = -0.19, p < 0.05, n = 72; Fig. 2.5b).  Body condition of all scored 

female tapirs did not show a significantly directional relationship with human activity (rt = -0.05, 

p > 0.05, n = 37; Fig. 2.6). 
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FIGURE 2.4 Human activity at the station nearest each fecal sample was not significantly associated 
with the number of fecal parasites (p > 0.05). 

 
 
 
 
 
 
 
 
 

−3 −2 −1 0 1

0
50

10
0

15
0

20
0

Log Frequency of Human Activity

Pa
ra

si
te

 L
oa

d

 
FIGURE 2.3 The body condition of tapirs was not associated with the number of parasites in the 
feces found nearest to the location where each tapir was photographed (p > 0.05). 
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FIGURE 2.5 Body condition is negatively associated with human activity (p < 0.05); a) 29 
individually identified male tapirs and b) 72 male tapirs including identifiable individuals and 
unidentified individuals. Human activity was measured at the camera station where each tapir was 
photographed.  
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Ethanol versus formalin preservation 

Formalin preserved-samples contained significantly higher parasite richness than ethanol 

samples (ANOVA; F1,82 = 21.81, p < 0.001, n = 42; Fig. 2.7), with formalin samples averaging a 

parasite richness of 4.29 (SD = 1.71) and ethanol samples averaging 2.79 (SD = 1.18).  There 

was also a significant difference in the total number of eggs found in formalin (�̅� = 6.31, SD = 

9.86) versus ethanol samples (�̅� = 1.14, SD = 1.66) (z = 0.69, p < 0.001), but the total number of 

worms did not vary significantly (z = 0.21, p > 0.05) (Appendix: Figs. 1 and 2).  Morphology C 

was the only worm morphology that differed significantly between preservation methods  (z = 

0.72, p < 0.001) with ethanol-stored samples averaging 1.25 morphology C worms (SD = 2.26) 

and formalin-stored samples averaging 9.03 (SD = 14.67).   

 

 

 
 

Figure 2.6 Body condition of all scored female tapirs does not show a significantly 
directional relationship with human activity (p > 0.05). 
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Molecular assessment of tapir nematodes 

DNA was successfully lysed, amplified and sequenced from 4 individual nematodes all 

of morphology D (Table 2.1).  The results of a BLAST search suggest that none of these 

nematodes are parasitic, but rather are within 3 genera of free-living, soil-dwelling worms (Table 

2.3).  The 13 different egg types found in the tapir fecal samples were not of similar size to any 

parasite eggs from the horse and cow fecal samples (Table 2.4). 

 
TABLE 2.3 BLAST search results showed that the four sequenced nematodes that were classified as 
morphology D represent 3 genera of free-living, soil inhabiting nematodes.   
 

Worm ID (from 
tapir fecal) 

Most similar to 
GenBank Accession #  

BLAST result Similarity (%) 

T34_D06 EU880004.1 Labronemella ruttneri  608/614 (99) 

T34_D07 AY284825.1 Oxydirus oxycephalus 1046/1048 (99) 

T39_D23 EU880034.1 Tylencholaimus spp. 1083/1083 (100) 

T39_D26 EU880004.1 
 

Labronemella ruttneri 612/617 (99) 

 
 

FIGURE 2.7 Ethanol-stored samples exhibited less parasite richness than formalin-stored samples.  
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TABLE 2.4 Thirteen different egg types were found in the tapir fecal samples.  Each line on the scale 
of the 100X magnification photos is equal to 10 µm, and 2.5 µm on the 100X magnification photos.  
 

Photo and magnification Egg size (µm) No. (and %) of samples present in 

a.  400X 

25 x 12.5 2 (5) 

b.  100X 

130 X 80 4 (10) 

c.  100X 

185 X 125 5 (12) 

d.  400X 

40 x 20 7 (17) 

e.  400X 

42.5 x 80 3 (7) 

f.  400X 

45 x 12.5 8 (19) 
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g.  400X 

47.5 x 20 2 (5) 

 h.  400X 

50 x 22.5 13 (31) 

i.  400X 

40 x 12.5 5 (12) 

j.  400X 

62.5 x 25 3 (7) 

k.  100X 

35 x 35 1 (2) 

l.  400X 

72.5 x 42.5 4 (10) 

m.   400X 

57.5 x 30 8 (19) 
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Morphological comparison of tapir and domestic animal parasites 

There were 3 worms found out of 16 horse fecal samples that were unidentifiable due to 

condition, and no worms found in the 29 cattle fecal samples.  In horse samples, parasite eggs 

were predominantly those of large and small strongyles (75%, 1201 out of 1611 total eggs), 

which are a group of parasitic nematodes that commonly infect ungulates.  Tapir worm 

morphologies E and F have physical similarities similar to those of equine strongyle worms 

(smooth or ridged cuticle along the body, whip-like tail).  Eighteen of the 42 tapir fecal samples 

(43%) contained morphology E or F worms, and 8 (44%) of those 18 samples were collected 

from GJ, which is the only site with horses.   

Three egg types were identifiable to species: Fasciola hepatica, Strongyloides westeri, 

and Trichostrongylus axei.  The most common parasite eggs in cattle fecal samples were Eimeria 

spp. (68%, 999 out of 1472 total eggs).  Two parasite eggs were identifiable to species in the 

cattle samples, Trichuris ovis and Moniezia benedeni.  The parasite eggs of which the species 

was unknown were identified to the lowest taxonomic group possible and are listed in Tables 2.5 

(equine parasites) and 2.6 (bovine parasites).   
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TABLE 2.5 Examples of parasite eggs found in equine fecal samples. All photos were taken at 400X 
magnification.  Each line on the photo scales represents 2.5 µm.   
 

Taxonomic group  

(common name) 

Photo example(s) No. (and %) of 
samples present in 

Anoplocephala sp. 

(Tapeworm) 

 

6 (38) 

Fasciola hepatica 

(Liver fluke) 

 

4 (25) 

Strongyloides westeri 

(Equine threadworm) 

 

1 (6) 

Superfamily Strongyloidea 

(Large & small strongyles) 

    

11 (69) 

Trichostrongylus axei 

 

3 (19) 
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TABLE 2.6 Examples of parasite eggs found in bovine fecal samples. All photos were taken at 
400X magnification.  Each line on the photo scales represents 2.5 µm.   
 

Taxonomic group  

(common name) 

Photo example(s) No. (and %) of 
samples present in 

Bunostomum sp. 
(Hookworm) 

 
 

6 (21) 

Eimeria spp. 
(Coccidia) 

  

21 (72)  

Moniezia benedeni 
(Tapeworm) 

 
 

2 (7) 

Superfamily 
Trichostrongyloidea 
 
(Includes: barber’s 
pole worms, brown 
stomach worms, hair 
worms, thin-necked 
intestinal worm, cattle 
bankrupt worm and 
lungworm) 

  
 

 
 

11 (38) 

Trichuris ovis 
(Whipworm) 
 

 
 

1 (3) 
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Discussion 

Parasite load, body condition & human activity 

 Throughout an animal’s life, there are situations where periods of stress lasting months 

can be expected, and an associated decrease in body condition (Barboza et al. 2004) and increase 

in parasite load has been observed (Debeffe at al. 2016).  For example, during the rutting season, 

body condition of male reindeer (Rangifer tarandus) declines (Baboza et al. 2004) and territorial 

male Alpine chamois (Rupicapra rupicapra) sustain heightened stress hormone levels and 

experience an increase in counts of parasite larvae present in feces (Corlatti et al. 2012).  

Similarly, spikes in stress and reproductive hormones in pregnant springbok (Antidorcas 

marsupialis) and zebra (Equus quagga) correlate with immunosuppression and increased 

susceptibility to gastrointestinal helminth infections (Cizauskas et al. 2015).  Human activity 

may also be stressful to animals.  

In my study, tapirs in areas with higher levels of human activity appear to be in poorer 

body condition. There are three possible explanations to explain this negative correlation 

between human activity and body condition. First, human activity may be stressful to tapirs and 

cause behavioral or physiological changes that cause chronic decline in condition. Second, 

human activity levels may indicate the degree of habitat alteration, and poor condition is the 

direct result of reductions in the quantity or quality of forage for tapirs where humans occur 

frequently. Third, human activity may not have a causal affect on tapir condition at all. Instead it 

may be that individual tapirs who are already in poor condition, due to advanced age or 

subordinate social status for example, are excluded by other tapirs from better habitats were 

humans occur less commonly.  Thus tapirs in poor condition may simply have no other choice 

but to associate with humans.  
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 The lack of an effect of human activity on tapir parasite load and of parasite load on body 

condition could be attributable to limitations in the study design.  Several fecal samples were 

collected from within 100-200 meters of one another (Fig. 2.1).  This resulted in clusters of fecal 

samples being nearest to the same camera station, therefore those samples were assigned the 

same value for frequency of human activity.  Body condition was assessed from photos taken 

from 2013-2016 but parasite load was estimated from the nearest 2017 fecal sample.  Thus, the 

parasite count may not actually represent the health of the same individual animal whose 

condition had been assessed in previous years.  Lastly, the few accounts of Baird’s tapir home 

range vary from 0.67km2 to 23.9km2 (Foerster & Vaughan 2002, Naranjo 2002; Reyna-Hurtado 

et al. 2016), which suggests that the a fecal sample collected near a high human activity station 

could be from the same tapir as a sample collected near a low human activity station.   

A main assumption of my analyses in this chapter has been that increasing fecal parasite 

load corresponds with decreasing individual health as has been demonstrated in previous studies 

of wild ungulates (Beldomenico & Begon 2016, Coulson et al. 2018, Jolles et al. 2015).  

However, the ecological relationship between parasite and host is a complex one and the 

presence of parasites does not always represent danger to the carrier.  Tapirs could act as an 

intermediate host by moving the parasites nearer to their target host or harboring parasitic worms 

until they have undergone a life stage change (Chubb et al. 2010, Leung & Koprivnikar 2016).  

Additionally, parasitic infection can be beneficial to tapirs if the parasites enhance the tapir 

fitness (Fellous & Salvaudon 2009, Weinersmith & Earley 2016).  Alternatively, the shedding of 

worms in the feces could indicate that the tapir immune system is resisting parasitic infection 

(Fellous & Salvaudon 2009, Maizels & McSorley 2016).  
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Though counting parasite load is a commonly used method for assessing gastrointestinal 

helminth infections (Cain et al. 2018, Coulson et al. 2018, Debeffe et al. 2016), it does not allow 

for a reliable estimate of how many worms are infecting an animal as a single nematode worm 

can shed thousands of eggs in a day (Gadberry et al. 2011).  Fecal parasite load also does not 

allow for assessment of helminths infecting other internal organ systems that could be 

detrimental to an individual’s health and potentially impact body condition.  Another concern is 

that the total estimate of parasite burden probably includes counts of non-parasitic nematodes 

(see next section Parasites of tapirs), and therefore would not necessarily reflect the degree of 

parasitic damage to the tapir host.  Nevertheless, the literature suggests that parasitic effect on 

host condition is not always apparent.  Cain et al. (2018) found no correlation between body 

condition and fecal parasite load in two horse populations (one domestic, one feral) in Louisiana.   

Although my data set is inadequate for explaining the cause of poor condition in tapirs 

that live around high levels of human activity, it does raise management concerns about human 

disturbance in protected areas and points to a priority topic of future research.  

 

Parasites of tapirs 

 There are many practical challenges to studying the parasitology of wild animals, 

especially little-studied tropical species. Although previous researchers have described the 

endoparasite community of Baird’s tapir, they have relied on dissections of the gastrointestinal 

tract to obtain adult helminths (Güiris-Andrade et al. 2018) or have collected fecal samples 

totaling less than half of what was used in the current study (Cruz et al. 2006, Romero-Castañón 

2008).  I was able exclude the presence of parasites from domestic livestock based on known 

morphologies, and also identified six putative parasites based on morphology.  Tapir worm 
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morphologies E and F appear similar to equine pin worms (Oxyuris equi) and also to larval stage 

large (Strongylus spp., Triodontophorus spp.) and small (Trichonema spp.) strongyles.  While no 

eggs within tapir fecal samples closely resemble the size or appearance of equine pin worm eggs, 

egg types ‘e’ and ‘l’ (Table 2.4) appear similar to and are within the appropriate egg size ranges 

(Foreyt 2013) typical of large and small strongyles.     

The DNA sequences of four individuals of one morpho-species (type D) demonstrated 

the inadequacy of this morphological method for discerning separate worm species and for 

identifying which are parasitic. A BLAST search yielded sequence similarities suggesting that 

these four worms belong to three different genera of free-living, soil-dwelling nematodes, rather 

than a single parasite of the tapir gastrointestinal tract.  This observation suggests that the five 

other morphologies identified in tapir fecal samples probably represent more than five nematode 

genera, although it is still possible that the remaining worms identified as separate morphologies 

are just different life stages of a single nematode species. To resolve this issue the remaining 

morphotypes will need to be sequenced and identified by their nucleotide sequences. 

Additionally, greater efforts to link whole intestinal “worms” to their egg and larvae types that 

appear in fresh feces would allow researchers to know whether fecal parasite counts are 

indicative of the types and biomass of parasites that are causing damage to the host.  

 

Preservation comparison 

Preservation of fecal samples is usually necessary in the study of parasitology because 

the locations where fecal samples can be collected from wild animals are rarely nearby the 

laboratory supplies and equipment needed to quantify parasite numbers. Preservation methods 

will vary depending on whether it is necessary to maintain parasite morphology, inactivate 
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potential pathogens, or allow for subsequent extraction of DNA that can be amplified by PCR.  

Ten percent formalin has been demonstrated as the most efficient form of storage for parasite 

eggs (Hu et al. 2016, Huber 1998, Foreyt 1986), as was supported by the present study.  

However, formalin is not suitable for downstream use of DNA in PCR and nucleotide 

sequencing, thus ethanol would be considered a better preservative for this purpose (Hale et al. 

2015).  In my samples, 10% formalin maintained the external structure of worms quite well, but 

no internal structures remained fully intact and those that were partially visible were not enough 

to taxonomically identify the nematodes.  The structure of the buccal cavity, length of the 

esophagus, shape and number of intestinal cells, presence/absence of a tail sheath, and the 

location and appearance of genital openings are among the features important for taxonomic 

identification of parasitic nematodes (Anderson et al. 2009, Foreyt 2013).  For this reason, 70% 

ethanol is used by some researchers to preserve feces (Huber 1998).  While the 95% ethanol used 

in the current study is better suited to DNA preservation (Hale et al. 2015, Foreyt 1986), its 

desiccating quality resulted in most worms having a shriveled appearance, distorting any internal 

structures that may have been present, again making them unsuitable for effective identification 

by the morphological features on taxonomic identification keys. 

 There were also differences in where worms were found in formalin vs. ethanol-stored 

samples.  In formalin samples, morphs D, E, and F (all clear worms) floated and were counted 

during egg counts.  However, in ethanol samples morphs D, E, and F were all found in the 

sediment.  This made locating and accurately counting them more difficult.  Almost no eggs 

were found in ethanol sample floats.  However, considering that ethanol preserved nematodes 

sank to the sediment, it seems likely that parasite eggs could have sank as well.  Unfortunately, at 
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35X, the maximum magnification of the dissection scope was not nearly high enough to make 

parasite eggs visible in the sediment. 

 Differential performance of ethanol and formalin as fecal sample preservatives has been 

previously reported (Hu et al. 2016, Nielson et al. 2010).  Because of the differences in parasite 

loads recorded in this study, I strongly suggest that future field studies of wildlife fecal parasite 

load employ two methods of sample preservation as was done here.  If projects are limited to 

using only one chemical, the best choice will be dependent on the proposed project goals.  

Formalin supplied far better parasite egg counts, but formalin is not ideal if DNA sequencing is 

proposed as it is a known PCR inhibitor. 

 Though more evidence is needed to better understand the relationships between human 

activity, parasite load, and body condition, it is apparent from my study that, by whatever means, 

there is a negative relationship between human activity and tapir health.  It is worth noting that 

the sites used in this study are remote compared to the vast stretches of Belize that are more 

populated, more easily accessible to the general public, and/or more broadly developed for 

agriculture.  While I found no conclusive evidence of parasite cross-transmission between horses 

and tapirs, it may be more likely in areas with less defined and maintained boundaries between 

horses and tapirs.  To develop a better understanding of the connection between human activity 

and human-mediated habitat changes to tapir health, conservation efforts would benefit from 

expanding the focus of the current study to encompass the more populated areas that tapirs may 

utilize.  
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CHAPTER III: THESIS CONCLUSION 

For species like Baird’s tapirs that are confined to a relatively small geographic range and 

where nature preserves are separated by large tracts of developed land, the effects of human 

disturbance are especially relevant to conservation.  The ongoing development of countries 

within biodiversity hotspots will inevitably continue to increase the exposure of wildlife to 

people.  Because of the variable impacts of human disturbance on different species and across 

locations, the effects of the human activity and human-mediated habitat changes observed in this 

study on wildlife behavior and health need to be considered for Neotropical species of concern to 

ensure their conservation. 

To slow species decline and ideally increase populations, resource management and 

species recovery plans must be informed by well-designed scientific study.  This is a challenge in 

itself, as we are losing species faster than we can study them, which emphasizes the need to have 

purposeful study design that addresses questions relating to both the direct and indirect effects of 

humans and human-associated stimuli on wildlife.  However, collecting the appropriate data to 

answer such questions is not easy and often exposes the species of concern to additional 

disturbance via research methods.  The methods used in my study are noninvasive in that they do 

not require direct capture and handling of tapirs.  However, researcher presence on roads and 

trails contributes to my measurement of human activity and could impact the frequency at which 

tapirs use the trails.  In Belize, the Baird’s tapir’s status as a national symbol and the 

conservation campaigning of the Belize Zoo has promoted its ecological importance to Belizeans 
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and tourists alike.  Future studies of elusive animals like tapirs may benefit from educating 

locals, particularly those that work in agriculture or tourism, in the relevance of the research and 

then training them to participate in sample collection as they go about their daily routine.  This 

would reduce the disturbance of additional researchers while also empowering locals by giving 

them a vested interest in conservation of the species.   
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