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FIGURE 11: Spectral Hourglass Workflow (Modified from Harris Geospatial, 2018). 

 

The next step of the hourglass was computing the minimum noise fraction (MNF). The 

MNF is used for reducing large multiband datasets into a smaller number of components that 

contain the majority of the spectral variance within the dataset (Harris et al., 2005). The formal 

definition, which was provided by Boardman and Kruse (1994) states that MNF transforms are 

used to determine the intrinsic dimensionality of the image data and to separate the noise in the 

data while reducing the computational requirements for further processing. The MNF transform 

is modified from Green et al. (1988), and was implemented in ENVI. It involves two sequences 

of principal component analysis (PCA).  The first rotation uses the noise covariance matrix 

principal components to deconstruct and rescale the noise in the data. This noise also known as 

noise whitening. The results of the first rotation transformed data that have no band-to-band 
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correlations, but do contain unit variance. The second rotation uses the derivatives of the 

principal components from the original image data after the noise-whitened process has taken 

place and rescaled by the noise standard deviation. These processes are determined by examining 

the final eigenvalues of the image file. For this research, a forward transform MNF was used to 

help determine which bands contained coherent images and to estimate the noise statistics from 

the data (Green et al., 1988). 

The next processes on the hourglass workflow were pixel purity index (PPI) and the n-

dimensional visualizer. The PPI is used to define the most spectrally-pure pixels in both 

hyperspectral and multispectral data. The PPI is computed by random vector selection through 

the n-dimensional data cloud, where each individual vector is constrained to pass through the 

center point (the mean value) of the n-dimensional cloud and are plotted on the visualizer. The n-

dimensional visualizer is a multi-dimensional scatter plot that labels the purest pixels on a 

random unit vector. It is used to identify, locate, and cluster the purest pixels and the extreme 

spectral endmembers in the n-dimensional space. This is done by defining the PPI threshold and 

locating the tail end of the pixels plotted on the random unit vector (Boardman et al., 1995). 

 The PPI threshold is defined by the user. Usually, the threshold is defined by using the 

same units as the pixel values, but when performing a MNF, as in this study, the threshold is 

defined by the noise standard deviation units. The lower the value of the threshold, the fewer 

pixels will be identified as pure. This tool helps to visualize the shape of the data cloud by 

plotting image data in spectral space (Harris Geospatial, 2018). The purest pixels are 

distinguished by recurrently projecting n-dimensional scatter plots onto a random unit vector. 

The purest pixels in every projection and the number of times the pixel is marked extreme are 
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recorded (Boardman et al., 1995) (Figure 12). These pure pixels are expected to represent 

spectrally homogenous samples of the mixing endmembers. 

 

FIGURE 12: n-dimensional pixel purity model (Modified from González et al., 2018). 

The ability to visualize the algorithmic procedure of the PPI is shown by the 

hyperspectral data F with n dimensions; the number of bands that are generated through the 

process, K; and a limited threshold value, tv, which identifies as final endmembers based on the 

number of times those pure pixels have been selected as extreme. At least tv amount of times in 

the PPI step of the hourglass workflow (González et al., 2010). The PPI algorithm can be seen as 

follows:  

(1) Band generation. Randomly generate sets of bands K as unit vectors. 

     {Band j}�𝐾𝐾𝑗𝑗� = 1   Equation 1 
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(2) Extreme estimations. Every Band j ={1,…., K}, with each pixel vector fi in its 

original dataset F is projected with each band using pixel products of |fi*Bandj| to 

identify sample vectors in its minimum and maximum projections (extreme). This is 

the extrema for each Bandj, termed as SExtrema(Bandj). Even though different bands 

create different extreme pixel sets, it is probable that some vectors may appear in 

more than one extreme pixel set. To justify this, it is defined that the indicator 

function of a set F, is denoted by ℓS (x), to denote the relationship of an element x to 

the particular set is as follows: 

    ℓS(x)=�1 𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
0 𝑖𝑖𝑖𝑖 𝑥𝑥 ∉ 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

  Equation 2 

If 𝑥𝑥 is identified as an extrema, then ℓS is populated with “1”, which is an indicator 

member of the subset. If 𝑥𝑥 is not identified as an extrema, then ℓS is populated with 

“0”, which indicates that it is not a member of the subset. 

(3) Calculation of PPI. With the indicator function above in use, the PPI score was 

calculated based on the pixel vector fi (The number of times a given pixel is selected 

as extreme) and use the following equation: 

𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝒇𝒇𝒊𝒊) = ∑ 𝑙𝑙𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝒋𝒋�(𝐟𝐟𝒊𝒊)𝑲𝑲
𝒋𝒋=𝟏𝟏   Equation 3 

(4) Endmember Selection. In the selection process, the n-dimensional visualizer is used to 

locate pixel vectors with scores of 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝒇𝒇𝒊𝒊) that are above tv and label them in the 

ROI tool as spectral endmembers that are assigned a specific color attribute 

(González et al., 2010). 

After the endmembers were identified, the major work can be started identifying 

endmembers. This will ultimately lead to distribution mapping, the penultimate step in the 
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hourglass workflow. The spectral analyst tool was used to identify specific endmembers, 

classify, and compare them to specific spectral libraries. The analyst tool used does not identify 

the spectra; it only provides likely recommendations for spectra identification. The actual 

identification of the spectra is based on the user interpretation. The spectral analyst tool is best 

used to identify materials based on their spectra. The spectral libraries used were the provided 

library database defaulted by ENVI 5.2. 

Using the spectral analyst tool through ENVI, a weight needed to be input for both of the 

similarity methods. By default, the spectral feature fitting uses a weight of 1.0, which is the 

weight that was used during the process. The minimum and maximum values were set at a scale 

from 0.0 to 1.0 for both the Spectral Feature Fitting, and the Binary Encoding, but for the 

Spectral Angle Mapper, a Min-Max was set to 0 to 0.78540, which was the default setting. Each 

of these different method descriptions was read with different values. For example, the Spectral 

Angle Mapper values are read in radians, the Spectral Feature Fitting is read in RMS error units, 

and the Binary Encoding is read in the percentage of the bands. Each of these values were plotted 

in a spreadsheet with the recommended spectral identity, the value representing the precision of 

both spectra from the library, and the data (Harris Geospatial, 2018).  

 The final stage of the hourglass is the post classification stage. This includes: performing 

a spectral angle mapper (SAM) classification that uses the n-dimensional angle to match the 

pixels to the spectra (Kruse et al., 1993); Linear Spectral Unmixing (LSU), that shows the 

relative abundance of materials that are based on specific spectral characteristics and that the 

reflectance of each pixel is at a linear grouping of each endmember is present within the pixel 

(Dehaan & Taylor, 2003); Matched Filtering (MF), to locate abundances for user-defined 

endmembers by using a partial mixing (Boardman et al., 1995); Mixture Tuned Matched 
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Filtering (MTMF) to add an infeasibility image to the results; and Spectral Feature Fitting to 

compare reference spectra to the fit of image spectra using a least-squares technique (Harris 

Geospatial, 2018). 

Kappa Coefficient 

 The kappa statistic, or Cohen’s kappa, is a statistical analysis used widely in remote 

sensing applications to test interrater reliability. Interrater reliability is important because it 

signifies data collected in the study area is accounted as a correct representation of the variables 

measured. The data collectors (raters) assign the same score to its matching variable; this is 

called the interrater reliability score. Cohen suggested that the kappa scores be interpreted as 

follows (Table1) (McHugh, 2012). 

 

Value of Kappa Level of Agreement % of Data that are Reliable 
0-0–20 None 0–4% 

0.21–0.39 Minimal 4–15% 
0.40–0.59 Weak 15–35% 
0.60–0.79 Moderate 35–63% 
0.80–0.90 Strong 64–81% 

Above 0.90 Almost Perfect 82–100% 
 

TABLE 1: Interpretation of Cohen’s kappa 

The kappa assessment shows that a coefficient equal to 1 means a perfect agreement whereas a 

value that is close to 0 means that the agreement is no better than it would be expected by chance 

(Rwanga & Ndambuki, 2017). This statistic is calculated through hyperspectral imagery by 

creating a random point generator where a select number of random points are generated on a 

classification image. This is then plotted on a confusion matrix where it is compared against the 
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observed accuracy of the classification. This observed accuracy can be determined by the 

diagonal in the error matrix. This is computed by the following equation: 

𝐾𝐾 = Observed Accuracy−Chance Agreement
1−Chance Agreement

             Equation 4 

 

Microclimate Analysis 

 Regional climate change with interactions between vegetation, environment, and climate 

in the long-term, and a lack of, or excess of precipitation, groundwater, and surface water in the 

short-term, can create a window for anomalous vegetation development in spectral properties 

that can be observed through satellite and airborne imagery. Both emissivity and land surface 

temperature (LST) have been studied thoroughly as a powerful tool in land surface properties 

(Sun et al., 2012). LST is defined as the temperature interaction where the surface is touched 

with the hand or body temperature on the ground. This method has proven itself successful in 

terms of climate change, agricultural processes, and land cover. LST was originally generated 

using MODIS and ASTER data of the same date and time and matched to create a LST output. 

This was a successful attempt for calculating the LST, but recently an updated algorithm was 

created using Landsat 8, which computed a result with better accuracy (Rajeshwari, 2014). 

For my study, a microclimate relief map was computed from the LST of the study area to 

detect possible anomalies related to microclimate conditions based on two separate time frames 

of the same location. This process used Landsat 8 data computed on ENVI 5.3 using both the 

band math and radiometric calibration tools. The algorithm process consisted of five major 

processes to achieve LST as follows (Avdan &Jovanovska, 2016): 
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ROI 1 

 

FIGURE 14: SAM image classification of ROI 1 

ROI 1 (Figure 13), was a highly forested area with limited to no agriculture. The majority 

of the vegetation make up consisted of coniferous trees, while the remaining region consisted of 

healthy grass, urbanization, and dry grass with an exposed loamy soil. When measuring the 

agreement and accuracy of ROI 1 and its classification, the ROI received a Kappa Coefficient of 

0.52 (Table 1) and an overall accuracy assessment of 68.11%.  

Class Coniferous Grass Dry Grass Urban Total 
Coniferous 1923 0 0 0 1923 
Grass 6 2590 0 0 2596 
Dry Grass 0 0 5434 0 5434 
Urban 0 0 622 1 623 
Unclassified 42 18 0 165 225 
Total 1971 2608 6056 166 10801 

 

TABLE 2: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 1 

 The first endmember of this ROI, “Urban” (yellow) consisted of a small percentage of 

the area. Within the Kappa statistic, the value registered in the majority of dry grass. This was 

due to the albedo effect, and the high reflectance of particular areas of the dry grassy/loam 

locations registered as urban. This can be seen in the dry grass/loam location. 

 The next endmember identified was a coniferous tree network, represented as blue in 

(Figure 13). This endmember covered the majority of the ROI, and throughout the Piedmont and 
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hill regions of the Merida Andes as well. There was slight chlorophyll absorption at the 500–550 

nm, and a high reflection in the near infrared ranging from 800–1200 nm. The water absorption 

bands of this endmember responded around 1500–2400 nm.  

The dry grass/loam endmember was separated from the healthy grass based on its high 

albedo. This endmember was contained to a single region of the ROI where the lack of 

vegetation health and bare soil were exposed due to a lack of water, or land management. Based 

on this endmember located in the Quaternary alluvium plain, the soil of this exposed surface 

more than likely contained a mixture of sand and silt along with the dry vegetation within the 

pixels. The water absorption features of this endmember give a range of 1,400–2,300 nm and 

reduce drastically at 2,400 nm, showing a possible increase in soil moisture. 

The last endmember recorded with ROI 1 had the characteristics of healthy grass 

vegetation. This endmember’s spectra had a high chlorophyll absorption around 600 nm with a 

defined cell structure in the near infrared at approximately 800–1,200 nm, and a slightly better 

absorption feature at 1,800 nm. This endmember occurs both in an agricultural and natural state 

within the ROI. 

ROI 2 

ROI 2, (Figure 14), contained multiple variations of soil classifications with two different 

types of water bodies, and a deciduous tree network rooted within a highly agricultural area. The 

soil types varied in this region with a higher concentration of silts and sands that were exposed 

due to exposed agricultural activities, or a decrease of surface water due to reservoir damming. 

This location is shown to be the most agriculturally active out of the entire study area. The 

analysis of this ROI received a Kappa Coefficient of 0.64 and overall accuracy of 72% (Table 2).  
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FIGURE 15: SAM image classification of ROI 2 

 

TABLE 3: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 2. 

 

The first endmember was identified as turbid water due to the presence of suspended 

soils. This can be seen in the spectra 650–700 nm range where it has a higher response in 

reflectance compared to the water spectra from the reservoir. The spectra water from the 

reservoir showed relatively little absorption in the wavelengths less than 600 nm, this was shown 

by a higher transmittance in the blue and green portion of the spectrum. In this ROI, a deciduous 

tree network was identified based on spectral reflectance of the classified endmember as a visual 

interpretation of the imagery. These trees are closely associated with a type of broadleaf tree, 

based on regional studies. The deciduous endmember spectra contained a moderate chlorophyll 
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absorption at 550 nm with high reflectance in the near infrared from 650–1,300 nm range. The 

absorption bands of this spectra were low in reflectance due to high water absorption rates at the 

1,500–2,000 nm range. The agricultural endmember of ROI 2 was similar in spectral reflectance 

as the deciduous endmember, but, with minor differences in reflectance, the analysis was able to 

detect the differences between the two endmembers. The stressed agriculture was easily detected 

through the analysis phase due to the high reflectance rate in the spectra. By spatially deriving 

the image, it is shown that some of the dried, stressed region is due to possibly controlled 

burning, or a change in crop for next planting season. The majority of the exposed soils 

identified in the analysis were sandy and silty loams. These two endmembers can be 

distinguished based on the reflectance where sandy loam has a lower reflectance than silty loam.  

ROI 3 

ROI 3 (Figure 15) was located in a highly structural region with high soil exposure in the 

Northern part of the study area. This location is south of the Caribbean mountains in a deciduous 

tree network with a soil mixture identified as silty clays and silty loams. This ROI received a 

Kappa Coefficient of 0.97 and overall accuracy of 98.62% (Table 3).  

 

FIGURE 16: SAM image classification of ROI 3 
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Class Water Silty Clay Deciduous Grass Pale Brown 
Silt 

Water 75 0 0 0 0 
Silty Clay 0 50 0 0 0 
Deciduous 0 0 1881 0 0 
Grass 0 0 0 69 0 
Brown Silt 0 0 0 0 0 
Unclassified 2778 0 0 0 0 
Total 2853 50 1881 69 0 

 

TABLE 4: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 3 

 

 The first endmember classified in the ROI 3 spectra was silty loam. This is located 

throughout the ROI and covers most of the structural features, (e.g., klippes). During the spectral 

analysis, the silty loam also showed traces of carbonaceous shale, which is a prominent feature in 

the Mucaria Formation, located in ROI 3. Silty clay is located in the ROI; this was determined 

based on the difference of the reflectance in the spectra. The silty clay endmembers showed a 

more prominent absorption feature at the 1,600–2,200 nm range than the silty loam endmember 

spectra due to clays’ impermeable features, but the silty loam showed a higher reflectance 

overall since water was more easily absorbed.  

 

ROI 4 

ROI 4 (Figure 16) is located at the western part of the study region covering the 

Piedmont, hills, and the braided streams of the Merida Andes. The ROI is geologically located in 

both the Rio Yuca Formation and the Quaternary alluvium outwash plains. These formations 

contain a mix of unconsolidated sands, silts, gravels, sandstones and conglomerates, and the 
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braided stream contains a mixture of illite and possible igneous rock transported from the Cerro 

Pelon Formation upstream. This ROI endmember classification received a Kappa Coefficient of 

0.47 and overall accuracy of 64.09% (Table 4). 

 

FIGURE 17: SAM image classification of ROI 4 

Class Silty Loam Sandy Lam Conifer Illite Gravelly 
Sandy Loam 

Silty Loam 75 0 0 0 0 
Sandy Loam 0 50 0 0 0 
Conifer 0 0 1881 0 0 
Illite 0 0 0 69 0 
Gravelly 
Sandy Loam 

0 0 0 0 0 

Unclassified 0 0 0 0 2778 
Total 75 50 1881 69 2778 

 

TABLE 5: Kappa Coefficient and accuracy assessment of ground truth pixels of ROI 4. 

 The first endmember, gravelly sandy loam, was identified on the eastern side of the ROI 

as an exposed surface within the Rio Yuca Formation. This endmember showed a shallow 

absorption feature at 500 nm due to a possible concentration of iron oxides. The next endmember 

identified relates to the braided stream flowing in a southeastern direction from the Merida 

Andes mountain. This endmember primarily matched with gray illite, or smectite bearing clays. 

These clays originate from the igneous bearing Cerro Pelon Formation that consists of both 
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mafic and felsic petrology. The presence of high water content, due to the endmembers’ 

geomorphological setting, is represented in the absorption range of the spectra where there is a 

high drop off in the 2,300–2,400 nm range. This ROI is located in a coniferous forest region, in 

relation to ROI 1, this forest shares a similar reflectance in the chlorophyll a absorption range 

about 650–690 nm, and a near identical cell structure in the near infrared, with moderate water 

absorption at 1,400–1,900 nm. The last two endmembers identified in ROI 4 were sandy loam 

and silty loam. These two endmembers were located at exposed surfaces throughout the region 

where the silty loam was located prominently in the agricultural location, while the sandy loam 

was located along dirt roads and naturally exposed surfaces. 

Reflectance Profile 

 A reflectance profile was constructed from a NDVI, (See Figure 17), to represent 

reflectance bands in comparison to vegetation health (Figure 18). The brighter the value, the 

healthier the vegetation in the NDVI image; the darker the value, the less healthy the vegetation 

will be in the image. The NDVI is showing a higher vegetation value in the Merida Andes 

mountain range, the irrigated reservoir agricultural network, and the Caribbean mountain system 

to the north. The Quaternary alluvium shows a lower signature of vegetation, while areas that 

have outwash from one of the two mountain ranges show a healthier NDVI.  This profile shows 

an overall trend of a high reflectance in the Merida Andes mountain range, a slight decrease in 

vegetation health at the contact between the Merida Andes and the Quaternary alluvium at the 

500 nm, a rise in vegetation health in agricultural locations supplied by reservoir irrigational 

support at the 1,200–1,600 nm range, and a subtle decrease in vegetation health in the northern 

Caribbean mountain system.  
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FIGURE 18: NDVI image of study area with A-A′ transect 

 

FIGURE 19: Reflectance profile from A-A’ of vegetation health 

 

 

 



43 
 

Microclimate Analysis 

 The algorithm was run for two identical Landsat 8 scenes from two different time frames. 

Each run of the algorithm with the two Landsat images was conducted uniformly for accuracy. 

The first scene was acquired on December 17, 2017 and the second scene was acquired on July 

28, 2018. These two scenes were chosen based on climate, cloud coverage, and rainfall. Both 

Landsat scenes had limited cloud cover so a more accurate analysis could take place. The two 

scenes were also taken seven months and eleven days apart from each other to show reference 

for the different climates over the year. Lastly, the scenes were taken based on rainfall. In 

Venezuela, July has the highest amount of rainfall, while December is one of the more moderate 

to low precipitation months in the year (Lyon, 2002).  

 The December LST map showed a uniform temperature range throughout a majority of 

the scene. The scene had a mean accumulation of LST at 26 ˚C, a minimum of 7 ˚C, and max of 

36 ˚C, with a standard deviation of 3.26 ˚C (Figure 21). Areas that were higher in elevation 

showed a lower LST over locations lower in elevation besides several temperature anomalies 

within the Quaternary alluvium showed a large decrease in temperature compared to its 

surrounding locations (Figure 20).  
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FIGURE 20: Land Surface Temperature map December 17, 2017 

 

FIGURE 21: Histogram of temperature gradient compared to pixel data. 
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 The July LST analysis showed a more spread out temperature range throughout the 

Landsat scene with a mean temperature of 28 ˚C, minimum temperature of 10 ˚C, maximum 

temperature of 70 ˚C, and a standard deviation of 3.26 ˚C. The LST map (Figure 22) represents a 

diverse distribution in temperature at both high and low elevations. The reservoir’s agricultural 

irrigation network shows a decrease in LST, while the surrounding locations in the Quaternary 

alluvium have a higher temperature reading.  

 

FIGURE 22: Land surface temperature map July 28, 2018. 
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FIGURE 23: Histogram of temperature gradient compared to pixel data. 
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DISCUSSION & CONCLUSIONS 

 

 The high spectral resolution of hyperspectral imagery exceeds the suitability for 

extracting information in multivariate environments compared to a multispectral approach. Even 

though multispectral imagery has its many benefits, hyperspectral analysis is the most detailed 

approach to remotely sensed analysis. The higher spectral resolution of hyperspectral imagery 

improves the discrimination ratio of different physical components such as vegetation, water, 

soil, urbanization, and geological features. This research integrated both hyperspectral and 

multispectral imagery to conduct an in-depth analysis of how soil and vegetation anomalies 

interact with geologic applications. The Guarumen area of northwestern Venezuela is a 

structurally active region with sixteen different geologic formations located in the region. Its 

structural influence comes from the Merida Andes mountain system to the west and the 

Caribbean mountain system to the north. These two mountain systems both transport sediments 

to the alluvial basin, containing major cities such as Acarigua, Ospino, and Agua Blanca, which 

is the country’s largest source of agricultural activity. Due to the high concentration of 

agricultural areas, it is difficult to identify the underlining geology and comprehend what is 

occurring without some form of in-depth analysis. The goal of this research was to use 

hyperspectral endmember analysis, normalized difference vegetation index reflectance profiling 

with Landsat imagery, and microclimate analysis with Landsat imagery. These methods were 

conducted to compose an in-depth quantitative analysis of the research area and identify how the 

soil and vegetation anomalies are interacting with the local geology, geomorphology, and 
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structural geology. By conducting this research, it is possible to further understand the 

capabilities of remote sensing applied to the geological sciences by utilizing hyperspectral and 

multispectral analyses without the accessibility of conducting a field study. 

 The endmember analysis was the primary method used for this research. The objective 

of this analysis was to identify endmembers in each of the four ROI and relate each to the 

respective region. Since the geological analysis scaled to the whole region of the study area, the 

endmembers classified within each ROI were an acceptable representation for the regions each 

represented. The most significant discovery from this analysis was how the fluvial 

geomorphology from the Merida Andes and the Caribbean mountain system affected the 

agricultural region in the Quaternary alluvium plain. Based on the spectra collected from the 

endmember analysis, ROI that identified in these geomorphologic regions showed an increase in 

vegetational health. This anomaly could be caused by the transport of micronutrients from 

sediment flows originated from either igneous or metamorphic formations in the mountainous 

regions surrounding the basin. This can be seen in the Merida Andes where several extrusive and 

intrusive igneous formations come in contact or originate with the stream patterns that are 

flowing into the basin. The Merida Andes sediment transport locations in the ROI were 

identified to be composed of gray illite/smectite bearing soils within the spectral readings, but 

traces of basalt were identified with the spectral analyst that led to speculation that basalt and/or 

granite could have been mixed in with this clayey transport. This can be supported by the 

presence of coniferous trees within the Merida Andes. In ROI 1 and 4, coniferous trees were 

spectrally referenced through the spectral analyst tool. Coniferous trees prefer to grow under 

acidic soil conditions (Martikainen & Boer, 1992). This helps support the spectral identification 
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of the sediment transport containing igneous bearing clay minerals due to the area's vegetation 

makeup and geologic history.  

 In the Caribbean mountain system region, the Mucaria, Agua Blanca, Araure, and 

Cojedes formations are the primary geologic components of the study area. These formations 

consist of Cretaceous carbonaceous shales, limestones, and conglomerates. At the southern 

portion of the formation, they begin to mix with the Quaternary alluvium basin that contains 

sands, gravels, and silts. This mixing of sediment is caused by a large deposit of an alluvial plain 

pushing sediments down elevation into the Quaternary basin. Identification of the composition of 

the soil was helped by the forest network that was located in the ROI. ROI 2 and 3 both consisted 

of a deciduous tree network that was identified through the endmember analysis. Both of the 

spectral reflectance bands shared close characteristics while varying in a slight difference in the 

700–1,300 nm with the grass and coniferous spectral responses in the other ROI. These three 

types of spectral responses were best differentiated from image derivation and physically 

identifying the vegetation from the imagery. Deciduous trees prefer to grow under alkaline soil 

conditions due to their base soil contents. This can be seen in the ROI 3 spectra where the soils 

were spectrally identified as silty loam and clay loam. These two soil endmembers were 

identified with the spectral analyst tool and were matched to the selected soil types based on the 

comparison of the spectral libraries contents.  

  A high concentration of structural activity can be seen in ROI 3 through the GIS data; 

it shows a series of thrust faulting in an east-west direction with a northern uplift that has a 

transecting southwest-northeast inferred fault that is not visible in true color imagery. Minimal 

structural activity could be seen throughout the hyperspectral imagery even with convolution 

filters applied. Specific areas that were higher in elevation above the Quaternary alluvium 
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showed some structural significance in the imagery, but not enough to correlate a definite 

answer. This is primarily due to the heavy concentration of agriculture covering the majority of 

the study area.  

 The reflectance profile was an attempt to characterize vegetation health in the form of a 

“topographic profile.” The results from this analysis came back favorable, with an interesting 

look at using a cross-sectional polyline to measure reflectance and correlate it with specific data. 

In this analysis, the reflectance was measuring vegetation health from A–Aʹ. The cross-section 

showed a trend that supplemented the endmember analysis. It showed that the Merida Andes had 

a higher vegetation index value compared to the Caribbean Mountain System, which could 

support the idea of soil properties of both regions and how they affect vegetation. The central 

region also showed a high value, but this was supplemented to the reservoir irrigation system 

supplying water to the regional agriculture.  

 Measuring LST of the two Landsat scenes posed interesting finds of both data sets. 

Both sets of data shared similar results in terms of temperature. The 2017 dataset had a mean 

temperature of 28 ˚C and the 2018 data with a mean of 26 ˚C. This close range in temperature is 

most likely due to the tropical climate that Venezuela faces year-round where temperature 

changes minimally fluctuate throughout the year. Even though the majority of the region remains 

a consistent temperature year-round, the higher elevations of the Merida Andes and the 

Caribbean Mountains show a decrease in temperature. From the data, it is believed that elevation 

plays a key role in controlling temperature throughout the region. Both LST maps show a 

gradual decrease in temperature the lower the elevation, minus the anomalies in the lower 

elevation region that is contrast to the regional temperature. It is believed that the key changes 

from the 2017 and 2018 LST data are the amount of rainfall and how it affects the surface 
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temperature of the region. July is shown to have the highest precipitation on average, while 

December is shown to have a more moderate to low precipitation percentage in Venezuela 

(Lyon, 2002). It is shown that heavier precipitation cycles decrease surface temperature 

throughout the region. This can also be seen in the two histograms of both dates where the 2018 

date has a greater range of temperatures due to chances of high precipitation rates.  

 One other factor that has an effect of the microclimate of the region is soil type. 

Different soil composition affects microclimates based on the amount of water retained or how 

quickly it evaporates. Soils that show a high concentration of clay retain more moisture 

compared to soils with a concentration of sands. This retention can affect humidity and 

temperature of a region (Ismangil et al., 2016). With this knowledge of soil properties, it is 

possible to identify soil classifications based on LST in a generalized classification scheme of 

water retention based on pore size, and thermal conductivity and heat capacity based on 

mineralogy.  

 Due to the region being highly agricultural, it was difficult to interpret soil or 

vegetation classifications. It was safely assumed that any region identified as agricultural could 

have been supplemented with groundwater pumping, controlled burning, foreign plant species, or 

distribution of foreign soil. This was taken into consideration during the image deriving process 

during the endmember analysis. This brought the challenge of identifying specific vegetation 

trends that could be identified as natural, along with exposed soil surfaces that could be 

identified as a “natural” occurrence. Most of these “natural” occurrences took place in higher 

elevation geomorphological regions such as the mountainous regions of both the Merida Andes 

and Caribbean Mountains, and a slight decline in elevation to the hills, alluvial valleys, and 
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piedmont regions. There were also exposed regions of unconsolidated sediments along rivers and 

streams in the area, especially ones that came down in elevation from both mountain systems.  

 Another limitation that occurred during the analysis was the cancellation of the field 

campaign. This was cancelled due to the political and economic turmoil that the country of 

Venezuela is facing. Too many safety issues arose weeks prior to the field campaign, and it was 

mutually decided to postpone the field campaign indefinitely. The rest of the analysis was to be 

conducted with remote sensing applications. With the limitation of field data in remote sensing 

applications, limitations are set on what can and cannot be done. Regions that have had minimal 

research conducted pose the problem of ground accuracy assessment due to the lack of physical 

evidence of specific plant species, and soil characterizations. Even with this limitation, this 

research gives insight on how limited field data, with a enough remotely sensed data, does make 

it possible to conduct an analysis remotely while still getting sufficient results to solve the 

original research objective.  

 To further answer the questions of the research objectives, a proper field campaign with 

ground truth data from a field spectrometer would help quantify the hyperspectral data by 

comparing the observed data versus the data collected by the sensor. This would help 

differentiate between geological and vegetation components through spectral mixture analysis. 

Another benefit would be to gather both soil and vegetation samples for in-situ field analysis, 

and analysis in a lab setting. This would further the precision of the classification and make it 

possible to classify to the level of plant species and mineralogical makeup of collected soil 

samples.  

 Nevertheless, the analysis completed did show that the endmembers, and LST, did 

correspond to real soil and vegetation components on the ground, and was able to provide a 
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quantitative “macro” scaled analysis of the Guarumen area by identifying large scale patterns in 

the data by correlating them to the geologic makeup of the area. This was possible given the 

limited field data by reducing the hyperspectral spectra to unique endmembers for classification, 

and conducting LST data to analyze the surface temperature to identify different microclimate 

properties affecting the area. It can be concluded that, though only limited ground truth 

information was available in the study area, it is possible to correlate geological phenomena 

through remote sensing applications. 
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