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ABSTRACT 

 

Two newly discovered bentonite deposits in northern and southern Pontotoc County, 

Mississippi occur in the Upper Cretaceous outcrop in a banded pattern on the northeastern 

margin of the Mississippi Embayment (MSE).  The entire Ripley Formation (Fm) consists of ~73 

m of fossiliferous clay, sand, and calcareous sand beds.  The bentonites are located 

stratigraphically within the Chiwapa Sandstone Member (CSM) at the top of the Ripley Fm and 

stratigraphically lie above previously mined bentonites in central Pontotoc County.  Since the 

northern and southern bentonites differ stratigraphically from the previously mined bentonites, it 

is possible that there are other unknown bentonite deposits throughout Pontotoc County.   This 

study utilizes heavy mineral separation, scanning electron microscopy (SEM), detrital zircon U-

Pb geochronologic dating, stratigraphic analysis, and X-ray diffraction to determine and refine 

the possible sources and depositional environments of the upper Ripley bentonites.   

Detrital zircon ages (n = 649) were collected from the northern and southern bentonite 

locations and yielded ages ranging from Mesoarchean (~2,870 Ma) to Pennsylvanian (~305 Ma) 

and contained approximately 91% Appalachian source derived grains, including Appalachian-

Ouachita (~490–265 Ma), Gondwanan Terranes (~900–500 Ma), and Grenville (~1,350–900 

Ma) source terranes.  Other igneous province source regions include the Mid-Continent Granite 

Rhyolite Province (MCGRP) (~1,600–1,350 Ma), Yavapai-Mazatzal (~1,800–1,600 Ma), Trans-

Hudson/Penokean (~1,900–1,800 Ma), and Superior (>2,500 Ma). 
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A high input of Appalachian derived sediment, heavy mineral abundances, and clay 

mineral composition all indicate that the bentonites were deposited in a deltaic/delta-platform 

environment and that sediment feeding the northeastern MSE likely originated from the 

Appalachian foreland basin and Appalachian-Ouachita fold thrust belt.  The southern samples 

are rich in montmorillonite and suggest that they were deposited in a pro-delta marine setting 

during a marine transgression at the end of the Cretaceous.  The kaolinite rich northern samples 

suggest input into a low energy deltaic environment.  However, montmorillonite rich Ripley Fm 

clays have not been previously noted and possibly indicate that bentonites could have been 

deposited by a younger source of Late Cretaceous volcanism.  By evaluating the depositional 

environments and sources of the Pontotoc bentonites, the Upper Cretaceous strata of the MSE 

and Gulf Coastal plain, may show an occurrence of previously unidentified bentonites and may 

indicate that volcanism occurred in the MSE during Maastrichtian time
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1. INTRODUCTION 

 

The Maastrichtian (72.1 Ma to 66.0 Ma) upper Ripley Formation (Fm) represents the 

maximum extent of the Mississippi Embayment (MSE) (Fig. 1) during the Mesozoic Era and 

outcrops in Alabama (AL), Mississippi (MS), and Tennessee (TN) (Cushing et al., 1964).  The 

northeastern Late Cretaceous sediments of the MSE are increasingly marine upsection and 

represent onlap onto the upper Gulf Coastal Plain margin (Dockery and Thompson, 2016).  The 

Late Cretaceous marked a period of volcanic activity within the MSE, which was responsible for 

the deposition of extensive volcaniclastics material within Upper Cretaceous rocks, such as the 

bentonitic clays of the upper Ripley Fm. that outcrop in Pontotoc County, MS (e.g., Cushing et 

al., 1964; Dockery and Thompson, 2016).  These bentonites were mined in the 1940s by the 

Mississippi Minerals Company and Eastern Clay Products Inc. (Priddy, 1943; Mellen, 1958; 

Dockery and Thompson, 2016), and it was suggested that a continuation of the study of the 

sedimentology of the upper Ripley Fm Chiwapa Sandstone Member might reveal undiscovered 

mineable bentonite deposits Mellen (1958).  In 2016, a bentonite deposit was discovered at the 

top of the Chiwapa Sandstones in a Poe Brothers Trucking Inc. quarry in central Pontotoc 

County, MS (Fig. 1).  The location of the newly discovered bentonite is ~10 km south of the 

1940s mined bentonite location.  In 2018, another expansive clay deposit, exhibiting the field 
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characteristics of bentonite, was also found above the Chiwapa Sandstone Member (CSM) in 

northeastern Pontotoc County ~7 km northeast of the 1940s mined bentonites in 2018 (Fig. 1).  

This study utilizes the interpretation of detrital zircon U-Pb geochronologic age data of 

the newly discovered bentonite beds that are located above the limestone unit of the CSM to 

better constrain the sediment provenance and the possibility of additional bentonite accumulation 

in the upper Ripley Fm during the Late Cretaceous.  U-Pb zircon age dating of Cretaceous 

sediment sources in the MSE have previously been done in the Cenomanian Tuscaloosa and 

Woodbine Fms and Paleocene Wilcox strata by Blum and Pecha (2014).  Potter-McIntyre et al. 

(2018) expanded on the work of Blum and Pecha (2014) by determining the U-Pb provenance of 

the correlative McNairy Formation in southern Illinois.  The Ripley Fm bentonites in this study 

lie stratigraphically and geographically between the sample locations for Blum and Pecha (2014) 

and Potter-McIntyre et al. (2018) along with the Cretaceous sediments within the MSE.  

Depositional environments of the observed CSM at the two new bentonite localities were also 

interpreted based on lithostratigraphy, biostratigraphy, and mineralogic composition.  Correlating 

possible bentonite deposits in northern and southern Pontotoc County may reveal where other 

economic bentonite deposits may occur. 
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2. GEOLOGIC SETTING 

2.1. Mississippi Embayment 

The Mississippi Embayment (MSE) is a 259,000 km2 trough that extends from southern 

Illinois (IL) into parts of Alabama (AL), Arkansas (AR), Kentucky (KY), Louisiana (LA), 

Mississippi (MS), Missouri (MI), Tennessee (TN), and Texas (TX) (Fig. 1).  Jurassic to 

Quaternary rocks and sediments fill the south-plunging syncline and are as thick as 5,500 m in 

the southern portion of the MSE (Cushing et al., 1964).  Cretaceous strata rest unconformably on 

Jurassic rocks in the MSE and are of marine and terrigenous origin and include calcareous sands, 

clays, chalks, marls, and some limestones (Cushing et al., 1964). 

Maastrichtian rocks within the MSE outcrop in a band that extends southward to the Gulf 

of Mexico (GoM) (Fig. 1).  Clastic rocks primarily constitute Maastrichtian strata in the MSE 

and GoM and are overlain by Paleogene units (Salvador, 1991).  Maastrichtian deposits on the 

northeastern rim of the GoM are indicative of a shallow inner shelf environment (Dockery and 

Thompson, 2017).  Within the MSE, the Ripley Fm is comprised of fine-grained bioturbated 

sands that are fossil- and mica-rich along with clay-rich sections that are present in some 

portions (Dockery and Thompson, 2017).  The characteristic sands and clays of the Ripley Fm 

range from 30 m thick in the east (KY) to 180 m thick in the north and west (TN and AR) 

(Salvador, 1991). 



 

 

4 

2.2. Tectonics of the Mississippi Embayment 

The Reelfoot Rift zone is a Cambrian aulacogen formed during the breakup of Rodinia in 

the Proterozoic.  This zone underlies the MSE and hosts a thick succession of Phanerozoic strata 

overlying basement rock, and is the most seismically active structural province in the eastern 

United States (Ervin and McGinnis, 1975; Cox, 1988; Csontos et al., 2008).  The New Madrid 

Fault Zone is situated in the northwestern and central MSE and is characterized by Late 

Proterozoic to Early Paleozoic seismogenic faulting (Ervin and McGinnis, 1975; Cox et al., 

2001; Csontos et al., 2008).  Also, known epicenters are linearly located along the southeastern 

margin of the Reelfoot Rift showing that faulting in the area is still active (Chiu et al., 1997). 

Previous authors suggested that the Reelfoot Rift originated at the intersections of 

Precambrian terranes in the North American craton and uplift within the rift was the result of 

mantle upwelling between these terranes (Csontos et al., 2008; Dart and Swolfs, 1998).  

However, the mechanism for rifting is debated.  The first possible scenario for rifting is that the 

Reelfoot Rift formed within the boundaries of the Eastern Granite Rhyolite Province as a result 

of right-lateral strike-slip faulting within Laurentia (Kane et al., 1981; Hildenbrand, 1985; 

Nelson and Zhang, 1991; Dart and Swolfs, 1998; Thomas, 1985, 1991).  The second suggested 

mechanism is that rifting in the Reelfoot region began when mantle upwelling occurred along the 

terrane boundaries (Dart and Swolfs, 1988). 

During Cambrian time, the Reelfoot region rifted by listric normal faulting (Howe and 

Thompson, 1984; Hildenbrand, 1985; Howe, 1985; Nelson and Zhang, 1991).  As sediment 

began to accumulate within the Reelfoot Rift basin, faulting continued into the Middle Cambrian 

and through the Middle Ordivician.  Sediment deposition in the Reelfoot Rift basin occurred at 
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the same rate as subsidence from the Late Cambrian to Middle Ordovician (Howe and 

Thompson, 1984; Howe, 1985; Dart and Swolfs, 1998).  The Taconic (490–440 Ma), Acadian 

(450–320 Ma), and Alleghanian (330–265 Ma) orogenic events resulted in the repeated uplift 

and then subsidence of the Reelfoot Rift from the Ordovician to Pennsylvanian (Howe, 1985).  

When Pangea began to assemble in the late Paleozoic, the Reelfoot Rift again became 

structurally unstable and faulting continued (Thomas, 1985; Howe, 1985).   

From the Middle Ordovician through the Early Cretaceous, deposition in the MSE and 

the Reelfoot Rift basin halted due to paleodrainage routes that show mid-continent sediment 

input extending further west (Blum and Pecha, 2014; Finzel, 2014). Then uplift followed by 

erosion resulted in an unconformity above the Late Paleozoic strata (Csontos et al., 2008).  As a 

result, an Early Cretaceous drainage system extended from the Appalachians to the eastern 

shoreline of the western interior basin from Iowa and Wyoming (Blum and Pecha, 2014; Finzel, 

2014). 

Faults bounding the Reelfoot Rift show normal displacement and the northwestern extent 

of the rift is marked by a steep normal fault dipping to the southeast, lowering the boundary 

between the Precambrian basement rock and overlying Proterozoic strata by as much as 3 km 

(Howe, 1985; Nelson and Zhang, 1991).  The southeastern rift boundary is denoted by two 

northwest dipping normal faults with displacement ranging from 0.5 km to 3 km (Howe, 1985).  

Stark (1997) suggested that deformation due to thrusting and transpression occurred during the 

Grenville orogenic event, which produced the southeast and northeast trending basement.  

Subsidence rerouted sediment input into the MSE and sediment accumulation continued 

throughout the Cenozoic.  Quaternary southwestern tilting of the MSE in northeastern AR is seen 
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in geomorphological features such as Crowley’s Ridge, which was formed due to erosion by the 

ancestral Mississippi and Ohio Rivers along with the reactivation of the bounding faults.  

Sediment accumulation at the perimeter of the MSE is attributed to increased accommodation 

due to the subsidence as a result of tectonic activity within the Reelfoot Rift, along with the 

transgressive and regressive cycles that deposited the Cretaceous sediments exposed today at the 

surface. 

2.3. Study Area 

The Ripley Fm (lower to middle Maastrichtian) outcrops in Pontotoc County, MS, and 

comprises clay, sandy clay, sand, and thin beds of sandstone.  The subdivisions of the Ripley 

Fm, in ascending stratigraphic order, are the transitional clay, lower Ripley, middle Ripley, and 

the upper Ripley which contains the CSM (Priddy, 1943) (Fig. 2).  The previously mined 

Pontotoc Bentonite (Priddy, 1943; Mellen, 1958) was occurs within the CSM, however the 

newly recognized southern and northern bentonites are located above the CSM sand interval at 

the contact between the Ripley Fm and Owl Creek Fm. 

2.4. Ripley Formation Stratigraphy 

 In Pontotoc County, the Ripley Fm is conformably underlain by the Demopolis Chalk 

and unconformably overlain by the Owl Creek/Prairie Bluff Fm. (Fig. 2).  The thickness of the 

Ripley Fm in Pontotoc County ranges from ~8 m to ~82 m.  Priddy (1943) described the 

composition of the Ripley Fm. as dominantly bedded micaceous sand that contains lenses of silty 

chalk, chalky limestone, sandy limestones at some locations, and bentonite beds that underlie 

sandy limestones. 
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 The oldest subdivision of the Ripley Fm is the transitional clay member and is described 

by Priddy (1943) as a well-bedded calcareous sandy clay that marks the transitional zone 

between the Ripley Fm and upper silt of the Demopolis Chalk (Fig. 2).  It is between 12 m and 

15 m thick in Pontotoc County.  More specifically, the transitional clay is green/grey, and shows 

no lamination.  Depending on the degree of weathering, the transitional clay turns from greenish 

to reddish-tan which helps distinguish the clay from the underlying Demopolis Chalk. 

 The second oldest subdivision of the Ripley Fm is the lower Ripley member, which is 9 

m to 15 m thick in Pontotoc County.  The lower Ripley includes lenses of micaceous chalky 

sands and fossiliferous silty chalk or chalky limestones.  The chalky sands weather to a red color 

and grade into the overlying middle Ripley.  The sandy limestones weather grey/white making 

them distinguishable from the chalky sands (Priddy, 1943). 

 The middle Ripley member (Priddy, 1943) conformably overlies the lower Ripley and 

ranges from 15 m to 46 m in thickness.  The middle Ripley member consists of well-bedded 

micaceous sands that contain lenses of chalky silts, marls, or glauconitic sands in the lower 

portion.  The mid portion of the middle Ripley contains unfossiliferous sands and lignitic beds.  

The upper portion of the middle Ripley member is well-bedded fine-to-medium sands that are 

comparable to the McNairy Sand to the north.  The entire middle Ripley outcrops in few places 

in Pontotoc County and the basal chalky silt/marl lenses or glauconitic sands are the only 

resistant units preserved in the middle Ripley.  The chalky fossiliferous limestone beds overlie 

the fossiliferous sands in northeast Pontotoc, but they are overlain by bentonitic clays or very 

fossiliferous limestones in eastern Pontotoc where the bentonites were eroded. 
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 The bentonitic clays that are the focus of this study occur either within or above the sandy 

limestones of the upper Ripley Fm.  The bentonites were extensive and pure enough to be 

considered an economic resource in the 1940s (Priddy, 1943; Mellen, 1958).  The bentonite 

outcrops described by Priddy in 1943 start with a basal coarse sand that occur either within or 

above the CSM, which grades into a less silty, less calcareous clay that then grades into a dark 

blue/grey, silty, and calcareous clay (Priddy, 1943).  The maximum thickness of ~2.7 m occurs 

in northern Pontotoc County and thins to ~0.6 m to the southeast (Mellen, 1958).  The bentonite 

is not exposed entirely throughout the upper Ripley due to erosion before the deposition of the 

overlying upper Ripley member (Priddy, 1943). 
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3. METHODS 

3.1. Sample Collection and Preparation 

Sampling occurred at the northern and southern locations within Pontotoc County (Fig. 

1).  Southern samples were collected from two trenches that were excavated ~15 m apart, one to 

the northeast (NE) and one to the southeast (SE) in a weathered high wall from previous sand 

mining within the upper Ripley (34°12’15”N, 88°58’40”W) (Fig. 1 and 3).  Detailed 

stratigraphic sections were measured and described at each location (Fig. 3).  Sampling at the 

southern location started in the lower sand and bulk samples of sand and bentonite were 

collected in ~1-meter intervals moving up section.  Additional samples were collected from the 

gradational contact between the bentonite and bounding sand and from 2 locations within the 

bentonite.  The southeast trench bulk samples were taken at 60 cm, 140 cm, and 200 cm from the 

trench base and the northeast bulk samples were collected twice in the lower bounding sand (NE-

S) and at 0 cm, 100 cm, and 180 cm from the trench base because of the high amount of 

bioturbation that could have possibly moved zircons into the sands (Fig. 3).  Northern samples 

were collected from exposed sections from previous mining activities (34°20’57”N, 

88°54’26”W) (Fig. 1).  Detailed descriptions of the units comprising the upper and middle 

Ripley were noted and the stratigraphic section was measured using a precision Jacob staff and 

Abney level.  The four northern samples were given the prefix TR for the location on Tuscumbia 

Road.  Sampling at the northern location consisted of collecting 4 samples at the top and base of 
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the bentonite ~15 m apart.  Samples TR-01 and TR-03 were collected ~1 m down from the top of 

the bentonite with the purpose of collecting possible finer grained material.  About two gallons 

for samples TR-02 and TR-04 were collected ~1 m above the base of the bentonite and lower 

sand contact due to an observed higher amount of purer bentonitic clays that occurred as grey 

pieces of clay material mixed in with the brown clays. 

Samples were then dried and pulverized using a disk mill.  The southern sample zircons 

were initially separated using a centrifugal bowl that separated sediment based on grain density 

and slightly on grain size as finer particles were washed out of the sample in addition to lighter 

density particles.  The northern samples were separated using a JCR zircon concentrating table.  

After washing, the heavy fractions were gathered and dried before undergoing heavy liquid 

separation.  Lithium Polytungstates (LST; specific gravity (SG) = ~2.85) were used to separate 

lighter minerals from the heavy fraction based on density and were then run through a magnetic 

separator (Franz LB-1).  The non-magnetic fraction was separated with methylene iodide (MI) 

(SG = ~3.30) to yield zircon grains. 

Zircon grains were handpicked under a microscope based on size, color, iridescence, and 

grain morphology.  After the selection of >120 grains per sample, grains were mounted on a 

glass plate using adhesive tape.  The selected zircon grains were embedded in a 1” epoxy plug 

and polished for imaging approximately halfway through the zircon grains. 

3.2. SEM Imaging 

Zircons were imaged at the Mississippi State University Institute for Imaging and 

Analytical Techniques using a Zeiss EVO 5.0 high-vacuum Scanning Electron Microscope 

(SEM) and a Gatan miniCL cathodoluminescence attachment.  Secondary Electron (SE) and 



 

 

11 

cathodoluminescence (CL) images were collected and used to characterize grain zoning and 

classification (igneous, metamorphic, or detrital) (Fig. 4).  Targets for U-Pb laser ablation (~20 

µm) were selected on the CL images for each grain based on zonation.  Some grains had multiple 

U-Pb sites based on the presence of a core and rim in the same grain that could possibly yield 

different ages. 

3.3. U-Pb Zircon Isotopic Analysis 

U-Pb analyses for samples SE140 and NE100 were performed on a Nu Plasma HR Multi-

collector inductively coupled plasma mass spectrometer (Nu-ICP-MS) at the University of 

Florida Department of Geosciences, Geochronology Laboratory.  Zircon ablation occurs in a 

stream of He and is then mixed into an Ar gas flow that carries minute particles of zircon into the 

plasma stream, which ionizes them, allowing U and Pb isotopes to be measured simultaneously 

using the multi-collector.  Ion collectors on the end of the Nu-ICP-MS simultaneously collect 

204Pb (204Hg), 206Pb, and 207Pb ions and Faraday detectors collect 235U and 238U signals.  A 20-

second integration that clears the gas blank and the 204Hg input precedes a 30-second period that 

clears the previous analysis.  After the completion of Nu-ICP-MS analysis, isotopic ratios of 

206Pb/238U, 207Pb/235U, and 207Pb/206Pb were provided from the Nu-Instruments Time Resolved 

Analysis software.  In order to correct the fractionation and drift errors that occurred, corrections 

were calibrated against a known standard (FC-1 natural zircon standard; Duluth Gabbro; 1098 

Ma; Paces and Miller, 1993; Black et al., 2003).  Analyses were arranged with 2 ablations of FC-

1, followed by 10 unknowns, and then 2 more FC-1.  Collected data were input into the 

CALAMARI 9.0 (© P. Mueller) reduction protocol for U-Pb geochronology spreadsheet. 
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GeoSep Services (GSS) in Idaho analyzed sample TR-02 (EV2S).  Isotopic analyses 

utilized a New Wave UP-213 laser ablation system along with a Agilent 7700x quadrupole 

Inductively Coupled Plasma-Mass Spectrometer (LA-ICP-MS) at the Washington State 

University GeoAnalytical Lab.  Material was delivered to the plasma source by a stream of He 

and Ar gas.  Each analysis cycle took ~30 seconds and consisted of a 6-second integration with 

the laser shutter closed to collect background measurements followed by a 24-second integration 

with the laser shutter open.  Analyses were separated by a 20-second delay and measured the 

following isotopes: 202Hg, 204(Hg + Pb), 206Pb, 207Pb, 208Pb, 232Th, 235U, and 238U.  U-Pb age 

standards were used during analysis for calibration purposes.  Laser ablations consisted of 2 

ablations of the FC-1 standard, 10 ablations of the zircon sample, and  2 more FC-1 ablations 

(Paces and Miller, 1993).  FC-1 was used in order to correct the fractionation and drift errors that 

occurred, corrections were then calibrated against a known standard (Paces and Miller, 1993; 

Black et al., 2003).  Collected analysis data were input into the GSS-ZrnUPb (© Geoseps 

Services, LLC) reduction protocol for U-Pb geochronology spreadsheet. 

All remaining samples were analyzed by laser ablation ICP-MS using a Varian 810 

Quadrupole ICP-MS coupled with a PhotonMachines Analyte.193 excimer laser at the 

University of Arkansas Stable Isotope Laboratory.  Data reduction methods are outlined in 

Shaulis et al. (2010).   

U-Pb analyses were sorted based on discordance, and those between <10% or >-5% 

reversely discordant were approved.  These discordance values are arbitrary, but a widely 

accepted range to remove damaged grains from the data set (e.g., major Pb loss or large amounts 

of common Pb).  After sorting based on discordance, analyses were chosen for each sample.  For 
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ages <800 Ma, 206Pb/238U ages are used and for grain ages >800 Ma, 207Pb/206Pb ages were used.  

These ages were used to create probability density plots (PDP) in Isoplot 3.75 (Ludwig, 2012).  

The PDP show the relative probability of the ages of the grains.  Cumulative age probability 

plots (CDP) were created using the analytical spreadsheet created by the Arizona Laserchron 

Center (Gehrels and Way, 2015) and show the cumulative age probability for each sample on a 

single graph.  

Statistical analyses were performed in order to compare samples using the Kolmogorov-

Smirnov (K-S) test (Gehrels and Way, 2015).  The K-S test analyzes if there are significant 

differences between sample distributions and determines if samples are not the same based on a 

>95% confidence level, represented by the P-value (Gehrels and Way, 2015).  These tests are 

based on the cumulative density functions (CDF) that create the CDP (Gehrels and Way, 2015).  

The K-S test compares the maximum vertical probability distances between the curves and a 

value based on the number of samples in the distribution and confidence level, which is referred 

to as the critical value (Gehrels and Way, 2015).  If the distance between two sample CDFs is 

greater than the critical value, then the null hypothesis is rejected and detrital zircon samples did 

not originate from the same source (P-value <0.05).  Therefore, the K-S test only indicates if 

populations are statistically different rather than whether the populations are the same (Guynn 

and Gehrels, 2010).  The statistical analyses were completed using the analytical spreadsheet 

from the Arizona Laserchron Center (Gehrels, 2010). 

3.4. XRD Analysis 

 Four samples were powdered in house at the University of Mississippi and then sent to 

Mississippi State for analysis.  XRD analysis was performed at the Mississippi State University 
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Institute for Imaging and Analytical Technologies Lab using a Rigaku Ultima III X-Ray 

Diffraction System.  XRD analysis was performed on two northern samples (TR-01; TR-04) and 

two southern samples (Pontotoc-1; Pontotoc-2) in order to compare the compositions between 

the southern bentonite, which was previously analyzed by Charles Swann and confirmed to be a 

bentonite, and the unknown northern sample. Pontotoc-1 and Pontotoc-2 were collected in May 

2018 and are different from the southern samples that were collected in May 2016 and that are 

referred to in the other sections of this study. 
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4. RESULTS 

4.1. Southern Site Stratigraphy 

 The southern sampling location is correlative to the previously mined bentonites in 

central Pontotoc County, MS.  The outcrop is ~9 m below the K-Pg boundary and underlies the 

Owl Creek Fm.  The southeast sampling site is ~4 m thick and descriptions covered a 200 cm 

section of the outcrop.  The sandy-clay/clayey-sand is ~40 cm thick and contains mostly medium 

quartz grains in a brown clay matrix along with some concentrations of cm-scale clay aggregates 

and subangular sand grains (Fig. 3).  Sample SE60 was taken from the upper portion of the 

sandy-clay/clay-sand.  Above the sandy-clay/clayey-sand lies a sandy-clay layer that is ~20 cm 

thick and that contains mm-sized clay balls (Fig. 3).  A fining upward brown silty-clay overlies 

with isolated fine sand grains in clay matrix grains and is ~120 cm thick (Fig. 3).  Sample SE140 

was collected from the middle portion of the silty-clay portion of the outcrop and sample SE200 

from the upper boundary of the clay at the zone where pedogenic overprinting is prominent (Fig. 

3). 

 Sampling moved to a ~5 m section of the northeast cut at the southern sampling location.  

The first sample (NE-S) was taken from the lower bounding sand described as an orange-brown 

silty, fine-grained, sand that is ~2.4 m thick (Fig. 3).  The next sample (NE0) was collected from 

the base of a ~200 cm thick sandy clay section with clay rip ups (Fig. 3).  The sandy-clay is 

poorly sorted with mostly very fine to coarse subangular to subrounded quartz grains.  At the top 
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of the ~200 cm section, the sandy clay is grey to red, with some very fine sand grains and 

muscovite flakes, and shows MnO staining and bioturbation.  Sample NE180 was collected from 

this portion of the sandy-clay.   

4.2. Northern Site Stratigraphy 

The Northern Sample location is in northeast Pontotoc County, MS off Tuscumbia Road 

and ~17.4 km away from the Southern Sample location (Fig. 1).  This study will focus on the 

stratigraphy off the upper portion of the middle Ripley Fm, Chiwapa Sandstone Member, and 

clay interval to help constrain the deposition of the bentonites.  The CSM limestone was included 

to correlate the northern and southern locations.  The middle Ripley Fm at this location is an 

orange fine to medium poorly sorted sand with minor amounts of clay.  The sand grains are 

subangular to subrounded and dominated by quartz in composition.  Brown clay balls up to ~4 

cm in diameter were observed along with ripple cross lamination, and trace fossils.  The middle 

Ripley shares a sharp upper contact with the CSM.  The CSM limestone is ~80 cm thick and a 

white sandy limestone (Fig. 3).  Abundant fossils were found, including belemnites, brachiopods, 

echinoids, shell fragments, possible crab fragments, gastropods, shark teeth, and Exogyra.  This 

is also the location where Hardouina subquadrata and Sphenodiscus were found during the 2018 

sample collection and confirm the stratigraphic location within the CSM because the same fossils 

were found at the CSM type locality (Mellen, 1958).  The CSM underlies a 2.2 m thick sand bed 

that is a highly weathered fine to medium sand with an abundant brown clay matrix (Fig. 3).  The 

sand is subangular to subrounded, massive, contains minor mm-thick stringers of white/grey 

clay, and is very poorly sorted (Fig. 3).  This sand bed shares a gradational contact with the 

overlying ~3.85 m thick grey bentonite (Fig. 3).  Samples were collected from the bottom of the 
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exposure ~1 m above the bentonite/sand contact and ~1 m below the exposed ground surface 

(Fig. 3).  The exposure consisted of two outcrops that were separated by ~15 m at the top of the 

bentonite and they converged at the base (Fig. 3).  Samples TR-01 and TR-03 were collected at 

the top of the bentonite and samples TR-02 and TR-04 from near the base (Fig. 3). 

4.3. Detrital Zircon Geochronology 

A total of 1,291 U-Pb analyses were collected, and 649 ages yielded a discordance of     

>-5% and <10%.  The samples are combined based on collection location in southern or northern 

Pontotoc County for presenting the data in the form of probability density plots (PDP) and 

cumulative age probability plots (CPD).  The PDP are representations of the number and relative 

probabilities of the grain ages along with the potential source locations (Fig. 5, 6, 7, and 8).  

Cumulative probability age plots are a visual tool used to show the age data by graphically 

comparing the cumulative probability of the separate samples (Fig. 7 and 8).  The potential 

source age range percentages for the southern, northern, and combined samples are summarized 

in Table 1.  Age analysis shows an overall age range of 2,870 Ma (Mesoarchean) to 305 Ma 

(Late Pennsylvanian) and are categorized into nine different potential terranes.  The possible age 

terranes are as follows: Superior (>2,500 Ma), Trans-Hudson/Penokean (~1,900–1,800 Ma), 

Yavapai-Mazatzal (~1,800–1,600 Ma), Mid-Continent Granite Rhyolite (MCGRP) (~1,600–

1,350 Ma), Grenville/Midcontinent Rift (~1,350–900 Ma), Gondwanan Terranes (~900–500 

Ma), Taconic (~490–440 Ma), Acadian (~420–350 Ma), and Alleghenian (~330–265 Ma) (Table 

1, Fig. 5).   

The northern and southern samples show similar age distributions but, the K-S results (P 

values > 0.05) show that the null hypothesis was rejected.  The K-S statistical analysis confirmed 
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that grain ages of the seven southern samples were statistically not different and therefore could 

be combined into one complete Southern Sample.  The same approach was used for the four 

samples that comprise the Northern Sample (Appendix B).  K-S statistical analyses were used to 

compare the two samples in this study and ten other studies based on the previous work 

performed in the Superior and Mid-Continent region (Craddock et al., 2013; Konstantinou et al., 

2014), Illinois Basin (Finzel, 2014; Kissock et al., 2018; Potter-McIntyre et al., 2018), Forest 

City Basin (Finzel, 2014; Kissock et al., 2018), and Cenomanian-Paleocene sediments in the 

MSE (Blum and Pecha, 2014) (Fig. 7, Appendix B). 

4.4. Southern Sample Geochronology 

The seven combined southern samples (n=376) have mostly Grenville-aged grains 

(80.1%, n=301).  Acadian aged grains make up the next dominant group with 10.6% of the 

grains (n=40) coming from the 450–320 Ma age range.  The remainder of the age groups in 

descending order are: MCGR (4.5%, n=17), Gondwanan Terranes (2.9%, n=11), Alleghanian 

(1.1%, n=4), Superior (0.5%, n=2), and Taconic (0.3%, n=1).  The southern samples did not 

yield any results from the Yavapai-Mazatzal or Trans-Hudson/Penokean provinces (Table 1, Fig. 

5). Although detailed sample descriptions for each sample were not recorded, heavy mineral 

separation yielded high amounts of kyanite within the southern samples. 

4.1.1. Sample NE-S.  This sample was collected from the lower bounding orange/brown 

silty sand (Fig. 3).  U-Pb zircon analyses (n=25) for this sample range in age from 1,372.0 ± 91.6 

Ma to 602.0 ± 12.0 Ma.  Overall, 98 grains were sampled but only 25 grains fell within the 

required discordance values.  The PDP for sample NE-S contains a dominant double peak at 
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~1,172 Ma and ~1,081 Ma in the Grenville age range along with two other age peaks at ~602 Ma 

(Gondwanan Terranes) and ~1,386 Ma (MCGRP) (Fig. 6). 

4.4.2. Sample NE0.  This sample was collected at the base of the sand clay in the 

northeastern trench (Fig. 3).  U-Pb zircon analyses (n=21) for this sample range in age from 

1,399.9 ± 71.8 Ma to 440.0 ± 12.5 Ma.  A total of 57 grains were hit for this sample and only 21 

fell within the required discordance range.  The PDP for sample NE0 has a dominant double 

peak at ~1,167 Ma and ~1,036 Ma in the Grenville age range along with two other age peaks at 

~444 Ma (Taconic) and ~698 Ma (Gondwanan Terranes). 

4.4.3. Sample NE100.  This sample was collected from the middle sandy clay within the 

northeastern trench (Fig. 3).  U-Pb zircon analyses (n=76) for this sample range in age from 

1,446.5 ± 29.5 Ma to 326.1 ± 10.1 Ma.  The PDP for sample NE100 has a dominant double peak 

at ~1,176 Ma and ~1,033 Ma in the Grenville age range along with two other age peaks at ~337 

Ma (Alleghanian) and ~428 Ma (Taconic/Acadian).  Minor age occurrences also appear in the 

Gondwanan Terranes and MCGRP ranges (Fig. 6). 

4.4.4. Sample NE180.  This sample was collected from the grey to red clay near the top 

of the northeastern trench (Fig. 3).  U-Pb zircon analyses (n=70) for this sample range in age 

from 1,410.0 ± 60.0 Ma to 332.1 ± 12.7 Ma.  The PDP for sample NE180 has a dominant double 

peak at ~1,163 Ma and ~1,041 Ma in the Grenville age range along with two other age peaks at 

~357 Ma (Acadian) and ~432 Ma (Taconic/Acadian).  Minor age occurrences are present in the 

Gondwanan Terranes and MCGRP ranges (Fig. 6). 

4.4.5. Sample SE60.  This sample was collected from the top of the sandy-clay/clayey-

sand (Fig. 3).  U-Pb zircon analyses (n=57) for this sample range in age from 2,667.0 ± 37.7 Ma 
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