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Abstract 

 Human Immunodeficiency Viruses are a group of lentiviruses that have seen a lot of 

study ever since their discovery. HIV-1, the most common and virulent form of the virus, has 

proven to be quite deadly when untreated, so any research into the mechanisms of HIV 

pathogenesis and replication could have major medical applications all over the world. HIV-1 is 

a sexually transmitted virus that compromises the hosts immune system and eventually leads to 

the patient developing AIDS, a life-threatening condition that nearly half of people infected with 

HIV will develop within ten years.  

 Our study sets out to determine exactly how HIV-1 is able to facilitate its own spread 

through the use of its viral proteins and genome. The protein we focus on in this study is the Tat 

protein. Tat is short for Trans-Activator of Transcription. It gets this name from the role that the 

protein plays in the facilitation of the transcription of the viral genome once it invades a host cell. 

It performs this role by binding to the RNA stem-loop structure known as TAR located at the 5’ 

end of HIV-1 transcripts. Once bound, Tat assists in recruiting additional transcriptional 

elements, increasing the transcription of viral RNA. We seek to determine whether the presence 

of tat also influences the mechanisms of blood coagulation in the body such as the contact 

activation pathway and the kallikrein-kinin system, due to the high amount of cardiovascular 

ailments that are often associated with HIV.  

` We decided to conduct a time course using the plasma of HIV-1 transgenic mice to see if 

the presence of Tat protein in the plasma would affect the production of kallikrein and its other 

downstream products in the kallikrein kinin system. One of these byproducts, bradykinin, has 

also been implicated in altering endothelial structure and the compromise of vascular selectivity 
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and permeability. This alteration in selectivity associated with bradykinin may play a role in 

allowing HIV virus particles to more easily spread to other cells and also to cross the blood brain 

barrier, compromising the brain to HIV infection.  

 The results of the study showed that the presence of Tat is indeed associated with higher 

levels of kallikrein activity in the plasma compared to when Tat is absent. We also found that 

Tat+ plasma contains a higher level of kallikrein itself, indicating that the byproduct, bradykinin, 

is also being produced at a higher level. These higher levels of kallikrein activity and increase in 

kallikrein production, signal that the presence of Tat protein is leading to higher rates of reaction 

in the kallikrein-kinin system, indirectly resulting in the production of excess bradykinin and also 

the compromise of endothelial cells.   
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Introduction 

Human Immunodeficiency Virus 

 Human immunodeficiency viruses are a group of viruses belonging to the species 

Lentivirus (a subgroup of retrovirus) that infect humans. HIV is mainly spread through sexual 

contact or during an exchange of bodily fluids such as a blood transfusion. Mothers infected with 

HIV are also capable of spreading the virus non-sexually to their infants during pregnancy, 

childbirth, and through breastfeeding. This is due to the fact that HIV stays present as free virus 

particles within these bodily fluids and also as virus within infected immune cells8. Therefore, 

the exchange of these fluids can result in a new infection. If HIV infection is not treated properly 

and is able to progress, the patient will eventually develop acquired immunodeficiency syndrome 

(AIDS). Patients suffering from AIDS will be at a significantly larger risk of developing life-

threatening infections and will be much more susceptible to the development of cancer. There 

are two different species of HIV: HIV-1 and HIV-2, each of which have their own unique 

characteristics. HIV-1 is the far more prevalent species, responsible for the vast majority of cases 

of the virus and is believed to be significantly more virulent and has a much higher infectivity7. 

HIV-2, on the other hand, has a lower virulence and infectivity, and because of this, is rarely 

seen outside of West Africa. The transgenic mice used in this experiment have been infected 

with HIV-1 so we will be focusing on this specific species of the virus in the rest of the paper.  

 While the relation between HIV and bleeding disorders has not been researched 

thoroughly, studies have shown that HIV infection is associated with serious cardiovascular 

abnormalities. Post-mortem examinations of children and young-patients who had died from 

AIDS reveal a litany of pathologies including, vascular wall infiltration by mononuclear cells 
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and lymphocytes, advanced atherosclerotic lesions, and medium to large-artery aneurysms21. 

Another study also showed that HIV-1 infected children, when compared to healthy children, 

show increased stiffness of arterial walls along with impaired endothelial function measured by 

fibromuscular dysplasia and reduced distensibility of the carotids21.  

 HIV shows both similar and different characteristics in relation to other lentiviruses. Like 

other lentiviruses, HIV is transmitted as a single-stranded, positive sense, RNA virus. This RNA 

is responsible for coding the genes necessary for viral function, and thus is protected by a conical 

capsid consisting of 2,000 copies of the viral protein p249. The RNA is tightly bound to 

nucleocapsid proteins, p7, and other enzymes, such as reverse transcriptase, proteases, 

ribonuclease, and integrase, each of which is vital for the development of the virion9. This is, in 

turn, surrounded by a matrix composed of the viral protein p17, which covers the capsid and 

provides further protection for the virion particle. On top of this, the matrix is also surrounded by 

a viral envelope characteristic of other lentiviruses. The envelope is created by taking the lipid 

bilayer from the membrane of a human host cell and integrating it with the newly formed virus 

particle as it buds from the cell. As a result, the envelope contains relatively few copies of HIV 

envelope protein, which is made of a cap of three molecules known as glycoprotein (gp) 120 and 

a stem of three gp41 molecules that provide structural support and anchor the cap into the viral 

envelope9. This envelope protein is encoded by the HIV env gene, which gives the virus the 

ability to attach to host cells and allows for the fusion of the viral envelope to the host’s cell 

membrane, consequently resulting in the release of the viral contents of the infected cell10.  

 The RNA genome of HIV-1 consists of seven structural landmarks and nine genes. The 

landmarks are various sequences of nucleotides that are responsible for different functions such 

as binding and transcription. These landmarks are as follows: LTR, TAR, RRE, PE, SLIP, CRS, 
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and INS. The genes present in HIV (See figure 1) are gag, pol, env, tat, rev, nef, vif, vpr, vpu, 

and sometimes tev (a combination of tat, env, and rev). Gag, pol, and env are the genes 

containing the necessary information for the production of the structural proteins to be used in 

new virus particles9. The remaining genes, tat, rev, nef, vif, vpr, and vpu, are all responsible for 

regulatory function and code for proteins that control the ability of HIV to infect host cells, 

undergo replication, or cause disease9. The tat gene in particular is vital for replication as it codes 

for Tat proteins that drastically enhance viral transcription. 

 

 

 

Tat Protein 

 A Tat protein is a regulatory protein that has been encoded for by the tat gene in HIV-1. 

Tat is an acronym that stands for “trans-activator of transcription”. This name is derived from its 

function which is to provide a means for efficient transcription of the viral genome12. Tat does 

this by binding to the RNA stem-loop structure, TAR (trans-activating response element), which 

Figure 1: Structure of the HIV-1 genome. It is roughly 10,000 base pairs long and consists 

of nine genes. The tat gene can be seen alongside the other regulatory genes responsible for 

replication and infection.  

Credit: Thomas Splettstoesser (www.scistyle.com) 
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is located on the 5’ ends of HIV-1 transcripts. Once bound to TAR, Tat is able to alter the 

properties of the transcription complex and is able to recruit the positive transcription elongation 

complex (P-T EFb) of CDK9 and cyclin T1, resulting in the increased production of full-length 

viral RNA11.  

 Tat also contains a transduction domain, also known as a cell-penetrating peptide. Similar 

to a Trojan horse, this domain gives Tat the ability to enter host cells by way of the cell 

membrane. This is significant as a major obstacle to neural therapies has been figuring out a way 

to deliver medication or certain molecules across cellular membranes and the blood/brain 

barrier13. For many potential pharmaceuticals, such as neurotrophins, the endothelial wall of the 

BBB is not entirely permeable, therefore any mechanism that demonstrates an ability to cross 

this barrier shows great potential for medical use. It is hypothesized that some HIV virions may 

gain access to the CNS through this blood/brain barrier paracellularly, aided by breaches in BBB 

integrity. This is supported by early post-mortem analyses of brains infected with HIV that show 

high levels of serum proteins, suggesting the degradation of the BBB has taken place.   

Contact Activation Pathway  

 The contact activation pathway is a group of proteins in the plasma that play a role in 

surface-activated blood coagulation tests. These proteins are Factor XII, prekallikrein (PK), and 

High-Molecular Weight Kininogen (HK). Factor XII and PK are proteases while HK is a non-

enzymatic co-factor. The contact activation pathway is initiated by the binding of Factor XII to a 

negatively charged surface and the reciprocal activation of Factor XII and PK into Factor XIIa 

and PKa respectively14.  
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Factor XIIa can then go on to initiate the coagulation cascade by activating Factor XI into Factor 

XIa, leading to the formation of blood clots2. The contact activation pathway can also activate 

the kallikrein-kinin system in which PKa can cleave HK to form HKa, releasing a peptide known 

as bradykinin (BK). Bradykinin is a molecule that plays an important role in the mediation of 

inflammation and vascular permeability3.  

Factor XII 

 Also known as Hageman Factor, human coagulation factor XII is the zymogen form of a 

protein found in the plasma that plays a role in the coagulation cascade responsible for blood 

clotting and hemostasis15. It was first discovered in 1955 when the blood sample of 37-year-old 

John Hageman was found by doctors to have large delays to clotting times in test tubes. This was 

novel, as the patient was experiencing no hemorrhagic symptoms and led the doctors to 

determine that this novelty was due to the lack of an unidentified blood clotting factor. This 

blood clotting factor turned out to be factor XII. The main role of factor XII in the coagulation 

cascade is to be the starting point of the intrinsic pathway and to activate other coagulation 

Figure 2: Kallikrein-Kinin System.  

Michał B. Ponczek, Aleksandr Shamanaev, Alec LaPlace, S. Kent 

Dickeson, Priyanka Srivastava, Mao-fu Sun, Andras Gruber, Christian 

Kastrup, Jonas Emsley, David Gailani; The evolution of factor XI and 

the kallikrein-kinin system. Blood Adv 2020; 4 (24): 6135–6147. 
doi: https://doi.org/10.1182/bloodadvances.2020002456 

- Factor XII and PK undergo reciprocal activation to 

produce Factor XIIa and PKa. PKa then goes on to cleave 

HK, releasing Bradykinin (BK) and HKa.  

 

https://doi.org/10.1182/bloodadvances.2020002456


6 
 

enzymes such as factor XI and prekallikrein in vitro. Factor XII is thought to play a smaller role 

in coagulation in vivo, as patients with factor XII deficiencies do not typically experience 

excessive bleeding symptoms.  

 As stated earlier, Factor XII is a zymogen and must be activated in order for it to fulfill 

its enzymatic function. In vitro, Factor XII is activated by negatively charged surfaces such as 

glass. This is makes it a very good molecule for the initiation of coagulation cascades in 

laboratory studies2. In vivo, Factor XII can be activated by a number of different negatively 

charged macromolecules including collagen, fibronectin, and certain proteins found in the cell 

wall or membrane of certain microorganisms. Contact with these polymers activates Factor XII, 

initiating the intrinsic pathway and contributing to the formation of fibrin.  Once activated, 

Factor XII is converted into its active protease form of Factor XIIa, which in turn goes on to 

activate Factor XI into Factor XIa and prekallikrein into plasma kallikrein by selectively 

cleaving the Arg369-Ile370 found in both Factor XI and prekallikrein.  

Factor XI 

 The next step in the intrinsic coagulation pathway, following the activation of factor XII 

into factor XIIa is the activation of factor XI into factor XIa. Like factor XII, factor XI is a 

zymogen that must be activated in order to perform its enzymatic functions16. In its activated 

form, it is a serine protease that starts the next step of the intrinsic pathway by selectively 

cleaving the arg-ala and arg-val peptide bonds found in factor IX18. Factor IX will, in turn, be 

activated and be able to continue the coagulation cascade.  

 Factor XI, in its inactive form, is produced by the liver and circulates in the blood as a 

homo-dimer17. The structure of the homo-dimer, formed by the combination of two polypeptide 
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chains, consists of four apple domains and a fifth serine protease domain. The serine protease 

domain is responsible for the catalytic activity of factor XI, once activated. This activation is a 

result of inactive Factor XI coming into contact with activated factor XIIa or thrombin, both of 

which cleave the Arg369-Ile370 peptide bonds on both subunits of the dimer. It is thought that 

this cleavage results in the partial detachment of the catalytic protease domain, giving it enough 

space to properly bind to factor IX and fulfill its protease function.  

 There is another domain in the factor XI homo-dimer that fulfills an important function as 

well. Of the four apple domains, there is one that is responsible for the binding site of a molecule 

known as high molecular weight kininogen (HK). HK is the molecule responsible for carrying 

factor XI and prekallikrein in the blood. HK forms a complex with inactivated factor XI by 

binding to its apple domain. HK itself is not enzymatically active but is a necessary component 

in the complex as factor XIIa would be unable to activate factor XI without it5.  

Even though the contact activation pathway can activate Factor XI and the clotting 

cascade and is often observed to be activating coagulation in lab settings3, the actual 

physiological role of the contact system in vivo is hotly debated. This is due to the fact that 

people who have deficiencies in the proteins that make up the system (FXII, PK, and HK) rarely 

experience bleeding disorders as a result, leading many to suggest that the contact activation 

pathway is a redundant system3.  
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Prekallikrein 

 Prekallikrein, also known as Fletcher factor, is a serine protease that plays a vital role in 

the contact activation pathway. In this system, prekallikrein complexes with the protein 

chaperone high-molecular-weight kininogen to form the HK/PK complex. This complex can then 

interact with Factor XII which cleaves the prekallikrein from HK to produce kallikrein (PKa)4.  

Prekallikrein is homologous to factor XI in the coagulation cascade as it also consists of 

four apple domains and a fifth, catalytic serine protease domain19. However, unlike Factor XI, 

prekallikrein does not form dimers. In addition, the bond cleaved by Factor XII in the activation 

of prekallikrein to kallikrein (Arg371-Ile372) is homologous to the corresponding bond cleaved 

when Factor XI is activated by Factor XII20.  

As was mentioned in the Factor XI section, prekallikrein and Factor XI are very closely 

related with 58% identity at the amino acid level4. The Factor XI and and prekallikrein N-

terminal heavy chains both consist of four apple domains. They are also both activated by the 

same molecule, Factor XIIa, through cleavage of Arg-Ile bonds (Arg371-Ile372 and Arg369-

Ile370, respectively)4. They both also circulate as cofactors of High Molecular Weight 

Kininogen, a protein chaperone vital for the proper functioning of the contact activation 

pathway.  

High Molecular Weight Kininogen 

 A key component of the contact activation pathway is the plasma protein high-molecular-

weight kininogen (otherwise known as HMWK or HK). High-molecular-weight kininogen acts 

as a chaperone for prekallikrein (PK). HK is not enzymatically active and acts only as a cofactor 

in the activation of prekallikrein5. In the contact activation pathway, HK forms a complex with 
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PK, which can be cleaved by Factor XII to produce plasma kallikrein (PKa)5. PKa, in turn, may 

go on to cleave HK to produce HKa and Bradykinin.  

  

 

 

High molecular is also necessary for the activation of Factor XI by Factor XIIa. In the 

same way that HK acts as a chaperone for the protease prekallikrein, it also acts a chaperone for 

the protease Factor XI. Both Factor XI and prekallikrein circulate in the plasma in the form of 

noncovalent complexes with HK. These complexes are formed from the binding of HK to the 

heavy chains located in the two proteases4.  

Bradykinin 

 Bradykinin, the product of the proteolytic cleavage of HK by PKa, is a vasoactive peptide 

that plays a major role in inflammation and vascular permeability6. It is a low molecular weight 

nonapeptide, which can be rapidly metabolized by certain metalloproteases such as angiotensin-

converting-enzyme (ACE), neutral endopeptidase (NEP), carboxypeptidase N (CPN), and 

Figure 3: The cleavage of HK by Kallikrein (PKa) to produce Bradykinin (BK) and HKa.  



10 
 

aminopeptidase P6. Bradykinin can influence inflammatory processes through the activation of 

endothelial cells, resulting in the promotion of vasodilation and increased vascular permeability. 

It does this by binding to endothelial B1 and B2 receptors and exerting its physiological effects 

(see Figure 4) These effects are what leads to the classic inflammation symptoms of redness, 

heat, swelling, and pain6. We hypothesize that the vasodilation and vascular permeability 

increase caused by bradykinin production, may also play a role in facilitating the spread of HIV 

Tat protein. 

 

 

 

 

 

 

 

Figure 4: Effects of 

bradykinin in different 

pathophysiological states. 

This figure demonstrates 

the various diseases and 

ailments that can be 

caused by the physiological 

effects of BK.  

Maurer M, Bader M, Bas M, Bossi F, 

Cicardi M, Cugno M, Howarth P, Kaplan A, 

Kojda G, Leeb‐Lundberg F, Lötvall J, 

Magerl M. New topics in bradykinin 

research. Allergy 2011; 66: 1397–1406. 
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Objectives 

 The main objectives of this study is to measure the kallikrein and factor XII activity in 

the transgenic mice to determine whether HIV trans-activator of transcription, (Tat) protein, 

alters the structure and function of the endothelium, inducing a prothrombotic and 

proinflammatory state contributing to the activation of the plasma kallikrein-kinin system (KKS) 

and favoring the passage of HIV. These changes to the endothelium, possibly due to the presence 

of HIV tat, facilitate leakage of infected plasma into the brain, compromising the integrity of the 

blood brain barrier. It is hoped that through isolation and inhibition of tat protein, we may be 

able to limit the effects of HIV spread. 
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Methods and Materials 

 

Equipment: 

▪ BioTek® Synergy HTX Multi Mode Reader  

▪ 96-well microplate  

▪ Pipette  

▪ Microcentrifuge tubes for sample transfer 

Reagents:  

 

H-D-Pro-Phe-Arg-pNA + H2O                               H-D-Pro-Phe-Arg-OH + pNA 

▪ Chromogenic Substrate S-2302 (2mM) 

▪ Tris Buffer, pH–7.8 (25°C) 

o Tris  

o NaCl 

o Distilled water  

S-2302 

 In order to conduct our study on the effects of HIV Tat protein on the kallikrein-kinin 

system. We decided to conduct a time course using Chromogenic Substrate S-2302 to measure 

the kallikrein-like activity in the plasma. The plasma kallikrein-like activity catalyzes the 

splitting of p-nitroaniline (pNA) from the substrate H-D-Pro-Phe-Arg-pNA (S-2302). This 

allows us to use S-2302 to detect the activation of prekallikrein into kallikrein by Factor XII.  

S-2302 
Kallikrein – like 

activity 
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The rate at which the pNA is released is measured photometrically at 405 nm. To do this, we 

prepared a solution of test plasma, Tris Buffer (pH-7.8), and Substrate S-2302.  

Time Course 

As this experiment required the analysis of many samples simultaneously, it was 

necessary to use a 96 well microplate, where plasma solution samples were loaded into rows 

based on the identity of the transgenic mouse that the plasma was harvested from. The specific 

plate reader used in our experiments was the BioTek® Synergy HTX Multi Mode Reader. As the 

plasma samples being used in the experiment all have different protein concentrations, it was 

necessary to dilute them to the same concentration before they undergo the 1:10 dilution with 

Tris Buffer.  Each individual well contained 20 µL of 1:10 dilution of the sample plasma, along 

with 60 µL of Tris Buffer and finally 20 µL of the selected substrate (S-2302/S-2366). This 

brought the total volume of each well to 100 µL with a final substrate concentration of 400 µM. 

Before the substrate can be added, it is necessary to incubate the samples in the well along with 

the Tris Buffer at 37°C for 5 minutes to ensure that reagents can react in conditions resembling 

the environmental conditions in the human body. After incubation, the substrate can then be 

added to each well. Each sample solution was arranged into 4 rows of 4 plasma samples 

harvested from different mice, each row containing three samples from the same mouse (See 

Figure 5).  
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It is necessary to be close by to the plate reader when adding the substrate to each well as 

the reaction takes place extremely quickly. If one takes too long to load the plate into the reader 

after addition of the substrate, the reader may only catch the tail end of the reaction and not be 

able to give an accurate result on the rate of reaction. Once the plate was loaded into the reader, 

the time course was allowed to run for a period of approximately 1 hour, after which the plate 

was removed and the OD of the solution in the wells had been recorded. OD measurements were 

taken every 5 minutes throughout the hour bring the total number of readings for each sample to 

12 over the course of the hour. The rate of change in OD was used as an indication of the rate of 

kallikrein substrate cleavage, as the proceeding reaction will change the color of the solution 

shortly after addition of the substrate. After the data for each sample had been completely 

recorded, it was compiled together and then the average rate of reaction was calculated for both 

Tat + samples and Tat- samples. 

 

 

Sample 1 + Sample 1 + Sample 1 + 

Sample 2 + Sample 2 + Sample 2 + 

Sample 3 - Sample 3 - Sample 3 - 

Sample 4 - Sample 4 - Sample 4 - 

Figure 5: An example of the well setup used in this experiment. Each cell on the table represents one 

well on the 96-well plate. Samples are arranged in rows, with each row containing 3 identical sample 

solutions.  

A 

B 

C 

D 
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Plasma Samples (In order of Use) 

Transgenic Mouse ID# Tat Stock protein concentration 

(mg/mL)  

15/675 + 2.5 

20/728 - 3.2 

7/672 + 3.5 

6/714 - 2.5 

12/739 - 3.0 

16/676 + 1.7 

8/673 + 1.7 

14/471 - 2.5 

5/713  - 4.1 

17/677 + 3.3 

4/712 - 3.15 

18/678 + 3.16 

10/737 - 4.83 

3/711 - 7.04 

19/727 + 3.44 

2/690 + 5.19 

1/689 + 4.7 

19/727 + 3.44 

11/738 - 4.1 

10/737 - 3.44 
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Inhibition Study  

 Following completion of the S-2302 time course, we ran an additional similar 

experiment. The only difference in this experiment relative to the last time course was that after 

preparing the solution in the microplate wells, 1 µL of 500 µM Soybean Trypsin Inhibitor or 

Kallistop was added to measure its effect on the rate of kallikrein substrate cleavage.  1 µL of the 

Tris Buffer was removed to bring the volume of buffer in each well to 59 µL so that the total 

volume could remain at 100 µL to not alter the concentrations of each reagent. Other than the 

addition of SBTI, nothing was changed in the methodology of this experiment, relative to the 

previous one.  

 

Data and Results 

 After the experiment was conducted using each plasma sample available, the relative 

rates of substrate cleavage were analyzed to determine whether there was a noticeable trend in 

the rate of reaction based on the presence or absence of tat protein. Upon immediate inspection 

of the wells after the addition of substrate, I found that many of the wells containing Tat protein 

demonstrated a very rapid color change from clear to yellow. I inferred from this that this color 

change is most likely indicative of the reaction taking place. This trend did not apply to every 

round of experiments, but it was observed with enough frequency to assume that the presence of 

Tat was already playing a role in the rate of reaction.  
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Figure 6: Experiment 1- The plasma samples were all diluted to a matching protein 

concentration of 2.5 mg/mL before their 1:10 dilution. The first experiment was fairly 

inconclusive as both Tat+ and Tat- samples exhibited similar rates of reaction. 

Samples 728 (Tat-) and 672 (Tat+) both reacted much quicker than their counterparts 

675 (Tat+) and 714 (Tat-).  

*Note read numbers are in increments of five minutes, therefore read # 5 = 25 

minutes in the spectrophotometer* 

Figure 7: Experiment 2- This time the protein concentrations of the plasma samples, 

pre- 1:10 dilution, were brought to 1.75 mg/mL. The results of the second experiment 

went against what we were expecting as both of the Tat- samples reacted very 

quickly while the Tat+ samples lagged behind with sample 676 (Tat+) barely reacting 

at all. This could mean that there was some sort of error involved in the transfer of 

reagents into the microplate or that a faulty reagent may have been used.  
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Figure 8: Experiment 3- This time, protein concentrations were at 3.15 mg/mL. 

Sample 678 (Tat+) rapidly reacted compared to the other samples and was able to 

reach equilibrium at around 15 minutes. It was followed by sample 713 (Tat-), 

however this sample was never able to reach equilibrium.  

Figure 9: Experiment 4- In this experiment, protein concentrations were brought to 

3.44 mg/mL. Sample 727 (Tat+) showed by far the most rapid reaction rate up until 

this point, vastly exceeding the rates of the other samples in the experiment. I am not 

entirely sure as to what this rapid rate can be attributed to, as all samples were at the 

same protein concentration and were exposed to the same volume of substrate.  
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Once the data had been compiled, it supported the inference that Tat protein was 

influencing kallikrein activity in the plasma. On average, Tat+ plasma samples showed a relative 

rate of substrate cleavage nearly twice as high as the Tat- samples. The graph below is a box and 

whisker showing the relative reaction rates of all Tat+ samples and all Tat- samples through all 5 

experiments. The median reaction rate of the Tat+ samples came in at around a 0.7 while the Tat- 

samples showed a median relative rate of around 0.25. It is also very interesting to note that the 

upper quartile range of the Tat- samples fell just below the lower quartile range of the Tat+ 

samples.  

Figure 10: Experiment 5- Protein concentrations in this experiment were the same 

as the previous experiment at 3.44 mg/mL. The extremely rapid reaction rate was 

observed again, however, this time it was exhibited by both Tat + samples (samples 

689 and 727). These samples reached equilibrium before even 10 minutes had passed 

while the Tat – samples barely reacted at all relative to the others.  
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 It is important to note that rates of kallikrein substrate cleavage are indicative of the 

amount of kallikrein activity and not necessarily the amount of kallikrein itself. While higher 

kallikrein activity may be a sign of higher kallikrein levels, further investigation was required 

before we could determine whether Tat protein was leading to increased production of kallikrein 

or simply just facilitating the cleavage of substrate.  

After investigating further, it was in fact found that the HIV-1 Tat transgenic mice 

demonstrated higher levels of kallikrein present in the plasma (Figure 12). This leads us to 

believe that Tat is facilitating the production of kallikrein, therefore indirectly facilitating the 

production of Bradykinin as well.  

Figure 11: Comparing the relative rates of substrate cleavage between Tat+ and Tat- samples shows that Tat+ 

samples reacted much more quickly than Tat- samples. A higher rate of substrate cleavage indicates higher 

levels of kallikrein activity.  
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Now that we have observed elevated kallikrein levels in the HIV transgenic mice, we can 

look for ways to inhibit that activity in order to limit the production of the byproduct, bradykinin. 

As bradykinin is the molecule implicated in the compromise of endothelial selectivity associated 

with HIV spread, inhibition of kallikrein production may have important medical applications for 

limiting the spread of HIV throughout the body. We found that plasma kallikrein activity can in 

fact be inhibited through the use of Kallistop and Soybean Trypsin Inhibitor. Plasma kallikrein 

activity was reduced by Kallistop and SBTI with IC50= 1.1µM and 1.3µM. Introduction of these 

inhibitors greatly reduced the measured kallikrein activity in the plasma (Figure 13).  

Figure 12: HIV-1 

Tat transgenic mice 

demonstrate higher 

levels of kallikrein in 

the plasma compared 

to the plasma of 

unaffected mice.  
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Conclusion  

 Overall, the results of the experiment were pretty supportive of our hypothesis that HIV 

Tat expression was associated with higher kallikrein activity. This correlation was found to have 

a p-value of less than 0.05 signaling that this correlation is most likely not due to random chance. 

We believe that this difference has to do with what was discussed earlier in this paper, that HIV 

Tat protein is helping to activate the plasma kallikrein system in the plasma of transgenic mice. 

By utilizing the selectivity of Chromogenic Substrate S-2302, we were able to get a visualization 

of this increased kallikrein system activity. This was even observable by just looking at the wells 

of many of the Tat+ samples which showed a higher tendency to quickly change from a clear 

color to a yellow color within a very short time frame. As was discussed in the data section, this 

Figure 13: Graph demonstrating the inhibition of kallikrein activity by SBTI and Kallistop. As 

concentrations of inhibitor increase, kallikrein activity, exponentially decreases. An inhibitor 

concentration of just 1 µM was able to decrease kallikrein activity by approximately 90%.  
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was not true for every sample as some Tat- samples showed an ability to react quickly as well, 

however, not at the same frequency as Tat+ samples.  

 Based on the evidence compiled, I believe that it is safe to say that Tat protein plays a 

major role in the facilitation of the kallikrein-kinin system. High levels of kallikrein activation in 

Tat+ samples, has the derivative effect of also increasing levels of Bradykinin. Bradykinin, a 

known product of kallikrein activation, is a major influence in inflammation and vascular 

permeability, both of which are conducive to HIV transmission. Therefore, if one were able to 

inhibit the kallikrein-kinin system, which we were able to show is possible through the use of 

Kallistop and Soy Bean Trypsin Inhibitor, it could also be assumed that production of 

Bradykinin would be inhibited as well, leading to a decrease in the inflammation and vascular 

permeability that allows HIV virus particles to spread so efficiently. This inhibition could be a 

major benefit to the integrity and structure of the endothelium in the neurovascular unit of the 

blood brain barrier. As was discussed earlier, the integrity of the neurovascular unit is extremely 

important in preventing the leakage of plasma into the brain parenchyma, and it is this leaky 

plasma that HIV and HIV particles use to penetrate the blood brain barrier, compromising the 

brain to infection in the process. That is why we believe this area deserves further research into 

exactly how Bradykinin influences the endothelium and its selectivity and also that further 

research should be done on possible medical applications of kallikrein-kinin inhibition and how 

it could be a possible treatment for those suffering from HIV infection.  
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