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ABSTRACT

In this dissertation we first study Cramér type moderate deviation for partial sums of ran-

dom fields by applying the conjugate method. In 1938 Cramér published his results on large

deviations of sums of i.i.d. random variables after which a lot of research has been done

on establishing Cramér type moderate and large deviation theorems for different types of

random variables and for various statistics. In particular, results have been obtained for in-

dependent non-identically distributed random variables, for the sum of independent random

variables with p-th moment (p > 2) and for different types of dependent random variables.

In this work we establish Cramér type exact moderate deviation theorem for random fields.

We then show that obtained results are applicable to the partial sums of linear random fields

with short or long memory and to nonparametric regression with random field errors. We

also show that the result for linear random fields can be applied to calculate the tail prob-

ability of partial sums of various models such as the autoregressive fractionally integrated

moving average FARIMA(p, β, q) processes. The results can also be used to approximate

the risk measures such as quantiles and tail conditional expectations of time series or spacial

random fields.

We also study the mutual information estimation for mixed-pair random variables.

One random variable is discrete and the other one is continuous. We develop a kernel method

to estimate the mutual information between two random variables. The estimates enjoy a

central limit theorem under some regular conditions on the distributions. The theoretical

results are demonstrated by simulation study.
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1 INTRODUCTION

1.1 MODERATE AND LARGE DEVIATIONS

Let X1, X2,... Xn,... be a sequence of independent random variables and let Sn =

X1 + X2 + ... + Xn be the sum of first n variables. Let µn = ESn and B2
n = var(Sn) =

var(X1)+var(X2)+...+var(Xn) be the expectated value and the variance of Sn, respectively.

The sequence {Xn} is said to satisfy the Central Limit Theorem if for any z1, z2 ∈ R

lim
n→∞

P (z1Bn < Sn − µn < z2Bn) = Φ(z2)− Φ(z1),

where Φ(z) is the cumulative distribution function of standard normal distribution. In 1887

Chebyshev presented a wide class of conditions under which the Central Limit Theorem

holds. His theorems have then been refined by Markov and got their quite complete forms in

the works of Bernstein and Feller. In case zn unlimitedly grows as n→∞ the accuracy of the

approximation of P (Sn − µn > znBn) under the conditions of Central Limit Theorem may

be quite small. The correction multipliers necessary for increasing the accuracy were first

presented in the Cramér’s theorem on large deviations ([9]). Let us consider an example that

shows how the typical result from this field looks like. Suppose that the random variables

X1, X2,... Xn,... all have expected value equal to zero and variance equal to 1. We then

have that µn = 0 and Bn =
√
n. Then the probability of

Sn ≥ zn
√
n

1



is equal to 1 − Fn(zn), where Fn(z) is the cumulative distribution function of Sn/
√
n. For

fixed zn = z we have that

lim
n→∞

1− Fn(z)→ 1− Φ(z).

If zn depends on n and zn →∞ as n→∞ then we have that 1−Fn(zn)→ 0 and 1−Φ(zn)→ 0

so that the above formula becomes useless. Thus, in this case we need estimations for the

relative accuracy of the approximation, that is, we need to estimate the ratio of 1− Fn(zn)

to 1− Φ(zn). In particular, the following natural question arises: under which condition we

have that

1− Fn(zn)

1− Φ(zn)
→ 1 (1.1.1)

as zn → ∞? This relation holds for any rate of growth of zn only in the case when all the

summands follow the normal distribution. In case the summands are not normal, that rela-

tion will hold only in the certain zones that have order not exceeding
√
n. The ”narrowest”

zones (those of logarithmic order) are obtained under the condition of existence of certain

moments. The extension of the logarithmic range to the order na, a < 1/2, requires some

additional assumptions on the moments and the coincidence of certain number of moments

of Xj (that number depends on a) with the corresponding moments of normal distribution.

If those asumptions are not satisfied then the expression in the left side of 2.2.15 is described

in terms of the Cramér series under the condition that the random variable has moment

generating function in a neighborhood of the origin. This condition has been referred to as

the Cramér’s condition.

Cramér’s results on moderate and large deviations have been then refined and devel-

oped by [49], [50], [51], [56], [2] and others. Moderate deviation theorems were also obtained

for various statistics such as U -statistics (e.g. [41]), L-statistics (e.g. [65]), M -estimators

(e.g. [31]) and rank statistics (e.g. [59]). However, the exact moderate deviation for random

fields under Cramér’s condition has not been well studied. These motivate us to focus on

2



establishing exact moderate deviation for random fields under Cramér’s condition in this

dissertation.

1.2 ENTROPY AND MUTUAL INFORMATION

Information theory studies the quantitative laws related to the transferring, storage

and processing of information. Information theory focuses on determining the average infor-

mation transfer rate and solving the problem of maximizing that rate by applying appropriate

coding. In order to address these questions, we should first establish a universal quantitative

measure of information which should be independent of the specific physical nature of the

transmitted messages. When we receive a message about certain event our knowledge of

that event changes as we get some information about that event. Note that if the received

message concerns a well-known event then, obviously, it does not carry any information. In

contrast, if the message concerns a little-known or an unknown event then it carries a lot of

information. Thus, the amount of information in a message about a certain event essentially

depends on the probability of this event. This is the reason that the probabilistic approach

lies in the basis of determining the measure of the amount of information. The measure

of the amount of information is based on the concept of entropy. Entropy is a measure of

the degree of uncertainty about the state of system (a random variable) X. What does

uncertainty mean and how to measure it? Let us consider the following example. Suppose

that we have two system: the first system is a die which has 6 states and the second system

is a coin that has 2 states. The question is which system’s state is harder to predict or, in

other words, which system has more uncertainty? The natural answer is that the first system

has more uncertainty which shows that the degree of uncertainty of the system depend on

the number of its possible states. However, that number is not the unique characterstic of

uncertainty. Let us consider two coins, say C1 and C2, both having 2 possible states: tails

(T) and heads (H). Suppose that P (C1 = T ) = P (C1 = H) = 0.5 while P (C2 = T ) = 0.999

and P (C2 = H) = 0.001. Obviously, the uncertainty of those two systems are different. The

3



first system has much more uncertainty comparing to the second system which is almost

always in the state T . Thus, we see that the degree of uncertainty is also determined by the

probabilities of the states of the system. Information theory suggests entropy as a measure

of uncertainty. The entropy of a discrete random variable X ∈ Rd with the support set X

and probability mass function pX(x), abbreviated as p(x), is defined to be

H(X) = −
∑
x∈X

p(x) log p(x).

Given two discrete random variables X and Y , taking values in X and Y , we denote

their joint probability distribution as pX,Y (x, y), which is abbreviated as p(x, y), and the

conditional probability distribution for the variable y given x as pY |X(y|x), abbreviated as

p(y|x). The conditional entropy H(Y |X) is defined as the entropy of the law pY |X(y|x) =

p(y|x), averaged over x:

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x)p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

(1.2.1)

The joint entropy

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

of the pair of random variables X and Y can then be written as the entropy of X plus the

conditional entropy of Y given X:

H(X, Y ) = H(X) +H(Y |X).

4



Analogously, the (differential) entropy of a continuous random variable X ∈ Rd with

probability density function f(x) is defined as

H(X) = −
∫
Rd
f(x) log f(x)dx

and the (differential) conditional entropy of two continuous random variables X and Y with

joint probability density function f(x, y) is defined as

H(Y |X) = −
∫
X ,Y

f(x, y) log f(y|x)dxdy.

The joint entropy is again defined to be H(X, Y ) = H(X) +H(Y |X).

When we get a message about some system the uncertainty of that system reduces.

If everything is known about the system, then there is no point in sending a message. For

example, if we receive a message that Paris is the capital of France, then we will not receive

any information because we already knew that. But if we get data about unknown system,

then we get relevant amount of information and the more uncertain the state of the system

is the greater amount of information we will receive. Therefore, the amount of information

is measured by a decrease in entropy.

Now suppose that we have two random variables X and Y both of which are either

discrete or continuous. The (mutual) information that the variable Y contains about the

variable X (and vice versa) is defined to be the amount of reduced entropy of X after

observing Y . Analytically this is written as

I(X, Y ) = H(X)−H(X|Y ).

Using the formula of joint entropy we can rewrite the mutual information as

I(X, Y ) = H(X, Y )−H(Y |X)−H(X|Y ) = H(Y )−H(Y |X),

5



which shows that the mutual information I(X, Y ) measures the reduction in the uncertainty

of one of the variables due to the knowledge of the other variable, and is symmetric in X

and Y .

Another important concept of information theory that is closely related to the con-

cepts of entropy and mutual information is the so called relative entropy which is also known

as the Kullback-Leibler divergence. Given two probability distributions p(x) and q(x) over

a discrete random variable X, the relative entropy is defined to be

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

As the definition suggests, the relative entropy is defined only if for all x ∈ X , q(x) = 0

implies p(x) = 0 and in that case the convention 0 log 0
0

= 0 implies that the correpsonding

summand is equal to zero. Similarly, if the probability distributions are given over continuous

random variable then the relative entropy is defined to be

D(p||q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx,

where p(x) and q(x) are the corresponding probability density functions. Relative entropy is

a measure of how one probability distribution is different from a second, reference probability

distribution. It is not symmetric, namely, D(p||q) = D(q||p) is not necessarily true, however,

D(p||q) is always non-negative and it is equal to 0 if and only if the laws p and q are identical.

The following formula shows the connection between the mutual information and the relative

6



entropy.

I(X, Y ) = H(X)−H(X|Y )

= −
∑
x∈X

p(x) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= D(p(x, y)||p(x)p(y)).

(1.2.2)

The estimation of mutual information for the cases when the random variables X and

Y are either both discrete or both continuous have been studied by many mathematicians,

e.g., [34], [63], [40]; [1], [27], [22], [23] [36], [37], [7].

However, there are only couple of results about the estimation of mutual information

of the mixed pair of random variables, where the first random variable is discrete and the

second one is continuous. This motivate us to focus on estimating the mutual information

of the mixed pair of random variables in this dissertation.

1.3 ENTROPIES IN THE THEORY OF LARGE DEVIATIONS

In previous two parts we presented the main definitions and concepts of two quite

broad fields of probability theory and statistics, namely, the theory of moderate and large

deviations and the information theory, which are the main topics of this dissertation. In this

part we will present the well known Sanov’s theorem which can be thought of as one of the

bridges that connects those two fields.
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For a given sequence X1, X2, ... of independent and identically distributed random

variables with mean µ and variance σ2 <∞ let

L(λ) = logE eλXi

be its cumulant generating function and assume that

L(λ) <∞ for all λ ∈ R. (1.3.1)

If, as before, we denote by Sn = X1 + X2 + ... + Xn the sum of first n variables then the

following theorem holds:

Theorem 1.3.1 (Cramér’s theorem). If the sequence X1, X2, ... satisfies 1.3.1 then for any

x > µ we have

lim
n→∞

1

n
logP

{
1

n
Sn > x

}
= −L∗(x),

where L∗ given by

L∗(x) = sup
λ∈R

{
λx− L(λ)

}
is the Legendre transform of L.

Note that for the case Xi ∼Bernoulli(p) we have that L(λ) = log(peλ + (1− p)) and,

therefore, for 0 < x < 1

L∗(x) = x log
x

p
+ (1− x) log

1− x
1− p

which is the relative entropy of (x, 1− x) with respect to (p, 1− p).

Theorem 1.3.2 (Moderate deviation principle). Under the assumptions of Theorem 1.3.2,

for any sequence an with
√
n� an � n we have that for all x > 0

lim
n→∞

n

a2
n

logP
{
Sn − µn ≥ xan

}
= − x2

2σ2
.

8



Let us now see how the definition of a function L∗(x) can be generalized to cover the

setting where a sequence X1, X2, ... is from some metric space M and we are interested in

events of the type {Xn ∈ A} where A ⊂M is a Borel set.

Definition 1.3.2. Fix a metric space M. A function I : M → [0,∞] is called

• a rate function if it is lower semicontinuous, which means that the level sets {x ∈M :

I(x) ≤ a} are closed for any a ≥ 0;

• a good rate function if the level sets are compact for any a ≥ 0.

Definition 1.3.3 (Large deviation principle). A sequence of random variables X1, X2, ...

with values in a metric space is said to satisfy a large deviation principle with

• speed an →∞ and

• rate function I,

if, for all Borel sets A ⊂M,

lim sup
n→∞

1

an
logP

{
Xn ∈ A

}
≤ − inf

x∈clA
I(x),

lim inf
n→∞

1

an
logP

{
Xn ∈ A

}
≥ − inf

x∈intA
I(x).

Thus, the above Cramér’s theorem basically says that 1
n
Sn satisfies large deviation

principle with speed n and good rate function L∗ while the moderate deviation principle says

that for any sequence
√
n � an � n the random variables Sn−µn

an
satisfy a large deviation

principle with speed a2
n/n and good rate function I(x) = x2

2σ2 .

Now suppose that we are given a sequence X1, X2, ... of independent and identically

distributed discrete random variables having finite support X and we want to find the fre-

quency of a given x ∈ X among the first n samples. Then, by applying Cramér’s theorem,

9



for any 0 < a < 1 and x ∈ X we can find the rate of decay of

P
{

1

n

n∑
i=1

1{Xi = x} ≥ a

}
.

However, Cramér’s theorem cannot be applied in case when we want to find the frequency

of more than one symbol, like

{
1

n

n∑
i=1

1{Xi = x} ≥ a,
1

n

n∑
i=1

1{Xi = x} ≥ b

}
, a, b > 0, a+ b < 1, x, y ∈ X .

Such situations can be handled by applying the Sanov’s theorem which deals not with the

partial sum Sn of first n variables but with their empirical measure

δXn (x) =
1

n

n∑
i=1

1{Xi = x}

interpreted as a random element of the spaceM1(X) of probability measures on X endowed

with the metric inherited from the embedding into R|X | given by the mapping µ 7→ (µ(x) :

x ∈ X ).

Theorem 1.3.3 (Sanov’s theorem). Assume that X1, X2, ... are i.i.d. random variables

taking values in a finite set X and denote by µ ∈ M1(X) their distribution. Then the

empirical measures δXn (x) satisfy a large deviation principle on the metric space M1(X)

with speed n and good rate function J given by the relative entropies

J(ν) = D(ν||µ) =
∑
x∈X

ν(x) log
ν(x)

µ(x)
.

More details and proofs of theorems presented in this section can be found in [43]
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1.4 OVERVIEW

1.4 Contribution of the dissertation

The contribution of this dissertation is as follows:

• We established exact moderate deviation for random fields under Cramér’s condition.

• We applied our results to linear random fields with short or long memory, to non-

parametric regression analysis as well as to approximation of the quantiles and tail

conditional expectations for the spartial sums of linear random fields

• We gave an estimation for the mutual information of the mixed pair of random variables

where one of the variables is discrete and the other one is continuous.

• We conducted simulation study to confirm the theoretical results.

1.4 Dissertation Structure

The structure of this dissertation is organized in the following way. In chapter 2 we

obtain Cramér type moderate deviation theorem for random fields and present its applica-

tions. In chapter 3 we study the estimation of mutual information for mixed-pair random

variables and conduct simulation study to illustrate the theoretical results.
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2 CRAMÉR TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS

2.1 INTRODUCTION

In this chapter we study the Cramér type moderate deviations for random fields, in

particular linear random fields (often called spatial linear processes in statistics literature)

with short or long memory (short or long range dependence). The study of moderate devi-

ation probabilities in non-logarithmic form for independent random variables goes back to

1920s. The first theorem in this field was published by [32] who studied a particular case of

the Bernoulli random variables. In his fundamental work, [9] studied the estimation of the

tail probability by the standard normal distribution under the condition that the random

variable has moment generating function in a neighborhood of the origin (cf. (2.2.1) below).

This condition has been referred to as the Cramér condition. Cramér’s work was improved

by [49] (see also [51], [52]). Their works have stimulated a large amount of research on

moderate and large deviations; see below for a brief (and incomplete) review on literature

related to this chapter. Nowadays, the area of moderate and large deviation deviations is

not only important in probability but also plays an important role in many applied fields,

for instance, the premium calculation problem, risk management in insurance (cf.[3]), non-

parametric estimation in statistics (see, e.g., [6], [64], [29], [30]) and in network information

theory (cf. [38], [39]).

Let X,X1, X2, · · · be a sequence of independent and identically distributed (i.i.d.)

random variables with mean 0 and variance σ2. Let Sn =
∑n

k=1Xk (n ≥ 1) be the partial
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sums. By the central limit theorem,

lim
n→∞

sup
x∈R

∣∣P(Sn > xσ
√
n)− (1− Φ(x))

∣∣ = 0,

where Φ(x) is the probability distribution of the standard normal random variable. If for a

suitable sequence cn, we have

lim
n→∞

sup
0≤x≤cn

∣∣∣∣P(Sn > xσ
√
n)

1− Φ(x)
− 1

∣∣∣∣ = 0, (2.1.1)

or P(Sn > xσ
√
n) = (1 − Φ(x))(1 + o(1)) uniformly over x ∈ [0, cn], then Eq. (2.1.1) is

called moderate deviation probability or normal deviation probability for Sn since it can

be estimated by the standard normal distribution. We refer to [0, cn] as a range for the

moderate deviation. The most famous result of this kind is the Cramér type moderate

deviation. Under Cramér’s condition, one has the following Cramér’s theorem ([9], [49], [51],

[49], p.218; or [52], p.178): If x ≥ 0 and x = o(
√
n) then

P(Sn > xσ
√
n)

1− Φ(x)
= exp

{
x3

√
n
λ
( x√

n

)}[
1 +O

(
x+ 1√
n

)]
. (2.1.2)

Here λ(z) =
∑∞

k=0 ckz
k is a power series with coefficients depending on the cumulants of

the random variable X. Eq. (2.1.2) provides more precise approximation than (2.1.1) which

holds uniformly on the range [0, cn] for any cn = o(
√
n). The moderate deviations under

Cramér’s condition for independent non-identically distributed random variables were ob-

tained by [13],[49] and [61]. The Cramér type moderate deviation has also been established

for the sum of independent random variables with p-th moment, p > 2. To name a few, for

example, see [56], [44], [45], [42], [60], [2], and [14]. It should be pointed out that the ranges

the moderate deviations in these references are smaller (e.g., cn = O(
√

log n)).

The Cramér type moderate deviations for dependent random variables have also

been studied in the literature. [16] and [25] studied the moderate deviation for m-dependent
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random variables. [17], [4] studied moderate deviation for mixing processes. [18], [19], [20]

and [12] investigated the large and moderate deviations for martingales. [5] established

moderate deviation results for linear processes with coefficients satisfying
∑∞

i=1 i|ai| < ∞.

[67] studied moderate deviations for stationary processes under certain conditions in terms

of the physical dependence measure. But it can be verified that the results from [67] can only

be applied to linear processes with short memory and their transformations. Recently [47]

studied the exact moderate and large deviations for short or long memory linear processes.

[57] studied exact moderate and large deviations for linear random fields and applied the

moderate result to prove a Davis-Gut law of the iterated logarithm. Nevertheless, in the

aforementioned works, the moderate deviations are studied for dependent random variables

with p-th moment, p > 2. The exact moderate deviation for random fields under Cramér’s

condition has not been well studied. For example, the optimal range [0, cn] and the exact

rate of convergence in (2.1.1) had been unknown in the random field setting.

The main objective of this part is to establish exact moderate deviation analogous

to (2.1.2) for random fields under Cramér’s condition. Our main result is Theorem 2.2.1

below, whose proof is based on the conjugate method to change the probability measure

as in the classical case (see, e.g., [50], [51]). The extension of this method to the random

field setting reveals the deep relationship between the tail probabilities and the properties of

the cumulant generating functions of the random variables such as the analytic radius and

the bounds, for x within some ranges related to the sum of the variances and the analytic

radius of the cumulant generating functions of these random variables. Compared with the

results in [57] for linear random fields, Theorem 2.2.1 and 2.3.1 in this chapter provide more

precise convergence rate in the moderate deviations and explicit information on the range

[0, cn], which is much bigger than the range in Theorem 2.1 in [57]. In this chapter we use

the following notations. For two sequences {an} and {bn} of real numbers, an∼bn means

an/bn → 1 as n→∞; an ∝ bn means that an/bn → C as n→∞ for some constant C > 0;

for positive sequences, the notation an � bn or bn � an means that an/bn is bounded.
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For d,m ∈ N denote Γdm = [−m,m]d ∩ Zd. Section 2.2 gives the main results. In Section

2.3 we study the application of the main results in linear random fields and nonparametric

regression.

2.2 MAIN RESULTS

Let {Xnj, n ∈ N, j ∈ Zd} be a random field with zero means defined on a probability

space (Ω,F , P ). Suppose that for each n, the random variables Xnj, j ∈ Zd are independent

and satisfy the following Cramér condition: There is a positive constant Hn such that the

cumulant generating function

Lnj(z) = logE ezXnj of Xnj is analytic in Dn, (2.2.1)

where Dn = {z ∈ C : |z| < Hn} is the disc of radius Hn on the complex plane C, and log

denotes the principal value of the logarithm so that Lnj(0) = 0.

Without loss of generality we assume in this section that lim sup
n→∞

Hn < ∞. Within

the disc {z ∈ C : |z| < Hn}, Lnj can be expanded in a convergent power series

Lnj(z) =
∞∑
k=1

γknj
k!

zk,

where γknj is the cumulant of order k of the random variable Xnj. We have that γ1nj =

EXnj = 0 and γ2nj = EX2
nj = σ2

nj. By Taylor’s expansion, one can verify that a sufficient

condition for (2.2.1) is the following moment condition

|EXm
nj| ≤

m!

2
σ2
njH

2−m
n for all m ≥ 2.

This condition has been used frequently in probability and statistics, see [51] p.55, [28] p.64,

[54] p.301, [68] p.164, among others.
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Denote

Sn =
∑
j∈Zd

Xnj, Sm,n =
∑
j∈Γdm

Xnj,

Bn =
∑
j∈Zd

σ2
nj, Fn(x) = P (Sn < x

√
Bn)

and assume that Sn is well-defined and Bn < ∞ for each n ∈ N. The following is the main

result of this chapter.

Theorem 2.2.1. Suppose that, for all n ∈ N and j ∈ Zd, there exist non-negative constants

cnj such that

|Lnj(z)| ≤ cnj, ∀ z ∈ C with |z| < Hn, (2.2.2)

and suppose that BnH
2
n →∞ as n→∞, and

Cn :=
∑
j∈Zd

cnj = O(BnH
2
n). (2.2.3)

If x ≥ 0 and x = o(Hn

√
Bn), then

1− Fn(x)

1− Φ(x)
= exp

{
x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)}(
1 +O

(
x+ 1

Hn

√
Bn

))
, (2.2.4)

Fn(−x)

Φ(−x)
= exp

{
− x3

Hn

√
Bn

λn

(
− x

Hn

√
Bn

)}(
1 +O

(
x+ 1

Hn

√
Bn

))
, (2.2.5)

where

λn(t) =
∞∑
k=0

βknt
k

is a power series that stays bounded uniformly in n for sufficiently small values of |t| and

the coefficients βkn only depend on the cumulants of Xnj (n ∈ Z, j ∈ Zd).
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Proof. Since γ1nj = 0, the cumulant generating function Lnj(z) of Xnj can be written as

Lnj(z) = logE ezXnj =
∞∑
k=2

γknj
k!

zk.

Cauchy’s inequality for the derivatives of analytic functions together with the condi-

tion (2.2.2) yields that

|γknj| <
k!cnj
Hk
n

. (2.2.6)

By following the conjugate method (cf. Petrov (1965, 1975)), we now introduce an

auxiliary sequence of independent random variables {Xnj}, j ∈ Zd, with the distribution

functions

V nj(x) = e−Lnj(z)
∫ x

−∞
ezydVnj(y),

where Vnj(y) = P (Xnj < y) and z ∈ (−Hn, Hn) is a real number whose value will be specified

later.

Denote

mnj = EXnj, σ2
nj = E(Xnj −mnj)

2,

Sm,n =
∑
j∈Γdm

Xnj, Sn =
∑
j∈Zd

Xnj,

Mn =
∑
j∈Zd

mnj, Bn =
∑
j∈Zd

σ2
nj

and

F n(x) = P (Sn < Mn + x

√
Bn).

Note that, in the above and below, we have suppressed z for simplicity of notations.

We shall see in the later analysis that the quantities Sn,Mn andBn are well-defined for

every n and z ∈ R with |z| < aHn, where a < 1 is a positive constant which is independent of
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n. Throughout the proof we will obtain some estimates holding for the values of z satisfying

|z| < bHn, where the positive constant b < 1 may vary but is always independent of n.

We will then take a to be the smallest one among those constants b. The selection of the

constants does not affect the proof since the z = zn we need in the later analysis has property

z = o(Hn).

Also, the change of the order of summation of double series presented in the proof is

justified by the absolute convergence of those series in the specified regions.

Step 1: Representation of P (Sn < x) in terms of the conjugate measure

First notice that by equation (2.11) on page 221 of Petrov (1975), for any m ∈ N, we have

P (Sm,n < x) = exp

{ ∑
j∈Γdm

Lnj(z)

}∫ x

−∞
e−zydP (Sm,n < y). (2.2.7)

Note that the condition (2.2.3) implies that Cn <∞, n ∈ N. From (2.2.6) it follows that for

any w with |w| < 2
3
Hn and for any m ∈ N we have

∣∣∣∣ ∑
j∈Γdm

Lnj(w)

∣∣∣∣ =

∣∣∣∣ ∑
j∈Γdm

∞∑
k=2

γknj
k!

wk
∣∣∣∣

≤
∑
j∈Γdm

∞∑
k=2

|γknj|
k!
|w|k

≤
∑
j∈Zd

∞∑
k=2

cnj
Hk
n

|w|k

≤ 4

3

∑
j∈Zd

cnj =
4

3
Cn <∞.

(2.2.8)
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Therefore, for any v with |v| < 1
2
Hn and z with |z| < 1

6
Hn,

E exp{vSm,n} =
∏
j∈Γdm

E exp{vXnj}

=
∏
j∈Γdm

∫ ∞
−∞

evxdV nj(x) =
∏
j∈Γdm

∫ ∞
−∞

evxe−Lnj(z)ezxdVnj(x)

=
∏
j∈Γdm

e−Lnj(z)
∫ ∞
−∞

e(v+z)xdVnj(x) =
∏
j∈Γdm

e−Lnj(z)eLnj(v+z)

→ exp

(∑
j∈Zd

[Lnj(v + z)− Lnj(z)]

)
<∞, as m→∞.

(2.2.9)

Hence, Sn is well-defined and Sm,n converges to Sn in distribution or equivalently in proba-

bility or almost surely as m→∞.

For the x in P (Sn < x), let f(y) = exp{−zy}1{y < x} and M > 0. By Markov’s

inequality, we have

E
{
f(Sm,n)1{|f(Sm,n)| > M}

}
≤ E

{
exp{−zSm,n}1{exp{−zSm,n} > M}

}
≤
[
E
{

exp{−2zSm,n}
}] 1

2
[
E
{

1{exp{−zSm,n} > M}
}] 1

2

≤
[ ∏
j∈Γdm

e−Lnj(z)eLnj(−z)
] 1

2
[

1

M
E
{

exp{−zSm,n}
}] 1

2

=
1√
M

[ ∏
j∈Γdm

e−Lnj(z)eLnj(−z)
] 1

2
[ ∏
j∈Γdm

e−Lnj(z)eLnj(0)

] 1
2

.

Hence, by (2.2.8) we have that for |z| < 1
6
Hn,

lim
M→∞

lim sup
m→∞

E
{
f(Sm,n)1{|f(Sm,n)| > M}

}
= 0.
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Applying Theorem 2.20 from van der Vaart (1998), we have

∫ x

−∞
e−zydP (Sm,n < y)→

∫ x

−∞
e−zydP (Sn < y)

as m→∞. And taking into account that

P (Sm,n < x)→ P (Sn < x)

and

exp

{ ∑
j∈Γdm

Lnj(z)

}
→ exp

{∑
j∈Zd

Lnj(z)

}
as m→∞ we obtain from (2.2.7) that

P (Sn < x) = exp

{∑
j∈Zd

Lnj(z)

}∫ x

−∞
e−zydP (Sn < y). (2.2.10)

Step 2: Properties of the conjugate measure

From the calculation of (2.2.9) it follows that the cumulant generating function Lnj(v) of

the random variable Xnj exists when |v| is sufficiently small and we have

Lnj(v) = −Lnj(z) + Lnj(v + z), (2.2.11)

j ∈ Zd. Denoting by γknj the cumulant of order k of the random variable Xnj, we obtain

γknj =
[dkLnj(v)

dvk

]
v=0

=
dkLnj(z)

dzk
.

Setting k = 1 and k = 2 we find that

mnj =
dLnj(z)

dz
=
∞∑
`=2

γ`nj
(`− 1)!

z`−1, (2.2.12)
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and

σ2
nj =

d2Lnj(z)

dz2
=
∞∑
`=2

γ`nj
(`− 2)!

z`−2. (2.2.13)

Hence, for |z| < 1
2
Hn, (2.2.12) imples

|Mn| =
∣∣∣∑
j∈Zd

mnj

∣∣∣ =
∣∣∣∑
j∈Zd

∞∑
k=2

γknj
(k − 1)!

zk−1
∣∣∣

≤
∑
j∈Zd

∞∑
k=2

k!cnj
Hk
n

|z|k−1

(k − 1)!
≤ 3

Hn

∑
j∈Zd

cnj =
3Cn
Hn

,

(2.2.14)

which means that Mn is well-defined and, as a function of z ∈ C, is analytic in |z| < 1
2
Hn.

Also, without loss of generality, we assume that

lim sup
n

Cn
BnH2

n

≤ 1. (2.2.15)

By the definition of Mn and (2.2.12), we have

Mn = z
∑
j∈Zd

γ2nj +
∑
j∈Zd

∞∑
k=3

γknj
(k − 1)!

zk−1

= zBn +
∑
j∈Zd

∞∑
k=3

γknj
(k − 1)!

zk−1.

(2.2.16)

It follows from (2.2.6) that

∣∣∣∣ ∞∑
k=3

γknj
(k − 1)!

zk−1

∣∣∣∣ ≤ |z| ∞∑
k=3

k!cnj
Hk
n

|z|k−2

(k − 1)!

=
|z|cnj
H2
n

∞∑
k=3

k
∣∣∣ z
Hn

∣∣∣k−2

≤ |z|cnj
2H2

n
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for |z| < b1Hn and a suitable positive constant b1 < 1 which is independent of j and n. This

together with (2.2.16) implies that for |z| < b1Hn

|z|
(
Bn −

Cn
2H2

n

)
≤ |Mn| ≤ |z|

(
Bn +

Cn
2H2

n

)
.

Taking into account the condition (2.2.15), we get that

Mn ∝ |z|Bn. (2.2.17)

Moreover, (2.2.16) implies that for |z| < 1
2
Hn,

∣∣Mn − zBn

∣∣ ≤∑
j∈Zd

∞∑
k=3

k!cnj
Hk
n

|z|k−1

(k − 1)!

≤ |z|
2

H3
n

∑
j∈Zd

∞∑
k=3

kcnj
|z|k−3

Hk−3
n

≤ 8|z|2Cn
H3
n

.

(2.2.18)

Also, by the definition of Bn and (2.2.13), we have

Bn =
∑
j∈Zd

γ2nj +
∑
j∈Zd

∞∑
k=3

γknj
(k − 2)!

zk−2

= Bn +
∑
j∈Zd

∞∑
k=3

γknj
(k − 2)!

zk−2.

(2.2.19)

It follows from (2.2.6) that

∣∣∣∣ ∞∑
k=3

γknj
(k − 2)!

zk−2

∣∣∣∣ ≤ ∞∑
k=3

k!cnj
Hk
n

|z|k−2

(k − 2)!
≤ cnj

2H2
n

for |z| < b2Hn and a suitable positive constant b2 < 1 which is independent of j and n. This

together with (2.2.19) implies that for |z| < b2Hn, Bn is well-defined and

Bn −
Cn

2H2
n

≤ |Bn| ≤ Bn +
Cn

2H2
n

.
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Condition (2.2.15) then implies that

Bn ∝ Bn. (2.2.20)

Furthermore, (2.2.19) and (2.2.6) imply that for |z| < 1
2
Hn,

∣∣∣Bn −Bn

∣∣∣ ≤∑
j∈Zd

∞∑
k=3

k!cnj
Hk
n

|z|k−2

(k − 2)!

≤ |z|
H3
n

∑
j∈Zd

∞∑
k=3

k(k − 1)cnj
|z|k−3

Hk−3
n

≤ 28|z|Cn
H3
n

.

(2.2.21)

Step 3: Selection of z

Let z = zn be the real solution of the equation

x =
Mn√
Bn

, (2.2.22)

and let

t = tn =
x

Hn

√
Bn

. (2.2.23)

Then

t =
Mn

HnBn

=
1

HnBn

∑
j∈Zd

∞∑
k=2

γknj
(k − 1)!

zk−1. (2.2.24)

By (2.2.14) we know that Mn

HnBn
is analytic in a disc |z| < 1

2
Hn and

∣∣∣ Mn

HnBn

∣∣∣ ≤ 3Cn
H2
nBn
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in that disc. It follows from Bloch’s theorem (see, e.g., Privalov (1984), page 256) that

(2.2.24) has a real solution which can be written as

z =
∞∑
m=1

amnt
m (2.2.25)

for

|t| <
(√

1

2
+

3Cn
H2
nBn

−

√
3Cn
H2
nBn

)2

.

Moreover, the absolute value of that sum in (2.2.25) is less than 1
2
Hn. Condition (2.2.3)

implies that there exists a disc with center at t = 0 and radius R that does not depend on

n within which the series on the right side of (2.2.25) converges.

It can be checked from (2.2.24) and (2.2.25) that

a1n = Hn and a2n = − H2
n

2Bn

∑
j∈Zd

γ3nj. (2.2.26)

Cauchy’s inequality implies that for every m ∈ N,

|amn| ≤
Hn

2Rm
.

Therefore, as t → 0, a1nt becomes the dominant term of the series in (2.2.25). Hence, for

sufficiently large n we have

1

2
tHn ≤ z ≤ 2tHn, z = o(Hn)

and taking into account (2.2.23) we get

x

2
√
Bn

≤ z ≤ 2x√
Bn

. (2.2.27)
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It follows from (2.2.8) and (2.2.14) that for z < 1
2
Hn,

∣∣∣zMn −
∑
j∈Zd

Lnj(z)
∣∣∣ ≤ 3|z|

Hn

Cn +
4

3
Cn < 3Cn.

For the solution z of the equation (2.2.22) we also have

zMn −
∑
j∈Zd

Lnj(z) =
∑
j∈Zd

∞∑
k=2

γknj
(k − 1)!

zk −
∑
j∈Zd

∞∑
k=2

γknj
k!

zk

=
∑
j∈Zd

∞∑
k=2

(k − 1)γknj
k!

( ∞∑
m=1

amnt
m

)k
:=
∑
j∈Zd

γ2nj

2
a2

1nt
2 −

∞∑
k=3

bknt
k

=
H2
nBnt

2

2
−H2

nBnt
3

∞∑
k=3

bkn
H2
nBn

tk−3

=
H2
nBnt

2

2
−H2

nBnt
3λn(t),

(2.2.28)

where λn(t) =
∑∞

k=0 βknt
k with βkn = b(k+3)n(H2

nBn)−1.

Recall that the series
∑∞

m=1 amnt
m converges in the disc centered at t = 0 with radius

R > 0 that does not depend on n, and the absolute value of this sum is less than 1
2
Hn. We

see from (2.2.28) that the function λn(t) is obtained by the substitution of
∑∞

m=1 amnt
m in a

series that converges on the interval (−1
2
Hn,

1
2
Hn). It follows from Cauchy’s inequality that

∣∣βkn∣∣ ≤ 3Cn
H2
nBnRk+3

≤ 3

Rk+3
, k ≥ 0,

which means that for |t| < 1
2
R, λn(t) stays bounded uniformly in n. In particular, by (2.2.26)

and (2.2.28), we have β0n = Hn
6Bn

∑
j∈Zd γ3nj.

From now on we will assume that z is the unique real solution of the equation (2.2.22).
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Step 4: The case 0 ≤ x ≤ 1

Now we prove the theorem for the case 0 ≤ x ≤ 1 using the method presented in Petrov

and Robinson (2006). Throughout the proof, C denotes a positive constant which may vary

from line to line, but is independent of j, n and z. If fn(s) is the characteristic function of

Sn/
√
Bn we then have that for |s| < Hn

√
Bn/2

fn(s) =

∞∫
−∞

eisudP (Sn ≤ u
√
Bn)

=

∞∫
−∞

eisy/
√
BndP (Sn ≤ y)

= exp

{∑
j∈Zd

Lnj(is/
√
Bn)

}
.

Then

log fn(s) =
∑
j∈Zd

Lnj(is/
√
Bn) =

∑
j∈Zd

∞∑
k=2

γknj
k!

(is/
√
Bn)k

= −
∑
j∈Zd

γ2nj

2
s2/Bn +

∑
j∈Zd

∞∑
k=3

γknj
k!

(is/
√
Bn)k = −s2/2 +

∑
j∈Zd

∞∑
k=3

γknj
k!

(is/
√
Bn)k.

Thus, using (2.2.6) we get that for |s| < δHn

√
Bn/2, with 0 < δ < 1,

| log fn(s) + s2/2| ≤
∑
j∈Zd

∞∑
k=3

cnj

(
|s|

Hn

√
Bn

)k
≤ Cn

(
|s|

Hn

√
Bn

)3

(1− δ)−1

Then, for appropriate choice of δ we have that

|fn(s)− e−s2/2| < C
e−s

2/4|s|3Cn
H3
n

√
Bn

3 < C
e−s

2/4|s|3

Hn

√
Bn

,
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for |s| < δHn

√
Bn/2. Now applying Theorem 5.1 from Petrov (1995) with b = 1/π and

T = δHn

√
Bn/2 we get that

sup
x
|Fn(x)− Φ(x)| < C

Hn

√
Bn

. (2.2.29)

Since 0 ≤ x ≤ 1, BnH
2
n →∞ as n→∞, and λn

(
x

Hn
√
Bn

)
is bounded uniformly in n,

we have

exp

{
x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)}
= 1 +O(H−1

n B−1/2
n ).

Together with condition (2.2.3), to have (2.2.4) in the case 0 ≤ x ≤ 1, it is sufficient to show

1− Fn(x)

1− Φ(x)
= 1 +O

(
C

Hn

√
Bn

)
,

which is given by (2.2.29), since 1/2 ≤ Φ(x) ≤ Φ(1) for 0 ≤ x ≤ 1.

So we will limit the proof of the theorem to the case x > 1, x = o(Hn

√
Bn).

Step 5: The case x > 1, x = o(Hn

√
Bn)

Making a change of variables y  Mn+y
√
Bn and applying (2.2.22), we can rewrite (2.2.10)

as

1− Fn(x) = exp

{
− zMn +

∑
j∈Zd

Lnj(z)

}∫ ∞
(x
√
Bn−Mn)/

√
Bn

exp
{
− zy

√
Bn

}
dF n(y)

= exp

{
− zMn +

∑
j∈Zd

Lnj(z)

}∫ ∞
0

exp
{
− zy

√
Bn

}
dF n(y). (2.2.30)

Denote rn(x) = F n(x)− Φ(x) and we show that for sufficiently large n

sup
x
|rn(x)| ≤ C

Hn

√
Bn

. (2.2.31)
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Let fn(s) be the characteristic function of (Sn −Mn)/
√
Bn. We then have that

fn(s) =

∞∫
−∞

eisudP (Sn ≤ u

√
Bn +Mn)

=

∞∫
−∞

eis(y−Mn)/
√
BndP (Sn ≤ y)

= exp

{
− isMn/

√
Bn −

∑
j∈Zd

Lnj(z)

} ∞∫
−∞

e(z+is/
√
Bn)ydP (Sn ≤ y)

= exp

{
− isMn/

√
Bn −

∑
j∈Zd

Lnj(z) +
∑
j∈Zd

Lnj(z + is/

√
Bn)

}
.

Then by (2.2.11) for|z| < 1
2
Hn and |s| < Hn

√
Bn/6 we have that

log fn(s) = −isMn/

√
Bn +

∑
j∈Zd

Lnj(is/

√
Bn)

= −1

2
s2 +

1

6

(
is/

√
Bn

)3
[d3

∑
j∈Zd Lnj(y)

dy3

]
y=θis/

√
Bn
,

where 0 ≤ |θ| ≤ 1. For |z| < 1
2
Hn and |s| < δHn

√
Bn/6, with 0 < δ < 1, we have that

∣∣∣[d3
∑

j∈Zd Lnj(y)

dy3

]
y=θis/

√
Bn

∣∣∣ =
∣∣∣[ d3

dy3

∑
j∈Zd

∞∑
k=1

γknj
k!

yk
]
y=θis/

√
Bn

∣∣∣
=
∣∣∣∑
j∈Zd

∞∑
k=3

γknj
(k − 3)!

(θis/

√
Bn)k−3

∣∣∣
≤
∑
j∈Zd

∞∑
k=3

k(k − 1)(k − 2)
cnj

(Hn/2)k

(
s/

√
Bn

)k−3

=
48Cn
H3
n

(
1− s/

√
Bn

Hn/2

)−4

≤ 48Cn
H3
n

(1− δ)−4.

Thus,

| log fn(s) + s2/2| < 8|s|3Cn
H3
n

√
Bn

3 (1− δ)−4.
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Then, for appropriate choice of δ we have that

|fn(s)− e−s2/2| < C
e−s

2/4|s|3Cn
H3
n

√
Bn

3 < C
e−s

2/4|s|3

Hn

√
Bn

for |s| < δHn

√
Bn/6. Now applying (2.2.20) and Theorem 5.1 from Petrov (1995) with

b = 1/π and T = δHn

√
Bn/6, we have (2.2.31).

By (2.2.31) we have

∫ ∞
0

exp
{
− zy

√
Bn

}
dF n(y) =

1√
2π

∫ ∞
0

exp
{
− zy

√
Bn −

y2

2

}
dy − rn(0)

+ z

√
Bn

∫ ∞
0

rn(y) exp
{
− zy

√
Bn

}
dy

=
1√
2π

∫ ∞
0

exp
{
− zy

√
Bn −

y2

2

}
dy + αn,

(2.2.32)

where |αn| ≤ C
Hn
√
Bn
.

Denote

I1 =

∫ ∞
0

exp
{
− zy

√
Bn −

y2

2

}
dy = ψ(z

√
Bn)

and

I2 =

∫ ∞
0

exp
{
− Mn√

Bn

− y2

2

}
dy = ψ(MnB

− 1
2

n ),

where

ψ(x) =
1− Φ(x)

Φ′(x)
= e

x2

2

∫ ∞
x

e−
t2

2 dt

is the Mills ratio which is known to satisfy

x

x2 + 1
< ψ(x) <

1

x
,
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for all x > 0. Hence, by (2.2.27) and (2.2.20) we obtain

αn
xI1

=
αnz

√
Bn

x
+

αn

xz
√
Bn

≤ C

(
z
√
Bn

xHn

√
Bn

+
1

Hn

√
Bnxz

√
Bn

)

≤ C

(
1

Hn

√
Bn

+
1

Hn

√
Bnx2

)

≤ C

Hn

√
Bn

.

Hence,

αn = I1O
( x

Hn

√
Bn

)
. (2.2.33)

For every y1 < y2 we have that ψ(y2)−ψ(y1) = (y2−y1)ψ′(u), where y1 < u < y2. As

for u > 0, |ψ′(u)| < u−2, then using (2.2.3), (2.2.27), (2.2.17), (2.2.18), (2.2.20) and (2.2.21)

we get that

|I2 − I1| =
∣∣∣ψ′(u)

∣∣∣∣∣∣MnB
− 1

2
n − z

√
Bn

∣∣∣
≤ 1

u2
√
Bn

∣∣∣Mn − z
√
Bn

√
Bn

∣∣∣
≤ 1

u2
√
Bn

(∣∣∣Mn − zBn

∣∣∣+
∣∣∣zBn − z

√
Bn

√
Bn

∣∣∣)
≤ C

(1
4
x)2
√
Bn

(z2Cn
H3
n

+ z
√
Bn

∣∣∣√Bn −
√
Bn

∣∣∣)
≤ C

x2
√
Bn

( x2Cn
BnH3

n

+
x|Bn −Bn|
√
Bn +

√
Bn

)
≤ C

x2
√
Bn

( x2Cn
BnH3

n

+
xzCn

H3
n

√
Bn

)
≤ C

x2
√
Bn

( x2Cn
BnH3

n

+
x2Cn
H3
nBn

)
=

CCn

B
3
2
nH3

n

≤ C

Hn

√
Bn

.

30



Hence,

|I2 − I1|
xI2

≤ C

xHn

√
Bnψ(MnB

− 1
2

n )
=

C

xHn

√
Bnψ(x)

<
C

xHn

√
Bn

x2 + 1

x
<

C

Hn

√
Bn

,

which means that

I1 = I2

(
1 +O

( x

Hn

√
Bn

))
. (2.2.34)

Finally, combining (2.2.30), (2.2.22), (2.2.23), (2.2.28), (2.2.32) and (2.2.33) we get

1− Fn(x) = exp

{
− H2

nBnt
2

2
+H2

nBnt
3λn(t)

}∫ ∞
0

exp
{
− zy

√
Bn

}
dF n(y)

= exp

{
− x2

2
+

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)}( 1√
2π
I1 + αn

)
= exp

{
− x2

2
+

x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)} 1√
2π
I1

(
1 +O

( x

Hn

√
Bn

))
.

By (2.2.34) and the fact that I2 = ψ(x), we see that

1− Fn(x)

1− Φ(x)
= exp

{
x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)}(
1 +O

( x

Hn

√
Bn

))
.

This proves (2.2.4). The proof of (2.2.5) follows a same pattern and is omitted.

For the rest of the chapter, we only state the results for x ≥ 0. Since λn(t) =∑∞
k=0 βknt

k stays bounded uniformly in n for sufficiently small values of |t| and β0n =

Hn
6Bn

∑
j∈Zd γ3nj from the proof of Theorem 2.2.1, we have the following corollary:

Corollary 2.2.2. Assume the conditions of Theorem 2.2.1 hold. Then for x ≥ 0 with

x = O
(

(Hn

√
Bn)1/3

)
we have

1− Fn(x)

1− Φ(x)
= exp

{
x3

6B
3/2
n

∑
j∈Zd

γ3nj

}(
1 +O

( x+ 1

Hn

√
Bn

))
.
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Notice that x3

6B
3/2
n

∑
j∈Zd γ3nj = O(1) under the condition x = O

(
(Hn

√
Bn)1/3

)
. Also

taking into the account the fact that for x > 0

1− Φ(x) <
e−x

2/2

x
√

2π
,

we obtain the following corollaries:

Corollary 2.2.3. Under the conditions of Theorem 2.2.1, we have that for x ≥ 0 with

x = O
(

(Hn

√
Bn)1/3

)
,

1− Fn(x) =
(

1− Φ(x)
)

exp

{
x3

6B
3/2
n

∑
j∈Zd

γ3nj

}
+O

(
e−x

2/2

Hn

√
Bn

)
.

Corollary 2.2.4. Assume the conditions of Theorem 2.2.1 and
∑

j∈Zd γ3nj = 0 for all n ∈ N.

Then for x ≥ 0 with x = O
(

(Hn

√
Bn)1/3

)
, we have

Fn(x)− Φ(x) = O

(
e−x

2/2

Hn

√
Bn

)
.

Also as 1− Φ(x) ∼ 1
x
√

2π
e−x

2/2, as x→∞, we have

Corollary 2.2.5. Under the conditions of Theorem 2.2.1, if x→∞, x = o(Hn

√
Bn), then

Fn(x+ c
x
)− Fn(x)

1− Fn(x)
→ 1− e−c

for every positive constant c.

2.3 APPLICATIONS

In this section, we provide some applications of the main result in Section 2.2. First,

we derive a moderate deviation result for linear random fields with short or long memory;
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then we apply this result to risk measures and apply a same argument to study nonparametric

regression.

2.3 Cramér type moderate deviation for linear random fields

LetX = {Xj, j ∈ Zd} be a linear random field defined on a probability space (Ω,F , P )

by

Xj =
∑
i∈Zd

aiεj−i, j ∈ Zd,

where the innovations εi, i ∈ Zd, are i.i.d. random variables with mean zero and finite

variances σ2, and where {ai, i ∈ Zd} is a sequence of real numbers that satisfy
∑

i∈Zd a
2
i <∞.

Linear random fields have been studied extensively in probability and statistics. We

refer to Sang and Xiao (2018) for a brief review on studies in limit theorems, large and

moderate deviations for linear random fields and to Koul et al (2016), Lahiri and Robinson

(2016) and the reference therein for recent developments in statistics.

By applying Theorem 2.2.1 in Section 2.2, we establish the following moderate devia-

tion result for linear random fields with short or long memory, under Cramér’s condition on

the innovations εi, i ∈ Zd. Compared with the moderate deviation results in Sang and Xiao

(2018), our Theorem 2.3.1 below gives more precise convergence rate which holds on much

wider range for x.

Suppose that there is a disc centered at z = 0 within which the cumulant generating

function L(z) = Lεi(z) = logE ezεi of εi is analytic and can be expanded in a convergent

power series

L(z) =
∞∑
k=1

γk
k!
zk,

where γk is the cumulant of order k of the random variables εi, i ∈ Zd. We have that

γ1 = E εi = 0 and γ2 = E ε2
i = σ2, i ∈ Zd.
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We write

Sn =
∑
j∈Γdn

Xj =
∑
j∈Zd

bnjεj, (2.3.1)

where bnj =
∑

i∈Γdn
ai−j. In the setting of Section 2.2, we have Xnj = bnjεj, j ∈ Zd. Then

it can be verified that for all n ≥ 1 and j ∈ Zd, Xnj satisfy condition (2.2.1) for suitably

chosen Hn. In the notation of Section 2.2, we have

Bn = σ2
∑
j∈Zd

b2
nj, Fn(x) = P (Sn < x

√
Bn).

Hence, we can apply Theorem 2.2.1 to prove the following theorem. Here, as usual (see,

e.g., [58]), we shall say that the function l(·) : [1,∞) → R is a slowly varying function (at

infinity) if l is a real-valued, positive and measurable function on [1,∞] and

lim
x→+∞

l(λx)

l(x)
= 1

for every λ > 0.

Theorem 2.3.1. Assume that the linear random field X = {Xj, j ∈ Zd} has short memory,

i.e.,

A :=
∑
i∈Zd
|ai| <∞, a :=

∑
i∈Zd

ai 6= 0, (2.3.2)

or long memory with coefficients

ai = l(|i|)b(i/|i|)|i|−α, i ∈ Zd, |i| 6= 0, (2.3.3)

where α ∈ (d/2, d) is a constant, l(·) : [1,∞) → R is a slowly varying function at infinity

and b(·) is a continuous function defined on the unit sphere Sd−1. Suppose that there exist
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positive constants H and C such that

|L(z)| < C (2.3.4)

in the disc |z| < H. Then for all x ≥ 0 with x = o(nd/2), we have

1− Fn(x)

1− Φ(x)
= exp

{
x3

nd/2
λn

( x

nd/2

)}(
1 +O

(x+ 1

nd/2

))
, (2.3.5)

where

λn(t) =
∞∑
k=0

βknt
k

is a power series that stays bounded uniformly in n for sufficiently small values of |t| and the

coefficients βkn only depend on the cumulants of εi and on the coefficients ai of the linear

random field.

Proof. Since γ1 = 0, we see that the cumulant generating function Lnj(z) of the random

variable bnjεj, j ∈ Zd, is given by

Lnj(z) = logE ezbnjεj =
∞∑
k=2

γkb
k
nj

k!
zk.

Cauchy’s inequality for the derivatives of analytic functions together with the condition

(2.3.4) yields that

|γk| <
k!C

Hk
. (2.3.6)

Denote Mn = max
j∈Zd
|bnj|. Then by (2.3.6), for any Hn with 0 < Hn ≤ H

2Mn
and for any z with

|z| < Hn we have
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∣∣Lnj(z)
∣∣ ≤ ∞∑

k=2

|γk||bnj|k

k!
|z|k ≤ C

∞∑
k=2

|bnjHn|k

Hk

=
C

H

b2
njH

2
n

H − |bnjHn|
≤

2Cb2
njH

2
n

H2
.

Hence,

Cn =
∑
j∈Zd

2Cb2
njH

2
n

H2
=

2CBnH
2
n

σ2H2
.

Then by Theorem 2.2.1, if BnH
2
n →∞ as n→∞, we have

1− Fn(x)

1− Φ(x)
= exp

{
x3

Hn

√
Bn

λn

( x

Hn

√
Bn

)}(
1 +O

( x+ 1

Hn

√
Bn

))
(2.3.7)

for x ≥ 0, x = o(Hn

√
Bn).

If the linear random field has long memory then we have that (see Surgailis (1982),

Theorem 2) Bn ∝ n3d−2αl2(n). As the function b(·) is bounded, then for j ∈ Γdn we have

|bnj| ≤ C1

∑
i∈Γdn

l(|i− j|)|i− j|−α

≤ C1

2dn∑
k=1

kd−1l(k)k−α ∝ nd−αl(n),

where we have used the fact (see Bingham et al. (1987) or Seneta (1976)) that for a slowly

varying function l(x) defined on [1,∞) and for any θ > −1,

∫ x

1

yθl(y)dy∼x
θ+1l(x)

θ + 1
, as x→∞.

It follows from the definition of ai in (2.3.3) that (for sufficiently large n) Mn = max
j∈Zd
|bnj|

is attained at some j ∈ Γdn. Hence, Mn = O(nd−αl(n)). We take Hn ∝ n−d+αl−1(n) which
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yields

Hn

√
Bn ∝ nd/2.

Then the result follows from (2.3.7).

If the linear random field has short memory, i.e., A :=
∑

i∈Zd |ai| < ∞, a :=∑
i∈Zd ai 6= 0, we can take Mn = A and Hn = H

2A
. Moreover, we also have

∑
j∈Zd
|bnj| ≤

∑
j∈Zd

∑
i∈Γdn

|ai−j| = (2n+ 1)d
∑
i∈Zd
|ai| = A(2n+ 1)d

and ∑
j∈Zd
|bnj| ≥ |

∑
j∈Zd

∑
i∈Γdn

ai−j| = (2n+ 1)d|
∑
i∈Zd

ai| = |a|(2n+ 1)d,

which means that
∑

j∈Zd |bnj| ∝ nd.

As for all n ∈ N we have that |bnj| ≤ A by the definition of A, then

∑
j∈Zd

b2
nj ≤ A

∑
j∈Zd
|bnj| ≤ A2(2n+ 1)d.

On the other hand, for j ∈ Γdbn/2c we have that |bnj| > |a|/2 for sufficiently large n. Hence,

∑
j∈Zd

b2
nj ≥

∑
j∈Γdbn/2c

b2
nj ≥

a2

4

(
2 bn/2c+ 1

)d
.

Thus,
∑

j∈Zd b
2
nj ∝ nd and the result follows from (2.3.7).

To the best of our knowledge, Theorem 2.3.1 is the first result that gives the exact tail

probability for partial sums of random fields with dependence structure under the Cramér

condition.

Due to its preciseness, Theorem 2.3.1 can be applied to evaluate the performance of

approximation of the distribution of linear random fields by truncation. We often use the

random variable Xm
j =

∑
i∈Γdm

aiεj−i with finite terms to approximate the linear random field
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Xj =
∑

i∈Zd aiεj−i in practice. For example, the moving average with finite terms MA(m)

is applied to approximate the linear process (moving average with infinite terms). In this

case, Theorem 2.3.1 also applies to the partial sum Smn =
∑

j∈Γdn
Xm
j =

∑
j∈Zd b

m
njεj. Here

only finite terms bmnj are non-zero. Denote

Bm
n = σ2

∑
j∈Zd

(bmnj)
2, Fm

n (x) = P (Smn < x
√
Bm
n ).

Then for all x ≥ 0 with x = o(nd/2), we have

1− Fm
n (x)

1− Φ(x)
= exp

{
x3

nd/2
λmn

( x

nd/2

)}(
1 +O

(x+ 1

nd/2

))
,

where

λmn (t) =
∞∑
k=0

βmknt
k,

and where the coefficients βmkn have similar definition as βkn. To see the difference between

the two tail probabilities of the partial sums, we have

1− Fn(x)

1− Fm
n (x)

= exp

{
x3

nd/2

[
λn

( x

nd/2

)
− λmn

( x

nd/2

)]}(
1 +O

(x+ 1

nd/2

))
= exp

{
x3

nd/2

[
β0n − βm0n +

∞∑
k=1

(βkn − βmkn)
( x

nd/2

)k]}(
1 +O

(x+ 1

nd/2

))
,

here as in the proof of Theorem 2.3.1, we take Mn = maxj∈Zd |bnj|, Hn = H
2Mn

, Mm
n =

maxj∈Zd |bmnj|, Hn = H
2Mm

n
,

β0n =
Hn

6Bn

∑
j∈Zd

γ3nj =
Hγ3

12MnBn

∑
j∈Zd

(bnj)
3,

βm0n =
Hm
n

6Bm
n

∑
j∈Zd

γm3nj =
Hγ3

12Mm
n B

m
n

∑
j∈Zd

(bmnj)
3.
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If γ3 6= 0, 1−Fn(x)
1−Fmn (x)

is dominated by exp
{

x3

nd/2
(β0n − βm0n)

}
. If γ3 = 0, then β0n = βm0n = 0

and 1−Fn(x)
1−Fmn (x)

can be dominated by exp
{
x4

nd
(β1n − βm1n)

}
which depends on whether γ4 = 0.

In general, Theorem 2.3.1 can be applied to evaluate whether the truncated version Xm
j is

a good approximation to Xj in terms of the ratio 1−Fn(x)
1−Fmn (x)

for x in different ranges which

depends on the property of the innovation ε and the sequence {ai, i ∈ Zd}.

Theorem 2.3.1 can be applied to calculate the tail probability of the partial sum of

some well-known dependent models. For example, the autoregressive fractionally integrated

moving average FARIMA(p, β, q) processes in one dimensional case introduced by Granger

and Joyeux (1980) and Hosking (1981), which is defined as

φ(B)Xn = θ(B)(1−B)−βεn.

Here p, q are nonnegative integers, φ(z) = 1 − φ1z − · · · − φpzp is the AR polynomial and

θ(z) = 1+θ1z+ · · · θqzq is the MA polynomial. Under the conditions that φ(z) and θ(z) have

no common zeros, the zeros of φ(·) lie outside the closed unit disk and −1/2 < β < 1/2,

the FARIMA(p, β, q) process has linear process form Xn =
∑∞

i=0 aiεn−i, n ∈ N, with

ai = θ(1)
φ(1)

iβ−1

Γ(β)
+O(i−1). Here Γ(·) is the gamma function.

2.3 Approximation of risk measures

Theorem 2.3.1 can be applied to approximate the risk measures such as quantiles

and tail conditional expectations for the partial sums Sn in (2.3.1) of linear random field

X = {Xj, j ∈ Zd}. Given the tail probability α ∈ (0, 1), let Qα,n be the upper α-th quantile

of Sn. Namely P (Sn ≥ Qα,n) = α. By Theorem 2.3.1, for all x ≥ 0 with x = o(nd/2),

P (Sn > x
√
Bn) = exp

{
x3

nd/2
λn

( x

nd/2

)}
(1− Φ(x))(1 + o(1)).
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We approximate Qα,n by xα
√
Bn, where x = xα = o(nd/2) can be solved numerically from

the equation

exp

{
x3

nd/2
λn

( x

nd/2

)}
(1− Φ(x)) = α.

The tail conditional expectation is computed as

E(Sn|Sn ≥ Qα,n) =
Qα,nP (Sn ≥ Qα,n) +

∫∞
Qα,n

P (Sn ≥ w)dw

P (Sn ≥ Qα,n)

= Qα,n +

√
Bn

α

∫ ∞
Qα,n/

√
Bn

exp

{
y3

nd/2
λn

( y

nd/2

)}
(1− Φ(y))dy,

which can be solved numerically. The quantile and tail conditional expectation, which are

also called value at risk (VaR) or expected shortfall (ES) in finance and risk theory, are

important measures to model the extremal behavior of random variables in practice. The

precise moderate deviation results in this article provide a vehicle in the computation of

these two measures of time series or spacial random fields. See Peligrad et al (2014a) for a

brief review of VaR and ES in the literature and a study of them when a linear process has

p-th moment (p > 2) or has a regularly varying tail with exponent t > 2.

2.3 Nonparametric regression

Consider the following regression model

Yn,j = g(zn,j) +Xn,j, j ∈ Γdn,

where g is a bounded continuous function on Rm, zn,j’s are the fixed design points over

Γdn ⊆ Zd with values in a compact subset of Rm, and Xn,j =
∑

i∈Zd aiεn,j−i is a linear

random field over Zd, where the i.i.d. innovations εn,i satisfy the same conditions as in

Subsection 2.3.1. Regression models with independent or weakly dependent random field
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errors have been well-studied in the literature, see, e.g., El Machkoui (2007), El Machkouri

and Stoica (2010), Hallin et al (2004).

The kernel regression estimator for the function g on the basis of sample pairs

(zn,j, Yn,j), j ∈ Γdn, is

gn(z) =
∑
j∈Γdn

wn,j(z)Yn,j,

where the weight functions wn,j(·)’s on Rm have form

wn,j(z) =
K(

z−zn,j
hn

)∑
i∈Γdn

K(
z−zn,i
hn

)
.

Here K : Rm → R+ is a kernel function and hn is a sequence of bandwidths which goes to

zero as n→∞. Notice that the weight functions satisfy the condition
∑

j∈Γdn
wn,j(z) = 1.

For fixed z ∈ Rm, let Sn := gn(z)− Egn(z). Then it can be written as

Sn =
∑
j∈Γdn

wn,j(z)Xn,j =
∑
j∈Zd

bn,jεn,j,

where bn,j =
∑

i∈Γdn
wn,i(z)ai−j. Let Bn = σ2

∑
j∈Zd b

2
n,j, Mn = max

j∈Zd
|bnj|. Assume that the

innovations εn,i satisfy the Cramér’s condition (2.2.1) with Hn ∝M−1
n . By the same analysis

as in the proof of Theorem 2.3.1, if BnH
2
n →∞ as n→∞, x ≥ 0, x = o(Hn

√
Bn), we derive

a moderate deviation result for Sn = gn(z) − Egn(z) that is similar to (2.3.7). This result

can be applied to quantify the convergence rate of Sn = gn(z)− Egn(z)→ 0, as n→∞.

2.4 CONCLUSION

Under the condition proposed by Cramér we have obtained moderate deviation the-

orem for random fields. The indices of elements of the considered random fields belong to

N × Zd. Obtained result is consistent with the classical Cramér -Petrov theorem for the

partial sum of a sequence of independent and identically distributed (iid) random variables

and is also applicable to wide class of non iid random variables. In particular, applying the
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main theorem 2.2.1 we have obtained moderate deviation theorem 2.3.1 for linear random

fields with short or long memory. Theorem 2.3.1 can further be applied to calculate the tail

probability of the partial sum of certain dependent models such as the autoregressive frac-

tionally integrated moving average FARIMA(p, β, q) processes. Theorem 2.3.1 can be also

applied to approximate the risk measures such as quantiles and tail conditional expectations

of time series or spacial random fields.
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3 ON MUTUAL INFORMATION ESTIMATION FOR MIXED-PAIR RANDOM

VARIABLES

3.1 INTRODUCTION

The entropy of a discrete random variable X ∈ Rd with countable support {x1, x2, ...}

and pi = P(X = xi) is defined to be

H(X) = −
∑
i

pi log pi,

and the (differential) entropy of a continuous random variable Y ∈ Rd with probability

density function f(y) is defined as

H(Y ) = −
∫
Rd
f(y) log f(y)dy.

If d ≥ 2, H(X) or H(Y ) is also called the joint entropy of the components in X or

Y . Entropy is a measure of distribution uncertainty and naturally it has application in the

fields of information theory, statistical classification, pattern recognition and so on.

From the definition of entropy it follows that the entropy of a discrete random vari-

able X having probability mass function p(x) is the expected value of − log p(X) = log 1
p(X)

.

Analogously, the (differential) entropy of a continuous random variable Y with probability

density function f(y) is the expected value of − log f(X) = log 1
f(X)

. We will use this inter-

pretation of entropy later on to define the corresponding estimator for a mutual information.

Before that let us first recall the definition and some basic properties of mutual information.
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Let PX , PY be probability measures on some arbitrary measure spaces X and Y

respectively. Let PXY be the joint probability measure on the space X × Y . If PXY is

absolutely continuous with respect to the product measure PX × PY , let dPXY
d(PX×PY )

be the

Radon-Nikodym derivative. Then the general definition of the mutual information (e.g.,

[15]) is given by

I(X, Y ) =

∫
X×Y

dPXY log
dPXY

d(PX × PY )
. (3.1.1)

If two random variables X and Y are either both discrete or both continuous then the mutual

information of X and Y can be expressed in terms of entropies as

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (3.1.2)

where

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

is the joint entropy of X and Y with p(x, y) being the joint density function of X and Y .

Given the above definitions of entropy and mutual information it is possible to derive certain

very natural properties of them. In particular, for random variables X and Y , which are

either both discrete or both of them are continuous, we have that

• H(X) ≥ 0 if X has discrete distribution;

• H(X + c) = H(X);

• H(aX) = H(X) + log|a| if X is continuous;

• H(aX) = H(X) if X is discrete, a 6= 0;

• H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

• I(X, Y ) = I(Y,X) = H(Y )−H(Y |X);

• I(X,X) = H(X);
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• I(X, Y ) ≥ 0 with equality if and only if X and Y are independent;

• Among PDFs f(x) with support [a, b], the maximum-entropy distribution is the uni-

form distribution;

• The Gaussian distribution has maximum entropy relative to all distributions over

(−∞,∞) with finite mean µ and finite variance σ2.

Property H(X, Y ) = H(X) +H(Y |X) is called the chain rule of entropy.

However, in practice and application, we often need to work on a mixture of con-

tinuous and discrete random variables. There are several ways for the mixture. 1). One

random variable X is discrete and the other random variable Y is continuous; 2). A random

variable Z has both discrete and continuous components, i.e., Z = X with probability p and

Z = Y with probability 1 − p, where 0 < p < 1, X is a discrete random variable and Y is

a continuous random variable; 3). a random vector with each dimension component being

discrete, continuous or mixture as in 2).

In [46], the authors extend the definition of the joint entropy for the first case mixture,

i.e., for the pair of random variables, where the first random variable is discrete and the

second one is continuous. Our goal is to study the mutual information for that case and

provide the estimation of the mutual information from a given i.i.d. sample {Xi, Yi}Ni=1.

In [15], the authors applied the k-nearest neighbor method to estimate the Radon-

Nikodym derivative and, therefore, to estimate the mutual information for all three mixed

cases. In the literature, if the random variables X and Y are either both discrete or both

continuous, the estimation of mutual information is usually performed by the estimation of

the three entropies in (3.1.2). The estimation of a differential entropy has been well studied.

An incomplete list of the related research includes the nearest-neighbor estimator [34], [63],

[40]; the kernel estimator [1], [27], [22], [23] and the orthogonal projection estimator [36],

[37]. [7] studied the plug-in entropy estimator for the finite value discrete case and obtained

the mean, the variance and the central limit theorem of this estimator. [66] studied the
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coverage-adjusted entropy estimator with unobserved values for the infinite value discrete

case.

3.2 MAIN RESULTS

Consider a random vector Z = (X, Y ). We call Z a mixed-pair if X ∈ R is a discrete

random variable with countable support X = {x1, x2, ...} while Y ∈ Rd is a continuous

random variable. Observe that Z = (X, Y ) induces measures {µ1, µ2, · · · } that are absolutely

continuous with respect to the Lebesgue measure, where µi(A) = P(X = xi, Y ∈ A), for every

Borel set A in Rd. There exists a non-negative function g(x, y) with h(x) :=
∫
Rd g(x, y)dy be

the probability mass function on X and f(y) :=
∑

i gi(y) be the marginal density function

of Y . Here, gi(y) = g(xi, y), i ∈ N. In particular, denote pi = h(xi), i ∈ N. We have that

fi(y) =
1

pi
gi(y)

is the probability density function of Y conditioned on X = xi. In [46], the authors gave the

following regulation of mixed-pair and then defined the joint entropy of a mixed-pair.

Definition 3.2.1. (Good mixed-pair). A mixed-pair random variables Z = (X, Y ) is called

good if the following condition is satisfied:

∫
X×Rd

|g(x, y) log g(x, y)|dxdy =
∑
i

∫
Rd
|gi(y) log gi(y)|dy <∞.

Essentially, we have a good mixed-pair random variables when restricted to any of

the X values, the conditional differential entropy of Y is well-defined.

Definition 3.2.2. (Entropy of a mixed-pair). The entropy of a good mixed-pair random

variable is defined by

H(Z) = −
∫
X×Rd

g(x, y) log g(x, y)dxdy = −
∑
i

∫
Rd
gi(y) log gi(y)dy.
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As gi(y) = pifi(y) then we have that

H(Z) = −
∑
i

∫
Rd
gi(y) log gi(y)dy

= −
∑
i

∫
Rd
pifi(y) log pifi(y)dy

= −
∑
i

pi log pi

∫
Rd
fi(y)dy −

∑
i

pi

∫
Rd
fi(y) log fi(y)dy

= −
∑
i

pi log pi −
∑
i

pi

∫
Rd
fi(y) log fi(y)dy

= H(X) +
∑
i

piH(Y |X = xi).

(3.2.3)

We take the convention log 0 = 0 and log 0/0 = 0. From the general formula of the

mutual information (3.1.1), we get that

I(X, Y ) =

∫
X×Rd

g(x, y) log
g(x, y)dxdy

h(x)f(y)dxdy
dxdy

=
∑
i

∫
Rd
gi(y) log

gi(y)

pif(y)
dy

=
∑
i

∫
Rd
gi(y) log gi(y)dy −

∑
i

∫
Rd
gi(y) log pidy −

∑
i

∫
Rd
gi(y) log f(y)dy

=
∑
i

∫
Rd
pifi(y) log[pifi(y)]dy −

∑
i

pi log pi

∫
Rd
fi(y)dy −

∫
Rd
f(y) log f(y)dy

=
∑
i

pi log pi

∫
Rd
fi(y)dy +

∑
i

pi

∫
Rd
fi(y) log fi(y)dy −

∑
i

pi log pi −
∫
Rd
f(y) log f(y)dy

= −H(Z) +H(X) +H(Y ) = H(Y )−
∑
i

piH(Y |X = xi) := H(Y )−
∑
i

Ii.

(3.2.4)

Let (X, Y ), (X1, Y1), ..., (XN , YN) be a random sample drawn from a mixed distri-

bution with discrete component having support {0, 1, · · · ,m}, and let pi = P(X = i),

0 ≤ i ≤ m with 0 < pi < 1,
∑
pi = 1. Also suppose that the continuous component has pdf
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f(y). Denote p̂i =
N∑
k=1

I(Xk = i)/N , 0 ≤ i ≤ m, and let

Īi = −p̂i
[
Np̂i

]−1 N∑
k=1

I(Xk = i) log fi(Yk)

= −N−1

N∑
k=1

I(Xk = i) log fi(Yk)

(3.2.5)

and

H̄(Y ) = −N−1

N∑
k=1

log f(Yk) (3.2.6)

be the estimators of Ii = piH(Y |X = i), 0 ≤ i ≤ m, and H(Y ) respectively, where fi(y)

is the probability density function of Y conditioned on X = i, 0 ≤ i ≤ m. Denote a =

(1,−1, · · · ,−1)ᵀ. Let Σ be the covariance matrix of (log f(Y ), I(X = 0) log f0(Y ), · · · , I(X =

m) log fm(Y ))ᵀ.

Theorem 3.2.1. aᵀΣa > 0 if and only if X and Y are dependent. For the estimator

Ī(X, Y ) = H̄ −
m∑
i=0

Īi (3.2.7)

of I(X, Y ) we have that

√
N(Ī(X, Y )− I(X, Y ))→ N(0, aᵀΣa) (3.2.8)

48



given that X and Y are dependent. Furthermore, the variance aᵀΣa can be calculated by

aᵀΣa = var
(

log f(Y )
)

+
m∑
i=0

piEi[log fi(Y )]2 −
m∑
i=0

p2
i

(
Ei[log fi(Y )]

)2

− 2
m∑
i=0

pi[Ei log fi(Y ) log f(Y )− Ei log fi(Y )E log f(Y )]

− 2
∑

0≤i<j≤m

pipj[Ei log fi(Y )][Ej log fj(Y )],

(3.2.9)

where Ei is the conditional expectation of Y given X = i, 0 ≤ i ≤ m.

Proof. First of all, aᵀΣa ≥ 0 since Σ is the variance covariance matrix. If aᵀΣa = 0 then

var

(
log f(Y )−

m∑
i=0

I(X = i) log fi(Y )

)
= aᵀΣa = 0

and log f(Y )−
∑m

i=0 I(X = i) log fi(Y ) ≡ C for some constant C. But

log f(Y )−
m∑
i=0

I(X = i) log fi(Y ) =
m∑
i=0

I(X = i) log
f(Y )

fi(Y )
.

Hence log f(Y )
fi(Y )

≡ C. Then fi(y) = cf(y) for some constant c > 0 and for all 0 ≤ i ≤ m.

But f(y) =
∑m

i=0 pifi(y) = cf(y)
∑m

i=0 pi = cf(y). Hence, c ≡ 1 and fi(y) = f(y) for all

0 ≤ i ≤ m. Then X and Y are independent. On the other hand, if X and Y are independent,

then fi(y) = f(y) for all 0 ≤ i ≤ m. Therefore, log f(Y )−
∑m

i=0 I(X = i) log fi(Y ) = 0 and

aᵀΣa = 0. Hence, aᵀΣa = 0 if and only if X and Y are independent.

Notice that the vector (H̄(Y ), Ī0, · · · , Īm)ᵀ is the sample mean of a sequence of i.i.d.

random vectors

{(log f(Yk), I(Xk = 0) log f0(Yk), · · · , I(Xk = m) log fm(Yk))
ᵀ}Nk=1

49



with mean (H(Y ), I0, · · · , Im)ᵀ. Then, by central limit theorem, we have

√
N





H̄

Ī0

...

Īm


−



H

I0

...

Im




→ N(0̄,Σ),

and, given aᵀΣa > 0, we have (3.2.8). By the formula for variance decomposition, we have

var
(
I(X = i) log fi(Y )

)
= E

{
var[I(X = i) log fi(Y )|X]

}
+ var

{
E[I(X = i) log fi(Y )|X]

}
= E

{
I(X = i)var[log fi(Y )|X]

}
+ var

{
I(X = i)E[log fi(Y )|X]

}
= E

{
I(X = i)

m∑
j=0

varj(log fj(Y ))I(X = j)
}

+ var
{
I(X = i)

m∑
j=0

Ej(log fj(Y ))I(X = j)
}

= vari[log fi(Y )]E
{
I(X = i)

}
+
(
Ei[log fi(Y )]

)2
var
{
I(X = i)

}
= pivari[log fi(Y )] + (pi − p2

i )
(
Ei[log fi(Y )]

)2

= piEi[log fi(Y )]2 − p2
i

(
Ei[log fi(Y )]

)2
,

(3.2.10)

0 ≤ i ≤ m. Here vari is the conditional variance of Y when X = i, 0 ≤ i ≤ m. By similar

calculation,

Cov

(
I(X = i) log fi(Y ), I(X = j) log fj(Y )

)
= −pipj[Ei log fi(Y )][Ej log fj(Y )],

(3.2.11)
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for all 0 ≤ i < j ≤ m, and

Cov

(
I(X = i) log fi(Y ), log f(Y )

)
= pi[Ei log fi(Y ) log f(Y )− Ei log fi(Y )E log f(Y )].

(3.2.12)

Thus, the covariance matrix Σ of (log f(Y ), I(X = 0) log f0(Y ), · · · , I(X = m) log fm(Y ))ᵀ

and therefore aᵀΣa can be calculated by the above calculation (3.2.10)-(3.2.12). We then

have (3.2.9).

We consider the case when the random variables X and Y are dependent. Note that

in this case aᵀΣa > 0 and we have (3.2.8). However, Ī(X, Y ) is not a practical estimator

since the density functions involved are not known.

Now let K(·) be a kernel function in Rd and let h be the bandwidth. Then

f̂ik(y) =

{
(Np̂i − 1)hd

}−1∑
j 6=k

I(Xj = i)K{(y − Yj)/h}

are the “leave-one-out” estimators of the functions fi, 0 ≤ i ≤ m, and

Îi = −N−1

N∑
k=1

I(Xk = i) log f̂ik(Yk) (3.2.13)

are estimators of Ii = piH(Y |X = i), 0 ≤ i ≤ m. Also

Ĥ = −N−1

N∑
k=1

log f̂k(Yk) (3.2.14)
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is an estimator of H(Y ), where

f̂k(y) =

{
(N − 1)hd

}−1∑
j 6=k

K{(y − Yj)/h}

=

{
(N − 1)hd

}−1∑
j 6=k

[
m∑
i=0

I(Xk = i)]K{(y − Yj)/h}

=
m∑
i=0

Np̂i − 1

N − 1
f̂ik(y).

(3.2.15)

Theorem 3.2.2. Assume that the tails of f0, · · · , fm are decreasing like |x|−α0 , · · · , |x|−αm ,

respectively, as |x| → ∞. Also assume that the kernel function has appropriately heavy tails

as in [22]. If h = o(N−1/8) and α0 · · · , αm are all greater than 7/3 in the case d = 1, greater

than 6 in the case d = 2 and greater than 15 in the case d = 3, then for the estimator

Î(X, Y ) = Ĥ −
m∑
i=0

Îi, (3.2.16)

we have
√
N(Î(X, Y )− I(X, Y ))→ N(0, aᵀΣa). (3.2.17)

Proof. Under the conditions in the theorem, applying the formula (3.1) or (3.2) from [23],

we have

Ĥ = H̄ + o(N−1/2), Î0 = Ī0 + o(N−1/2), · · · , Îm = Īm + o(N−1/2).

Together with Theorem 3.2.1, we have (3.2.17).

We may take the probability density function of Student-t distribution with proper

degree of freedom instead of the normal density function as the kernel function. On the

other hand, if X and Y are independent then I(X, Y ) = Ī(X, Y ) = 0 and we have that

Î(X, Y ) = o(N−1/2).
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3.3 SIMULATION STUDY

In this section we conduct a simulation study with m = 1, i.e., the random variable X

takes two possible values 0 and 1, to confirm the main results stated in (3.2.17) for the kernel

mutual information estimation of good mixed-pairs. First we study some one dimensional

examples. Let t(ν, µ, σ) be the Student t distribution with degree of freedom ν, location

parameter µ and scale parameter σ and let pareto(xm, α) be the Pareto distribution with

density function f(x) = αxαmx
−(α+1)I(x ≥ xm). We study the mixture for the following four

cases: 1). t(3, 0, 1) and t(12, 0, 1); 2). t(3, 0, 1) and t(3, 2, 1); 3). t(3, 0, 1) and t(3, 0, 3); 4).

pareto(1, 2) and pareto(1, 10). For each case, p0 = 0.3 for the first distribution and p1 = 0.7

for the second distribution.

The second row of Table 3.3.1 lists the mathematica calculation of the mutual infor-

mation (MI) as stated in (3.2.4) for each case. The third row of Table 3.3.1 gives the average

of 400 estimates based on formula (3.2.16). For each estimate, we use the probability density

function of the Student t distribution with degree of freedom 3, i.e. t(3, 0, 1), as the kernel

function. We also have simulation study with kernel functions satisfying the conditions in

the main results and obtained similar results. We take h = N−1/5 as the bandwidth for

the first three cases and h = N−1/5/24 for the last case. The data size for each estimate is

N = 50, 000 in each case. The Pareto distributions pareto(1, 2) and pareto(1, 10) have very

dense area on the right of 1. This is the reason that we take a relatively small bandwidth for

this case. To apply the kernel method in estimation, one should select an optimal bandwidth

based on some criteria, for example, to minimize the mean squared error. It is interesting

to investigate the bandwidth selection problem from both theoretical and application view-

points. However, it seems that the study in this direction is very difficult. We leave it as an

open question for future study. It is clear that the average of the estimates matches the true

value of mutual information.
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We apply mathematica to calculate the covariance matrix Σ of

(log f(Y ), I(X = 0) log f0(Y ), I(X = 1) log f1(Y ))ᵀ

and, therefore, the value of aᵀΣa for each case. The values of aᵀΣa are 0.02189236, 0.3092179,

0.1540501 and 0.2748102 respectively for the four cases. The fourth row of Table 3.3.1 lists

the values of (aᵀΣa/N)1/2 which serves as the asymptotic approximation of the standard

deviation of the estimator Î(X, Y ) in the central limit theorem (3.2.17). The last row gives

the sample standard deviation from M = 400 estimates. These two values also have good

match.

mixture t(3, 0, 1) t(3, 0, 1) t(3, 0, 1) pareto(1, 2)

t(12, 0, 1) t(3, 2, 1) t(3, 0, 3) pareto(1, 10)

MI 0.011819 0.20023 0.102063 0.201123

mean of estimates 0.01167391 0.1991132 0.1014199 0.2010447

(aᵀΣa/N)1/2 0.0006617 0.0025 0.0018 0.0023

sample sd 0.0006616724 0.002345997 0.001819982 0.002349275

Table 3.3.1: True value of the mutual information and the mean value of the estimates for
Pareto and t-distributions.
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Figure 3.3.1: The histograms with kernel density fits of M = 400 estimates. Top left:
t(3, 0, 1) and t(12, 0, 1). Top right: t(3, 0, 1) and t(3, 2, 1). Bottom left: t(3, 0, 1) and t(3, 0, 3).
Bottom right: pareto(1, 2) and pareto(1, 10).
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Figure 3.3.2: The Q-Q plots of M = 400 estimates. Top left: t(3, 0, 1) and t(12, 0, 1). Top
right: t(3, 0, 1) and t(3, 2, 1). Bottom left: t(3, 0, 1) and t(3, 0, 3). Bottom right: pareto(1, 2)
and pareto(1, 10).

Figure 3.3.1 and 3.3.2 show the histograms with kernel density fits and normal Q-Q

plots of 400 estimates for each case. It is clear that the values of Î(X, Y ) follow a normal

distribution.

We study two examples in the two dimensional case. Let tν(µ,Σ0) be the two dimen-

sional Student t distribution with degree of freedom ν, mean µ and shape matrix Σ0. We

study the mixture in two cases: 1). t5(0, I) and t25(0, I); 2). t5(0, I) and t5(0, 3I). Here I

is the identity matrix. For each case, p0 = 0.3 for the first distribution and p1 = 0.7 for

the second distribution. Table 3.3.2 summarizes 200 estimates of the mutual information

with h = N−1/5 and sample size N = 50, 000 for each estimate. We take t3(0, I) as the

kernel function. Same as the one dimensional case, we apply mathematica to calculate the
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true value of MI and (aᵀΣa/N)1/2 which is given in formula (3.2.9). Figure 3.3.3 shows the

histograms with kernel density fits and normal Q-Q plots of 200 estimates for each example.

It is clear that the values of Î(X, Y ) also follow a normal distribution in the two dimen-

sional case. In summary, the simulation study confirms the central limit theorem as stated

in (3.2.17).

mixture t5(0, I) t5(0, I)

t25(0, I) t5(0, 3I)

MI 0.01158 0.202516

mean of estimates 0.0112381 0.2022715

(aᵀΣa/N)1/2 0.0006577826 0.002312909

sample sd 0.0008356947 0.002315134

Table 3.3.2: True value of the mutual information and the mean value of the estimates for
t-distributions.
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Figure 3.3.3: The histograms and Q-Q plots of M = 200 estimates. Left: t5(0, I) and
t25(0, I). Right: t5(0, I) and t5(0, 3).

3.4 CONCLUSION

We considered a pair of random variables one of which is discrete and the other one

is continuous. In classical case, that is, in case when both random variables are of same

type, either discrete or continuous, the estimation of mutual information of two random

variables is usually done by applying the so-called 3H formula which allows to represent

the mutual information in terms of 3 entropies. Therefore, in order to estimate the mutual

information for the mixed-pair random variables we start from the most general formula

for mutual information and prove that a formula analogous to the classical 3H formula

also holds for this case and it involves an entropy of the so called good mixed-pair random

variables introduced in [46]. Then, after representing the mutual information of mixed-

pair random variables in terms of entropies we constructed estimators for each of those

entropies and, thus, we obtained an estimator Ī(X, Y ) for the mutual information I(X, Y )
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given by 3.2.7, We have then shown that the Cetral Limit Theorem holds for the estimator

Ī(X, Y ) and we have also derived the explicit formula for the variance of the limiting normal

distribution. Next we obtained an estimator Î(X, Y ) of I(X, Y ) given by 3.2.16. Compared

to the estimator Ī(X, Y ) the estimator Î(X, Y ) is much more practical in the sense that it

only depends on the given data and on the choice of the kernel function. Then, under the

assumption that the tails of conditional density functions fi(y) of Y |X = xi are decreasing

sufficiently fast at infinity and that the kernel function has appropriately heavy tail we have

shown that the estimator Î(X, Y ) also enjoys Central Limit Theorem. Finally, we conducted

simulation study with discrete component X taking the values 0 and 1 with probabilities 0.3

and 0.7 respectively, and with continuous component Y following t-distribution and Pareto

distribution with different parameters. Our kernel function is the density function of t-

distribution with 3 degrees of freedom. Then, as the tables 3.3.1 and 3.3.2 demonstrate the

obtained values closely match the correpsonding theoretical true values.
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