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ABSTRACT 

 

An electrokinetic separation method known as Resin Wafer Electrodeionization (RW-EDI) 

is recognized as a promising technology for energy efficient desalination of brackish water. 

However, RW-EDI is limited by an inherent drawback of its ion exchange media that prevents the 

largescale deployment of this technology. This research was undertaken to optimize the 

conventional resin wafer used in RW-EDI through the incorporation of high conducting polyionic 

liquids (PILs). It was hypothesized that by the changing non-conducting polyethylene binder with 

a PIL binder in conventional resin wafer configurations, ion conductivity within the resin bed 

would be enhanced, and could lead to an improvement in specific energy consumption (SEC) of 

RW-EDI. Two different formulations were developed in the fabrication of the phosphonium based 

PIL-RW and tested in the EDI system at varied applied voltages. The results showed that the 

amount of PIL used had a significant impact on the mechanical and conductive properties of the 

resin wafer as well as EDI performance. In the EDI system, a decrease in SEC was achieved when 

PIL-RW with a reduced PIL/resin ratio was employed, in comparison to conventional 

polyethylene-based resin wafers. Furthermore, it was concluded that an applied voltage of 6V was 

optimal for the two-cell pair EDI system.



iii 

 

DEDICATION 

 

 

This thesis is dedicated to God, through whom all things are possible. I also dedicate this work 

to my Family for their all-round support and to my loving boyfriend, Nnamdi for being such a 

wonderful pillar of support throughout my masters’ program.



iv 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

RO  Reverse Osmosis 

ED  Electrodialysis 

EDI  Electrodeionization 

CEDI  Continuous Electrodeionization 

IX  Ion Exchange 

AEM  Anion Exchange Membrane 

CEM  Cation Exchange Membrane 

MF-EDI Membrane Free Electrodeionization 

RW-EDI Resin Wafer Electrodeionization 

IL  Ionic Liquid 

PIL  Polyionic liquid 

AER  Anion Exchange Resin 

CER  Cation Exchange Resin 

PE  Polyethylene 

PE-RW Polyethylene-based Resin Wafer 



v 

 

PIL-RW Polyionic Liquid-based Resin Wafer 

PE-EDI Polyethylene-based Electrodeionization 

PIL-EDI Polyionic Liquid-based Electrodeionization 

SEC  Specific Energy Consumption 

 

 

 



vi 

 

ACKNOWLEDGMENT 

 

I would like to acknowledge my academic advisor, Dr Alexander Lopez, for his support, 

mentorship, and patience during my graduate studies.  

I would like to acknowledge my committee members, Dr Paul Scovazzo and Dr Brenda 

Prager for their support and feedback on my research and thesis. 

I also wish to acknowledge all the wonderful friends I made while in Oxford, for their 

unending support and encouragement, as well as my graduate school colleagues who have all been 

uniquely wonderful. 

Finally, special thanks to the University of Mississippi Graduate School for funding this 

degree.  

 

 



vii 

 

TABLE OF CONTENTS 

 
ABSTRACT .................................................................................................................................... ii 

DEDICATION ............................................................................................................................... iii 

LIST OF ABBREVIATIONS AND SYMBOLS .......................................................................... iv 

ACKNOWLEDGMENT................................................................................................................ vi 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

CHAPTER 1 ................................................................................................................................... 1 

1. INTRODUCTION .............................................................................................................. 1 

1.1 Global Water Resources ............................................................................................... 1 

1.2 Electrokinetic methods for brackish water desalination: From Electrodialysis to 

Electrodeionization .................................................................................................................. 5 

1.3 Ionic Liquids ................................................................................................................. 9 

1.4 Purpose and Significance ............................................................................................ 12 

1.5 Research Objectives ................................................................................................... 12 

CHAPTER 2 ................................................................................................................................. 14 

2. BACKGROUND/LITERATURE REVIEW .................................................................... 14 



viii 

 

2.1 Scope of This Chapter ................................................................................................ 14 

2.2 Electrodeionization: Early History and Developments .............................................. 14 

2.3 Theoretical Background ............................................................................................. 15 

2.4 Resin Wafer Technology ............................................................................................ 21 

2.5 Poly(ionic liquid)s as novel materials for ionic conductivity in RW-EDI ................. 23 

CHAPTER 3 ................................................................................................................................. 27 

3. EXPERIMENTAL MATERIALS AND METHODS ...................................................... 27 

3.1 Materials and Instrumentation .................................................................................... 27 

3.2 Synthesis of Ionic Liquid monomer ........................................................................... 28 

3.3 Wafer Composition and Fabrication ........................................................................... 30 

3.4 EDI Set-Up ................................................................................................................. 31 

CHAPTER 4 ................................................................................................................................. 35 

4. RESULTS AND DISCUSSION ....................................................................................... 35 

4.1 Fourier Transform Infrared Spectroscopy .................................................................. 35 

4.2 Characterization of Resin Wafer as Ion Conducting Spacers ..................................... 36 

4.3 Application in EDI system ......................................................................................... 39 

CHAPTER 5 ................................................................................................................................. 47 

5. SUMMARY AND CONCLUSION ................................................................................. 47 



ix 

 

CHAPTER 6 ................................................................................................................................. 49 

6. FUTURE WORK .............................................................................................................. 49 

LIST OF REFERENCE ................................................................................................................ 50 

APPENDIX ................................................................................................................................... 59 

VITAE........................................................................................................................................... 66 

 



x 

 

LIST OF TABLES 

 

Table 1-1: Summary of innovative Electrodeionization methods. ................................................. 9 

Table 3-1: Detailed Specification of Ion Exchange Resins.......................................................... 28 

Table 3-2: EDI experiment set-up ................................................................................................ 32 



xi 

 

LIST OF FIGURES 

 

Figure 1-1: Diagram showing energy consumption versus feed water salinity for different 

desalination technologies [18] ........................................................................................................ 4 

Figure 1-2: Current-voltage curve of the CEDI system [24] ......................................................... 6 

Figure 1-3: Water splitting sites of resins, reproduced from [25] .................................................. 7 

Figure 1-4: Common cations and anions of room-temperature ionic liquids.                       Cations: 

1. imidazolium ion; 2. N-alkyl pyridinium ion; 3. tetraalkylammonium ion; 4. 

tetraalkylphosphonium ion. R1, R2, R3, and R4 are alkyl groups and can be the same or different. 

Anions: 5. hexafluorophosphate ([PF6]); 6. tetrafluoroborate ([BF4]); 7. trifluoromethylsulfonate 

([OTf]); 8. bis(trifluoromethanesulfonyl)imide ([Tf2N]) [33] ..................................................... 10 

Figure 1-5: Processability and Functional properties of PILs [43]. ............................................. 11 

Figure 2-1: Conduction routes in resin bed, reproduced from [25] ............................................. 18 

Figure 2-2: Plot of bed specific conductance vs interstitial solution specific conductance, to 

calculate geometric parameters for the Wyllie model, reproduced from [25] .............................. 18 

Figure 2-3: Theoretical minimum energy for brackish water desalination as a function of recovery 

ratio. Reproduced from [18] ......................................................................................................... 21 

Figure 2-4: Schematic representation of the paths that the current may take [59] ...................... 24 

Figure 2-5:  (a) Equivalent circuit for determining the special dispersion of current in conventional 

EDI. (RB is resistance of the bead, Rc is resistance of the contacting point, Rs is resistance of the 

solution, Rb is resistance of the boundary layer, and Cb capacitance of the boundary layer [24]. (b) 

file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050


xii 

 

Equivalent circuit for determining the special dispersion of current in RW-EDI. (RB is resistance 

of the bead, Rc is resistance of the contacting point, Rs is resistance of the solution, Rb is resistance 

of the boundary layer, RP is the resistance of the polymer and Cb capacitance of the boundary 

layer). Modified from [24] ............................................................................................................ 24 

Figure 3-1: Synthesis of Trioctyl(4-vinylbenzyl)phosphonium-bis(trifluoromethane)- sulfonimide 

i.e. [P888(4-VB)][Tf2N] ................................................................................................................... 29 

Figure 3-2: Front view of ElectroCell system showing inlet and outlet ports ............................. 32 

Figure 3-3: Side view  .................................................................................................................. 32 

Figure 3-4: Configuration of a Resin Wafer Electrodeionization cell ......................................... 33 

Figure 4-1: IR spectra of IL [P888VB][TF2N] and PIL Poly[P888VB][TF2N]. The change in C=C 

stretch at 898-933 cm-1 of the polymer shows the degree of polymerization (89% approx..) ...... 36 

Figure 4-2: Microscope images of PE-RW (1a & 1b),  PIL-RW with 3g PIL (2a & 2b)  &  PIL-

RW with 2.5g PIL (3a & 3b) at × 4  and × 10 magnification. I & IV are ion exchange resins, II 

are Polyethylene clusters around resin beads and III shows two resin beads bound by PIL film. 38 

Figure 4-3: Comparisons in average current response and corresponding average removal 

efficiency of PE-EDI and PIL-EDI  (comprising 3.0 g PIL) runs, at 6.5V & 8V. ....................... 40 

Figure 4-4: Comparing the average removal rate of PE-EDI and PIL-EDI (comprising 3.0 g PIL) 

runs, at  6.5V and 8V. ................................................................................................................... 40 

Figure 4-5: Comparisons in average current response and the corresponding average removal 

efficiency of PE-EDI and PIL-EDI  (comprising 2.5 g PIL) runs, at 6 V & 7V. ......................... 41 

file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926050
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926053
file:///C:/Users/Owner/Documents/University%20of%20Mississippi/Research/Masters%20Thesis/Angela%20Fasuyi_Thesis.docx%23_Toc14926054


xiii 

 

Figure 4-6: Comparing the average removal rate of PE-EDI and PIL-EDI (comprising 2.5 g PIL) 

runs, at 6 V and 7 V. ..................................................................................................................... 42 

Figure 4-7: A comparison of the removal efficiency and SEC at 6.5 V for PE-EDI and PIL-EDI 

(comprised of 3.0 g PIL) runs. ...................................................................................................... 43 

Figure 4-8: A comparison of the removal efficiency and SEC at 8 V for PE-EDI and PIL-EDI 

(comprised of 3.0 g PIL) runs. ...................................................................................................... 43 

Figure 4-9: A comparison of the removal efficiency and SEC at 6 V for PE-EDI and PIL-EDI 

(comprised of 2.5 g PIL) runs. ...................................................................................................... 44 

Figure 4-10: A comparison of the removal efficiency and SEC at 7 V for PE-EDI and PIL-EDI 

(comprised of 2.5 g PIL) runs. ...................................................................................................... 44 

Figure 4-11: A comparison of average current efficiencies for PE-EDI and PIL-EDI runs. PIL-

EDI (comprising 3.0 g PIL) is shown as red bars while PIL-EDI (comprising 2.5 g PIL) is shown 

as green bars. ................................................................................................................................. 46 

 

 



1 

 

CHAPTER 1 

1. INTRODUCTION 

1.1 Global Water Resources  

1.1.1 Water demand and production 

Water is an essential resource on earth which sustains all aspects of human existence. Two 

thirds of the earth’s surface is covered by water of which 97% is seawater, and the remainder 

available as freshwater. Daily, worldwide consumption of freshwater reaches a total of 10 billion 

tons [1]. The Food and Agriculture Organization of the United Nations (FAO) reported that 

freshwater withdrawal increased from 600 km3/yr to 4000 km3/yr globally within the last century 

[2]. Water for agricultural uses accounted for about 70 percent of the total consumption, followed 

by industrial (16 to 20 percent) and municipal (9 to 14 percent) consumers [3]. However, over the 

past few decades, there has been a significant reduction in water supply around the globe. This 

scarcity has been linked to water stresses triggered by the effects of climate change. At the same 

time, water demand has increased drastically, owing to high population density as well as 

industrialization. As these sectors continue to grow and expand, the global water demand is 

projected to increase 40% by 2020, prompting the need for alternative water sources to augment 

current supply [4]. 
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1.1.2 Production methods & Limitations 

Since 1999, developing new sources of freshwater and managing current demand has been 

the focus of many research studies [5–9]. Saline and reclaimed water are some of the non-

traditional sources being explored as sustainable solutions to alleviate water stresses. These 

sources include seawater, brackish water, and wastewater (from cooling towers, oil and gas 

activities, thermoelectric plants, mining activities and agricultural activities). Although seawater 

is largely available, access to its sources is limited to coastal areas. On the other hand, brackish 

water/wastewater reuse is a growing efficient water resource in arid or inland regions. It is 

projected that the wastewater market will hit $11 billion (USD) by 2025 in the US, while global 

water reuse is expected to increase by a factor of 8 [10]. While these alternative sources of 

freshwater are capable of adequately meeting current demand, treatment (e.g. desalination) is 

necessary to ensure fit-for-purpose quality at both utilization and discharge stages. Concerns about 

energy demands of treatment processes arise when fulfilling stringent water standards. Thus, 

optimization of energy is important in the deployment of desalination technologies for sustainable 

water production and management of the food-water-energy nexus. 

1.1.3 Desalination methods and limitations 

Desalination has been at the focal point of many water reclamation processes, evolving with 

increasing water quality and quantity demands. Water desalination can be classified into thermally-

driven, pressure-driven, and biological-related methods. Traditionally, freshwater was generated 

from seawater via thermally-driven desalination methods such as multi-effect distillation (MED) 

and multi-stage flash distillation (MSF) [11,12]. However, operational complexity and high energy 
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consumption of these thermal desalination technologies led to their gradual replacement by 

membrane-based systems [13].   

Membrane-based desalination technologies offer promising solutions to water treatment 

challenges because of their high product recovery and low environmental footprint. They account 

for about 60 percent of the total installed capacity globally [14]. Membrane-based technologies 

employ semi-permeable membranes to separate undesired species from water, making them useful 

in sea/brackish water desalination as well as wastewater reclamation. Since the first successful 

development of cellulose acetate membranes for reverse osmosis (RO) in the 1960s, membrane 

technology has undergone revolutionary improvements and commercialization for desalination 

applications. Pressure-driven membrane processes such as Microfiltration (MF), Ultrafiltration 

(UF), Nanofiltration(NF) and Reverse Osmosis (RO) are now widely used for the removal of 

biological, organic, inorganic and other pollutants from water/wastewater. RO effectively removes 

contaminant matter and salts containing 35g/L Total Dissolved Solids (TDS). Additionally, 

seawater desalination via RO is generally considered to be less energy intensive and more cost-

effective than thermally-driven methods. In 2011 [15], RO accounted for 63 percent of the global 

installed desalination capacity and is still dominating the desalination markets. RO’s popularity 

stems from advancement in membrane materials, improvement in module design, energy reduction 

among other benefits, which has yielded significant cost reductions than its early days of 

commercialization. RO continues to be the leading process for seawater desalination but there are 

associated drawbacks with low salinity feeds that render the technology uneconomical for large 

scale desalination of brackish water (or water with <10g/L TDS) [16,17]. Some of these 

disadvantages of RO include low energy efficiency, less than ideal product recovery, and increased 

brine production. 
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Figure 1-1: Diagram showing energy consumption versus feed water salinity for different 

desalination technologies [18] 

 

Consequently, there is a shift towards electrically-driven, otherwise known as 

electrokinetic approaches for brackish water desalination [18]. Electrokinetic technologies are 

more energy efficient and better suited for removal of ions/salt from low salinity feed than 

pressure-driven RO as highlighted in Figure 1-1. They are categorized into: 

i. Electrosorption such as Capacitive Deionization (CDI),  

ii. Electroseparation methods such as Electrodialysis (ED) and Electrodeionization (EDI). 

In ED-based processes, ions migrate via ion exchange membranes under an electric field. Although 

ED is a mature technology for water purification, it is generally less efficient for the production of 

low conductivity product streams. This led to the development of an advanced ED process known 

as Electrodeionization (EDI).  
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For treatment of low salinity feed, EDI amasses interest because of its competitive 

advantage over other pressure-driven and electrokinetic separation techniques that typically 

require costly brine management. Besides water treatment, EDI has the following novelty 

applications: 

i. Recovery of organic acids from fermentation broths for the production of organic 

compunds [19,20].  

ii. Extraction of energy from wastewaters containing nitrogen-laden pollutants via a 

hybrid system of Solid Oxide Fuel Cells and EDI [21].  

iii. CO2 capture and recovery at atmospheric pressures by the electrochemical pH control 

of the system [22].   

iv. Selective ion removal in dialysate free artificial kidney devices for the treatment of 

blood in patients with malfunctioned kidneys [23]. 

 

1.2 Electrokinetic methods for brackish water desalination: From Electrodialysis to 

Electrodeionization  

EDI emerged principally from electrodialytic method of separation. An ED system 

operates on the principles of dialysis and electrolysis, through which ions are separated via semi-

permeable ion exchange membranes into two compartments- a dilute (ion depleting) compartment 

and a concentrate (ion-enriching) compartment. ED systems were originally applied for the 

demineralization of syrup in 1890 but have been extended to several areas, some of which include: 

water desalination, organic compound separation, selective removal of ions. Despite the excellent 

separation capabilities demonstrated by ED, an intrinsic drawback of the process limits the energy 

efficiency of the system. At low ionic concentration, a phenomenon known as concentration 
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polarization develops, which occurs when a concentration gradient is established between the 

membrane surface and the bulk solution, caused by the permselectivity of the membranes. 

Furthermore, as ions become depleted in the dilute compartment, current density increases with 

applied voltage until it reaches a threshold. Above this limiting current density (shown in Figure 

1-2), an increase in the cell’s resistance develops. Once this point is reached, any further increase 

in electrical potential results in dissociation of water into hydrogen H+ ions and hydroxyl OH- ions. 

This effect of concentration polarization inadvertently lowers the efficiency of the ED system. 

 

Figure 1-2: Current-voltage curve of the CEDI system [24] 

To overcome the limitation of ED, a solid medium (ion exchange resins i.e. ‘IX’) was 

introduced into the diluate compartment of the system. Generally, IX resins selectively exchange 

cations and anions in solution enabled by a chemical potential gradient which exists between the 

insoluble ion exchange material and the solution. In the ED system, they serve as conductive 

bridges. In the EDI system, the separation efficiency of electrodialysis and exchange capabilities 
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of ion exchange is enhanced. The concentration polarization suffered by the ED system is 

prevented by incorporating resins into the ion depleting compartment. Ion transport within the 

dilute solution to the membrane is promoted by the resin bed which acts to minimize the cell’s 

electrical resistance. Simultaneously, resins are regenerated in-situ by proton and hydroxyl ions 

produced from water splitting which occur on the contact sites of anionic and cationic materials, 

as illustrated in Figure 1-3. The electroregeneration of resins eliminates the need for harsh 

chemical agents as in typical ion exchange processes. Thus, the complementary integration of ED 

and ion exchange allows for efficient and environmentally friendly treatment of very dilute/low 

ionic solutions. 

 

 

Figure 1-3: Water splitting sites of resins, reproduced from [25] 

 

EDI continuously undergoes optimization and material development for better efficient and 

novel separation applications [25]. Special ion exchange membranes have been developed for EDI 

modules to mitigate the drawbacks of insufficient mechanical strength and handling properties in 

ED membranes. Recent reports on heterogeneous membranes consisting of polyolefin binder 
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suggested they were more suitable for EDI applications because of their cost effectiveness, flexible 

formulation and resistance to fouling [26]. Other innovative methods have been proposed to 

improve the performance of the conductive media in EDI. Membrane-free EDI (MF-EDI) is a 

fairly recent deionization technology that was developed for high purity water production [27]. 

Although MF-EDI has a few advantages including fast, effective resin regeneration as well as low 

energy consumption, it is still yet to be well established for large scale industrial applications. 

Besides, MF-EDI suffers backward migration of ions caused by its complex regeneration method, 

which reportedly diminishes product quality [28]. Another key innovation to the EDI unit is the 

immobilization of ion exchange resins into porous wafers as a way of breaking the barriers of prior 

configurations. Loose IX resins are confined by means of a binder and formed into a solid porous, 

pliable wafer. This way, resin-wafer EDI configuration (RW-EDI) effectively minimizes ion 

leakage even at high flow rates, without impeding in-situ regeneration of resins or the deployment 

of ions. However, there is an undesired resistance associated with the conventional wafer 

characteristics, propelling the development of highly conductive resin wafers in EDI systems. In 

the present work, we aim to achieve this enhancement in resin wafer conductivity through the 

incorporation of polymer based- ionic liquids. A summary of the advantages and limitations of the 

innovations to EDI is presented in Table 1-1. 
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Table 1-1: Summary of innovative Electrodeionization methods.  

Electrodeionization 

Technology 

Innovation Advantages  

Conventional 

Electrodeionization 

Loosely packed resins 

in diluate chamber. 

Mature Technology. Some limitations include: 

- Potential escaping of resin beads 

- Ion leakage within compartments 

- Uneven flow distribution 

Membrane-Free 

Electrodeionization  

Only utilizes resins to 

deionize feed 

solution.  

Still under development. Eliminating 

membranes prevents potential fouling. 

Disadvantages include: 

- Regeneration complexity 

- Backward migration of ions 

- Low product recovery and quality 

Resin Wafer 

Electrodeionization  

Porous wafer- formed 

by confinement of 

resins in diluate 

chamber by polymer 

binder. 

Under development. Small scale commercial 

applications available. Corrects inefficiencies 

of EDI and MF-EDI. Some limitations include: 

- Formation of dead zones 

- Low energy efficiency 

 

1.3 Ionic Liquids  

In the last 20 years, ionic liquids (ILs) have increasingly gained attention in the research space. 

Ionic liquids (ILs) harbor unique properties for application in electrochemistry and untapped 

potential for electrokinetic separations. They are defined as a class of molten salts with low melting 

points (typically below 100 oC or ambient temperature). ILs comprise an organic cationic part 

(such as imidazolium, N-alkyl pyridinium, tetraalkylammonium, and tetraalkylphosphonium ions) 

and an anionic part which can be organic or inorganic (for example halides, nitrate, acetate, 

hexafluorophosphate ([PF6]), tetrafluoroborate ([BF4]), trifluoromethyl sulfonate ([OTf]), and 

bis(trifluoromethanesulfonyl)imide ([Tf2N] moieties) [29], as illustrated in Figure 1-4. The 
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diverse physiochemical properties exhibited by ILs are attributed to their tunable cation and anion 

combinations, giving rise to a myriad of applications in synthesis, catalysis, ion conduction, 

lubrication, surfactants etc. In electrically-driven separations, ILs have also found application as 

liquid membranes and recovery solvents [30,31]. In more recent applications, ILs are used as 

building blocks of nanostructured materials due to their high charge density. In their liquid state, 

ionic liquids can be disadvantageous in some applications that require mechanical stability, 

durability and better processability [32]. 
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Figure 1-4: Common cations and anions of room-temperature ionic liquids.                         

Cations: 1. imidazolium ion; 2. N-alkyl pyridinium ion; 3. tetraalkylammonium ion; 4. 

tetraalkylphosphonium ion. R1, R2, R3, and R4 are alkyl groups and can be the same or 

different. Anions: 5. hexafluorophosphate ([PF6]); 6. tetrafluoroborate ([BF4]); 7. 

trifluoromethylsulfonate ([OTf]); 8. bis(trifluoromethanesulfonyl)imide ([Tf2N]) [33] 

A new subclass of polyelectrolytes known as Polyionc liquids (PILs) have emerged from the 

incorporation of ionic liquids into polymer chains. PILs uniquely combine the electroconductive 

and thermally stable properties of ILs and mechanical strength of polymers that enable newer 
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multifunctional and processing properties, see Figure 1-5. Some notable applications of PILs are 

as thermoresponsive materials, carbon materials, catalysts, separation, adsorption, energy 

harvesters, storage materials, and bio-related applications [34–37]. In electrochemical 

applications, ion conductivity of PILs is harnessed in the development of batteries and fuel cells 

[38,39]. One of the characteristic property of PILs is that their ionic conductivity is typically two 

orders of magnitude lower than their corresponding IL monomer, because of limited mobility of 

the polymerized species (cation or anion) [40]. For this reason, PILs are generally considered as 

single ion conductors. However, when compared to conventional solid state polymer electrolytes, 

PILs are reported to exhibit higher conductivities (ranging from 10-11 to 10-5 S cm-1) [41]. There 

are also reports of PIL/IL blends or ionogels (formed from doping ILs into PILs) demonstrating 

enhanced performance as conductive materials for ion transport [42].  

 

 

Figure 1-5: Processability and Functional properties of PILs [43]. 
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1.4 Purpose and Significance 

 Overall, immobilized Resin-Wafer EDI (RW-EDI) holds promising prospects for high 

energy efficient water desalination than other previously mentioned technologies. Despite its 

superiority over other desalination technologies, EDI still faces challenges related to specific 

energy consumption which negatively impact operating costs [18]. Two main factors are 

responsible for energy performance; operating conditions and material properties (i.e. membranes 

and resins). While several research studies have focused on investigating optimum operating 

conditions (such as voltage and flow rate) of EDI systems and developing newer membrane 

materials, insufficient work has been done on improving resin properties [44–46]. Transport ability 

of ion exchange resins in EDI module is critically important for effective deionization of water. 

However, the challenge lies in minimizing the dead zones inherent in the resin bed. Dead zones 

are formed when the non-conductive binding polymer blocks the active sites of cation and anion 

resins, impeding the transport of ions, and consequently raising the energy requirements of the 

system [47]. One possible solution is to establish a continuous path of travel for ions within the 

bed with as minimal resistance as possible. This can be achieved by utilizing polyelectrolytes, 

specifically polyionic liquids as a conductive support to the solid resin media. 

 

1.5 Research Objectives 

Herein, the purpose of this research is to develop robust resin wafer design with PILs and 

investigate its impact in desalination of brackish water via EDI. The hypothesis is: replacement 

of conventional elastomeric binders of previous wafer designs with charged polymers will 

significantly increase ionic conduction in ion exchange resin and improve energy performance 

of RW-EDI in brackish water desalination. To the best knowledge of the author, incorporation 
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of PIL as an enhancement to the conductive media of RW-EDI systems has not been previously 

reported. Thus, this research is focused on the following objectives: 

• Modify present resin wafer characteristics by replacing conventional binding agents with PIL 

to create a robust resin wafer. 

• Examine changes in ionic conductivity of the PIL functionalized resin wafer.  

• Assess the physical properties of modified wafers and its effect on ion removal.  

• Investigate the influence of fabricated materials on impaired water desalination in the areas of 

Removal efficiency (complete ion removal), Current response, Specific energy consumption 

and Current Efficiency of the EDI process. 
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CHAPTER 2 

 

 

2. BACKGROUND/LITERATURE REVIEW 

2.1 Scope of This Chapter 

 In this chapter, a brief overview of early concepts of EDI and progression of the technology 

are highlighted. The theory governing transport mechanisms and performance in EDI systems is 

presented. The key parameters for evaluating EDI performance are explained. Then, a review of 

previous applications of resin wafer technology as it pertains to operational and material 

developments in EDI is also discussed. The limitation of EDI system is then put in perspective by 

a critique of the current state-of-the-art technology. Finally, based on this limitation, a potential 

solution in the form of poly(ionic) liquid is put forward.  

2.2 Electrodeionization: Early History and Developments 

 Paul Kollsman first introduced EDI in 1953. He developed the device for the treatment of 

ionic mixtures [48,49]. Following this invention¸ Walters et al. [49] of Argonne National 

Laboratory applied EDI for the removal of radioactive species from industrial water. In 1959, 

Glueckauf proposed a theoretical explanation of the ion removal process that enabled a deeper 

understanding of the EDI process [50]. His work paved the way for other researchers to broaden 

the knowledge of EDI principles- such as the mechanism of electroregeneration [51–53]. It was 

not until late 1980 that Continuous Electrodeionization (CEDI) was successfully commercialized 

by IONPURE for purifying water. Since then, commercial EDI systems have continuously 
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featured in industrial plants, particularly in power and semiconductor plants, for water purification. 

To date, investigations into EDI still thrive, aimed at unravelling its potential, creating newer 

applications and addressing key areas of research interest [18], for example: 

- Understanding the mechanisms of ion transport aimed at achieving better energy 

efficiencies. 

- Understanding the interrelationships among the properties of components that make up 

resin wafer (such as polymer chemistry and ion conductivity). 

- Developing methods to balance energy consumption and water recovery to ensure cost 

effectiveness and large-scale deployment. 

 

2.3 Theoretical Background 

2.3.1  Transport in Ion Exchange Membranes 

 Transport across ion exchange membranes in electrodialytic systems is driven by both 

concentration and electrical potential gradients. In solution, salts dissociate into cations and anions. 

When an electrical potential is applied, the ions travel in opposite directions to their respective 

electrodes, with each carrying a positive or negative charge. As a result, transport in membranes 

is typically described as a function of the amount of charge. Thus, the rate of total amount of charge 

transported across a given area is expressed as: 

                                    
𝐼

𝐹
= 𝑐+(𝑢)(+𝑒) + 𝑐−(−𝑣)(−𝑒) = 𝑐𝑒(𝑢 + 𝑣)                                                (2-1) 

where I is the current in amps and F is the Faraday constant that expressed the charge in terms of 

current flow in Coulomb per mol. Cation and anion concentrations are designated by c+ and c- 
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respectively. The velocity of cations moving under an external force is u while anion velocity is 

described as -v. The terms +e  and -e denote the electronic charges carried by both cations and 

anions respectively.  

 

2.3.2  Transport in Ion Exchange Media of EDI 

At low solution concentrations, the velocity of ions within the dilute chamber of an ED cell 

slowly retards. When this chamber is filled with resins (as in the EDI cell), conductivity through 

this solid media exceeds that through the dilute solution by several orders of magnitude (between 

1000 and 10,000), because of the high concentration of mobile ions within the resin [25]. The 

mechanism of ion removal within the in EDI cell was described by Glueckauf as occurring in two 

stages: 

i. Diffusion of positively charged ions into cation resin and negatively charged ions into 

anion resin; and 

ii. Ion conduction at the resin/membrane interface. 

Since concentration of ions within the resin is higher than the solution, removal of ions is 

controlled by (i). This ion removal controlling step is dependent on three factors: 

- Interface between the solid and the solution. 

- Thickness of the liquid layer through which ion diffusion takes place. 

- Concentration gradient between the solid and liquid phase.  

At the rate limiting step, the applied potential difference causes ions to migrate via the packed 

resin bed, towards the membranes. Wyllie et al. further developed a model (porous plug) to 
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describe the conductive patterns of the bed [54]. The model operates on the principle that flow of 

electrical current follows three different main routes (see Figure 2-1): 

- Through resins in contact with each other 

- Through alternating layers of resins and interstitial solution     

- Through the interstitial spaces within the packed bed (i.e. liquid layers) 

Therefore, specific conductance of the resin bed which considers all three flow routes, is defined 

by the following elements; 

                                                               𝜅𝑏 = 𝜅1 + 𝜅2 + 𝜅3                                                                                                  (2-2) 

                                                               𝜅1 =
𝑎𝜅�̅�

𝑑𝜅+𝑒�̅�
                                                                                    (2-3) 

                                                               𝜅2 = 𝑏�̅�                                                                                         (2-4) 

                                                               𝜅3 = 𝑐𝜅                                                                                         (2-5) 

                                                  𝑎 + 𝑏 + 𝑐 = 1                                                                                           (2-6) 

                                                         𝑑 + 𝑒 = 1                                                                                            (2-7) 

where  

𝜅𝑏: Specific Conductance of resin bed 

𝜅1: Specific Conductance of solid and interstitial solution  

𝜅2: Specific Conductance of solid  

𝜅3: Specific Conductance of liquid  

𝜅: Specific Conductance of interstitial solution 

�̅�: Specific Conductance of resin 

The terms ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ are geometric parameters that are representative of the fraction 

of conductance elements relative to either the solid, solution or solid/interstitial solution 
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boundaries. These parameters can be determined from the graph of specific conductance of bed vs 

that of interstitial solution as presented in Figure 2-2

 
Figure 2-1: Conduction routes in resin bed, reproduced from [25] 

 

 
Figure 2-2: Plot of bed specific conductance vs interstitial solution specific conductance, to 

calculate geometric parameters for the Wyllie model, reproduced from [25]
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2.3.3 EDI performance parameters 

Evaluating EDI performance is dependent on the analysis of the following key parameters:  

I. Removal efficiency (ηr) is a measure of how many ions are removed from the EDI process. 

It is defined as:  

                                                          𝜂𝑟(%) =
(𝐶𝑖−𝐶𝑜)

𝐶𝑖
 × 100           (2-8) 

where Ci and Co are the initial and final ion concentration of feed stream respectively. 

Concentration of feed is given as mass concentration in [g/L] 

II. Current efficiency (ηc) measures the effective transport of ions across the ion-exchange 

membranes and wafers for a given applied current. 

        𝜂𝑐(%) =
𝑧×𝑉𝑓×(𝐶𝑖−𝐶𝑜)×𝐹

𝐼×𝑁𝑐𝑝×𝑀𝑊×𝑡
                                                          (2-9) 

where z is the valence of ion, Vf is the volume of diluate feed, F represents Faradays constant, I is 

the average stack current, Ncp refers to the number of cell pairs, MW is the molecular weight of 

ion and t is the total operation time. In EDI systems, current efficiencies greater than 80% are 

typically desired but may be lower due to the impact of ion exchange material properties.  

III. The processing productivity (φ) is typically defined as the ratio of the feed processed rate 

to the total active cross-section membrane area. 

                                                               𝜑(𝐿ℎ−1𝑚−2) =
𝑉𝐵

′

𝑡′𝐴
      (2-10) 

where 𝑉𝐵
′ is the feed volume in a batch operated EDI, t’ is time to reach the target effluent 

concentration, and 𝐴 is the effective membrane area. It should be noted that balancing energy 

consumption and productivity is critical in order to maximize process economics of EDI systems.  
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IV. Specific Energy Consumption, SEC: Power consumption (E) of the process is 

determined by: 

                                                                             𝐸 [𝑘𝑊] = 𝐼2 × 𝑅                                                   (2-11) 

where 𝑅 is the electrical resistance of the system. 

The SEC is related to electrical energy directly used to produce one unit of purified water or 

removal of 1 kg of salt. This excludes energy consumed by other process units (i.e. pump). SEC is 

defined as: 

                                                       𝑆𝐸𝐶 [𝑘𝑊ℎ/𝑚3] =
𝑉×∫ 𝐼 𝑑𝑡

𝑡
0

𝑉𝑓
      (2-12) 

                                                               𝑆𝐸𝐶 [𝑘𝑊ℎ/𝑘𝑔] =
𝑉×∫ 𝐼 𝑑𝑡

𝑡
0

(𝐶𝑖−𝐶𝑜)×𝑉𝑓
                                             (2-13) 

Where V is the applied voltage to the system. 

V. Energy efficiency: relates the minimum work of desalination to the actual energy 

consumed by the process.  

                                                                𝜂𝑒(%) =
𝑊𝑚𝑖𝑛

𝑊𝑎𝑐𝑡𝑢𝑎𝑙
× 100                                                     (2-14) 

where Wmin is the theoretical minimum energy and Wactual refers to the actual amount of energy 

supplied to the system. In principle, the Wmin is determined from the assumption that desalination 

occurs as a thermodynamically reversible process and is in fact equal to the free energy of mixing, 

given by: 

                                      −𝑑(∆𝐺𝑚𝑖𝑥) =  −𝑅𝑇𝑙𝑛𝑎𝑤𝑑𝑛𝑤 =  Π𝑠�̅�𝑤𝑑𝑛𝑤                                         (2-15) 

where ∆𝐺𝑚𝑖𝑥 is the free energy of mixing, 𝑅 is the ideal gas constant, 𝑇 is the absolute temperature, 

𝑎𝑤 is the activity of water, 𝑛𝑤 is the number of moles water, Π𝑠 represents the osmotic pressure 
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of saline water, and �̅�𝑤 is the molar volume of water [55]. The integration of equation 2-15 gives 

the theoretical minimum energy for desalination as a function of feed salinity and recovery ratio 

i.e. pure water to initial feed water. In Figure 2-3, the theoretical minimum energy of desalination 

for impaired water with salinity of 5 g/L is 0.11 kWh/m3 and 0.23 kWh/m3 at recovery ratios of 

50% and 90% [47].  

 

Figure 2-3: Theoretical minimum energy for brackish water desalination as a function of 

recovery ratio. Reproduced from [18] 

 

2.4 Resin Wafer Technology 

Advancements in ion exchange resin development have been targeted at optimizing 

properties that influence transport i.e. creating a continuous path for ion transfer. Early commercial 

EDI modules operated as a mixed bed, layered bed, or separate bed resin packed freely in the 

diluate chambers, however, there were a few limitations with these configurations. Nonuniform 

displacement of resins, reduction of active sites and escaping of beads were reported as some of 
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the problems exhibited by packed beds. Another limitation resulting from the resin packing is 

leakage of ions within compartments leading to a contamination of feed by the concentrate stream. 

Furthermore, EDI suffered uneven flow distribution within the diluate compartment caused by 

flow channeling in loosely packed resin beds. To prevent these problems, immobilized ion 

exchange resins were introduced into the system which served to boost ion transport and separation 

performance of EDI through improvements in wafer characteristics.  

Pioneering work on immobilized resin wafers utilized finely dispersed fluorinated latex 

and thermoplastic binders (LDPE/HDPE polyethylene) [56]. Further advancement into resin 

wafers construction aimed to improve the characteristics of ion exchange material and extend EDI 

application. Lin et al. [57] performed an investigation comparing properties of resin wafers bound 

by latex and polyethylene integrated with an electrically conductive particle. It was discovered that 

the latter displayed higher separation efficiency and a 10-fold increase in electrical conductivity 

than latex-based resin wafer. Additionally, Yeon et al. [58] studied the characterization and 

feasibility of ion exchange polyurethane as conductive spacers in EDI. In this study, polyurethane 

based immobilized resins showed good mechanical strength, permeability and a consequent 

increase in active conducting sites that enhanced cobalt ion removal rate from water. Ho et al. [59] 

studied wafer compositions and the effects on ion removal. In their research, after varying the resin 

components, a ratio of 1:1.5:4.6 of polyethylene, sugar (as porogen), and resin respectively was 

proposed as the optimal formulation for resin wafer fabrication. They concluded that cation-anion 

resin ratios, polymer volumes and resin selectivity ultimately influenced the removal of ions in the 

RW-EDI. 

Ever since the introduction of wafer technology, researchers have studied how 

conventional resin wafer impact EDI performance under varying operating conditions in common 
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applications. For example, Datta et al. [20] tested the efficacy of RW-EDI on the separation of 

acidic impurities from hydrolysate liquor and pH control of the solution. The results showed that 

RW-EDI achieved greater than 99% and 95% removal of sulfuric acid and acetic acid from liquor, 

respectively. Lopez et al. [31] also studied separation of organic acid via wafer-based technology. 

They reported that application of RW-EDI technique for organic acid recovery resulted in an 

improvement in the system current efficiency while power consumption fell below 2 kWh/kg. In 

more recent studies, Pan et al. [47] evaluated the effect of operational parameters on key 

performance indicators of conventional RW-EDI desalination of impaired water. They found the 

specific energy consumption to be 0.35-0.66 kWh/m3 with a productivity of 20.1− 41.3 L h−1 m−2, 

indicating that EDI can be successfully applied for energy efficient impaired water reclamation. It 

was also reported that the dead zones (caused by the binding polymer) minimized total achievable 

energy consumption. Further energy savings is still desired to enable deployment of RW-EDI 

technologies on a large scale [18]. Thus, it has become necessary to develop novel materials that 

could aid reduction in energy demands of EDI while maintaining optimal separation performance 

of the process.  

 

2.5 Poly(ionic liquid)s as novel materials for ionic conductivity in RW-EDI 

In RW-EDI, ionic conductivity of the bed plays a crucial role in energy consumption of the 

system. Conduction via bead-to-bead contact in Figure 2-4 represents the most efficient pathway 

for current in EDI. Transfer of ions must occur between resins of the same type (i.e. anion to anion) 

and follow a continuous path towards the electrode. If the pathway is interrupted (i.e. discontinuous 

resins), ions are displaced into the surrounding solution and subsequently picked up by 

neighboring resin bead of similar type. Consequently, the erratic movement of ion within the bed 
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raises the electrical power needed for ion transfer and reduces the cell efficiency. Additional 

contact resistance is created as the polymer used in the immobilization of resins hinders the smooth 

transmission of ions. This resistance is depicted in the equivalent circuits of Figure 2.5 for 

conventional EDI (Figure 2.5(a)) and RW-EDI in (Figure 2-5(b))   

 

Figure 2-4: Schematic representation of the paths that the current may take [59] 

 

   

 

                                                                       

 

 

Bead 

Solution 

Contacting Point 

Boundary Layer 

Bead 

Figure 2-5: (a) Equivalent circuit for determining the special dispersion of current in 

conventional EDI. (RB is resistance of the bead, Rc is resistance of the contacting point, Rs is 

resistance of the solution, Rb is resistance of the boundary layer, and Cb capacitance of the 

boundary layer [24]. (b) Equivalent circuit for determining the special dispersion of current in 

RW-EDI. (RB is resistance of the bead, Rc is resistance of the contacting point, Rs is resistance 

of the solution, Rb is resistance of the boundary layer, RP is the resistance of the polymer and Cb 

capacitance of the boundary layer). Modified from [24] 

(a) (b) 
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It can be suggested that the presence of the polymer (which is polyethylene in most resin 

wafers) contributes to the overall resistance of the bed, hence the low energy efficiency of the 

stack. The use of better conducting materials is therefore needed. In a bid to enhance wafer 

characteristics and performance in EDI processes, polymer ionic liquids (PILs) have been 

identified as substitutes to conventional binding materials. This is because they uniquely combine 

the electroconductive and thermally stable properties of ILs and the mechanical strength of 

polymers. This has created opportunities in electrochemistry with more potential applications yet 

to be explored. Some of the relevant properties have been reported in recent studies. In fuel cell 

applications, PIL-based membranes are highly desirable strategies for clean energy production. 

Such polymer electrolyte membranes (PEM) have been synthesized by Yan et al. where PILs and 

silica particles were incorporated into proton conducting membranes [60]. The resultant 

membranes possessed good flexible, mechanical properties and thermal stability. They also 

attributed the significantly high proton conduction obtained to the ion transport channels/network 

structures formed in the membranes. In electrochemical device applications, Ambrogi et al. [61] 

reported that thiazolium PIL-based binder showed superior charge mobility of ion in lithium 

batteries over Poly(vinylidene difluoride) (PVDF) based binders. They further concluded that 

other types of PIL (imidazolium, phosphonium, and guanidinium) could be effectively applied as 

binders in electrochemical devices. The impact of phosphonium-based (i.e. P-based) PILs as 

conductive materials has been on the up rise in recent research studies [62]. This is because they 

exhibit favorable stability and conductivity compared with their imidazolium-based (i.e. N-based) 

counterparts. While P-based PILs show compelling potential as solid state polyelectrolytes, they 

have mostly served as ion exchange materials than as electrolytes [63]. P-based ILs recently 

featured in Polymer Inclusion Membranes (PIMs) to serve as ion carriers and facilitate the 



26 

 

transport of ions from aqueous chloride solutions, suggesting its usefulness in liquid separations 

systems [64].  

Considering all the benefits addressed above, no prior study exists on the use of PILs in 

electrokinetic applications, including in aqueous media. Resin wafer formulation integrating PILs 

can aid ion transport and improve the electrokinetic performance of EDI technology while 

maintaining the mechanical integrity of the wafer. Ions can travel from resin to resin via the 

polymer because of the characteristic crystal defects and high density of charge carriers in PILs, 

which influence conductivity. This can be observed by an increase in the current response of RW-

EDI system, which is the result of enhanced speed of ions that traverse the resin bed. 
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CHAPTER 3 

 

3. EXPERIMENTAL MATERIALS AND METHODS 

3.1 Materials and Instrumentation 

Trioctylphosphine (97%), 4-vinylbenzylchloride (90%), Bis(trifluoromethane)sulfonimide 

lithium salt and 2-Hydroxy-2-methylpropiophenone used for the preparation of phosphonium 

IL/PIL were obtained from Sigma Aldrich and 3M. Amberlite IRA-400 chloride, Amberlite IR120 

(hydrogen form) and Polyethylene (Ultra-high molecular weight) used during wafer fabrication 

were also obtained from Sigma Aldrich. Sucrose and Sodium chloride (used as porogen) were 

obtained from VWR. Properties of ion exchange resins are detailed in Table 3-1. Membranes used 

in EDI were NEOSEPTA AMX and CMX purchased from Tokuyama America. H Nuclear 

Magnetic Resonance (H NMR) with CDCl3 as solvent were performed on AV 400 MHz (Bruker 

Avance III HDTM NMR spectrometer). Fourier Transform Infrared Spectroscopy (FTIR) was 

conducted at room temperature using an Agilent Technologies Cary 630 FTIR spectrometer in 

attenuated total reflectance (ATR) mode. Surface characterization of resin wafer was examined 

via OMAX A35100U Digital USB Microscope Camera. Images of small wafer samples were 

obtained to confirm that conducting sites of resins were not completely hampered by the binding 

polymer. The ionic conductivity/resistance of the wafers was measured by Electrochemical 

Impedance Spectroscopy (EIS) using Princeton Advanced Research EG&G 263A
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and the resistance calculated from the Nyquist plots. Ionic concentrations of the feed solutions 

were measured with a Traceable conductivity probe from Fisher Scientific. 

 

Table 3-1: Detailed Specification of Ion Exchange Resins 

 

3.2 Synthesis of Ionic Liquid monomer 

The polymer functionalized ionic liquid employed in the modified wafer was synthesized 

from phosphonium-based IL known as Trioctyl(4-vinylbenzyl)phosphonium-

bis(trifluoromethane)sulfonimide i.e. [P888(4-VB)][Tf2N], as illustrated in Figure 3-1.  

Type 

Cation Exchange Resin Anion Exchange Resin 

Amberlite® IR120 

hydrogen form 

Amberlite® IRA-400 

chloride form 

Matrix Styrene-divinylbenzene 

(gel) 

Styrene-divinylbenzene 

(gel) Matrix active group Sulfonic acid Quaternary Ammonium 

functional group 

Cross-linkage 8% 8% 

Moisture 53-58% 40-47% 

Particle size 620-830 μm 600-750 μm 

Operating pH 0-14 0-14 

Capacity 1.8 meq/mL by wetted 

volume 

1.4 meq/mL by wetted 

volume 
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Figure 3-1: Synthesis of Trioctyl(4-vinylbenzyl)phosphonium-bis(trifluoromethane)- 

sulfonimide i.e. [P888(4-VB)][Tf2N] 

 

The IL was synthesized in accordance with Barsanti et al. [65], although slight 

modifications were made to the procedure. Under an argon atmosphere, trioctylphosphine (19.94 

g, 53 mmol) was added to 30mL of acetonitrile in a double neck round bottom flask. An equimolar 

amount of 4-vinylbenzyl chloride (8.12 g) was added to the mixture, heated to 70 oC and allowed 

to stir for 24 h. The resulting mixture was washed with diethyl ether and all solvents were removed 

via a rotovap. The mixture was dried under schlenk line for 24 h, resulting in a white solid product- 

Trioctyl(4-vinylbenzyl)phosphonium chloride ([P888(4-VB)]Cl, 41 g, 84 mmol). The product was 

dissolved in 100mL of water and anion exchange was carried out with 1.1 molar excess 26.5 g 

(92.4 mmol) of Li(Tf2N). The aqueous solution was then stirred for 48 h at room temperature. 

After the reaction was over, the product was extracted into 100mL dichloromethane and washed 

five times with 100mL water (or until a silver nitrate test of the product showed no detectible 

presence of halide). The organic product was then dried over anhydrous magnesium sulfate 

(MgSO4) and filtered before removing the solvent via rotovap. Finally, the clear pale-yellow oil 

product was further dried under schlenk line for 24 h at room temperature until vacuum pressure 

reached 60 mtorr.  

Trioctylphosphine 4-vinylbenzyl 

chloride 
Trioctyl(4-vinylbenzyl) 

phosphonium chloride 
Ionic liquid 

monomer  
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3.3 Wafer Composition and Fabrication 

Both conventional-style and modified resin wafers were fabricated using a blend of anion 

exchange resin beads, cation exchange resin beads. Conventional wafers (PE-RW) comprised of 

AEX and CEX resins, porogen (Sodium chloride was used in this method because sucrose melted 

when heated to the desired temperature) and polymer (Polyethene) in a 23:23:15:10 g ratio, 

respectively. The constituents were uniformly combined and cast into a custom-made PTFE mold 

until uniform thickness was achieved. Once formed in the mold, the combined mixture was placed 

in an oven and heated to 146 oC for 3 hours. After heating, the wafer was cooled via ambient air 

to allow the polymer to set.  

Modified wafers (PIL-RW) were fabricated following a slightly different method. Whereas 

polyethene was used as binding polymer in conventional wafers, PIL-RW were immobilized using 

PIL [P888(4-VB)][Tf2N]. Two different formulae consisting of 10:10:6:2.5 g and 10:10:6.5:3 g of 

anion resin, cation resin, sugar, and IL respectively were considered. Resin/PIL ratio was varied 

in PIL-RW in order to investigate the effects that each had on wafer’s stability and EDI 

performance. 

3.3.1  Solvent Casting Polymer blend 

Phosphonium IL was first polymerized with photo initiator (2-Hydroxy-2-

methylpropiophenone) under UV light for 3 hours. After photocuring, polymer was dissolved in 

dichloromethane and stirred continuously until a viscous polymer solution was obtained. The 

solution was uniformly combined with dry resin constituents, cast onto a mold and then solvent 

was allowed to evaporate for 15 hours. The resulting wafer was soaked in deionized water to 

remove any remaining sucrose.   
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Both PE-RW and PIL-RW were then cut to size to fit the spacer opening of the EDI stack. The 

average thickness of wafer was 2.5 mm (measured with a micrometer caliper) and each had a cross-

sectional area of 12.5 cm2. 

3.4 EDI Set-Up 

Electrodeionization experiments were performed using a Micro Flow Cell (ElectroCell 

North America, Inc.) setup with ion exchange membranes, PTFE spacers, gaskets, and titanium 

electrodes as shown in Figures 3-2 and 3-3. The EDI stack consisted of diluate, concentrate and 

rinse compartments separated by alternating spacers and gaskets which permit or hinder flow of 

feed streams within the stack. The solution of interest was fed into the system (using MasterFlex 

L/S 77200-62 peristaltic pumps) via two sets of inlet and outlet holes on either side of the EDI 

cell. The feed stream was channeled to the different chambers through spacers- which included an 

enclosure for ion exchange wafers (diluate chamber) and turbulence mesh (concentrate chamber). 

The electrodes were connected to GW INSTEK GPS-3030DD power source used to supply DC 

power to the system.  

Figure 3-4 is an illustration of the electrodeionization system showing the typical 

arrangement of component parts. The arrows indicate the path for the movement of solution 

through the compartments, with feed stream flowing in through the inlet ports, circulating through 

each compartment and leaving upwards through the outlet ports. The rinse compartments are 

isolated from the diluate and concentrate compartments using closed gaskets. Cross mixing of 

diluate and concentrate streams is prevented by alternating the spacers, only permitting diffusion 

of ions through the respective membranes. 
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Table 3-2: EDI experiment set-up 

EDI Set-Up 

Operation Mode Batch 

Diluate & Concentrate Feed Type NaCl (5 g/L) 

Diluate & Concentrate Volume 500 mL 

Rinse Feed Type Na
2
SO

4
 (20g/L) 

Rinse Volume 1000 mL 

Number of Cell Pairs 2 

Flowrate 150 mL/min 

Applied Voltage PE-EDI vs PIL-EDI (3.0 g IL): 6.5 V & 8 V 

PE-EDI vs PIL-EDI (2.5 g IL): 6V & 7V 

Average operation time 6-9hrs 

Figure 3-3: Side view 

 

Figure 3-2: Front view of 

ElectroCell system showing inlet 

and outlet ports  
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Figure 3-2: Configuration of a Resin Wafer Electrodeionization cell 

 

Sodium chloride (NaCl) solution was used to simulate brackish water for the desalination 

experiment. Diluate and concentrate chambers were fed with 500 mL of a 0.5 weight % sodium 

chloride solution, while the rinse chambers contained 1000 mL of 2 weight % sodium sulfate 

(Na2SO4) solution. All experiments were conducted in batch mode for 2 membrane cell pairs at 

150mL/min flow rate and varying voltage conditions. In each experiment, voltage was kept 

constant until current reading reached or fell below 0.02 Amps, indicating a decrease in the 

population/velocity of ions present in the solution. On average, each experiment ran for 6-9 hours 

depending on the operating conditions while conductivity readings were taken at hour-long 

intervals. At the end of each run, the system was washed out with deionized water for twenty 

minutes. Internal leakage within the system was maintained below 7mL/hr. Above this volume, 

experiments needed to be repeated. A summary of EDI experimental set-up is highlighted in Table 

3-2. 
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The diluate, concentrate and rinse conductivity readings were recorded alongside the 

current readings at intervals. All experimental runs were repeated three times for accuracy and an 

average was taken for further calculation of key parameters. Removal Efficiency, Current 

Efficiency, Specific Energy consumption were all calculated from the resulting data of both PE-

EDI and PIL-EDI experiments. 
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CHAPTER 4 

 

4. RESULTS AND DISCUSSION 

4.1 Fourier Transform Infrared Spectroscopy 

Synthesizing a polymer with high mechanical stability was essential in the development of a 

resin wafer with good structural properties. Fourier Transform Infrared Spectroscopy (FTIR) was 

employed to evaluate the curing degree of the IL monomer and confirm the mechanical properties 

of PIL. The phosphonium IL was evaluated by analyzing the vinyl (C=C) peak of interest from the 

898-933 cm-1 band as shown in Figure 4-1. The transmittance band at 1152-1213 cm-1 was taken 

as reference peak to estimate the conversion of the vinyl group. The integral of the IL and PIL 

spectra were used to calculate the degree of polymerization using Equation 4-1. The 

polymerization degree was found to be approximately 89%, indicating high mechanical strength 

and ability to provide good structural support for the resin bed.  

                    Degree of Polymerization (%) = 
(

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑣𝑖𝑛𝑦𝑙 𝑝𝑒𝑎𝑘

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑎𝑘
) 𝐼𝐿

(
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑣𝑖𝑛𝑦𝑙 𝑝𝑒𝑎𝑘

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑎𝑙
) 𝑃𝐼𝐿

                                    (4-1)  
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Figure 4-1: IR spectra of IL [P888VB][TF2N] and PIL Poly[P888VB][TF2N]. The change in 

C=C stretch at 898-933 cm-1 of the polymer shows the degree of polymerization (89% approx..) 

 

4.2 Characterization of Resin Wafer as Ion Conducting Spacers 

4.2.1 Effect of electrochemical properties of polymer on resin wafer conductivity 

Electrochemical Impedance Spectroscopy was conducted to investigate the ionic 

conductivity of the bed. The impedance measurements were obtained by applying a 100mV AC 

amplitude and a frequency scan of 1.0 MHz to 1.0 Hz at an initial voltage reading of -0.013V. The 

resistance was determined from the Z’ axis of the Nyquist plot. Ion conductivity was calculated 

from the equation 4-1 below 

                                                     𝜎 =  
𝐿

𝐴𝑅
                                                                (4-1) 

where 𝜎 is conductivity in S/cm, L is wafer thickness in cm, A is the effective area in cm2 and R 

is the resistance [Ω]. The bulk conductivity of PE-RW and PIL-RW were 8.64 × 10-6 Scm-1 2.21× 

10-5 Scm-1 respectively, indicating a one order magnitude increase of ion conductivity in PIL-RW 

as compared to PE-RW.  
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4.2.2 Effect of polymer on the morphology of resin wafer 

The formulation of PE-RW and PIL-RW greatly influenced the mechanical stability of the 

wafer. The bulk PE-RW had a more compact packing and a higher degree of mechanical stability 

before and after soaking in water than both PIL-RW variants, because of the optimal polymer to 

resin ratio, which had been predetermined in [66]. An examination of the morphology of PE-RW 

in “1a & 1b” of Figure 4-2 showed clusters of polyethylene partially enclosing beads, which are 

thought to hinder the beads from contacting the solution. In the preparation of PIL-RW,  using 3.0 

g of PIL seemed to induce adequate mechanical support in the wafer. However, this amount of PIL 

caused a high degree of coating of the resin surfaces as seen in images “2a & 2b” of Figure 4-2, 

that restricted the active sites for ion transport. By reducing the amount of PIL in the wafer to 2.5 

g, the resin surface area available for ion transport was slightly maximized as seen in “3a & 3b” 

of Figure 4-2. Both PIL-RW variants appeared to have relatively compact packing density when 

dry but became structurally weak after soaking in water due to the swelling properties of the PIL. 

As expected, PIL-RW consisting 2.5 g PIL possessed less mechanical strength than that with 3g 

PIL, partly due to the insufficient polymer/resin ratio. Nevertheless, the PIL film seemed to form 

a non-uniform but widespread coating within the bed, which indicated that a continuous pathway 

for current flow was being created in the PIL-RW. 
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                           (1a)                                                                                    (1b)                        

                                               
(2a)                                                                                    (2b)

                       
(3a)                                                                                  (3b) 

Figure 4-2: Microscope images of PE-RW (1a & 1b),  PIL-RW with 3g PIL (2a & 2b)  &  PIL-

RW with 2.5g PIL (3a & 3b) at × 4  and × 10 magnification. I & IV are ion exchange resins, II 

are Polyethylene clusters around resin beads and III shows two resin beads bound by PIL film.   
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4.3 Application in EDI system 

4.3.1 Effect on Stack Current, Removal Efficiency, and Specific Energy Consumption  

In this study, a comparison of the effect of PE-RW and PIL-RW on current and removal 

efficiency was evaluated for different applied voltages of 6.5V and 7.0V. The results (in Figure 

4-3) show that when PIL-RW with 3.0 g PIL was used in the system (i.e. PIL-EDI), there was a 

significant difference in the initial current response across the stack, compared with PE-based EDI 

(PE-EDI). The reason for the limited cross current can be attributed to the increased resistance that 

had developed from the obstruction of the resin surface area by the PIL coating. Generally, the 

incorporation of PIL is expected to facilitate ion movement between resin beads by occupying the 

alternating layers of the beads and interstitial solution of the porous bed. However, at high PIL to 

resin ratios, a decrease in the bead to bead interfaces (i.e. main conduction channel) occurs thus, 

minimizing the pathway for ions to travel. Additionally, the removal rate of ions by PIL-EDI 

decreases in contrast with PE-EDI for both instances of applied voltage, as shown in Figure 4-4. 

This is also the result of resin surface blockage in PIL-RW that slows down the salt removal 

process.  
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Figure 4-3: Comparisons in average current response and corresponding average removal 

efficiency of PE-EDI and PIL-EDI (comprising 3.0 g PIL) runs, at 6.5V & 8V. 

 

Figure 4-4: Comparing the average removal rate of PE-EDI and PIL-EDI (comprising 3.0 g PIL) 

runs, at 6.5V and 8V. 
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Conversely, reducing the PIL/resin ratio (from 3.0g PIL to 2.5g PIL) increases the PIL-

RW ability to enhance transport in EDI. This is observed as an increase in the initial current 

responses of the PIL-EDI compared with PE-EDI, as seen in Figure 4-5. Also, at both applied 

voltages of 6V and 7V, higher current readings were noticed in PIL-EDI than PE-EDI as solution 

concentration decreased. Furthermore, while both systems reached equilibrium at the same time 

for both applied voltages of 6V and 7V, a slightly higher removal rate is observed with PIL-EDI 

stack than with the PE-EDI in Figure 4-6. 

 

Figure 4-5: Comparisons in average current response and the corresponding average removal 

efficiency of PE-EDI and PIL-EDI (comprising 2.5 g PIL) runs, at 6 V & 7V. 
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Figure 4-6: Comparing the average removal rate of PE-EDI and PIL-EDI (comprising 2.5 g PIL) 

runs, at 6 V and 7 V. 
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was the second run of PIL-EDI (2.5g PIL) in Figure 4-9, which could be related to anomalies 

associated with the EDI system.  

 
Figure 4-7: A comparison of the removal efficiency and SEC at 6.5 V for PE-EDI and PIL-EDI 

(comprised of 3.0 g PIL) runs. 

 
Figure 4-8: A comparison of the removal efficiency and SEC at 8 V for PE-EDI and PIL-EDI 

(comprised of 3.0 g PIL) runs. 
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Figure 4-9: A comparison of the removal efficiency and SEC at 6 V for PE-EDI and PIL-EDI 

(comprised of 2.5 g PIL) runs. 

 

Figure 4-10: A comparison of the removal efficiency and SEC at 7 V for PE-EDI and PIL-EDI 

(comprised of 2.5 g PIL) runs. 
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For the lab scale two cell pair EDI configuration, operating at an applied voltage of 6V is 

ideal because it produced the best removal efficiency and low SEC for both PE-EDI and PIL-EDI 

systems.  

Overall, the SEC data suggests that PIL-RW (2.5 g PIL) generally lowers energy 

consumption in EDI in comparison to PE-RW. The average reduction in SEC by PIL-EDI (2.5g 

PIL) across all three runs, were approximately 5% for applied voltages of 6 V and 7 V. This 

indicates that PIL functionalized wafers enahnced ion transport in EDI, but to a certain degree, as 

observed in the data analysis above. PIL conductivity and resin formula are some of the factors 

that limited the scale of improvement in EDI. Ion conductivity in PIL is dependent on the mobility 

of ionic moieties within the polymer chains. The higher the degree of cure in PIL, the higher the 

glass transition temperature i.e. Tg. However, to achieve high ion conductivities, lower Tg is 

necessary as more mobile matrices are available for free movement of counterions. Therefore, 

balancing the degree of polymerization and Tg of the PIL is important to achieve the best 

combination of mechanical properties and ionic conductivity. Furthermore, optimizing the resin 

formula will be beneficial in developing a more robust, mechanically stable and conductive PIL 

based resin wafer.       

 

4.3.3 Effect on Current Efficiency of the system 

Figure 4-7  shows a comparison of average current efficiencies for PE-EDI and PIL-EDI 

runs. In all cases, current efficiencies were generally high with the exception of PE-EDI run at 8V 

and all PIL-EDI runs. The unusual increase in current efficiency above 100% can be attributed to 

potential fouling in the system caused by salt preicipitating on the membrane or resin surface. 

Another reason for the higher than normal current efficiencies was ion leakage within 
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compartments (especially from concentrate compartments to the diluate compartments). A detailed 

analysis of current efficiency against final diluate feed volume is provided in the Appendix.  

 

Figure 4-11: A comparison of average current efficiencies for PE-EDI and PIL-EDI runs. PIL-

EDI (comprising 3.0 g PIL) is shown as red bars while PIL-EDI (comprising 2.5 g PIL) is shown 

as green bars. 
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CHAPTER 5 

 

5. SUMMARY AND CONCLUSION 

In this study, polyionic liquids were investigated for use in Resin Wafer 

Electrodeionization (RW-EDI). Phosphonium-based IL [P888VB][TF2N] was synthesized, 

polymerized and combined with dry resin mixture to form two variants of PIL-based resin wafer 

(PIL-RW), each with different PIL amounts. The mechanical properties, electrochemical 

properties, morphological characteristics and influence in EDI applications of the PIL-RW were 

examined and analyzed against conventional polyethylene-based resin wafers (PE-RW). The 

electrochemical impedance spectroscopy results showed that PIL-RW had a higher conductivity 

than PE-RW. The morphological characteristics revealed that PIL tended to coat the resin beads 

and reduce the active sites for ion transport. Coating of beads was more pronounced when a higher 

amount of PIL was used. The performances of PE-EDI, PIL-EDI (comprising 3.0 g PIL) and PIL-

EDI (comprising 2.5 g PIL) were investigated for removal efficiency, current responses, and 

specific energy consumption (SEC). Generally, the differences in PE-EDI and PIL-EDI 

performance were more prominent when 2.5g PIL was used. The results showed that PIL-EDI 

(comprising 2.5 g IL) conducted more ions than PE-RW even at lower ionic concentrations. 

Another observation was that PIL-RW (comprising 2.5 g IL) displayed a higher removal rate than 

PE-RW. Furthermore, a lower SEC was achieved with PIL-EDI (comprising 2.5 g IL) than PE-

EDI at relatively similar removal efficiencies. However, PIL conductivity and PIL-RW 
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formulation limited the extent of the improvement. It was concluded that balancing the degree of 

cure and glass transition of PIL was necessary to boost the electrochemical and mechanical 

properties in resin wafers. Finally, current efficiencies of both conventional and modified RW-

EDI were generally high, except for some unusually high current efficiencies above 100% which 

were related to ion leakage and fouling in the system.
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CHAPTER 6 

 

6. FUTURE WORK 

Although PIL proved to induce ion conductivity in resin wafer and improve SEC of the 

RW-EDI system, more experiments are required to further establish the hypothesis. Research into 

PIL properties, resin wafer formulation and EDI operating conditions would help achieve this and 

advanvce this study. The development of a PIL-based resin wafer that provides adequate 

mechanical support and prevents coating of resin beads would result in enhanced ion transport 

within the bed. Further investigations into phosphonium based or other different PIL materials 

may also provide insights into the the best combination of physical and conductive properties that 

will be suitable for resin wafer applications. Different resin wafer formulations will also need to 

be developed and evaluated to determine an optimal formula. This research could be conducted as 

a detailed design of experiments that considers both the material properties and system conditions.
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Appendix B 
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