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ABSTRACT

This dissertation provides two papers on asset market bubbles. The first chapter

analyzes the welfare effect of anti-bubble policy in a macroeconomic model containing both

an asset market and a goods market. Overall, this chapter shows that anti-bubble policy

decreases the welfare of asset seller, increases the welfare of asset buyers, and has no effect

on the welfare of the production side of the goods market. The second chapter provides

examples of strong greater-fool bubbles with three states of the world and three periods. It

provides examples of strong greater-fool bubbles at various levels of endowment durability,

as well as an example with a one-period bond issued in period 2.

ii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Flexible Asset Markets and Sluggish Goods Markets:

Lessons from a Simple Macroeconomic Model . . . . . . . . . . . . . . . . . . . . . . 1

Three-State Rational Greater-Fool Bubbles . . . . . . . . . . . . . . . . . . . . . . . 51

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iii



LIST OF FIGURES

1.1 Period-1 Information Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Seller’s period-1 Marginal Utility Curve (MUS) . . . . . . . . . . . . . . 15

1.3 The Buyer’s period-1 Marginal Utility Curve (MUB) . . . . . . . . . . . . . 18

1.4 The Buyer’s period-1 Linear Marginal Utility Curve (MUB) . . . . . . . . . 20

1.5 Possible Relationships between πH and ∆EWB . . . . . . . . . . . . . . . . . 21

1.6 The Structure of the Macroeconomic Model . . . . . . . . . . . . . . . . . . . 26

1.7 Genera Model of Demand and Quasi-Supply of Cars . . . . . . . . . . . . . . 36

1.8 Demand and Quasi-Supply for Cars when C ′ (·) = λ. . . . . . . . . . . . . . . 39

1.9 Expected Costs of Car Production . . . . . . . . . . . . . . . . . . . . . . . . 48

1.10 Expected Utility of Car Consumption . . . . . . . . . . . . . . . . . . . . . . 49

iv



LIST OF TABLES

2.1 Agents’ Endowments for Numerical Example A . . . . . . . . . . . . . . . . . 60

2.2 Agents’ Consumption for Numerical Example A . . . . . . . . . . . . . . . . 61

2.3 Agents’ Willingness-to-Pay for Storage for Numerical Example B1 . . . . . . 65

2.4 Agents’ Endowments for Numerical Example B2 . . . . . . . . . . . . . . . . 66

2.5 Agents’ Storage for Numerical Example B2 . . . . . . . . . . . . . . . . . . . 67

2.6 Agents’ Consumption for Numerical Example B2 . . . . . . . . . . . . . . . . 67

2.7 Agents’ Willingness-to-Pay for Storage for Numerical Example B2 . . . . . . 68

2.8 Agents’ Endowments for Numerical Example C . . . . . . . . . . . . . . . . . 74

2.9 Agents’ Consumption for Numerical Example C . . . . . . . . . . . . . . . . 75

v



CHAPTER 1

Flexible Asset Markets and Sluggish Goods Markets:

Lessons from a Simple Macroeconomic Model

1.1 Introduction

Should monetary authorities attempt to suppress asset price bubbles, or even burst

them outright? Around the time of the United States tech bubble, Bernanke and Gertler

(1999) and Bernanke and Gertler (2001) examined this question in the context of a macroe-

conomic model with exogenous bubbles and warned that setting interest rates in response

to asset price movements, i.e., asset price targeting, would increase volatility in output and

inflation. Cecchetti et al. (2000) and Cecchetti et al. (2002) examine a similar model and

find that asset price targeting is a necessary component of monetary authorities’ optimal

interest rate rule. However, Roubini (2006) criticized these models for their use of exogenous

bubbles rather than endogenous bubbles.

Using models of endogenous bubbles like those in Samuelson (1958) and Tirole (1985),

Gali (1977) examines the suppression of these bubbles through interest rate hikes in an over-

lapping generations (OLG) macroeconomic model, with sticky goods prices. However, these

OLG bubbles require an infinite horizon because people must believe that these bubbles will

last forever, at least in expected value. In contrast, real-world bubbles seem to be character-

ized by more short-run, finite-horizon speculative activity. Thus, the overpricing in Samuel-

son (1958), Tirole (1985), and Gali (1977) may be more descriptive of inter-generational

saving rather than the sort of short-run, speculative fluctuation of concern to policymakers.

In greater-fool bubble models, like those of Allen et al. (1993), Conlon (2004),Conlon

(2015), Holt (2018), and Liu and Conlon (2018), agents trade a bubble-prone asset even
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though they know that the bubble will only last a finite number of periods. These models

may therefore better capture the sorts of short-run fluctuations relevant to counter-cyclical

policy. Both Conlon (2015) and Holt (2018) examine the welfare implications of a monetary

authority which bursts these greater-fool bubbles by releasing information about their over-

pricing. However, unlike the welfare analysis in Gali (1977), Conlon (2015) and Holt (2018)

focus on welfare in asset markets themselves and do not examine spillover effects on welfare

in goods markets with sluggish goods prices.

We examine the welfare effects of anti-bubble policy in a finite-horizon, greater fool

bubble model that includes a goods market where prices are sticky, as in Gali (1977),. This

model captures the Keynesian notion of an economy with volatile asset markets and sluggish

goods markets. Unlike Gali (1977), our bubble has a greater-fool flavor and can exist in

a finite horizon environment, which makes it more like the speculative bubbles in Conlon

(2015) and Holt (2018), rather than the OLG bubbles in Tirole (1985) and Samuelson (1958).

Our bubble model should also capture the short-run nature of real world bubbles.

The long-term goal of our research is to examine the welfare effects of anti-bubble

policy in a macroeconomic model containing both an asset market, where a bubble may

exist, and a goods market, where prices of the goods are set through Fischer (1977)-style

long-term price contracts. Thus, the full model will have an asset market with flexible prices

and a goods market with sticky prices.

As a first step, we separate the asset market from the goods market and consider

the welfare implications of anti-bubble policy in the asset market itself. In order to more

easily incorporate a volatile asset market into the broader macroeconomic model, we examine

an asset market that experiences a “semi-bubble,” rather than a “strong bubble” like that

in Allen et al. (1993). We say that an asset experiences a semi-bubble if it is overpriced

even though some people know that it is overpriced (see Holt (2018) who calls this a “weak

bubble”). By contrast, an asset experiences a strong bubble if it is overpriced, and everyone

knows that it is overpriced (Allen et al. (1993)). Previous models, like Conlon (2015) and
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Holt (2018), have examined the welfare impact of deflating overpriced assets in models with

strong bubbles, where trading of the overpriced asset is motivated by gains to cross-state

consumption smoothing. The present analysis, however, examines the welfare effects on the

asset market of bursting a semi-bubble in a model where trading of the overpriced asset is

motivated by intertemporal consumption smoothing, as in Liu and White (2018), instead

of cross-state consumption smoothing. That is, trade in this paper is motivated by agents’

desire to stabilize their consumption paths over time by transferring consumption from high-

income periods to low-incomes periods.

As in Conlon (2015) and Holt (2018), the anti-bubble policy of the current paper

takes the form of “pricking” bubbles by revealing information rather than “leaning against

the wind” by using interest rate policy to suppress bubbles. There are two states of the

world in our model, and the asset is overpriced in one of these states. The seller always

knows whether or not the asset is overpriced. We also assume that whatever is known to

the seller is also known to the central bank. Under an anti-bubble policy, if the asset is

overpriced, then the central bank announces this information to the asset market.1 If the

asset is not overpriced, then the lack of an announcement from the central bank is an implicit

endorsement of the asset’s value. Note that our model of policy is simpler than a model where

a central bank suppresses a bubble by raising interest rates – that is, by selling assets which

compete with the return on the overpriced asset.2

Overall, I find that deflating the overpriced asset tends to hurt risk-averse asset sellers

1Note that the introduction of derivatives may also transmit information about whether the derivative’s
underlying asset is overpriced. For example, Fostel and Geanakoplos (2012) noticed that the fall in US homes
prices in 2006 immediately followed the introduction of publicly traded CDS contracts. More recently, Hale
et al. (2018) noticed that the crash in the price of Bitcoin coincided with the introduction of Bitcoin futures
on the CME exchange. Thus, the information-revelation policy in this paper could be re-interpreted simply
as a policy which encourages the development of markets which better transmit information from informed
investors to others.

2Future research should examine this more realistic type of anti-bubble policy in finite-horizon models
like ours. Gali (1977) finds that increasing interest rates in his OLG model in response to a bubble tends
to exacerbate the bubble’s growth, which leads him to question the welfare benefits of anti-bubble policy.
More recently, Allen et al. (2018) examine interest rate policy in a risk-shifting model of loans with default
costs. They find that ex ante welfare is improved when a central bank commits to raising interest rates in
response to a developing bubble, even when the social costs of default are small.

3



in the market as long as their underlying endowment of the consumption good is constant,

rather than correlated with the future return on the asset. On the other hand, in contrast to

the results of Holt (2018), where trade is motivated by risk-sharing rather than intertemporal

consumption smoothing, the current model finds that a policy of deflating overpriced assets

helps asset buyers.3 Specifically, risk-averse asset buyers are always helped, ex ante, by

anti-bubble policy when they have decreasing absolute risk aversion (or DARA) preferences.

Ongoing work is examining the welfare implications for goods markets when anti-

bubble policy enables information possessed by better-informed asset sellers to be transmit-

ted to goods-price setters who must set prices in advance.

The next section presents the model of an asset market containing a semi-bubble.

Section 3 examines the welfare impact of anti-bubble policy on risk-averse asset-sellers. Sec-

tion 4 examines the welfare impacts of anti-bubble policy on risk-averse asset buyers. Section

5 discusses future work on models which include goods markets with prices set in advance.

1.2 A Weak Bubble with Intertemporal Consumption Smoothing

The model presented builds on assumptions similar to those from previous greater-

fool bubble papers, namely Allen et al. (1993), Conlon (2004), Conlon (2015), Holt (2018),

Zheng (2013), Liu and Conlon (2018), and more recently,Liu and White (2018). The asset

market is Walrasian, and it lasts for two periods. There are two agents: the asset buyer and

the asset seller. For ease of exposition, the seller will be given the female pronoun “she”,

and the buyer will be given the male pronoun “he”. As in Liu and White (2018), agents

consume a perishable consumption good in every period, which this paper will call “apples.”

There is no money in our model, but agents can trade shares of the asset X, which we call

apple trees, in exchange for apples. Apple trees are the only asset in the model, and they

are risky. An apple tree could pay one bushel of apples in the future per tree owned (i.e.,

3This result also contrasts with the three-period example inLiu and White (2018) where the ultimate
greater-fool asset buyer can be hurt by anti-bubble policy, since it interferes with his intertemporal con-
sumption smoothing.

4



per share), or it could pay nothing.

At the beginning of period 1, the seller possesses more information about the risky

asset’s value than the buyer does. She also possesses all of the available shares of the asset,

S, while the buyer initially possesses no shares. There are two states of the world, called L

and H. Thus, the state space is Ω = {L,H}, and the prior probabilities for each state are

πL and πH , respectively.

In state L, the asset pays nothing in period 2; in other words, its period-2 dividend

is zero. In state H, the asset pays a period-2 dividend of 1 unit of the consumption good (a

bushel of apples) for each share of the asset owned.4 Figure 1 shows the period-1 information

structure of both agents. In period 1, the seller knows the true state with certainty, so she

L H

Figure 1.1: Period-1 Information Structure

can distinguish L from H. On the other hand, the buyer is unable to distinguish L from H

in period 1.

Note that, the existence of asymmetric information is not pivotal for our results.

Our results would still hold even if the asset seller does not know the true state of the

world, and so, had the same information set as the asset buyer. Instead, our results are

driven by uncertainty about the true state of the world as it pertains to the risky asset’s

return. However, since the central bank must know the true state of the world in order to

implement anti-bubble policy, it makes some sense that some segments of the asset market

are more informed than others (namely, sellers). Otherwise, we would be making the lofty

assumption that the central bank knows more about the asset market than every asset-

market participant.

4Note, the asset does not pay a dividend in period 1 in either state of the world.
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For ease of notation, assume buyers and sellers have the same utility function over

consumption of apples, u(c), though nothing below depends on this. Thus, the lifetime

utility for the buyer is UB = u(cB1 ) + βu(cB2 ), and the lifetime utility for the seller is US =

u(cS1 ) + βu(cS2 ). In addition to apples from the traded apple trees, agents receive perishable

endowments of apples in each period from trees which cannot be traded. In period 1, the

buyer receives an endowment of eB1 (L) = eB1 (H) = eB1 bushels of apples. The seller receives a

period-1 endowment of eS1 (L) = eS1 (H) = eS1 bushels of apples. Furthermore, the buyer and

the seller receive period-2 endowments of eB2 (L) = eB2 (H) = eB2 and eS2 (L) = eS2 (H) = eS2 ,

respectively. Notice that agents’ endowments in period t are the same in both states of the

world L and H.5

In the equilibria that are considered below, we assume eS1 is sufficiently small relative

to eS2 that the seller turns out to sell all the shares in her possession, S, in both states L

and H of period 1. Thus, the seller sells the asset in state L of period 1 because she knows

it is worthless (the dividend is zero in period 2), and she sells the asset in state H of period

1 to augment her small period-1 endowment of the consumption good, and so, smooth her

consumption intertemporally over periods 1 and 2. Therefore, the asset seller could be said

to have a large “liquidity demand” in period 1, state H (see Liu and White (2018)). The

buyer, on the other hand, cannot distinguish state L from state H at the beginning of period

1. Also, because the seller will sell S shares in both states of the world, the buyer will remain

unable to distinguish L from H in period 1, even after observing the seller’s behavior. Thus,

a lemons problem is present in period 1, but trade will nevertheless occur if we also assume

that eB2 is so small relative to eB1 that the buyer is willing to risk purchasing a worthless

asset in hopes of adding to his small period-2 endowment of the consumption good, and so,

making his state H consumption, at least, intertemporally smoother.

5This assumption must be true for the buyer in period 1 in order for a semi-bubble to exist. Otherwise,
he could distinguish L from H in period 1, and he would have no reason to purchase the asset in state
L. However, period 1 endowments could differ for the seller while still allowing a semi-bubble in period 1.
However, in order to focus on the role of intertemporal consumption smoothing in the analysis, the equal-
endowments assumption will be maintained for both agents in both periods throughout the paper, though
see footnote 7 below.
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Finally, note the very extreme assumptions that we make to simplify the model.

There is only one asset, and so no money, the consumption is entirely perishable, and there

is no short-selling of the risky asset. Also, we choose parameters below so that sellers are

always at their short-sale constraint in period 1, even when they know the asset is valuable.

Thus, trading is very simple, and its only effect on period 2 welfare is in determining who

gets the potential period-2 dividend. Future research should therefore incorporate money as

well as other assets into the model. Note, however, that this will dramatically complicate

the effect of period 1 policy on period 2 wealth and consumption.

1.2.1 The Buyer’s Decision

1.2.1.1 The Buyer in the Absence of an Anti-Bubble Policy

In order for a weak bubble to exist in state L, period 1, the buyer must be willing

to purchase the asset even though he knows it may be worthless. It is therefore assumed

that eB1 is sufficiently large relative to eB2 so that the buyer has a strong motive to smooth

his state-H consumption over periods 1 and 2 by giving up some consumption in period 1,

to buy the asset, in order to consume the dividend in period 2. What’s more, we make the

buyer’s gains from smoothing his state-H consumption over periods 1 and 2 so large that he

is willing to purchase the asset even though the true state might be L.

In period 1, the buyer receives an endowment eB1 , and he purchases X shares from the

seller at a per-share price of P . In the absence of an anti-bubble policy, the buyer’s period-1

consumption is the same across states L and H, so cB1 (L) = cB1 (H) = cB1 = eB1 − PX. In

period 2, the buyer consumes eB1 plus any dividends that he receives from the asset. Thus,

his period-2 consumption in state L is simply cB2 (L) = eB2 , and his period-2 consumption in

state H is cB2 (H) = eB2 +X, since the dividend is 1 unit of consumption for each share that

is owned
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The buyer chooses X so as to maximize his expected lifetime utility, given in (1.1).

E(UB) = u(eB1 − PX) + πLβu(eB2 ) + πHβu(eB2 +X). (1.1)

The buyer’s first order condition (FOC) with respect to X determines his demand for the

asset, and it therefore also helps to determine the buyer’s equilibrium willingness-to-pay

(WTP) for a share of the asset. We choose parameters such that, in equilibrium, the asset

buyer purchases all of the available shares of the risky asset, so X = S. As a result, the

buyer’s WTP determines the equilibrium asset price, so P = WTPB, where WTPB is the

solution to the the buyer’s equilibrium FOC as shown in (1.2) below and B stands for

“bubble.” Since the buyer’s FOC with respect to X is

u′(eB1 − PX)P = πHβu
′(eB2 +X),

the equilibrium asset price in the absence of anti-bubble policy, or PNP , is determined by

u′(eB1 − PNPS)PNP = πHβu
′(eB2 + S) (1.2)

where the subscript “NP”stands for “No Policy”.

Under a bubble equilibrium, the buyer’s ex-post welfare in state L is

u(eB1 − PNPS) + βu(eB2 ), (1.3)

while his ex-post welfare in state H is

u(eB1 − PNPS) + βu(eB2 + S). (1.4)

The asset buyer’s welfare is clearly higher in state H than it is in state L, since the asset

pays a dividend in period 2 of state H. Ex ante, the asset buyer’s expected welfare, given
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that he buys all S shares, is

EWB
NP = u(eB1 − PNPS) + πLβu(eB2 ) + πHβu(eB2 + S). (1.5)

1.2.1.2 The Buyer in the Presence of an Anti-Bubble Policy

Under an anti-bubble policy, the central bank reveals whether the asset’s dividend is

zero, resulting in a “no-bubble equilibrium.” As such, the policy enables the asset buyer to

distinguish L from H. In state L, the buyer has no reason to purchase the asset since it pays

no dividend, so his state L welfare under the policy is

u(eB1 ) + βu(eB2 ). (1.6)

This is larger than his state-L welfare in the absence of a policy, since under the policy, the

buyer does not waste resources in state L, purchasing an asset that will not pay a dividend

in the future.

In state H under the policy, the buyer knows for sure that the asset will pay a

dividend, so he continues to purchase all of the seller’s shares. This means that the asset

buyer’s first order condition under the anti-bubble policy, after substituting in X = S, is

u′(eB1 − PPS)PP = βu′(eB2 + S), (1.7)

where the subscript “P ”stands for “Policy”. Intuitively, the buyer’s WTP in state H in the

presence of anti-bubble policy, which is determined by (1.7), should be larger than WTPB

since anti-bubble policy enables the buyer to know with certainty that the asset will pay a

dividend. That is, we should have PP > PNP , which is, in fact, what we find (see Lemma I

below). The buyer’s welfare in state H of the policy is then

u(eB1 − PPS) + βu(eB2 + S), (1.8)
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which is less than his state-H welfare in the absence of a policy, as shown in (1.4), since PP

is larger than PNP . The buyer’s overall ex ante welfare under the policy is

EWB
P = πH

(
u(eB1 − PPS) + βu(eB2 + S)

)
+ πL

(
u(eB1 ) + βu(eB2 )

)
. (1.9)

In summary, the buyer will be hurt in state H by the anti-bubble policy, but helped in

state L. Thus, it is not immediately clear whether the policy improves or harms the buyer’s

overall ex ante welfare.

1.2.1.3 Asset Price Comparisons Across Equilibria

As discussed in the previous subsection, it is intuitively clear that the state-H asset

price under the policy, or PP , should be larger than the asset price in the absence of policy,

or PNP . Anti-bubble policy eliminates any risk surrounding the asset’s dividend. So if the

true state is H, the buyer’s WTP for the asset is larger under the policy than without the

policy. The assumption of Walrasian markets ensures that the equilibrium asset price equals

the buyer’s WTP which leads to Lemma I.

Lemma I: PP > PNP .

Proof. First, subtract the FOC in (2) from the FOC in (7)

u′(eB1 − PPS)PP − u′(eB1 − PNPS)PNP = πLβu
′(eB2 + S) > 0. (1.10)

This must be positive since the marginal utility of consumption is positive.

Since the buyer is assumed to be risk-averse, u′(c) is decreasing in c, which means that

u′(eB1 − PS)P is increasing in P . This, in conjunction with (1.10), implies PP > PNP .

If the FOC (1.7) is used to substitute for βu′(eB2 + S) in the FOC (1.2), then a

relationship between the policy and no-policy asset prices can be determined, as

u′(eB1 − PNPS)PNP = πHu
′(eB1 − PPS)PP . (1.11)
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Lemma II: πHPP < PNP .

Proof. First, PP > PNP , by Lemma 1, which implies eB1 −PPS < eB1 −PNPS. Risk aversion,

or u′(c) decreasing in c, then implies u′(eB1 − PPS) > u′(eB1 − PNPS). Finally, rewrite (1.11)

as

πHPP
PNP

=
u′(eB1 − PNPS)

u′(eB1 − PPS)
< 1,

which implies Lemma II.

Intuitively, πHPP is the ex ante expected price that the buyer pays for the asset in

a no-bubble equilibrium. Likewise, PNP is the price of the asset in a bubble equilibrium.

Thus, Lemma II says that the ex ante expected asset price under the policy, before the one

knows whether the state is L or H, is less than the asset price in the absence of policy. This

is because the buyer is poorer in period 1, state H of the no-bubble equilibrium relative to

the bubble equilibrium, which reduces the price he is willing to pay, PP , to the point that

πHPP < PNP .

1.2.2 The Seller’s Decision

To ensure that the asset seller sells all her shares in both states of the world in the

bubble equilibrium, it is assumed that eS2 is very large relative to eS1 . Thus, she sells the asset

in state L in period 1 because she knows it is worthless, but she sells it in state H in period

1 as a means of transferring consumption from period 2 to period 1, in order to supplement

her smaller period-1 endowment of the consumption good. That is, as explained above, the

asset seller has a large liquidity demand in period 1, state H.

In the absence of a policy, the seller’s period-1 consumption in both states L and H

of the bubble equilibrium equal cS1 = eS1 + PNPS. Since she sells all of her shares in period

1, the asset seller’s period-2 consumption is simply cS2 = eS2 for both L and H in the absence

of a policy. She will always sell all her shares in state L since she knows the dividend will

11



be zero. Furthermore, she will always sell all of her shares in state H as long as

u′(eS1 + PNPS)PNP ≥ βu′(eS2 ), (1.12)

that is, if the period-1 marginal utility of selling an additional share is greater than or equal

to the period-2 marginal utility of consuming the dividend when the seller sells her entire

stock, S, of shares. Thus, while the buyer determines the equilibrium asset price, the seller

determines the volume of shares traded (i.e., S). The seller’s ex ante expected welfare in the

absence of policy is

EW S
NP = u(eS1 + PNPS) + βu(eS2 ). (1.13)

In state L under the policy, the buyer knows the asset is worthless, so he does not

purchase any shares from the seller. This means that the seller’s state-L consumption in

period 1 is cS1 (L) = eS1 . Since the asset pays no dividend, the seller’s period-2 consumption

in state-L remains cS2 (L) = eS2 . The seller’s state-L welfare under the policy is therefore

u(eS1 ) + βu(eS2 ), (1.14)

which is less than her state-L welfare in the absence of an anti-bubble policy.

In state H under the policy, the seller continues to sell all of her shares, S, in period

1 as long as

u′(eS1 + PPS)PP ≥ βu′(eS2 ). (1.15)

Note that the condition in (1.12) does not necessarily imply the condition in (1.15), or visa-

versa. However, we assume parameters so that short-sale constraints in (1.12) and (1.15) are

jointly true.

Under the policy, the seller’s period-2 consumption in stateH continues to be cS2 (H) =

eS2 . However, her period-1 consumption in state H, cS1 (H) = eS1 + PPS, is larger than her

period-1 consumption in state H without the policy since PP > PNP . Thus, the seller’s

12



state-H welfare under the policy,

u(eS1 + PPS) + βu(eS2 ), (1.16)

is greater than her state-H welfare in the bubble equilibrium, since PP > PNP .

In summary, the asset seller’s welfare is hurt by an anti-bubble policy in state L, but

her welfare is improved by an anti-bubble policy in state H, since she gets a higher price.

The seller’s overall ex ante expected welfare under the policy is

EW S
P = πH

(
u(eS1 + PPS) + βu(eS2 )

)
+ πL

(
u(eS1 ) + βu(eS2 )

)
. (1.17)

As with the buyer, it is not immediately clear whether the policy improves or harms the

asset seller’s ex ante welfare. We consider this issue next.

1.3 Anti-Bubble Policy and the Asset Seller’s Ex Ante Welfare

To understand how anti-bubble policy affects the seller’s ex ante welfare, it’s necessary

to compare EW S
P from (1.17) with EW S

NP from (1.13). Define ∆EW S as the difference in

welfare across the two different policies. Subtracting (1.13) from (1.17) and simplifying gives

∆EW S = EW S
P − EW S

NP

= πH
[
u(eS1 + PPS)− u(eS1 + PNPS)

]
+ πL

[
u(eS1 )− u(eS1 + PNPS)

] (1.18)

which can be rewritten as the difference of two weighted integrals, or

E∆W S = πH

eS1 +PPS∫
eS1 +PNPS

u′(c)dc− πL

eS1 +PNPS∫
eS1

u′(c)dc.

If ∆EW S > 0, then anti-bubble policy improves the seller’s ex ante welfare, and if

∆EW S < 0, then anti-bubble hurts the seller’s ex ante welfare.
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A few point are in order in regards to (1.18). First, ∆EW S is entirely dependent on

the seller’s period-1 consumption. Her utilities from period-2 consumption cancel out. This

means that anti-bubble policy has no effect on the seller’s period-2 welfare. This is intuitive

since her period-2 consumption behavior is the same in both equilibria. Second, as previously

discussed, anti-bubble policy helps the seller in state H by raising the asset price, so the

first term on the right hand side of (1.18), πH
[
u(eS1 + PPS)− u(eS1 + PNPS)

]
, is positive.

However, anti-bubble policy hurts the seller in state L since it prevents her from exploiting

the buyer, so the second term on the right hand side of (1.18), πL
[
u(eS1 )− u(eS1 + PNPS)

]
,

is negative. Thus, by examining (1.18), it is not obvious whether the seller’s period-1 ex

ante welfare is helped or hurt by anti-bubble policy.

Figure 2 graphs the seller’s period-1 marginal utility (MUS) curve. Notice that it is

downward-sloping indicating her risk-aversion. In the bubble equilibrium, the seller’s period-

1 consumption is eS1 +PNPS in both states L and H. Thus, her period-1 utility in the bubble

equilibrium is the area under her marginal utility curve from point B to the vertical axis.

Under the anti-bubble policy, the seller’s state-L consumption is lowered to eS1 . This

means that her state L utility under the policy is the smaller area under MUS from point A

to the vertical axis. The seller’s state-H consumption under the policy is raised to eS1 +PPS,

with PP > PNP , which means her state-H utility is the larger area under MUS from point

C to the vertical axis.

Thus, in state L, anti-bubble policy causes the seller to lose the area under MUS from

B to A. This area equals

u(eS1 )− u(eS1 + PNPS) =

eS1 +PNPS∫
eS1

u′(c)dc.

In state H, however, the anti-bubble policy causes the seller to gain the area under

14



MUS

c

u′(c)
C

B
BL BH

A

DDL DH

eS1 + PPSeS1 + PNPSeS1

Figure 1.2: The Seller’s period-1 Marginal Utility Curve (MUS)

MUS from B to C. This area equals

u(eS1 + PPS)− u(eS1 + PNPS) =

eS1 +PPS∫
eS1 +PNPS

u′(c)dc.

To determine the overall effect on the seller’s welfare, we build on Holt (2018) by first

examining the impact of anti-bubble policy when changes in the seller’s wealth are evaluated

using marginal utilities for the seller which are held constant at u′(eS1 +PNPS) (see point B

in Figure 2). This produces an estimate of ∆EW S which we’ll call ∆̃EW S. In state L, the

policy causes the seller to lose

u′(eS1 + PNPS)PNPS (1.19)

when MUS is held constant at point B. In Figure 2, this is the area of the rectangle

BLBDDL. This is an underestimate of the true loss, which is the area of the curvi-linear

trapezoid ABDDL. Thus, the state-L loss component in (1.19) underestimates the true
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state-L loss from anti-bubble policy by the amount,

eS1 +PNPS∫
eS1

u′(c)dc− u′(eS1 + PNPS)PNPS > 0. (1.20)

This is the area of the curvi-linear triangle ABBL.

In the state H, the policy causes the seller to gain

u′(eS1 + PNPS)(PP − PNP )S (1.21)

where again MUS is held constant at point B. In Figure 2, this is the area of the rectangle

BBHDHD. This is an overestimate of the seller’s true gain, which is the area of the curvi-

linear trapezoid BCDHD. Thus, the state-H gain component of (21) overestimates the true

gain from anti-bubble policy by the amount,

u′(eS1 + PNPS)(PP − PNP )S −
eS1 +PPS∫

eS1 +PNPS

u′(c)dc > 0. (1.22)

This is the area of the curvi-linear triangle BBHC.

The overall ex ante welfare impact, when MUS is held constant at u′(eS1 + PNPS), is

then

∆̃EW S = −πLu′(eS1 + PNPS)PNPS + πHu
′(eS1 + PNPS)(PP − PNP )S, (1.23)

which can be simplified to

∆̃EW S = −u′(eS1 + PNPS)(PNP − πHPP )S < 0,

where the inequality follows since πHPP < PNP by Lemma II. Thus, the seller’s ex ante

welfare is harmed by the policy when MUS is held constant at u′(eS1 +PNPS). The additional

16



effect of the two curvi-linear triangles in (1.19) and (1.22), comprise the “Hirshleifer effect”

of receiving additional information, which is the welfare loss to agents after becoming more

informed (Hirshleifer (1971); Holt, 2018).6 Combining ∆̃EW S < 0 with this Hirshleifer

effect leads to Proposition I.

Proposition I: The seller is always hurt by anti-bubble policy, so

E∆W S = πH

eS1 +PPS∫
eS1 +PNPS

u′(c)dc− πL

eS1 +PNPS∫
eS1

u′(c)dc < 0.

Proof. We already know that ∆̃EW S < 0. Subtracting πL times the expression in (1.20)

and πH times the expression in (1.22) from ∆̃EW S gives ∆EW S. This implies ∆EW S <

∆̃EW S < 0.7,8

1.4 Anti-Bubble Policy and the Asset Buyer’s Ex Ante Welfare

1.4.1 The Change in the Buyer’s Ex Ante Expected Welfare

As with the asset seller, define E∆WB as the difference in the buyer’s ex ante welfare

across the different equilibria. Specifically, E∆WB is defined as

∆EWB = EWB
P − EWB

NP

or

∆EWB = πHu(eB1 − PPS) + πLu(eB1 )− u(eB1 − PNPS), (1.24)

6Note that this isn’t exactly a Hirshleifer effect since the seller already knows the true state of the world.
However, since the information revelation doesn’t actually affect the seller’s behavior, but only the buyer’s
behavior, the result is essentially a Hirshleifer effect.

7This result may not hold if the seller’s period-1 endowment differs between state L and state H. Specif-
ically, if the state-H endowment is low relative to the state-L endowment, then the policy improves the
asset’s value as a hedge against the seller’s endowment, so it may be possible for the seller to benefit from
the policy.

8This is intuitive since the policy introduces randomness into asset price, while simultaneously decreasing
its expectation. As a result, the seller’s period-1 consumption falls in expectation, but also becomes random.
This implies that the seller’s ex ante utility must fall since she is risk averse and has local nonsatiation
preferences over consumption. I would like to thank Feng Liu for this helpful insight.
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Figure 1.3: The Buyer’s period-1 Marginal Utility Curve (MUB)

which is found by subtracting EWB
NP , in (1.5), from EWB

P , in (1.9). If ∆EWB > 0, then

the buyer benefits from an anti-bubble policy, and if ∆EWB < 0, then the buyer is hurt by

an anti-bubble policy.

Notice that, as with the seller, the policy has no effect on the buyer’s period-2 ex ante

welfare, since the policy doesn’t affect his period-2 consumption. This means that analyzing

the policy’s effect on the buyer is equivalent to determining whether the policy lowers or

raises his period-1 expected utility. If πL = 1 − πH is substituted into (1.24), then ∆EWB

can be expressed solely in terms of πH , or

∆EWB =
[
u(eB1 )− u(eB1 − PNPS)

]
− πH

[
u(eB1 )− u(eB1 − PPS)

]
. (1.25)

Examine (1.25) using the buyer’s marginal utility curve, or u′(c), in Figure 4. The

difference inside the brackets of the first term in (1.25) is the area under u′(c) from point C
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to point B. In other words, it is the integral of u′(c) from eB1 to eB1 − PNPS, or

eB1∫
eB1 −PNPS

u′(c) dc =
[
u(eB1 )− u(eB1 − PNPS)

]
. (1.26)

Now examine the difference inside the brackets of the second term in (1.25). This is the area

under u′(c) from point C to point A. In other words, it is the integral of u′(c) from from eB1

to eB1 − PPS, or
eB1∫

eB1 −PPS

u′(c) dc =
[
u(eB1 )− u(eB1 − PPS)

]
. (1.27)

This means that ∆EWB may be rewritten in integral form as

∆EWB =

eB1∫
eB1 −PNPS

u′(c) dc− πH

eB1∫
eB1 −PPS

u′(c) dc. (1.28)

1.4.2 The Impact of Anti-Bubble Policy on the Buyer’s Ex Ante Welfare

We prove that anti-bubble policy improves the asset buyer’s ex ante expected utility

in two environments: the case of linear marginal utility and the case of decreasing absolute

risk aversion (DARA). The DARA case is the empirically relevant case since actual investors

almost certainly have DARA preferences (see Cohn et al. (1975); Friend and Blume (1977)).

However, we temporarily also consider the linear case since it uses a different strategy of

proof that may provide interesting insights.

1.4.2.1 The Case of Linear Marginal Utility

Figure 4 shows the buyer’s marginal utility (MU) curve when it is linear. The area

of the trapezoid BCDLD in Figure 4 is equivalent to the first term, i.e. (1.26), in (1.25) or
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Figure 1.4: The Buyer’s period-1 Linear Marginal Utility Curve (MUB)

(1.28). Thus, in this linear MU case, (1.26) simply equals

eB1∫
eB1 −PNPS

u′(c) dc =
1

2

[
u′(eB1 − PNPS) + u′(eB1 )

]
PNPS, (1.29)

using the formula for the area of a trapezoid. Furthermore, πH times the the area of the

trapezoid ACDLDH in Figure 4 is equivalent to the second term in (1.25) or (1.28), i.e., πH

times (1.27). In other words, this second term can be rewritten, in the linear MU case, again

using the formula for the area of a trapezoid, as

πH

eB1∫
eB1 −PPS

u′(c) dc =
πH
2

[
u′(eB1 − PPS) + u′(eB1 )

]
PPS. (1.30)

Lastly, subtracting (1.30) from (1.29) gives ∆EWB for the case of linear marginal utility,

∆EWB =
1

2

[
u′(eB1 − PNPS) + u′(eB1 )

]
PNPS −

πH
2

[
u′(eB1 − PPS) + u′(eB1 )

]
PPS. (1.31)

This leads to Proposition II.
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Figure 1.5: Possible Relationships between πH and ∆EWB

Proposition II: The asset buyer benefits from anti-bubble policy, so ∆EWB > 0,

when u′(c) is linear.

Proof. First, multiply (1.31) out to get

∆EWB =
1

2
u′(eB1 − PNPS)PNPS +

1

2
u′(eB1 )PNPS −

πH
2
u′(eB1 − PPS)PPS −

πH
2
u′(eB1 )PPS.

Next, apply (1.11) to the third term, and cancel the first and third terms. This simplifies

the above expression to

∆EWB =
1

2
u′(eB1 )PNPS −

πH
2
u′(eB1 )PPS =

1

2
u′(eB1 )(PNP − πHPP )S < 0,

where the inequality follows since πHPP < PNP by Lemma II.
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1.4.2.2 The Case of Decreasing Absolute Risk Aversion (DARA)

Let R(c) be the buyer’s coefficient of absolute risk aversion when his consumption is

c, so

R(c) = −u
′′(c)

u′(c)
.

Because we assume that the buyer has decreasing absolute risk aversion, it must be true that

R′(c) < 0.

This means that R(c) is increasing in PNP .

In order to prove ∆EWB > 0 for the DARA case, we first determine the relationship

between πH and ∆EWB. By examining ∆EWB, from (1.25) above, at πH = 1 and πH = 0,

we find that the relationship between πH and ∆EWB must be something like that shown in

Figure 5. This is because when πH = 1,

∆EWB|πH=1 =
[
u′(eB1 )− u(eB1 − PPS)

]
− 1 ·

[
u(eB1 )− u(eB1 − PPS)

]
= 0,

since PNP = PP when πH = 1. Similarly, when πH = 0,

∆EWB|πH=0 =
[
u(eB1 )− u(eB1 − 0 · S)

]
+ 0 ·

[
u(eB1 )− u(eB1 − PPS)

]
= 0,

since PNP = 0 when πH = 0.

Figure 5 graphs three hypothetically possible relationships between ∆EWB and πH .

Consider first the relationship labeled I, which is the thick inverted U-shaped graph. If this

is the true relationship between ∆EWB and πH , then ∆EWB > 0 would be true for all

πH . In other words, if relationship I were the true relation between ∆EWB and πH , then
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anti-bubble policy would always improve the buyer’s expected welfare. This implies that if

d2∆EWB

dπH2
< 0 ∀ πH ∈ [0, 1],

then ∆EWB > 0 must also be true for any πH ∈ [0, 1]. Alternatively, if II (or the dashed

U-shaped graph) is the true relationship between ∆EWB and πH , then the buyer’s welfare

is always worsened by anti-bubble policy. Lastly, if the true relationship is as in III, which

is the thin solid curve between I and II, then it’s not possible to place a definitive sign on

∆EWB. We prove that I is the true relationship between ∆EWB and πH . First, we prove

a lemma about the effect of πH on PNP .

Lemma III: PNP is increasing in πH

Proof. Take the derivative of the FOC in (1.2) with respect to πH using implicit differentia-

tion. This gives

u′
(
eB1 − PNPS

) dPNP
dπH

− u′′
(
eB1 − PNPS

)
PNPS

dPNP
dπH

= βu′
(
eB2 + S

)
. (1.32)

Since marginal utility is always positive and −u′′(c) > 0, equation (1.32) implies dPNP
dπH

>

0.

Lemma III should make intuitive sense. The buyer is willing to pay more for the risky

asset when it is more likely that the asset will pay a dividend. A similar intuition applies in

Lemma I. In fact, Lemma I is essentially a special case of Lemma III.

Equation (1.32) can be simplified using the definition of absolute risk aversion when

the buyer consumes eB1 − PNPS. In other words, using

−u′′
(
eB1 − PNPS

)
= R

(
eB1 − PNPS

)
· u′
(
eB1 − PNPS

)
,
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(1.32) can be simplified to

u′
(
eB1 − PNPS

)
· dPNP
dπH

=
βu′
(
eB2 + S

)
1 +R (eB1 − PNPS) · PNPS

. (1.33)

Lemma IV: For a buyer with DARA risk preferences,

d2∆EWB

dπH2
< 0 ∀ πH ∈ (0, 1).

Proof. First, differentiate (1.25) with respect to πH and use dPP
dπH

= 0. This gives

d∆EWB

dπH
= u

(
eB1 − PPS

)
− u

(
eB1
)

+ u′
(
eB1 − PNPS

)
· dPNP
dπH

· S. (1.34)

Next, substitute (1.33) into this, which gives

d∆EWB

dπH
= u

(
eB1 − PPS

)
− u

(
eB1
)

+
βu′
(
eB2 + S

)
1 +R (eB1 − PNPS) · PNPS

· S. (1.35)

Finally, differentiate (1.35) with respect to πH , again using dPP
dπH

= 0. This gives

d2∆EWB

dπH2
= −

βu′
(
eB2 + S

)
·
[
R
(
eB1 − PNPS

)
−R′

(
eB1 − PNPS

)
PNPS

][
1 +R (eB1 − PNPS) · PNPS

]2 · dPNP
dπH

· S2 < 0.

This is less than zero because R′(eB1 − PNPS) < 0 and because dPNP
dπH

> 0 by Lemma III.

Note that the proof in Lemma IV implies that d2∆EWB

dπH2 < 0 is also true when the

buyer has constant absolute risk aversion (or CARA), since R′(c) = 0 in this case.

Proposition III: When the asset buyer has DARA preferences, ∆EWB > 0 for

0 < πH < 1, so the policy benefits the buyer.

Proof. According to Lemma IV, ∆EWB must be strictly concave with respect to πH . Also,

∆EWB = 0 at the endpoints πH = 1 and πH = 0, which means ∆EWB(πH) is positive
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somewhere in between the endpoints. Thus, by the definition of strict concavity,

∆EWB(πH) > πH ·∆EWB(1) + (1− πH) ·∆EWB(0) = 0

for πH ∈ (0, 1).

1.5 Addition of a Goods Market

In this section we incorporate a goods market, with price rigidities, into the above

model. In the next section, we examine the ex ante welfare impact from anti-bubble policy

to this goods market.

There are two types of goods: cars and apples. The asset buyer consumes cars and

apples in period 2, but he consumes only apples in period 1. Thus, in the model presented so

far, the perishable endowment good that the buyer consumed is equivalent to these apples.

Additionally, we introduce a third type of agent called workers. These workers provide

differentiated labor, and each worker operates as a monopolist in the specific kind of labor

they provide. The workers sell their labor to a market of competitive, constant-return-to-

scale car producers. The car producers combine the labor from the workers to produce cars,

which are then sold to the asset buyers. As shown in Figure 6, the producers will receive

payment in the form of apples for the cars that they sell to the buyers, and the workers will

receive payment in apples for the labor they provide to the car producers. Since the industry

of car producers is competitive with constant returns to scale, their profits will be zero, so

analyzing the welfare of the car production industry will involve examining only the welfare

of the workers.

The complete macroeconomic model is intended to reflect Keynes’s notion of an econ-

omy with a volatile asset market and a sluggish goods market. We therefore employ Fischer

(1977)-style pricing in our car market to reflect a goods market with sticky prices (Fischer

(1977)). Specifically, the monopolist workers set their wages, in terms of apples, in period 1,

based on their expectations of the buyers’ period-2 demand for cars. However, the buyer’s
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Figure 1.6: The Structure of the Macroeconomic Model

demand for cars in period 2 is uncertain, since it is contingent on the state of the world i.e., on

whether or not the apple trees actually yield a positive dividend of apples in period 2. In the

absence of policy, the workers must choose their period-2 wages in period 1 without access

to the seller’s information concerning the true state. Because car producers are competitive

with constant-returns to scale, this means that the price of cars (in terms of apples) will

be determined by the wages set in period 1, even though the production and consumption

of cars does not occur until period 2. The question is then whether an anti-bubble policy,

which reveals asset sellers’ knowledge to wage-setting workers, improves welfare for both the

workers and the buyers in the goods market.

1.5.1 The Buyers

The asset seller does not consume any cars, so the analysis of her behavior is un-

changed from that already presented. However, the asset buyer does consume cars, and his

consumption of cars depends on the state of the world as well as on the central bank’s policy

regime. In the absence of policy, the buyer’s expected utility is

EUB = u(eB1 −PX)+πHβ
[
u(eB2 +X − P c

NP c
H
NP ) + v(cHNP )

]
+πLβ

[
u(eB2 − P c

NP ) + v(cLNP )
]
,

(1.36)

where cHNP is the number of cars that the buyer consumes in state H, cLNP is the number of

cars he consumes is state L, v(c) is the utility that the buyer receives from cars, and P c
NP is
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the price of cars in terms of apples.9 Note that, in the absence of policy, workers are unable

to distinguish L from H in period 1, so the wages they choose will be the same in both

states of the world in period 2, because the workers choose their wages in period 1. Thus,

since the producer market is competitive with constant returns to scale, the price of cars will

be proportional the workers’ wage in equilibrium. As a result, the price of cars will the be

the same in both states of the bubble equilibrium. This is how we captures Keynesian price

stickiness.

The buyer chooses his period-2 consumption of apples and cars as a function of his

period-2 wealth for each state L and H. He then chooses the number of shares that he wishes

to purchase in period 1, which ultimately will determine his period-2 wealth. Of course, as

above, we choose parameters so that, in equilibrium, he will purchase all of the asset-seller’s

shares, so X = S.

In the absence of policy, the buyer’s FOC for cH in period 2, given his asset purchases,

X, is

u′
(
eB2 +X − P c

NP c
H
NP

)
P c
NP = v′(cHNP ), (1.37)

and his FOC for cLNP is

u′
(
eB2 − P c

NP c
L
NP

)
P c
NP = v′(cLNP ). (1.38)

The FOC in (1.37) determines the buyer’s demand for cars in state H, while the FOC in

(1.38) determines his demand for cars in state L.

The buyer’s FOC with respect to X is then

u′(eB1 − PX)P = πHβ

[
u′(eB2 +X − P c

NP c
H
NP )

(
1− P c

NP

dcHNP
dX

)
+ v′(cHNP )

dcHNP
dX

]
.

By (1.37), the terms involving dcHNP/dX cancel, so this can be simplified to

u′(eB1 − PX)P = πHβu
′(eB2 +X − P c

NP c
H
NP ) (1.39)

9In other words, the buyer pays P cNP apples in order to receive one car.
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(this is essentially the Envelope Theorem). Equation (1.39) then determines the buyer’s

demand for the asset. Note that, since the asset does not pay a dividend in state L, cLNP is

unaffected by the buyer’s choice of X. Again, we choose parameters such that, in equilibrium,

the buyer purchases all of the seller’s shares of the asset, so X = S. This means (1.37) and

(1.39), respectively, become

u′(eB2 + S − P c
NP c

H
NP )P c

NP = v′(cHNP ), (1.40)

u′(eB1 − PNPS)PNP = πHβu
′(eB2 + S − P c

NP c
H
NP ). (1.41)

Next, under an anti-bubble policy, the monopolist workers will adjust their wages to

reflect the different demands for cars across states L and H. This will cause the price of cars

in state L to differ from that in state H (presumably P c
L < P c

H). Thus, the buyer’s demand

for cars in state H of a no-bubble equilibrium is given by

u′(eB2 + S − P c
Hc

H
P )P c

H = v′(cHP ), (1.42)

where cHP is the buyer’s state-H consumption of cars under an anti-bubble policy, and we

again assume that the buyers purchases all S shares of the asset. Similarly, the buyer’s

demand for cars in state L of a no-bubble equilibrium is given by

u′(eB2 − P c
Lc

L
P )P c

L = v′(cLP ), (1.43)

where cLP is the buyer’s state-L consumption of cars under an anti-bubble policy.

Under an anti-bubble policy, the buyer will not purchase the asset in state L since he

knows that it will not pay a dividend. As a result, (1.43) is the only relevant FOC for the

buyer in state L of the policy equilibrium. However, in state H the buyer will continue to

purchase the asset in order to intertemporally smooth his consumption of apples and allow

him to increase his consumption of cars in period 2. As in the model of a semi-bubble above,
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the state-H asset price under the policy will be higher than the no-policy price since the

buyer has a higher WTP. The buyer’s WTP, PP , in state H of the no-bubble equilibrium is

determined by

u′(eB1 − PPS)PP = βu′(eB2 + S − P c
Hc

H
P ). (1.44)

Because the asset price does not affect the asset’s period-2 dividend, the buyer’s

period-2 welfare is uanffected by the period-1 asset price. As a result, we only need to focus

on the buyer’s period-2 utility when analyzing how anti-bubble policy affects his welfare in

the goods market. Thus, in the context of the goods market, the buyer’s welfare in the

absence of anti-bubble policy is

EW g,B
NP = πH

[
u(eB2 + S − P c

NP c
H
NP ) + v(cHNP )

]
+ πL

[
u(eB2 − P c

NP c
L
NP ) + v(cLNP )

]
,

while his welfare in the presence of anti-bubble policy is

EW g,B
P = πH

[
u(eB2 + S − P c

Hc
H
P ) + v(cHP )

]
+ πL

[
u(eB2 − P c

Lc
L
P ) + v(cLP )

]
,

where g signifies “goods market.” This means that

∆EWB
g = EW g,B

P − EW g,B
NP ,

provides a measure of how anti-bubble policy affects buyers in the goods market. We can

also break up ∆EWB
g into the two components ∆EUB

2 and ∆EUB
c , such that

∆EWB
g = ∆EUB

2 + ∆EUB
c (1.45)
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where

∆EUB
2 =

[
πHu(eB2 + S − P c

Hc
H
P ) + πLu(eB2 − P c

Lc
L
P )
]

−
[
πHu(eB2 + S − P c

NP c
H
NP ) + πLu(eB2 − P c

NP c
L
NP )

]
,

(1.46)

and

∆EUB
c =

[
πHv(cHP ) + πLv(cLP )

]
−
[
πHv(cHNP ) + πLv(cLNP )

]
. (1.47)

In general terms, ∆EUB
2 measures the impact of anti-bubble policy on the buyer’s ex ante

expected utility from consuming apples in period 2, and ∆EUB
c measures the impact of anti-

bubble policy on the buyer’s ex ante expected utility from consuming cars. Thus, buyers

benefit from anti-bubble policy if ∆EWB
g > 0, but they are hurt by anti-bubble policy if

∆EWB
g < 0. Our goal is to determine the sign of ∆EWB

g under the most general conditions.

1.5.2 The Workers and Producers in the Goods Market

There is a unit mass continuum of workers who, as monopolists, sell their labor to a

competitive industry of car producers. Each worker has the utility function

UW = wiLi − C(Li), (1.48)

where is Li is the amount of labor that worker i sells, wi is the wage in apples that s/he

receives, wiLi is the number of apples s/he consumes, and C(Li) is the worker’s utility cost

of labor.

Car producers combine the labor of the workers to produce cars. The production

technology for the car producers has constant returns to scale and is expressed as the CES

production function

c =

 1∫
0

Lγi di


1
γ

, (1.49)
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which may be rewritten as

cγ =

1∫
0

Lγi di. (1.50)

Assume 0 < γ < 1.

Given the wage wi for the labor input of the ith worker, producers choose each Li so

as to minimize their cost of production

1∫
0

wiLi di

given their constraint (1.47). Thus, producers choose Li to minimize the Lagrangian

1∫
0

wiLi di+ λ

cγ − 1∫
0

Lγi di

 . (1.51)

The first order condition for Li is

wi − λγLγ−1
i = 0

which gives

Li =

(
γλ

wi

)1/(1−γ)

. (1.52)

Plugging this back into the production function in (1.47) gives, after some rearrangement,

λ =
1

γ

 1∫
0

w
−γ/(1−γ)
i di

−(1−γ)/γ

c1−γ =
1

γ
Wc1−γ (1.53)

where

W =

 1∫
0

w
−γ/(1−γ)
i di

−(1−γ)/γ

(1.54)

is a wage index. Plugging (1.50) into (1.49) gives the Hicksian labor demand for labor input
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i

Li =

(
W

wi

)1/(1−γ)

c. (1.55)

Worker i’s total consumption of apples, wiLi, is constrained by the demand for labor

by car producers, which is ultimately determined by the demand for cars by asset buyers.

This means that we can express worker i’s apple consumption as

ckA2i = wiLi = wi

(
W

wi

)1/(1−γ)

ck = (wi)
−γ/1−γ (W )1/(1−γ) ck k = L,H (1.56)

where ckA2i is worker i’s consumption of apples in period 2 in state k = L,H, and ck is the

total demand for cars by asset buyers in period 2, state k = L,H.

In the absence of policy, worker i must choose a monopoly wage wi in period 1, before

the demand for cars in known. Supplying labor Li yields a disutility of C(Li) to worker i,

as in (1.45) above. Worker i supplies LHi units of labor in state H and LLi units of labor in

state L, as determined by the demand they face, at the wage wi. Worker i therefore chooses

the wage wi to maximize his/her expected utility, or

EUW = πH
(
cHA2i − C(LHi )

)
+ πL

(
cLA2i − C(LLi )

)
, (1.57)

where LHi and LLi are determined by (1.52), given wi and the demand for cars, cH and cL,

respectively. Note that this requires wi to be larger than C ′(Lki ) for k = L,H (see below).

In order to find the worker’s FOC, differentiate (1.54) with respect to wi and use

∂Lki
∂wi

=
−1

1− γ

(
1

wi

)
Lki and

∂ckA2i

∂wi
=
−γ

1− γ
Lki where k = L,H

by (1.52) and (1.53), respectively. This gives

πH

[
− γ

1− γ
LHi + C ′(LHi ) · 1

1− γ
· 1

wi
LHi

]
+ πL

[
− γ

1− γ
LLi + C ′(LLi ) · 1

1− γ
· 1

wi
LLi

]
= 0,

(1.58)
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which yields

wi =
1

γ

[
πLL

L
i

πLLLi + πHLHi
C ′(LLi ) +

πHL
H
i

πLLLi + πHLHi
C ′(LHi )

]
, (1.59)

where is wi is greater than C ′(Lki ) for k = L,H if γ is far enough below 1.

Next, we assume that all producers are identical, which means wi = wj = w and

Lki = Lkj = Lk for all i, j ∈ [0, 1] and k = L,H. The latter assumption implies cL = LL and

cH = LH , by (1.46). Furthermore, since the producer market is competitive, the price of a

car in units of apples is P c = W = w. As a result, the competitive equilibrium price of a

car is given by

P c
NP =

1

γ

[
πLc

L
NP

πLcLNP + πHcHNP
C ′(cLNP ) +

πHc
H
NP

πLcLNP + πHcHNP
C ′(cHNP )

]
. (1.60)

In the presence on an anti-bubble policy, the workers know the demand for cars

with certainty when choosing their wage. Thus, there are two car prices in a no-bubble

equilibrium. For instance, P c
L is the price of a car in state L under the policy, which is given

by

P c
L =

1

γ
C ′(cLP ), (1.61)

where cLP is the production and demand for cars in state L under the policy. Similarly, PH
P

is the price of a car in state H under the policy, which is given by

P c
H =

1

γ
C ′(cHP ), (1.62)

where cHP is the production and demand for cars in state H under the policy.

Examining the welfare impact of anti-bubble policy on the worker entails comparing

the worker’s expected utility in a bubble equilibrium with his expected utility in a no-bubble

equilibrium. In the absence of policy, the worker’s expected utility is

EUW
NP = πH

(
P c
NP c

H
NP − C(cHNP )

)
+ πL

(
P c
NP c

L
NP − C(cLNP )

)
, (1.63)
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and his expected utility under the policy is

EUW
P = πH

(
P c
Hc

H
P − C(cHP )

)
+ πL

(
P c
Lc

L
P − C(cLP )

)
. (1.64)

Thus, we can measure the impact of anti-bubble policy on the worker by the difference

between (1.61) and (1.60), or

E∆UW = EUW
P − EUW

NP . (1.65)

If E∆UW > 0, then workers benefit from anti-bubble policy, and if E∆UW < 0, then workers

are hurt by anti-bubble policy. As with E∆W S for the asset seller and E∆WB for the buyer

in Section 4 above, our goal is to determine the sign of E∆UW for the worker under the

most general conditions possible.

1.6 A Conjecture Concerning Goods Prices Across Policy and No-Policy Equilibria

In a policy equilibrium, producers know the future demand for cars with certainty.

In this equilibrium, a regime where the producer must set the period-2 car price in period 1

will have the same outcome as a regime where the car producer is able to set this car price

in period 2. This means that a policy equilibrium is essentially equivalent to an economy

where car prices are always flexible. As a result, we could alternatively refer to the no-policy

equilibrium as a “sticky-price equilibrium,” and we could refer to the policy equilibrium as a

“flexible-price equilibrium.” This implies that anti-bubble policy converts sticky prices into

flexible prices.

We conjecture that when workers have increasing marginal utility cost of effort, the

goods price in a no-policy equilibrium lies between the two state-contingent goods prices in

a policy equilibrium, so

P c
L < P c

NP < P c
H . (1.66)

This should be somewhat intuitive, since price setters in a no-policy regime would presumably

34



set P c
NP according to some weighted average of P c

L and P c
H . The next two sections provide

specifications of the model whereby we can easily demonstrate that this conjecture is true.

The main insight from this conjecture, assuming it’s true, is that it necessarily means that the

volatility of the production and consumption of cars is greater in a no-policy equilibrium than

it is in a policy equilibrium. In other words, this conjecture implies that sticky goods prices

amplify the variance of car production that arises from asset-driven changes to demand.

Figure 7 graphs the “quasi-supply” and demand for cars. Since the demand for cars

is contingent on the state of the world, there are two demand curves, Dc
L and Dc

H . For any

given car price, the buyer’s demand in state H, Dc
H , is larger than his demand in state L, Dc

L,

since the buyer’s state-H wealth is larger than his state-L wealth. The “quasi-supply” curve

is “quasi” because the price on the curve is greater than the monopolist workers’ marginal

cost curve by the factor 1
γ
> 1. This means workers would still be willing to produce at levels

where the car price is below the QSc curve, such as at cHNP , as long as the price is greater

than marginal cost. As Figure 7 shows, the production and consumption of cars is more

volatile in no-policy or sticky-price equilibrium. Car production in state L of a no-policy

equilibrium is lower than it would be in a policy equilibrium, while car production in state H

of a no-policy equilibrium is larger than it would be in a policy equilibrium. In a Kenyesian

sense, we could say that the existing car production volatility, which is driven by volatility

in asset markets, is amplified when car prices are sticky.

1.6.1 Car Production

The quasi-supply curve QSc shown in Figure 7 corresponds to the product of the

mark up 1/γ and workers’ marginal cost function C ′(c), so that, when the demand curve

moves, QSc doesn’t move. In other words, QSc in Figure 7 is simply a generalized version

of the workers’ FOC in a policy equilibrium like those shown in equations (1.61) and (1.62).

This QSc curve is not a supply curve, but rather a “quasi-supply curve,” because the workers

are monopolists and supply curves do not exist in monopoly-market equilibria. Thus, the
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P c
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Figure 1.7: Genera Model of Demand and Quasi-Supply of Cars

car price P̃ c that producers choose to charge for producing c̃ units of cars is determined

according to the quasi-supply curve

P̃ c =
1

γ
C ′(c̃). (1.67)

If C ′′(c̃) = 0, so C ′(c̃) = λ, say, with λ constant, then QSc is a horizontal line, and, regardless

of the state of the world and/or the bubble-policy equilibrium, the car price is simply P̃ c = λ
γ
,

where λ is a constant marginal (utility) cost of car production. An example of this is shown

in Figure 8 below. On the other hand, if C ′′(c̃) > 0, then QSc is upward-sloping like in

Figure 7. If C(3)(c̃) = 0, then QSc is upward-sloping and linear, and if C(3)(c̃) > 0, then QSc

is upward-sloping and convex.
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1.6.2 The Demand for Cars

The buyer’s period-2 FOC with respect to car consumption determines his demand

for cars. So, for a given car price P̃ c, the buyer’s demand for cars c̃ is determined by

u′
(
Ã− P̃ cc̃

)
P̃ c = v′ (c̃) , (1.68)

where Ã is the buyer’s period-2 state-contingent wealth such that

Ã =


AL = eB2 : in state L

AH = eB2 + S: in state H

(1.69)

Note that the policy doesn’t affect the demand curves for cars, since buyers’ period-2 wealth,

given by (1.69), is not affected by the policy. This is because we assume asset sellers are

always short-sale constrained so that buyers always purchase all available shares of the risky

asset. Thus, the only effect of policy on the goods market is whether sellers can use the

information revealed to set prices. Equation (1.68) is a generalization of the state-and-

equilibrium specific FOCs in (1.38), (1.40), (1.42), (1.43). The buyer’s expected period-2

wealth is

E
[
Ã
]

= πLe
B
2 + πH

(
eB2 + S

)
= eB2 + πHS, (1.70)

while the variance of his period-2 wealth is

V ar
[
Ã
]

= πLπHS
2. (1.71)

Holding Ã constant, the derivative of (1.68) with respect to P̃ c is,

dc̃

dP̃ c
=
u′
(
Ã− P̃ cc̃

)
− u′′

(
Ã− P̃ cc̃

)
· P̃ cc̃

u′′
(
Ã− P̃ cc̃

)
·
(
P̃ c
)2

+ v′′ (c̃)
< 0. (1.72)
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This is less than zero since u′′ (·) < 0, u′ (·) > 0, and v′′ (·) < 0. Thus, the buyer’s demand

curve for cars is downward slopping as expected. Now, holding P̃ c constant, the derivative

of (1.68) with respect to Ã is

dc̃

dÃ
=
u′′
(
Ã− P̃ cc̃

)
·
(
P̃ c
)2

+ v′′ (c̃)

u′′
(
Ã− P̃ cc̃

)
· P̃ c

> 0, (1.73)

which is greater than zero because u′′ (·) < 0 and v′′ (·) < 0. Thus, for a constant car price,

a positive wealth shock to the buyer will increase his demand for cars, as expected.

1.7 A Welfare Analysis of the Goods Market when Workers have Constant Marginal Utility-

Costs

First, note that

E [c̃NP ] = πLc
L
NP + πHc

H
NP

is the buyer’s expected consumption of cars in a no-policy equilibrium. This means that we

can rewrite (1.60) as

P cE [c̃NP ] =
1

γ

[
πLc

L
NPC

′ (cLNP )+ πHc
H
NPC

′ (cHNP )] , (1.74)

where P cE [c̃NP ] is the expected revenue that worker’s receive from providing labor for car

production in a no-policy equilibrium. In this section, we assume C (c̃) = λc̃, where λ is a

constant, so C ′ (c̃) = λ. Using (1.74), this implies that the car price in no-policy equilibrium

is P c
NP = λ

γ
. Substituting C ′ (c̃) = λ into the policy FOCs in (1.62) and (1.61), we find that

the car prices for states L and H are also P c
L = P c

H = P c
NP = λ

γ
, so the equilibrium car price

is unaffected by the state of the world as well as the central bank’s policy on asset bubbles.

As a result, the state-L production of cars is the same across the two policy equilibria, so

cLNP = cLP . The same it true for the state-H production of cars, so cHNP = cHP . This is shown

in Figure 8.
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Figure 1.8: Demand and Quasi-Supply for Cars when C ′ (·) = λ.

The result from Figure 8 implies that the worker’s expected revenue in a no-policy

equilibrium, or E
[
R̃NP

]
= P cE [c̃NP ], is the same as his expected revenue in a policy

equilibrium, or E
[
R̃P

]
= πLP

c
Lc

L
P + πHP

c
Hc

H
P . The same is true for his expected total costs,

so E [C (c̃NP )] = E [C (c̃P )] . Thus, if workers have constant marginal costs, then their ex

ante expected welfare is unaffected by anti-bubble policy, so E∆UW = EW
P − EUW

NP = 0.

This is obvious, since price-setters don’t use information from the asset market even if they

have it, so they don’t care whether the policy reveals this information.

1.8 A Welfare Analysis of the Goods Market with Logarithmic Utility and Quadratic Costs

In this section, we assume u (·) = v (·) = ln (·). This is a Cobb-Douglas utility

function, so the buyer always spends a constant proportion of his wealth on cars. Thus,

when P̃ c increases (decreases), c̃ decreases (increases), but P̃ cc̃ remains unchanged. We also

assume

C (c̃) =
λ

2
c̃2,
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which means

C ′ (c̃) = λc̃.

1.8.1 Consumption and Production in a No-Policy Equilibrium

In a no-policy equilibrium, the buyer’s state-H FOC (1.40) becomes

P c
NP

eB + S − P c
NP c

H
NP

=
1

cHNP
, (1.75)

and his state-L FOC (1.38) becomes

P c
NP

eB − P c
NP c

L
NP

=
1

cLNP
. (1.76)

The buyer receives all of his wealth as apples, so we let apples be the numeraire good.

Because the buyer has Cobb-Douglas utility, he spends a constant proportion of his wealth

on cars, so for a given level of wealth Ã, the amount of apples spent on cars does not change.

Thus, Equations (1.75) and (1.76), respectively, imply

P c
NP c

H
NP =

eB2 + S

2
=
AH

2
(1.77)

in state H and

P c
NP c

L
NP =

eB2
2

=
AL

2
(1.78)

in state L. More generally,

P c
NP c̃NP =

Ã

2
, (1.79)

so half of the buyer’s wealth is spent on car consumption, and the buyer’s demand for cars

can be expressed as

c̃NP =
Ã

2P c
NP

. (1.80)
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Thus, the workers’ expected revenue in a no-policy equilibrium is

E
[
R̃NP

]
= P c

NPE [c̃NP ] =
1

2
E
[
Ã
]
. (1.81)

The worker’s FOC (1.60) becomes

P c
NP =

1

γ

[
πLc

L
NP

E [c̃NP ]
· λcLNP +

πHc
H
NP

E [c̃NP ]
· λcHNP

]
, (1.82)

which may be written more concisely as

P c
NP =

λ

γ

[
E
[
(c̃NP )2]

E [c̃NP ]

]
=

2

γ

[
E [C (c̃NP )]

E [c̃NP ]

]
. (1.83)

Equation (1.83) says that the car price in a no-policy equilibrium is a mark-up of 2
γ

on the

ratio of the expected cost over the expected consumption/production. Equation (1.83) can

also be written as

P c
NPE [c̃NP ] =

λ

γ
E
[
(c̃NP )2] =

2

γ
E [C (c̃NP )] , (1.84)

so that expected revenue is greater than the expected cost by a factor of 2
γ
. Substituting

(1.81) and (1.80) into (1.84) gives

1

2
E
[
Ã
]

=
λ

γ
E

( Ã

2P c
NP

)2
 ,

which simplifies to

(P c
NP )2 =

2λ

4γ

E
[
Ã2
]

E
[
Ã
] ,

and finally gives

P c
NP = q ·

√√√√√E
[
Ã2
]

E
[
Ã
] , (1.85)
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where q =
√

λ
2γ

. Substituting

E
[
Ã2
]

= V ar
[
Ã
]

+ E
[
Ã
]2

,

into (1.85) and canceling common factors gives

P c
NP = q ·

√√√√√V ar
[
Ã
]

E
[
Ã
] + E

[
Ã
]
. (1.86)

Finally, substituting E
[
Ã
]

= eB2 + πHS and V ar
[
Ã
]

= πLπHS
2, from (1.70) and (1.71)

respectively, into (1.86) gives

P c
NP = q ·

√
πLπHS2

eB2 + πHS
+ (eB2 + πHS).

This can be written more concisely as

P c
NP = q ·

√
eB2 + (πLδ + πH)S, (1.87)

where

δ =
πHS

eB2 + πHS
< 1,

which implies (πLδ + πH) < 1, so

AL = eB2 < eB2 + πHS = E
[
Ã
]
< eB2 + (πLδ + πH)S < eB2 + S = AH . (1.88)

The inequalities in (1.88) will be used in the next section to show that our conjecture in

(1.66) is true for the present case.
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1.8.2 Consumption and Production in a Policy Equilibrium

In a policy equilibrium (or no-bubble equilibrium), the buyer’s state-H FOC (1.42)

becomes

P c
H

eB2 + S − P c
Hc

H
P

=
1

cHP
, (1.89)

and his state-L FOC (1.43) becomes

P c
L

eB2 − P c
Lc

L
P

=
1

cLP
. (1.90)

The amount of the buyer’s wealth that is spent on cars in state H is then

P c
Hc

H
P =

eB2 + S

2
=
AH

2
, (1.91)

and the amount of his wealth spent on cars in state L is

P c
Lc

L
P =

eB2
2

=
AL

2
. (1.92)

Thus, comparing (1.91) and (1.92) to (1.77) and (1.78) shows that, for each state of the world,

anti-bubble policy does not affect the amount of apples the buyer spends on cars. This means

that workers’ expected revenue in a policy equilibrium, E
[
R̃P

]
= πLP

c
Lc

L
P + πHP

c
Hc

H
P , is the

same as their expected revenue in a no-policy equilibrium, so

E
[
R̃P

]
= E

[
R̃NP

]
=

1

2
E
[
Ã
]
. (1.93)

Next, applying C ′ (c̃) = λc̃ to (1.67), the worker’s FOC in state H is

P c
H =

λ

γ
cHP . (1.94)

Multiplying both sides of (1.94) by P c
H , using (1.91) on the right-hand side, and solving for
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P c
H gives

P c
H = q ·

√
eB2 + S = q ·

√
AH . (1.95)

Similarly, multiplying both sides of

P c
L =

λ

γ
cLP , (1.96)

by P c
L, using (1.92) on the right-hand side, and solving for P c

L gives

P c
L = q ·

√
eB2 = q ·

√
AL. (1.97)

Applying (1.88) to (1.87), (1.97), and (1.95) implies that P c
L < P c

NP < P c
H . Thus, when

u (·) = v (·) = ln (·) and C (c̃) = λ
2

(c̃)2, our conjecture in (1.66) is true.

The ex ante expected car price in a policy equilibrium is

E
[
P̃P

]
= πLP

c
L + πHP

c
H = q · E

[√
Ã
]
, (1.98)

which is found using (1.95) and (1.97). Furthermore, by Jensen’s Inequality, we know that

E
[√

Ã
]
<

√
E
[
Ã
]
,

so because E
[
Ã
]

= eB2 + πHS < eB2 + (πLδ + πH)S, it must be the case that

E
[
P̃P

]
< P c

NP ,

using (1.87) and (1.98). Thus, anti-bubble policy decreases the ex ante expected car price,

which suggests that anti-bubble policy may increase the buyer’s expected consumption of

cars. We therefore conjecture that

E [c̃P ] > E [c̃NP ] ,
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which we prove in Lemma VI.

1.8.3 The Worker’s Ex Ante Expected Welfare

As already shown in (1.93), anti-bubble policy does not affect the the worker’s ex-

pected revenue in the present case. It turns out that anti-bubble policy does not affect

the worker’s expected cost either. This is shown in Lemma V. It will therefore follow that

anti-bubble policy doesn’t affect workers’ welfare, as is shown in Proposition IV.

Lemma V: If u (·) = v (·) = ln (·) and C (c̃) = λ
2

(c̃)2, then E [C (c̃NP )] =

E [C (c̃P )].

Proof. Using (1.94), the state-H revenue in a policy equilibrium can be rewritten as

P c
Hc

H
P =

λ

γ

(
cHP
)2

=
2

γ
C
(
cHP
)
. (1.99)

Similarly, using (1.96), the state-L revenue in a policy equilibrium can be rewritten as

P c
Lc

L
P =

λ

γ

(
cLP
)2

=
2

γ
C
(
cLP
)
. (1.100)

Thus, the expected revenue in a policy equilibrium is

E
[
R̃P

]
= πL

2

γ
C
(
cLP
)

+ πH
2

γ
C
(
cHP
)

=
2

γ
E [C (c̃P )] . (1.101)

Combining this with (1.93) and (1.84) gives

2

γ
E [C (c̃P )] = E

[
R̃P

]
= E

[
R̃NP

]
= P c

NPE [c̃NP ] =
2

γ
E [C (c̃NP )] , (1.102)

which implies Lemma V.

Proposition IV: If u (·) = v (·) = ln (·) and C (c̃) = λ
2

(c̃)2, then E∆UW = 0.
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Proof. Rewrite (1.63) and (1.64), respectively, as

EUW
NP = E

[
R̃NP

]
− E [C (c̃NP )] (1.103)

and

EUW
P = E

[
R̃P

]
− E [C (c̃P )] , (1.104)

so, using Lemma V and (1.93), E∆UW is

E∆UW = E
[
R̃P

]
− E

[
R̃NP

]
+ E [C (c̃NP )]− E [C (c̃P )] = 0. (1.105)

1.8.4 The Buyer’s Ex Ante Expected Welfare

First, consider the buyer’s period-2 consumption of apples. Because P c
NP c

H
NP = P c

Hc
H
P

and P c
NP c

L
NP = P c

Lc
L
P , anti-bubble policy does not impact the buyers’ period-2 spending on

cars, and so, does not impact their period-2 apple consumption. It therefore does not affect

their period-2 ex ante expected utility of apple consumption. That is,

πLu
(
eB2 − P c

NP c
L
NP

)
+πHu

(
eB2 + S − P c

NP c
H
NP

)
= πLu

(
eB2 − P c

Lc
L
P

)
+πHu

(
eB2 + S − P c

Hc
H
P

)
.

(1.106)

Thus, the effect of policy, ∆EWB
g , depends solely on the buyers’ expected utility from

consumption of cars, which we call ∆EUB
c , so

∆EWB
g = ∆EUB

c , (1.107)

46



where

∆EUB
c =

[
πLv

(
cLP
)

+ πHv
(
cHP
)]
−
[
πLv

(
cLNP

)
+ πHv

(
cHNP

)]
= E [v (c̃P )]− E [v (c̃NP )] .

(1.108)

Lemma VI: If u (·) = v (·) = ln (·) and C (c̃) = λ
2

(c̃)2, then E [c̃P ] > E [c̃NP ].

Proof. Let Gs
NP (c̃) be the formula for the secant line that runs from C

(
cLNP

)
to C

(
cHNP

)
on

the worker’s total cost curve (see Figure 9), so that

Gs
NP (E [c̃NP ]) = E [C (c̃NP )] . (1.109)

Likewise, let Gs
P (c̃) be the policy-equilibrium analog of Gs

NP (c̃), so that

Gs
P (E [c̃P ]) = E [C (c̃P )] . (1.110)

As shown in Figure 9, Gs
NP (c) > Gs

P (c) for any c in the open interval (cLP , c
H
P ), so

Gs
NP (E [c̃P ]) > Gs

P (E [c̃P ]) .

Applying Lemma V, together with (1.109) and (1.110), gives

Gs
NP (E [c̃P ]) > Gs

P (E [c̃P ]) = Gs
NP (E [c̃NP ]) ,

which implies

E [c̃P ] > E [c̃NP ] .

Thus, anti-bubble policy increases the buyer’s expected car consumption. Intuitively,

since c̃NP is more volatile and C (·) is convex, all else equal, one would expect E [C (c̃NP )] >

E [C (c̃P )]. Yet, as Lemma V shows, they are in fact equal, so it must be true that E [c̃NP ] <
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Cost

cars

C (c̃)

Gs
P (c)

Gs
NP (c)

cLNP cLP cHP cHNP
Ec̃PEc̃NP

E(C(c̃NP )) =E(C(c̃P ))

Figure 1.9: Expected Costs of Car Production

E [c̃P ]

Lemma VII: If u (·) = v (·) = ln (·) and C (c̃) = λ
2

(c̃)2, then E [v (c̃P )] >

E [v (c̃NP )].

Proof. This is intuitively clear. Because v (·) = ln (·), the buyer is risk averse and also prefers

more consumption over less. Thus, anti-bubble policy increases E [v (c̃)] because the buyer’s

car consumption is less volatile and larger in expected value in a policy equilibrium than it

is in a no-policy equilibrium. This is easily seen is Figure 10.10

Proposition V: If u (·) = v (·) = ln (·) and C (c̃) = λ
2
c̃2, then ∆EWB > 0.

Proof. First, note that ∆EWB can be broken up into three parts, in terms of apple con-

sumption in period 1, apple consumption in period 2, and car production in period 2. This

gives

∆EWB = ∆EUB
1 + ∆EUB

2 + ∆EUB
c ,

10I wish to thank Feng Liu for impressing on me the importance of analyzing ex ante expected welfare
changes through a graphical method like that in Figure 10.
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v (c̃)

carscLNP cLP cHP cHNP
Ec̃NP

E(ln (c̃NP ))

E (ln (c̃P ))

Ec̃P

Figure 1.10: Expected Utility of Car Consumption

where

∆EUB
1 = πHu

(
eB1 − PPS

)
+ πLu

(
eB1
)
− u

(
eB1 − PNPS

)
∆EUB

2 =
[
πHu

(
eB2 + S − P c

Hc
H
P

)
+ πLu

(
eB2 − P c

Lc
L
P

)]
−
[
πHu

(
eB2 + S − P c

NP c
H
NP

)
+ πLu

(
eB2 − P c

NP c
L
NP

)]
∆EUB

c =
[
πLv

(
cLP
)

+ πHv
(
cHP
)]
−
[
πLv

(
cLNP

)
+ πHv

(
cHNP

)]
.

Proposition III implies that ∆EUB
1 > 0 since ln (·) is an example of a DARA utility func-

tion.11 Equation (1.106) implies ∆EUB
2 = 0. Finally, Lemma VII implies ∆EUB

c > 0.

11Recall that Proposition III relies on Lemma IV which shows that, in the absence of a goods (car)
market in period 2, ∆EUB1 is a concave function in πH , i.e., when v (·) = 0. To prove Lemma IV, we
took the second derivative of (??) with respect to πH and showed that it is less than zero. If a goods
market is present in period 2, then πHβu

′ (eB2 + S
)

from the right-hand side of (1.2) must be replaced with

πHβu
′ (eB2 + S − P cNP cHNP

)
in the FOC (1.41). However, because the buyer has Cobb-Douglas utility, then

P cNP c
H
NP =

eB2 +S
2 , so

d P c
NP c

H
NP

d πH
= 0. This implies that the second derivative of (1.2) must have the same

sign as the second derivative of (1.41), which is negative.
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1.9 Conclusion

In summary, we find that anti-bubble policy decreases the ex ante welfare of asset

sellers because it decreases their expected consumption while increasing the volatility of their

consumption across states of the world. On the other hand, asset buyers appear to benefit

from anti-bubble policy. In the absence of a goods market, anti-bubble policy increases the

asset buyers’ ex ante expected welfare when they have DARA preferences, because the utility

gains from a larger expected consumption outweighs the the utility loses from more volatile

cross-state consumption. Asset buyers also benefit from anti-bubble policy, for certain utility

and cost specifications, when a goods market is incorporated into the model. Specifically,

for the logarithmic utility, quadratic cost case, anti-bubble policy improves the asset buyer’s

ex ante expected utility in the goods market. Finally, in both specifications of our goods

market, anti-bubble policy does not have any effect on the ex ante expected welfare of

workers/producers in the goods market.
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CHAPTER 2

Three-State Rational Greater-Fool Bubbles

2.1 Introduction

This chapter provides the general conditions under which a strong bubble can exist

in a three-state, three-period model with multi-period consumption. We first examines the

simplest case of the model where only one asset is available to trade: the risky bubble asset.

Next, we show that a strong bubble is still possible even when endowments are durable.

Finally, we introduce a risk-free asset into our strong bubble model of a greater-fool bubble.

In this section, we demonstrate that a strong bubble is not possible when a risk-free asset

is traded in period 1. However, related work from Conlon et al. (2019) shows that a strong

bubble can coexist with a risk-free asset in models with four states of the world.

2.2 A Simple Bubble

2.2.1 Setup and Equilibrium

This appendix considers the general case of a three-state, three-period strong bubble

model, with only one asset available to trade, which is risky. In this general case, agent j

faces the following expected utility maximization problem in his/her period-1 information
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set Ij1,i,

max
3∑
t=1

βt−1E
[
U(Cj

t (ω))| ω ∈ Ij1,i
]

s.t. Cj
t (ω) =


ejt(ω) + pt(ω)Xj

t (ω) for t = 1, 2

ej3(ω) + p3(ω)Xj
3(ω) + d(ω)sj3(ω) for t = 3

Xj
t (ω) is measurable w.r.t. Pjt

Xj
t (ω) ≤ sjt−1(ω)

sjt(ω) = sjt−1(ω)−Xj
t (ω)

sj0 (ω) = nj ≥ 0, with nj independent of ω.

Here ω is a typical state of the world, j = E,F indicates Ellen and Frank, respectively,

Pjt is Agent j’s period-t (possibly price-refined) information partition for t = 1, 2, 3, ejt(ω)

is his/her endowment, sj0(ω) = nj is his/her initial endowment of the risky asset, sjt (ω) is

his/her risky-asset holdings at the end of period t, d(ω) is the risky asset’s state-ω dividend,

which is only paid in period 3, Xj
t (ω) is his/her net sales of the risky asset, pt(ω) is the price

of the risky asset, and Cj
t (ω) is Agent j’s period-t consumption. All of these are defined in

greater detail in the main paper.

We define M j
t (ω) = π(ω)βt−1U ′

(
Cj
t (ω)

)
to be the discounted shadow price of con-

sumption in period t, state ω. In other words, M j
t (ω) is the ex ante expected marginal utility

that Agent j attaches to an additional unit of consumption in state ω in period t. Similarly,

M j
t ({ω1, ..., ωk}) is the discounted shadow price of consumption in the collection of states

{ω1, ..., ωk}, so M j
t ({ω1, ..., ωk}) = M j

t (ω1) +M j
t (ω2) + ...+M j

t (ωk).

Note that these shadow prices depend on final consumption, and so, will depend

endogenously on the equilibrium outcome.

52



Recall that Ellen’s and Frank’s information partitions are

Ellen: Period 1 : {{b, L}, {H}}

Period 2 : {{b}, {L}, {H}}

Frank: Period 1 : {{b}, {L,H}}

Period 2 : {{b}, {L,H}},

(2.1)

while the true state of the world is common knowledge to the agents by the beginning of

period 3. Agents’ endowments in period t are dependent on the state of the world ω, but

they must conform to their information partitions. For instance, Ellen’s period-1 endowment

in state b must equal her period-1 endowment in state L, so eE1 (b) = eE1 (L) = eE1 ({b, L}),

by slight abuse of notation. The risky asset only pays a dividend in state H, period 3, so

d(H) = d > 0 and d(b) = d(L) = 0.

In general, Agent j’s period-t first-order condition (FOC) from his/her expected util-

ity maximization problem, given his/her information set Ijt,i = {ω1, ..., ωk}, is

M j
t (Ijt,i)pt(ω) ≥

∑
ω∈Ijt,i

M j
t+1(ω)pt+1(ω). (2.2)

If Agent j is a buyer or a holder of the risky asset in period t, then (2.2) necessarily

holds as an equality. If (2.2) holds as a strict inequality, then Agent j must necessarily sell

any shares s/he owns, and in fact, must be short-sale constrained. We use this in the proof

of Proposition A.

Proposition A: Define p̄1 and p̄2 as solutions to

p̄2 =
π(H)βU ′

(
eF3 (H) + (nE + nF )d

)
[π(L) + π(H)]U ′ (eF2 ({L,H})− (nE + nF )p̄2)

d =
MF

3 (H)

MF
2 ({L,H})

d (2.3)

and

p̄1 =
βU ′

(
eE2 (H) + (nE + nF )p̄2

)
U ′ (eE2 (H)− nF p̄1)

p̄2 =
ME

2 (H)

ME
1 (H)

p̄2. (2.4)
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Then in a three-state, three-period economy with the information structure described in

(2.1), there is a strong bubble equilibrium, such that

p1(ω) = p̄1 for all ω ∈ Ω, XF
1 (ω) = −XE

1 (ω) = nF for all ω ∈ Ω,

p2(b) = 0, XE
2 (b) = XF

2 (b) = 0,

p2(L) = p2(H) = p̄2, XE
2 (ω) = −XF

2 (ω) = nE + nF for ω = L,H,

p3(b) = p3(L) = 0, p3(H) = d, XE
3 (ω) = XF

3 (ω) = 0 for all ω ∈ Ω,

if and only if the following three conditions are met.1

Condition 1 :
ME

2 (L)

ME
1 ({b, L})

=
ME

2 (H)

ME
1 (H)

,

Condition 2 :
ME

2 (H)

ME
1 (H)

≥ MF
2 ({L,H})

MF
1 ({L,H})

,

Condition 3 :
MF

3 (H)

MF
2 ({L,H})

≥ ME
3 (H)

ME
2 (H)

.

(2.5)

In the equilibrium, Condition 1 will imply that Ellen’s period-1 willingness-to-pay

(WTP) for the risky asset is the same in her cells {b, L} and {H}. Condition 2 will imply

that Ellen’s period-1 WTP in {H}, and so also in {b, L}, is greater than or equal to Frank’s

in {L,H}. Note also that Frank’s period-1 WTP is zero in state b since he knows the asset

price will be zero in the next period. Thus, Ellen’s WTP will be higher than Frank’s in state

b as well as in states L and H, and so in every state in period 1. As a result, Ellen will

buy and hold the risky asset in period 1, whatever the state is. Condition 3 will imply that

Frank’s period-2 WTP for the asset in {L,H} is greater than or equal to Ellen’s in {H}.

Thus, Ellen will sell the asset in state H in period 2. Ellen will also prefer to sell in state L,

since she knows the asset price will be zero in the next period. Thus, Ellen will sell and Frank

will buy the asset in both states L and H in period 2. In summary, if state b occurs, Ellen

will be the fool who buys a worthless asset in period 1. If state L occurs, Ellen will buy the

asset in period 1 and Frank, as a greater fool, will buy the asset back in period 2. Finally, if

1Recall that the shadow prices M j
t (·) in (2.5) depend on the state-contingent consumption, and so, depend

on the prices given in (2.3) and (2.4).
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state H occurs, Ellen will buy the valuable asset to smooth her consumption between periods

1 and 2, and Frank will buy the asset back in period 2 to smooth his consumption between

periods 2 and 3. There is no fool in this last case.

Proof of Sufficiency : We first show that (2.5) gives sufficient conditions for Proposition

A’s prices and net sales to satisfy the FOCs and equilibrium conditions. The SOCs hold

automatically since markets are competitive and utility is concave.

Proof. Start with the last period, period 3. At this point, the true state of the world is

common knowledge to both Ellen and Frank. As a result, the period-3 asset price simply

equals its state-contingent dividend, so p3(b) = p3(L) = 0 and p3(H) = d. Also, neither

Ellen nor Frank has a motive to trade the asset, so XE
3 (ω) = XF

3 (ω) = 0 is optimal for all

ω ∈ Ω.

Next, consider period 2. In state b, it is common knowledge that the asset is worthless,

so the asset price equals zero, i.e., p2(b) = 0, and there is no motive to trade, so XE
2 (b) =

XF
2 (b) = 0 is optimal.

In states L and H, the risky asset’s worth is not common knowledge, so trades of the

risky asset may occur at a positive price. Assume Frank’s period-2 FOC in states L and H

holds as an equality. That is, Frank’s FOC, given that he holds shares in the risky asset, is

MF
2 ({L,H})p2({L,H}) = MF

3 (H)d, (2.6)

where by abuse of notation p2({L,H}) represents the common period-2 price in states L and

H. This, along with (2.3), implies that the period-2 equilibrium prices in states L and H

are p2(L) = p2(H) = p̄2.

Given the equilibrium price p̄2 and Condition 3, Ellen’s FOC in state H holds auto-

matically, since

p̄2 =
MF

3 (H)

MF
2 ({L,H})

d ≥ ME
3 (H)

ME
2 (H)

d.
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As a result, Condition 3 implies that Ellen’s period-2 FOC in state H given that she hold

zeros shares of the risky asset at the end of this period is

ME
2 (H)p2(H) ≥ME

3 (H)d, (2.7)

while her state-L analog holds automatically since she know the asset price will be zero next

period. Thus, in {L,H}, Frank bids the price up to p̄2, and Ellen is willing to sell all her

asset shares at this price in state H as well as in state L. Ellen’s and Frank’s period-2 net

sales of XE
2 (ω) = −XF

2 (ω) = sE1 (ω) are therefore optimal for ω = L,H. Also, assuming for

the moment that

sE1 (L) = sE1 (H), (2.8)

the quantity of shares traded does not differ across states L and H, so Frank cannot en-

dogenously refine his period-2 cell {L,H}. Thus, the period-2 equilibrium prices and net

sales are also optimal with respect to agents’ price-refined information sets, since there is no

actual price refinement.

Finally, consider period 1. Using (2.2), Ellen’s FOC in her cell {b, L} is

ME
1 ({b, L})p1({b, L}) ≥ME

2 (L)p̄2

, and Frank’s FOC in his cell {L,H} is

MF
1 ({L,H})p1({L,H}) ≥MF

1 ({L,H})p̄2. (2.9)

Again, in equilibrium, at least one of the agents’ FOCs must hold as an equality to

determine the equilibrium price. Condition 2 in (2.5) implies that Ellen’s period-1 WTP for

the asset in state H is greater than or equal to Frank’s WTP in {L,H}, while Condition 1

implies that Ellen’s period-1 WTP in her cell {b, L} is the same as her WTP in {H}. Thus,

Conditions 1 and 2 together imply that Ellen’s period-1 WTP is always greater than or equal
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to Frank’s WTP in states L and H. It is also greater than Frank’s WTP in state b, which

is zero, since Frank knows the asset price will fall to zero in the next period. As a result,

Ellen’s FOCs must hold as equalities. That is,

ME
1 ({b, L})p1({b, L}) = ME

2 (L)p̄2, (2.10)

and

ME
1 (H)p1(H) = ME

2 (H)p̄2. (2.11)

These two equalities, together with Condition 1, show the period-1 equilibrium prices are

equal, so p1(b) = p1(L) = p1(H). Equations (2.11) and (2.4) further show that p1(b) =

p1(L) = p1(H) = p̄1. Given the equilibrium price p̄1 and Condition 2, Frank’s period-1 FOC

in {L,H}, (2.9), holds automatically, since

p̄1 =
ME

2 (H)

ME
1 (H)

p̄2 ≥
MF

1 ({L,H})
MF

1 ({L,H})
p̄2.

Thus, at price p̄1, Frank sells all his asset shares in every state of the world. Ellen’s and

Frank’s period-1 net sales of −XE
1 (ω) = XF

1 (ω) = sF0 (ω) = nF are therefore optimal for all

ω ∈ Ω. Since neither the quantity of shares traded nor the asset price differs across the three

states, neither Ellen nor Frank can endogenously refine their period-1 information partitions,

and so the equilibrium prices and net sales obtained above are also optimal with respect to

agents’ price-refined information partitions. Finally, note that sE1 (L) = sE1 (H) = nE + nF ,

so the assumption in (2.8) is met.

A strong bubble occurs in state b, since p1(b) = p̄1 > 0, even though both Ellen and

Frank know, in that state, that the asset will never pay a dividend. The conditions in (2.5)

are therefore sufficient for the existence of a strong bubble in a three-state, three-period

economy with the information structure given in (2.1).
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Proof of necessity : We prove that a strong bubble equilibrium requires the three conditions

in (2.5).

Proof. Any strong bubble must occur in state b in the three-state, three-period economy,

because state b is the only state where everyone knows the asset will not pay a dividend.

Suppose then that the true state is b. In period 1, Frank knows for certain that the true state

is b, and he also knows the true state will become common knowledge in the next period,

so the asset price will fall to zero. Thus, Frank strictly prefers to sell all his asset shares

in state b in period 1 at any positive price. Frank therefore must also sell all his shares in

his cell {L,H}, since otherwise Ellen could distinguish state b from L and would not buy in

state b, which would unravel the bubble. Similarly, Ellen must also buy the same amount

of shares in state H as she does in state L, and at the same price, to ensure that Frank

cannot endogenously refine his cell {L,H}. Otherwise, in state b, it would become common

knowledge that the true state is b or L, not H. That is, it would become common knowledge

that the asset is worthless. As a result, Ellen would again not buy the asset in state b at

a positive price, which would again unravel the bubble. In her period-1 cell {b, L}, Ellen is

not sure of the true state, but she knows the period-2 asset price will crash to zero if the

state is b. Thus, Ellen is only willing to buy the overpriced asset in {b, L} in period 1 if she

expects to sell it in state L in period 2. Thus, Frank must be willing to buy the risky asset

in state L in period 2.

Moreover, Frank is only willing to buy the asset in state L if he thinks it might be

valuable, that is, only if he thinks the state might be H, where the asset will pay a dividend.

Thus, Ellen must also be willing to sell in state H in period 2.

Thus, in a strong bubble equilibrium, Ellen must buy the risky asset in period 1

in every state, at the same price, and Frank must buy the risky asset in states L and H

in period 2. Using (2.2), it follows that Frank’s FOC in his period-2 cell {L,H} must

hold as an equality, as in (2.6). This gives p2(L) = p2(H) = p̄2. At the price p̄2, Ellen’s

FOC in her period-2 cell {H}, i.e., (2.7), together with (2.6), implies Condition 3 in (2.5).
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Using (2.2) again, Ellen’s FOCs in her period-1 cells {b, L} and {H} must also hold as

equalities, since she buys in these states. Also, these two equalities must give the same

price. Since p2(L) = p2(H) = p̄2, these two equalities produce the same price only if

Condition 1 in (2.5) holds, as can be seen by comparing (2.10) and (2.11). The period-1

price is thus p1(b) = p1(L) = p1(H) = p̄1. Finally, given p1(L) = p1({L,H}), Frank’s FOC

in {L,H}, i.e., (2.9), together with (2.11), implies Condition 2 in (2.5). Therefore, the

three conditions in (2.5) are necessary for a strong bubble equilibrium in the three-state,

three-period economy.

Note that Condition 1 requires Ellen to have a period-1 consumption smoothing

motive to buy the asset that is stronger in state L than it is in state H. Specifically, this

consumption smoothing motive is sufficiently stronger in L that her WTP in {b, L} is the

same as her WTP in {H}, even though in {b, L} she is not sure whether the true state is

L, where she can resell the asset to Frank in period 2, or b, where she cannot. Condition

2 means that Ellen’s period-1 consumption smoothing motive, to buy the asset, in her cell

{H} is stronger than Frank’s period-1 consumption smoothing motive in his cell {L,H}.

Similarly, Condition 3 means that Frank has a stronger consumption smoothing motive to

buy the risky asset relative to Ellen in period 2 in state H, even though Frank is not sure

whether the true state is H, where the asset pays a dividend, or L, where it does not.

2.2.2 Numerical Example A

First, consider the numerical example in the main paper. We can check whether

the Conditions in Proposition A are met, which they should be since we already know that

a strong bubble equilibrium exists in this example. Condition 1 holds for the numerical

example in the main paper since

ME
2 (L)

ME
1 ({b, L})

=
1

2
=
ME

2 (H)

ME
1 (H)

,

59



and Condition 2 holds since

ME
2 (L)

ME
1 ({b, L})

=
1

2
≥ 1

4
=
MF

2 ({L,H})
MF

1 ({L,H})
.

Finally, Condition 3 holds since

MF
3 (H)

MF
2 ({L,H})

=
1

2
≥ 5

14
=
ME

3 (H)

ME
2 (H)

.

The asset prices for the strong bubble equilibrium in the main paper have simple, alge-

braic solutions because agents have logarithmic utility. For other utility functions, however,

the solutions for asset prices may be difficult to solve algebraically.

Table 2.1: Agents’ Endowments for Numerical Example A

State b L H

Period 1 82 82 18
Period 2 20 1 12
Period 3 400 400 400

Ellen

State b L H

Period 1 4 4 4
Period 2 8 20 20
Period 3 20 20 8

Frank

In general, however, the asset prices in a strong bubble equilibrium, p1 and p2, are

relatively easy to solve recursively. We first find p2 using (2.3), which is one equation in one

unknown. Once we have a value for p2, we can find p1 using (2.4), which is also one equation

in one unknown, given p2. We can then use the values for p1 and p2 to find the state-and-time

dependent consumption values for Ellen and Frank and check whether Conditions 1, 2 and

3 hold, to ensure that these prices represent a strong bubble equilibrium.

Consider a numerical example similar to the one in Liu and White (2019), where

π(ω) = 1
3

for ω ∈ Ω, β = 1, nE = nF = 1, and d = 4. However, in contrast to the main

paper’s numerical example, suppose that (i) both Ellen and Frank have a utility function

U(c) = 4
3
C

3
4 instead of logarithmic utility and (ii) agents’ endowments are those shown in

Table 2.1 rather than those in Tables 1 and 2 of Liu and White (2019)..
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In this numerical example, the analog of (2.3) is

p2 =
1
3

[8 + 2(4)]−
1
4

2
3

[20− 2p2]−
1
4

· 4 = (20− 2p2)
1
4 ,

which is difficult to solve algebraically. However, using Newton’s method, or any comparable

numerical algorithm, it becomes clear that the solution is p2 = 2. Next, using p2 = 2, the

analog of (2.4) is

p1 =
1
3

[12 + 2(2)]−
1
4

1
3

[18− p1]−
1
4

· 2 = (18− p1)
1
4 ,

which is also difficult to solve algebraically. However, again, using Netwon’s Method, for

example, we find p1 = 2.

Table 2.2: Agents’ Consumption for Numerical Example A

State b L H

Period 1 80 80 16
Period 2 20 5 16
Period 3 400 400 400

Ellen

State b L H

Period 1 6 6 6
Period 2 8 16 16
Period 3 10 20 16

Frank

We then use p1 = 2 and p2 = 2 to calculate Ellen’s and Frank’s state-and-time

dependent consumption, as shown in Table 2.2 respectively. Using these consumption tables,

we can check to see if Conditions 1, 2, and 3 are met. If they are met, then we again have a

strong bubble equilibrium. Starting with Conditions 1, we can see that

ME
2 (L)

ME
1 ({b, L})

=
1

2
· (5)−

1
4

(80)−
1
4

= 1,

and

ME
2 (H)

ME
1 (H)

=
(16)−

1
4

(16)−
1
4

= 1.

This ensures that the period-1 asset prices across all states of the world are equal, so Ellen’s

information doesn’t leak to Frank, which therefore prevents an endogenous refining of Frank’s
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period-1 cell {L,H}. Next, we see that Conditions 2 holds since

MF
2 ({L,H})

MF
1 ({L,H})

=
(16)−

1
4

(6)−
1
4

=

(
3

8

) 1
4

,

which is less than the above value of
ME

2 (H)

ME
1 (H)

= 1. Finally, Condition 3 holds since

ME
2 (H)

ME
1 (H)

=
(400)−

1
4

(16)−
1
4

= 0.447,

which is less than

MF
3 (H)

MF
2 ({L,H})

=
1
3
(16)−

1
4

1
3
(16)−

1
4

= 0.5.

2.3 A Bubble in the Case of a Durable Good

In both Appendix A and the main paper, we assume that endowments of the con-

sumption good are completely perishable, and no riskless asset, e.g., money, exists. In those

examples, there are no means available, other than through trades of the bubble asset, for

agents to save portions of their endowment in order to intertemporally smooth their con-

sumption. In this appendix, we show that a strong bubble can still exist even if agents

have durable (i.e., storable) endowments. We do this by introducing a storage facility where

agents can privately store portions of their durable endowment. In general terms, this pri-

vate storage facility can be thought of as a bank that offers savings deposits. An agent

can discreetly “deposit” portions of his/her endowment into this storage facility, and other

agents are not able to observe the quantity of endowment placed into these storage facilities.

We begin this appendix by examining the utility-maximizing conditions that deter-

mine agents’ savings and storage decisions. We then show that the strong bubble equilibrium

in the main paper’s numerical example remains unchanged when we allow endowments to be

partially durable (i.e., partially perishable), because storage remains sufficiently unattrac-

tive. In general, a storage technology can be incorporated into any pre-existing three-state

model of a strong bubble without changing the equilibrium prices and asset trades, if the re-
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turn on storage is sufficiently low. This is because the storage technology can be specified to

have such unappealing intertemporal consumption smoothing benefits that agents never use

storage, and instead, decide to allocate all of their savings toward the bubble asset. Next, we

present a numerical example of a strong bubble where endowments are completely durable

(i.e., not perishable at all), and where storage is actually used in equilibrium. Specifically,

Ellen uses storage in period 1 in states b and L, and Frank uses storagein period 2 in states

L and H. Finally, we prove that, when storage technology is available, Ellen never uses

storage in state H (in either period 1 or 2) and Frank never uses storage in period 1 in his

cell {L,H}.

2.3.1 Utility-Maximizing Storage Conditions

Let δ ∈ [0, 1) be the consumption good’s one-period depreciation rate, so one unit

of consumption good placed in storage today will provide 1 − δ units of consumption after

one period. Thus, endowments are at least partially durable. Suppose, then, that in period

1, state ω, Agent j places vj1(ω) units of his/her period-1 endowment into storage. Agent

j will then have vj1(ω)(1 − δ) additional units of the consumption good at the beginning of

period 2. Note also that no one will use storage in period 3, so vj3(ω) = 0 for all ω ∈ Ω

and for j = E,F , because agents cannot consume after period 3. Thus, Agent j’s state-ω

consumption for periods 1, 2, and 3, respectively, are

Cj
1(ω) = ej1(ω)− vj1(ω) + p1(ω)Xj

1(ω)

Cj
2(ω) = ej2(ω) + (1− δ)vj1(ω)− vj2(ω) + p2(ω)Xj

2(ω)

Cj
3(ω) = ej3(ω) + (1− δ)vj2(ω) + p3(ω)Xj

3(ω) + d(ω)sj3 (ω) .

(2.12)

Agents are free to choose any nonnegative portion of their endowment to store, but

they cannot store a negative amount, i.e., they cannot borrow through the storage technology.
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Agent j chooses his/her level of storage, vjt (ω), according to the his/her FOC

M j
t (Ijt,i) ≥M j

t+1(Ijt,i) (1− δ) , (2.13)

in each of his/her period-t information sets Ijt,i, and this holds as an equality if the agent

stores a positive amount of the consumption good. Thus, Agent j places none of his/her

endowment in storage, so vjt (ω) = 0, if (2.13) holds as a strict inequality, while vjt (ω) > 0

implies that (2.13) holds as an equality. This means Agent j’s storage decision is always

subject to the complementary slackness condition

vjt (ω) ·
[
M j

t (Ijt,i)−M
j
t+1(Ijt,i) (1− δ)

]
= 0. (2.14)

Alternatively, we can rewrite (2.13) as

1 ≥
M j

t+1(Ijt,i)

M j
t (Ijt,i)

· (1− δ) , (2.15)

where the right-hand side of (2.15) is Agent j’s period-t WTP in his/her cell Ijt,i, in terms

of the amount of period-t consumption he/she is willing to give up to receive 1− δ units of

consumption in period t+1. Again, Agent j places none of his/her endowment in storage, so

vjt (ω) = 0, if (2.15) is a strict inequality, while vjt (ω) > 0 only if (2.15) holds as an equality.

Intuitively, vjt (ω) = 0 if Agent j’s WTP for storage is less than the cost of storage, which is

always one unit of the consumption good, but if vjt (ω) > 0, then Agent j’s WTP for storage

is equal to the cost of storage.

The FOCs (2.7), (2.6), (2.9), (2.10), and (2.11) from Section 2.1 of course, continue

to apply, but the marginal utilities used to determine p1 and p2 are now evaluated at the

consumption levels in (2.12) instead of those from Section 2.2.

In addition, the three conditions in (2.5) are still necessary for an equilibrium, with

consumptions again calculated using (2.12), since the necessity part of Proposition A still
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applies. However, these conditions are no longer sufficient if storage is possible, though they

are sufficient for for p2 and p1, from (2.3) and (2.4), to satisfy the FOCs (2.7), (2.6), (2.9),

(2.10), and (2.11), with (2.12) used for consumption.

Finally, note that, because storage is always private, a storage decision by one agent

will not cause endogenous refinement of another agent’s information partitions. This means,

for instance, that Ellen can store different amounts of her period-1 endowment across her

cells {b, L} and {H}, without revealing to Frank whether the true states is L or H.

2.3.2 Numerical Example B1: Partially Durable Endowments

Consider the numerical example from Liu and White (2019). In this example, agents’

endowments are completely perishable, which means δ = 1. However, the strong bubble

equilibrium in this numerical example continues to exist even if we allow agents’ endowments

to be partially durable, or δ < 1, as long as δ is sufficiently close to one.

Table 2.3: Agents’ Willingness-to-Pay for Storage for Numerical Example B1

State b L H

Period 1 0.3 0.3 0.05
Period 2 0.1 0.5 0.036

Ellen

State b L H

Period 1 0.021 0.025 0.025
Period 2 0.2 0.133 0.133

Frank

For example, suppose we allow δ = 0.9 so that 1− δ = 0.1. This slight adjustment in

our parameters does not unravel the strong bubble equilibrium in the main paper’s numerical

example. The asset prices continue to be p1 = 1 and p2 = 2, and the pattern of trade of the

risky-bubble asset remains XF
1 (ω) = −XE

1 (ω) = 1 ∀ ω ∈ Ω and XE
2 (ω) = −XF

2 (ω) = 2 for

ω = L,H. This is because the change in δ does not affect Ellen’s or Frank’s consumption,

since neither agent chooses to use storage to smooth his/her consumption intertemporally,

so vjt (ω) = 0 for all ω ∈ Ω, for t = 1, 2, 3 and for j = E,F . This becomes more apparent once

we use Ellen’s and Frank’s consumption values from Tables 5 and 6 in Liu and White (2019)

to calculate their respective state-and-time dependent WTPs for storage, which are shown

in Table 2.3. For each state and period, Ellen’s and Frank’s WTP for storage is less than the
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marginal cost of storage, which is one unit of the consumption good. As a result, vjt (ω) = 0

∀ ω ∈ Ω must be optimal for both Ellen and Frank in each period t in the main paper’s

example. If an agent’s WTP were greater than one, then zero storage would be suboptimal

since the agent could improve his/her expected utility by increasing storage until his/her

WTP falls to one.

2.3.3 Numerical Example B2: Perfectly Durable Endowments

We now show that a strong bubble equilibrium can exist even if agents’ endowments

are completely durable, so δ = 0. Like the numerical example in the main paper, we assume

nE = nF = 1, π(ω) = 1
3
∀ ω ∈ Ω, U(C) = lnC, β = 1, d(b) = d(L) = 0, and d(H) = d = 4.

However, in contrast to the main paper’s numerical example, we assume that Ellen and

Frank have the state-and-time dependent endowments shown in Table 2.4. respectively.

Table 2.4: Agents’ Endowments for Numerical Example B2

State b L H

Period 1 17 17 7
Period 2 12 8 8
Period 3 15 30 30

Ellen

State b L H

Period 1 7 6 6
Period 2 10 40 40
Period 3 10 16 8

Frank

As in previous strong bubble equilibria, Ellen buys Frank’s one share of the risky

asset in period 1 in states b, L, and H, and Frank buys Ellen’s two shares in period 2 in

states L and H. The period-1 equilibrium asset price is p1 = 1 ∀ ω ∈ Ω, and the period-2

equilibrium asset price is p2 = 2 for ω = L,H. Frank’s period-1 gross return from the risky

asset in his cell is riskless, at {L,H} is p2
p1

= 2, and Ellen’s period-2 gross return from the

risky asset in her cell {H} is riskless, at d
p1

= 2. Both of these returns are greater than the

gross return to storage of 1, so Frank doesn’t use storage in period 1 in his cell {L,H} and

Ellen doesn’t use storage in in period 2 in her cell {H}.

Ellen’s and Frank’s state-contingent storage for periods 1 and 2, or vj1(ω) and vj2(ω),

are shown in Table 2.5. Notice that, as we would expect, Ellen does not save through
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Table 2.5: Agents’ Storage for Numerical Example B2

State b L H

Period 1 2 2 0
Period 2 0 0 0

Ellen

State b L H

Period 1 0 0 0
Period 2 0 10 10

Frank

storage in state H in period 2 while Frank does not save through storage in period 1 in his

cell {L,H}. However, Ellen does store 2 units of her period-1 endowment in her cell {b, L}

while Frank stores 10 units of his period-2 endowment in his cell {L,H}.

Table 2.6: Agents’ Consumption for Numerical Example B2

State b L H

Period 1 14 14 6
Period 2 14 14 12
Period 3 15 30 30

Ellen

State b L H

Period 1 8 7 7
Period 2 10 26 26
Period 3 10 26 26

Frank

Ellen’s and Frank’s state-and-time dependent consumption are shown in Table 2.6.

Using these consumption values, we can check Conditions 1, 2, and 3 to make sure that the

FOCs (2.7), (2.6), (2.9), (2.10), and (2.11) still hold with, p2 and p1 from (2.3) and (2.4).

Condition 1 holds since

ME
2 (H)

ME
1 (H)

=
1/12

1/6
=

ME
2 (L)

ME
1 ({b, L})

=
(1/14)

(1/14) + (1/14)
=

1

2
,

and Condition 2 holds since

MF
2 ({L,H})

MF
1 ({L,H})

=
(1/26) + (1/26)

(1/7) + (1/7)
=

7

26
≤ 1

2
.

Additionally, Condition 3 holds since

ME
3 (H)

ME
2 (H)

=
1/30

1/12
=

12

30
≤ MF

3 (H)

MF
2 ({L,H})

=
(1/26)

(1/26) + (1/26)
=

1

2
.

Thus, a strong bubble is present even though the consumption good is completely durable.
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We use (2.3) and (2.4) to confirm that p1 = 1 and p2 = 2 are indeed the equilibrium

asset price values. Beginning with period 2, its clear that p2 = 2 is the equilibrium asset

price for period 2, since

p2 =
MF

3 (H)

MF
3 ({L,H})

· d =
1

2
· 4 = 2.

Furthermore, p1 = 1 is the correct equilibrium asset price for period 1, since

p1 =
ME

2 (H)

ME
1 (H)

· p2 =
1

2
· 2 = 1.

Of course, the FOCs (2.7), (2.6), (2.9), (2.10), and (2.11) can also be checked directly.

Table 2.7: Agents’ Willingness-to-Pay for Storage for Numerical Example B2

State b L H

Period 1 1 1 0.5
Period 2 0.93 0.47 0.4

Ellen

State b L H

Period 1 0.8 0.27 0.27
Period 2 1 1 1

Frank

Finally, we can check agents’ storage FOCs by calculating their respective state-and-

time dependent WTPs for storage. Ellen’s and Frank’s WTPs for storage are calculated in

Table 2.7. Notice that, when an agent stores a positive quantity of the consumption good,

his/her WTP is always 1. In period 1, Ellen places 2 units of her endowment into storage

in states b and L, so her WTP is 1 as shown in the top row of the left panel of Table 2.6.

In period 2, Frank places 10 units of his endowment into storage in states L and H, so his

WTP is 1 as shown in the bottom row of the right panel of Table 2.6. Furthermore, notice

that agents do not use storage when their WTP is less than 1. For instance, Frank does not

use storage in period 1 in any state of the world because his WTP is always less than 1. The

same is true for Ellen in period 1, state H as well as in period 2, states b and L. However,

notice that Frank’s WTP is 1 in period 2 in state b even though he does not use storage.

This is because a storage WTP equal to 1 is a necessary condition for positive storage but it

is not a sufficient condition. Conversely, a storage WTP less than 1 is a sufficient condition

for zero storage, but it is not a necessary condition.
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2.3.4 Agents’ General Storage Decisions

We now examine agents’ storage decisions in the general context of any strong bubble

equilibrium, given our three-state, three-period structure, and show that, in states where

risky-bubble asset has a riskless positive payoff next period, the gross return to the risky-

bubble asset exceeds the gross return to storage. This result allows us to determine the

state and period where an agent never uses the storage technology. Proposition B1 examines

Ellen’s period-1 storage decision in state H.

Proposition B1: In any strong bubble equilibrium where storage technology

is available, the gross return to the risky asset is always greater than the gross return to

storage in period 1 in states L and H, so p2
p1
> 1− δ. Furthermore, Ellen never uses storage

in period 1 in state H, so vE1 (H) = 0.

Proof. Compare the reciprocal of Condition 1 with the reciprocal of Ellen’s period-1, state-H

analog of (2.15). This gives

1− δ ≤ ME
1 ({b, L})

ME
2 ({b, L})

<
ME

1 ({b, L})
ME

2 (L)
=
ME

1 (H)

ME
2 (H)

=
p2

p1

(2.16)

so p2
p1
> 1 − δ. In period 1 in state H, Ellen knows with certainty that p2

p1
> 1 − δ, so she

devotes all of her savings to the risky-bubble asset to maximize the value of her savings next

period. This means that none of her savings are allocated to storage, so vE1 (H) = 0.

Note that (2.16) implies ME
1 (H) > ME

2 (H)(1−δ), so by the complementary slackness

condition in (2.14), Ellen’s period-1 storage in state H must be vE1 (H) = 0.

Intuitively, in her period-1 cell {b, L}, Ellen can use the risky-bubble asset to in-

tetermporally smooth her consumption in state L but not in state b. In contrast, the storage

technology allows Ellen to intertemporally smooth her consumption in both states b and L.

Thus, Ellen requires a larger state-L return on the risky-bubble asset than on storage to

compensate her for the loss on the risky asset in state b. Since the return to risky asset is
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the same across states L and H, the state-H return on the risky asset must also be greater

than the return to storage.

Next, consider Frank’s period-1 storage decision in his cell {L,H}. We examine this

in Proposition B2.

Proposition B2: In any strong bubble equilibrium where storage technology

is available, Frank will never use storage in period 1 in states L and H, so vF1 ({L,H}) = 0.

Proof. In period 1 in his cell {L,H}, Frank knows with certainty that p2
p1
> 1 − δ, so he

devotes all of his savings to the risky-bubble asset to maximize the value of his savings next

period. This means that none of his savings are allocated to storage, so vF1 ({L,H} = 0.

Note that combining the inequality p2
p1
> 1 − δ with the reciprocal of Condition 2

gives

1− δ < ME
1 (H)

ME
2 (H)

≤ MF
1 ({L,H})

MF
2 ({L,H})

.

This implies MF
1 ({L,H}) > MF

2 ({L,H}) (1− δ), so vF1 ({L,H}) = 0 by the complementary

slackness condition.

Intuitively, Frank has a relatively large liquidity demand in period 1 in his cell {L,H},

so he is not willing to save to earn a relatively large gross return of p2/p1. Since he is

unwillilling to save to earn a larger gross return of p2/p1, he must therefore also be unwilling

to store to earn a smaller gross return of 1− δ.

Finally, in Proposition B3, we examine Ellen’s period-2 storage decision in state H.

Proposition B3: In any strong bubble equilibrium where storage technology

is available, the gross return to the risky asset is always greater than the gross return to

storage in period 2 in state H, so d
p2
> 1−δ. Furthermore, Ellen never uses storage in period

2, state H, so vE2 (H) = 0.

Proof. First, recall that Frank’s period-2 storage decision in his cell {L,H} is made accord-

ing to his FOC in (2.6), i.e., MF
2 ({L,H}) ≥ MF

3 ({L,H}) (1− δ). Combing this with the
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reciprocal of Condition 3 implies

1− δ ≤ MF
2 ({L,H})

MF
3 ({L,H})

<
MF

2 ({L,H})
MF

3 (H)
=

d

p2

, (2.17)

so d
p2
> 1− δ. Because Ellen knows d

p2
> 1− δ with certainty, she devotes all of her savings

to the risky asset in order to maximize the value of her savings next period. As a result, she

allocates none of her savings to storage, so vE2 (H) = 0.

Intuitively, between periods 2 and 3, the risky-bubble asset allows Frank to smooth his

intertemporal consumption in state H but not in state L. However, the storage technology

allows Frank to smooth his intertemporal consumption in both states L and H. Thus, in state

H, Frank requires a larger return on the risky-bubble asset than on the storage technology.

Ellen knows the true state is H, so she knows for sure that her savings from the risky-asset

would receive a gross return of p3(H)
p2(H)

= d
p2
> 1 − δ. Since Ellen is unwilling to save to earn

a relatively large gross return of d/p2, she must also be unwilling to store to earn a smaller

gross return of 1− δ.

2.4 A Risky-Bubble Asset with a Risk-Free Asset

We now examine strong bubble equilibria when risk-free assets are available. We

assume that each agent j is endowed with njf (t) shares of the risk-free asset at the beginning

of period t, so nTf (t) = nEf (t) + nFf (t) is the total number of shares of the risk-free asset at

the beginning of period t. With a probability of one, each share of the risk-free asset pays a

dividend of one unit of the consumption good at some point in the future, depending on the

risk-free asset’s maturity structure. Each risk-free asset can mature in either one period or

two periods. A risk-free asset purchased in period t that matures after one period will pay

a dividend in period t + 1, while one that matures after two periods will pay a dividend in

period t+ 2. Since our strong bubble model has three periods, agents can have two separate

endowments of the risk-free asset if it has a one-period maturity: one endowment received
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at the beginning of period 1 and another endowment received at the beginning of period

2. However, for shares of a risk-free asset that mature after two periods, agents can only

receive their endowments at the beginning of period 1.2 As a result, if the risk-free asset

has a two-period maturity, then agents never receive a period-2 endowment of shares of the

risk-free asset, so njf (2) = 0.

2.4.1 Risk-Free Asset with a One-Period Maturity

Consider a risk-free asset that matures after one period. Let qt(ω) be the period-t

price of a share of the risk-free in state ω, and let Y j
t (ω) be agent j’s net sales of the risk-

free asset over the course of period t. At the beginning of period t, Agent j receives an

endowment of njf (t) shares of the risk-free asset for t = 1, 2. Finally, let zjt (ω) be the number

of shares of the risk-free asset that agent j has held to maturity by the beginning of period

t+ 1. Thus, if the risk-free asset has a maturity of one period, then Agent j’s state-and-time

dependent consumption is

Cj
1(ω) = ej1(ω) + q1(ω)Y j

1 (ω) + zj0(ω) + p1(ω)Xj
1(ω)

Cj
2(ω) = ej2(ω) + q2(ω)Y j

2 (ω) + zj1(ω) + p2(ω)Xj
2(ω)

Cj
3(ω) = ej3(ω) + q3(ω)Y j

3 (ω) + zj2(ω) + p3(ω)Xj
3(ω) + d(ω)sj3(ω)

(2.18)

where sjt(ω) = sjt−1(ω)−Xj
t (ω) and zjt (ω) = njf (t)− Y

j
t (ω). As in section 2.2, the true state

of the world is common knowledge by the beginning of period 3, and consumption ceases

after the end of period 3. As a result, every period-3 asset price equals the its period-3

divided, so q3(ω) = 1 and p3(ω) = d(ω), and all trading stops by the beginning of period

3, so Y j
3 (ω) = Xj

3(ω) = 0. Finally, note that Agent j has not held any risk-free assets to

maturity by the beginning of period 1, so zj0(ω) = 0.

2For ease of exposition, we will not consider instances where risk-free assets of different maturities are
traded simultaneously. If agents are endowed with shares in a risk-free asset with a one-period maturity,
then they will never be endowed with shares in a risk-free asset with a two-period maturity, and vice versa.
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In general, agents choose their net sales of the risk-free asset in order to maximize

their expected lifetime utility. Agent j’s FOC in his/her period-t cell {ω1 . . . ωk} is

M j
t ({ω1 . . . ωk})qt(ω) ≥M j

t+1({ω1 . . . ωk}). (2.19)

Notice from (2.19) that the price of the risk-free asset in period t + 1 is simply one unit of

the consumption good, since the risk-free asset matures after one period. Thus, Agent j’s

period-t WTP for one share of the risk-free asset in his//her cell {ω1 . . . ωk} is

M j
t+1({ω1 . . . ωk})
M j

t ({ω1 . . . ωk})
.

If Agent j buys and holds the risk-free asset in period t in state ω, then (2.19) is necessarily an

equality, and Agent j’s WTP for the risk-free asset determines the risk-free asset’s equilibrium

price. If (2.19) is a strict inequality, then Agent j is necessarily a seller of the risk-free asset

who is short-sale constrained.

Of course, the FOCs (2.7), (2.6), (2.9), (2.10), and (2.11) from section 2.2 continue

to apply. However, the marginal utilities used to determine p1 and p2 are evaluated at the

consumption levels in (2.18) instead of those from Section 2.2

2.4.1.1 A Risk-Free Asset in Period 2

A strong bubble equilibrium is possible when agents are endowed in period 2 with a

risk-free asset that matures after one period. Ellen’s period-2 WTP for the risk-free asset in

state H is

ME
3 (H)

ME
2 (H)

,

while Frank’s period-2 WTP in {L,H} is

MF
3 ({L,H})

MF
2 ({L,H})

.
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Condition 3 in Section 2.2 implies

MF
3 ({L,H})

MF
2 ({L,H})

>
ME

3 (H)

ME
2 (H)

,

which means that Frank’s period-2 intertemporal consumption smoothing motive in his cell

{L,H} is always greater than Ellen’s period-2 motive in her cell {H}. In other words, Frank

has a higher WTP for the risk-free asset in a strong bubble equilibrium in period 2, state

H. As a result, Frank will purchase all of Ellen’s shares in the risk-free asset in period 2 in

state H, assuming that Ellen’s period-2 WTP for the risk-free asset in L is also lower than

Frank’s period-2 WTP in his cell {L,H}. Thus, the equilibrium pattern of trade for the

risk-free asset is Y E
2 (ω) = nEf (2) for ω = L,H and Y F

2 (ω) = −nEf (2). Thus, the period-2

equilibrium risk-free asset price in states L and H, q2 = q2(L) = q2(H), is

q2 =
MF

3 ({L,H})
MF

2 ({L,H})
.

2.4.1.2 Numerical Example C

To see how a risk-free asset endowed in period 2 can exist within a strong bubble

equilibrium, consider a numerical example where Ellen is endowed with nEf (2) = nTf (2) = 8

shares of a risk-free asset in period 2, while Frank never receives any endowment of risk-free

asset shares, so nFf (2) = 0. Furthermore, assume that Ellen and Frank have the endowment

structures shown in Table 2.8. Also, assume that π(ω), β, U(C), nEf (2), nFf (2), and the

dividend structure of the risky asset is the same as those in the numerical examples in Liu

and White (2019) and Sections 2.2 and 2.3

Table 2.8: Agents’ Endowments for Numerical Example C

State b L H

Period 1 17 17 9
Period 2 4 4 4
Period 3 64 64 64

Ellen

State b L H

Period 1 10 9 9
Period 2 36 40 40
Period 3 20 20 12

Frank
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In equilibrium, Frank sells his 1 share of the risky asset to Ellen in period 1 in each

state of the world, and Ellen sells her 2 shares to Frank in period 2 in states L and H.

Since neither Ellen nor Frank is endowed with shares of the risk-free asset in period 1,

the equilibrium trades of the risk-free asset is zero in period 1. However, in the period-2

equilibrium, Ellen sells all 8 of her shares of the risk-free asset to Frank in states b, L and H.3

The equilibrium period-1 risky asset is price p1 = 1 ∀ ω ∈ Ω, and the equilibrium period-2

risky asset price is p2 = 2 for ω = {L,H}. Furthermore, the equilibrium period-2 risk-free

asset price is q2 = q2(b) = q2(L) = q2(H) = 1. Ellen’s and Frank’s resulting consumption

are shown in Table 2.9.

Table 2.9: Agents’ Consumption for Numerical Example C

State b L H

Period 1 16 16 8
Period 2 12 16 16
Period 3 64 64 64

Ellen

State b L H

Period 1 11 10 10
Period 2 28 28 28
Period 3 28 28 28

Frank

As in Sections 2.2 and 2.3, we can use the consumption values in Table 2.9 to make

sure the Conditions in (2.5) are not violated, starting with Condition 1 which does indeed

hold since

ME
2 (H)

ME
1 (H)

=
ME

2 (L)

ME
1 ({b, L})

=
1

2
.

Furthermore, we know that Condition 2 holds since

MF
2 ({L,H})

MF
1 ({L,H})

=
5

14
≤ 1

2
.

Finally, Condition 3 holds because

MF
3 (H)

MF
2 ({L,H})

=
1

2
≥ ME

3 (H)

ME
2 (H)

=
1

4
.

3Note, a strong bubble equilibrium requires the period-2 risk-free asset prices in states L and H to be
equal. However, a strong bubble equilibrium does not require the period-2 risk-free asset price in state b to
equal the period-2 price in states L and H, though it does in this example.
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2.4.1.3 A Risk-Free Asset in Period 1

We now show that a strong bubble equilibrium cannot exist if a risk-free asset with

a one-period maturity is held/traded in period 1. This is shown in the proof of Proposition

C1.

Proposition C1: In a three-state model, a strong bubble equilibrium cannot

exist if agents can hold a risk-free asset with a one-period maturity in period 1.

Proof. Assume that a strong bubble equilibrium exists, and a risk-free asset with a one-

period maturity is available in period 1. Suppose Ellen buys and holds the risk-free asset

in period 1, so it is her WTP that determines the risk-free asset’ period-1 price in a strong

bubble equilibrium. Ellen’s WTP for the risk-free asset in H is

q1(H) =
ME

2 (H)

ME
1 (H)

while her WTP for the risk-free asset in b and L is

q1({b, L}) =
ME

2 ({b, L})
ME

1 ({b, L})
.

If this is a strong bubble equilibrium, then it must be that q1(H) = q1({b, L}) otherwise

Frank’s period-1 cell {L,H} will be endogenously refined. This implies

ME
2 (H)

ME
1 (H)

=
ME

2 ({b, L})
ME

1 ({b, L})
>

ME
2 (L)

ME
1 ({b, L})

which violates Condition 1. Thus, it cannot be Ellen’s WTP that determines the period-1

price of the risk-free asset in a strong bubble equilibrium.

Now suppose Frank buys and holds the risk-free asset in period 1, so it is his WTP

that determines the risk-free asset’s period-1 price in a strong bubble equilibrium. This must

mean that Frank’s WTP for the risk-free asset is greater than Ellen’s WTP in any state of
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the world ω, so

MF
2 ({L,H})

MF
1 ({L,H})

≥ ME
2 ({b, L})

ME
1 ({b, L})

.

However, this means that Condition 1 and Condition 2 are mutually exclusive, because if

Condition 1 holds then it must be that

MF
2 ({L,H})

MF
1 ({L,H})

>
ME

2 (L)

ME
1 ({b, L})

=
ME

2 (H)

ME
1 (H)

,

which contradicts Condition 2. Thus, it cannot be Frank’s WTP that determines the period-1

price of the risk-free asset in a strong bubble equilibrium.

Since neither buys and holds the risk-free asset, neither agent’s WTP can determine

the period-1 price of the risk-free asset in a strong bubble equilibrium. This implies that a

strong bubble equilibrium cannot exist if a risk-free asset with a one-period maturity can be

held in period 1.

2.4.2 A Risk-Free Asset with a Two-Period Maturity

Now consider a risk-free asset that matures after two periods. As in the case of a

risk-free asset with a one-period maturity, let qt(ω) be the period-t price of one share of the

risk-free asset in state ω, and let Y j
t (ω) be Agent j’s period-t net sales of the risk-free asset

in state ω. At the beginning of period 1, Agent j receives an endowment of njf shares of

the risk-free asset. Unlike the case of a risk-free asset with one-period maturity, Agent j

only receives one endowment of the risk-free asset when the risk-free asset has a two-period

maturity. Finally, let zjt (ω) be the quantity of risk-free asset shares that Agent j owns by

the end of period t. Thus, if the risk-free asset has a two-period maturity, then Agent j’s

consumption is
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Cj
1(ω) = ej1(ω) + q1(ω)Y j

1 (ω) + p1(ω)Xj
1(ω)

Cj
2(ω) = ej2(ω) + q2(ω)Y j

2 (ω) + p2(ω)Xj
2(ω)

Cj
3(ω) = ej3(ω) + q3(ω)Y j

3 (ω) + zj3(ω) + p3(ω)Xj
3(ω) + d(ω)sj3(ω)

(2.20)

where sjt(ω) = sjt−1(ω)−Xj
t (ω) and zjt (ω) = zjt−1(ω)−Y j

t (ω). As in the previous subsection,

q3(ω) = 1 and p3(ω) = d(ω), and Y j
3 (ω) = Xj

3(ω) = 0.

In general, agents choose their expected net sales of the risk-free asset to maximize

their expected lifetime utility. In his/her period-t cell Ijt,i = {ω1 . . . ωk}, Agent j’s FOC is

M j
t (Ijt,i)qt(ω) ≥

∑
ω∈Ijt,i

M j
t+1(ω)qt+1(ω), (2.21)

so his/her WTP for the risk-free asset is

∑
ω∈Ijt,i

M j
t+1(ω)qt+1

M j
t (Ijt,i)

.

Note that q3(ω) = 1. Thus, in period 2 (2.21) is simply

M j
t (Ijt,i)q2(ω) ≥M j

t+1({ω1 . . . ωk}).

If Agent j is the buyer of the risk-free asset in period t in state ω, then (2.21) is necessarily an

equality, and Agent j’s WTP for the risk-free asset determines the risk-free asset’s equilibrium

price. If (2.21) is a strict inequality, then Agent j is necessarily a seller of the risk-free asset

who is short-sale constrained.

Of course, the FOCs (2.7), (2.6), (2.9), (2.10), and (2.11) from Appendix A continue

to apply. However, the marginal utilities used to determine p1 and p2 are evaluated at the

consumption levels in (2.20) instead of those from Appendix A.
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2.4.2.1 A Risk-Free Asset in Period 1

Proposition C2: In a three-state model, a strong bubble equilibrium cannot

exist if agents can hold a risk-free asset with a two-period maturity in period 1.

Proof. Assume that a strong bubble equilibrium exists, and a risk-free asset with a two-

period maturity is available in period 1. Condition 3 requires that Frank have a larger

period-2 WTP for the risk-free asset than Ellen in state H. This must also be true for state

L, otherwise Frank’s period-2 cell would be endogenously refined. Thus, in a strong bubble

equilibrium, Frank’s period-2 WTP for the risk-free asset must determine the period-2 price

of the risk-free asset in states L and H, so

q2({L,H} =
MF

2 ({L,H})
MF

1 ({L,H})
,

and q2(b) is the period-2 price of the risk-free asset in state b.

Buying a risk-free asset with two periods left till maturity in period 1 and then selling

it in period 2 is equivalent to buying a risk-free asset with a one-period maturity in period 1

that pays an period-2 dividend of q2({L,H}) in states L and H and q2(b) in state b. Suppose

Ellen buys and holds this risk-free asset in period 1, so it is her WTP that determines its

period-1 price. Ellen’s period-1 WTP for the risk-free asset in her cell {b, L} is

ME
2 (b)q2(b) +ME

2 (L)q2({L,H})
ME

1 ({b, L})
, (2.22)

and her period-1 WTP in her cell {H} is

ME
2 (H)q2({L,H})

ME
1 (H)

. (2.23)

In a strong bubble equilibrium, Ellen’s WTPs in (2.22) and (2.23) must be equal, otherwise
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Frank could refine his cell {L,H}. . However, this violates Condition 1 since

ME
2 (H)q2({L,H})

ME
1 (H)

=
ME

2 (b)q2(b) +ME
2 (L)q2({L,H})

ME
1 ({b, L})

>
ME

2 (L)q2({L,H})
ME

1 ({b, L})
,

so Ellen cannot buy and hold the risk-free asset in period 1 in a strong bubble equilibrium.

Now suppose Frank buys and holds the risk-free asset in period 1. Frank’s WTP for the

risk-free asset in his cell {L,H} determines the period-1 price of the risk-free asset. This

means his period-1 WTP must be greater than or equal to Ellen’s period-1 WTP in any

state of the world ω, so

MF
2 ({L,H})q2({L,H})

MF
1 ({L,H})

≥ ME
2 (b)q2(b) +ME

2 (L)q2({L,H})
MF

1 ({L,H})
.

However, this implies that Conditions 1 and 2 are mutually exclusive because if if Condition

1 is met, then

MF
2 ({L,H})q2({L,H})

MF
1 ({L,H})

>
ME

2 (L)q2({L,H})
MF

1 ({L,H})
=
ME

2 (H)q2({L,H})
ME

1 (H)
,

which violates Condition 2. Thus, Frank cannot buy and hold the risk-free asset in period

1 in a strong bubble equilibrium. Since, neither agent can buy and hold the risk-free asset

in period 1 in a strong bubble equilibrium, then a strong bubble cannot exist if a risk-free

asset with a two-period maturity can be held in period 1.

2.4.3 Summary

In summary, a strong bubble is not possible in a three-state model when a one-period

risk-free asset is available for sale in period, though Conlon et al. (2019) show that it is

possible in a four-state model. However, a strong bubble is possible in a three-state model

if the risk-free asset is introduced in period 2. The former result provides implications for

the introduction of new asset markets as an information transmission mechanism. Because

80



intertemporal consumption smoothing incentives vary across states of the world, risk-free

asset prices may also differ across states of the world since risk-free asset prices reflect agents’

intertemporal consumption smoothing motives. This means that, in the three-state model,

the introduction of new asset markets can reveal agents’ private information about the true

state of the economy, thereby preventing the formation of asset price bubbles. However, this

lesson may not be robust in a four-state model.
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