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ABSTRACT 

 

Sharks are an essential component of many marine ecosystems; however they have 

experienced population declines, mainly attributed to overfishing and capture of sharks as 

bycatch. Despite sharks often being released when captured as bycatch, the act of capture can 

result in a stress response which may cause severe physiological perturbations. Studies have 

investigated the physiological impacts of capture stress on elasmobranchs, but most have 

primarily focused on the secondary stress response. I conducted a series of studies to further 

describe the primary stress response through quantification of adrenocorticotropic hormone 

(ACTH) while also investigating methods, such as sedation and limiting air exposure, to reduce 

the magnitude of the stress response to capture. Results implicated ACTH as a reliable indicator 

of the primary stress response in elasmobranchs, which I suggest as an additional measurement 

to go along with the suite of physiological stress indicators that are commonly measured in 

elasmobranchs. I also demonstrated the severe effect of air exposure on elasmobranch 

physiology and suggest that fishers limit sharks to no more than five minutes of air exposure 

during catch-and-release fishing. Lastly, I show the potential of iso-eugenol sedation at reducing 

levels of stress indicators. These studies have combined the disciplines of conservation and 

physiology in an effort to provide methods and results that can be utilized in conservation 

management of shark populations.
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CHAPTER 1: 

BACKGROUND 

 
A keystone species has been defined as a species that, if removed from the ecosystem, 

would cause dramatic trophic changes. As top predators in the world’s oceans, some sharks can 

be considered keystone species, such that upon their removal, the ecosystem balance would be 

shifted. Some impacts of large sharks being removed have already been observed. Removal of 

great sharks (those that are top predators rather than meso-predators) from the oceans has the 

potential to result in a substantial trophic cascade and predator release on meso-predators (Myers 

et al., 2007; Ferretti et al., 2010). In the past few decades, there has been an increase in the 

number of anthropogenic stressors impacting sharks. The International Union for Conservation 

of Nature states that 25% of all shark and ray species are threatened with extinction. Stevens et 

al. (2000) reviewed the decline of sharks, skates, and rays and attributed it to overfishing and 

lack of regulations for bycatch from commercial fisheries. Many sharks caught as bycatch are 

kept to harvest their valuable fins, further perpetuating their decline. Of particular importance is 

the stress associated with capture and handling as a result of commercial fisheries. 

To define a concept such as stress, it would be more useful to first define a stressor. A 

stressor is anything that threatens to disrupt the homeostasis of an organism. It can be physical 

(injury or temperature change), chemical (changes in O2 or CO2 concentration in the 

environment), or perceived (predatory or competition) (Moyle and Cech, 2004), but all will 
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initiate a similar cascade of responses, indicating that the stress response is nonspecific (Selye, 

1973). The general adaptation syndrome (GAS), also known as a stress response, consists of 

three stages: (1) alarm stage, (2) resistance stage, and (3) fatigue stage (Selye, 1951). When a 

stimulus is perceived as a stressor, the alarm stage (or primary response) is generated by the 

central nervous system, involving release of corticotropin releasing hormone (CRH) from the 

hypothalamus. This activates the pituitary, which releases adrenocorticotropic hormone (ACTH) 

to stimulate the adrenal gland. When activated, the adrenal medulla releases catecholamines and 

the adrenal cortex releases glucocorticoids. Glucocorticoids are species-specific; fish and some 

mammals typically produce cortisol, while amphibians, reptiles, birds, and some mammals 

typically produce corticosterone. The circulating catecholamines and glucocorticoids prepare the 

body for a ‘fight or flight’ response. The persistence of the stressor causes the resistance stage 

(or secondary response) where the animal is mobilizing energy stores in an attempt to escape the 

threat. This can involve (1.) an increase in plasma lactate, a byproduct of the anaerobic 

metabolism of glucose, (2.) an increase in glucose due to glycogenolysis in the liver stimulated 

by glucocorticoids, (3.) alterations in hematocrit levels due to the disruption of osmosis, and 4.) a 

decrease in pH as a result of lactate accumulation (Hoffmayer and Parsons, 2001). The effects of 

a prolonged state of fight or flight on the body will cause the fatigue stage (or tertiary response) 

and possibly an emergency life history stage. During the fatigue stage, the animal has prolonged 

mobilization of energy reserves from the periphery and can involve decreased growth, 

reproduction, disease resistance, and overall survival, due to energy and resources being directed 

elsewhere for immediate survival (Wendelaar Bonga, 1997; Skomal and Mandelman, 2012). The 

emergency life history stage is when a stressor has sustained effects on the organism through 
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alterations of their normal behaviors to those that will allow for the survival of the organism 

(Wingfield et al., 1998).  

 Similar to a stress response, allostasis has been defined as “an adaptive process 

for actively maintaining stability through change” (Korte et al., 2005).  Mediators, such as 

glucocorticoids and catecholamines, work to maintain stability through their effects of energy 

mobilization, increased heart rate, and increased respiratory rate. An allostatic load can occur 

when the stress response is activated too often or for unnecessary reasons, and over time it can 

cause damage to the organism (McEwen and Wingfield, 2003). Depending upon previous 

experiences, individuals may have different allostatic loads, affecting how they respond to future 

stress events which can result in individual variation in the stress response. 

 Human population size has been and continues to rise, increasing the chance of 

human-animal interactions. Humans can inflict a variety of anthropogenic stressors on animals, 

which often negatively impact their populations. Biodiversity is most threatened by these 

anthropogenic factors: 1.) habitat loss and fragmentation, 2.) overexploitation, 3.) spread of 

invasive species and diseases, 4.) pollution, and 5.) climate change (Soule, 1991). For example, 

Steller’s sea lion (Eumetopias jubatus) populations have been declining since the 1960’s mainly 

due to anthropogenic stressors such as competition with humans for food, bycatch, and hunting 

(Atkinson et al., 2008). Similarly, amphibian populations have declined due to the spread of 

chytridiomycosis, a fungal pathogen that has emerged, in part, due to anthropogenic introduction 

(Daszak et al., 2007). Elasmobranchs (sharks, skates, and rays) are also greatly affected by 

anthropogenic stressors. Overexploitation and bycatch have been cited as factors having the 

largest impact on shark populations (Stevens et al., 2000). Many studies have documented the 

negative effects of capture stress on elasmobranch physiology (Hoffmayer and Parsons, 2001; 
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Manire et al., 2007; Mandelman and Skomal, 2008; Frick et al., 2010; Brooks et al., 2012; 

Hoffmayer et al., 2012; Marshall et al., 2012; Gallagher et al., 2014; Jerome et al., 2018), 

behavior (Skomal, 2007; Guida et al., 2016; Hyatt, 2016; Bouyoucos et al., 2017; Raoult et al., 

2019), and survival (Moyes et al., 2006; Skomal, 2007; Braccini et al., 2012; Kneebone et al., 

2013; French et al., 2015).  

When sharks are hooked during fishing, the general adaptation syndrome is initiated. 

Upon capture, sharks react by thrashing and struggling (Hoffmayer and Parsons, 2001) and with 

great disruptions to their physiology (Skomal, 2007). Due to difficulties in isolating and 

measuring the unique primary stress hormone of elasmobranchs, 1-alphahydroxycorticosterone 

(1α-OHB) produced from the interrenal tissue, little work has been conducted on corticosteroid 

changes during the primary response. The steroid hormone 1α-OH-B is a corticosteroid that is 

very similar to corticosterone with the modification of a hydroxyl group on the 1st carbon in the 

alpha orientation (Anderson, 2012). The most common method of measuring stress in 

elasmobranchs is to analyze levels of plasma glucose, lactate, hematocrit, pH, and osmolality as 

an indicator of the secondary stress response, or resistance stage. These studies have suggested 

that the severity of the response to stressors is species-specific (Mandelman and Skomal, 2008) 

and can vary depending on the season/water temperature (Hoffmayer et al., 2012). Little research 

has been conducted on the tertiary, or prolonged, stress response of elasmobranchs due to the 

logistics associated with long-term study, with the exception of studies observing short-term 

survival after release (Skomal, 2007; Hoolihan et al., 2011; Danylchuk et al., 2014). However, 

negative impacts have been shown in studies with teleosts, such as suppression of important 

immune functions after prolonged exposure to a stressor (Tort and Mackenzie, 2002). This 
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indicates that further research is necessary, especially for species of elasmobranchs that are 

commonly caught as bycatch. 

The field of conservation physiology was officially termed in 2006 and is described as 

the study of physiological responses to anthropogenic stressors that might contribute to 

population declines (Wikelski and Cooke, 2006). This field is interdisciplinary and seeks to unite 

physiologists and conservation managers to result in informed conservation planning. 

Conservation physiology studies may include topics such as investigations into the effects of 

infectious disease (Blaustein et al., 2012), stress (Wingfield et al., 1997), and climate change 

(Farrell et al., 2008) on the physiology, endocrinology, and whole organism performance, all of 

which can provide insight into population stability (Cooke and O’Connor, 2010), however, a 

handful of challenges with conservation physiology have been identified. The aforementioned 

study highlights the importance of physiological biomarkers that directly relate to the fitness of 

the animal, studies conducted in the field rather in a laboratory, and the translation of 

physiological results into conservation management plans. This dissertation involves studies 

intended to investigate the physiological effects of anthropogenic stressors, while also aiming to 

link these effects to the overall condition and/or fitness of the animals.    

Despite the plethora of studies on the effects of capture stress on elasmobranchs, most of 

these studies focus on the secondary stress response and do not investigate methods to reduce 

capture stress. An understanding of the primary effects of the stress response and learning new 

methods for mitigating capture stress is important for the conservation of elasmobranchs by 

increasing the chance of post-release survival. This dissertation involves experiments that are 

focused on further describing the primary stress response and determining methods to reduce the 

magnitude of stress in response to capture. Specifically, this study was built around the following 
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objectives: (1) Understand how capture stress affects the primary stress response via ACTH 

quantification, (2) understand the effects of air exposure commonly experienced during capture 

on the physiology of elasmobranchs, and (3) determine if iso-eugenol sedation is effective at 

reducing the stress response to capture. 

STUDY SITE 

 

All studies were conducted around Horn Island off of the Mississippi coast in the Gulf of 

Mexico (GOM) travelling out of the Gulf Coast Research Labs in Ocean Springs, MS. Sampling 

typically focused around the western tip of the island (approximately 30°14'40.55"N, 

88°46'11.52"W) due to a higher abundance of R. terraenovae and C. limbatus in this location 

(Figure1). Horn Island is a barrier island in the northern GOM that has a westward migration 

(Fritz et al., 2007) with substantial historical land loss on the eastern tip. Horn Island holds a 

broad diversity of plants, invertebrates, and vertebrates (Richmond, 1962) and is one of a chain 

of barrier islands in the northern GOM that provides protection from waves and storms to the 

continental coastline (Feagin et al., 2010).  
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 Figure 1. Shark collection was focused on the western tip of Horn Island off of the Mississippi coast. 

 

FOCAL SPECIES 

 

Two species of elasmobranch were selected as models for these studies, the Atlantic 

sharpnose shark (Rhizoprionodon terraenovae) and the blacktip shark (Carcharhinus limbatus), 

both members of the requiem shark family, or Carcharhinidae. These species were selected due 

to their abundance in the northern Gulf of Mexico and because they are commonly captured as 

bycatch by commercial and recreational fishers. The selection of R. terraenovae was also 

intended to provide comparison with previous studies investigating the stress response in this 

species (Hoffmayer and Parsons, 2001; Hoffmayer et al., 2012, 2015). Blacktip sharks were 

selected for investigation into the effects of air exposure because this species is frequently 

targeted by recreational fishers due to their highly active response to capture. White-spotted 

bamboo sharks (Chiloscyllium plagiosum) were selected as a benthic comparison to R. 

terraenovae and because they are easily kept in captivity. Golden shiners (Notemigonus 
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crysoleucas) were selected as a teleost comparison to both R. terraenovae and C. plagiosum and 

because they are readily available at bait shops.
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CHAPTER 2: 

CIRCULATING ADRENOCORTICOTROPIC HORMONE LEVELS, LACTATE LEVELS, 

AND OSMOLALITY IN RELATION TO CAPTURE STRESS IN ATLANTIC SHARPNOSE 

SHARK, Rhizoprionodon terraenovae  

ABSTRACT 

 

Incidental capture of sharks during commercial and recreational fishing is of major 

conservation concern because of the potential effects it can have on physiological stress 

responses and survival. Endocrine aspects of the stress response are, however, poorly understood 

in elasmobranchs because of difficulties in measuring the primary glucocorticoid (1α-

hydroxycorticosterone). Here, we combined measures of plasma adrenocorticotropic hormone 

(ACTH), the highly conserved pituitary hormone responsible for stimulating the release of 

adrenal/interrenal glucocorticoids, with measures of plasma lactate, osmolality, and behavior to 

gain a greater understanding of the capture stress response in Atlantic Sharpnose sharks, 

Rhizoprionodon terraenovae. Individuals were subject to a non-repeated blood sampling 

protocol in which blood samples were obtained following exposure to capture stress for < 3 min 

(designated baseline), and 15, 30, 45 and 60 minutes, after which behavior was categorized 

during release. Results revealed that ACTH was significantly higher at 15, 30, 45, and 60 

minutes than at baseline. Lactate levels were highest at 45 and 60 minutes whereas osmolality 

did not differ significantly among the sampling periods. Lactate was the only variable that
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 significantly predicted the shark’s behavior upon release with higher lactate levels 

correlating with sluggish behavior upon release. Measurements of stress indicators are important 

in understanding the effects of capture on shark populations, which has been implicated in 

population declines. 

INTRODUCTION 

 

Fishes often show large behavioral and physiological responses to the stress of capture 

and handling when compared to other vertebrates (Skomal, 2007). Incidental bycatch as a result 

of commercial and recreational fishing is thought to pose a significant conservation risk to 

elasmobranchs, even when animals are rapidly released, because it can alter the stress physiology 

and behavior of these animals and potentially increase mortality (Hoffmayer and Parsons, 2001; 

Marshall et al., 2015; Morgan and Burgess, 2015). Studies utilizing satellite tags after release 

have demonstrated that even when sharks are released alive after capture, they exhibit variable 

and species-specific rates of mortality. For example, while great hammerheads (Sphyrna 

mokarran) had low (54%) survival rates four weeks after capture, the tiger shark (Galeocerdo 

cuvier) had a survival rate of 100% (Gallagher et al., 2014). One of the aspects of addressing 

bycatch-induced mortality is a consideration of the capture-induced stress response. While the 

link between acute capture stress and survival is not well established, documenting the stress 

response and behavior at release may inform us regarding post-capture survival. Toward this 

end, the description of the physiological changes that take place during the stress response may 

be critically important to shark conservation.  

The general adaptation syndrome (GAS) (Hans Selye, 1950) describes a suite of non-

specific responses to a stressor, such as capture. The GAS consists of three stages: (1) alarm, (2) 
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resistance, and (3) fatigue (Selye, 1965). When a stimulus is perceived as a stressor, the alarm 

stage is marked by the release of catecholamines from the central nervous system and 

corticotropin releasing hormone (CRH) from the hypothalamus. Corticotropin releasing hormone 

activates the anterior pituitary to stimulate release of adrenocorticotropic hormone (ACTH) from 

the pituitary gland which stimulates glucocorticoid production from adrenal/interrenal tissue. 

Increased levels of circulating catecholamines and glucocorticoids released during the alarm 

stage mediate the ‘fight or flight’ response. The persistence of the stressor results in transition to 

the resistance stage during which elevated glucocorticoids mobilize energy stores that can be 

allocated towards escaping the threat. Chronic stress often suppresses growth, reproduction, and 

immune responses  and can lead to the depletion of peripheral energy stores, fatigue and reduced 

survival  (Bonga, 1997; Skomal and Mandelman, 2012). For example, a study on brown trout 

(Salmo trutta) demonstrated that experimentally elevated cortisol levels resulted in significantly 

increased rates of mortality due to disease along with reduced growth of the gonadal tissue in 

both sexes (Pickering, 1989). Similarly, a study on eastern fence lizards (Sceloporus undulatus) 

involving experimental elevation of glucocorticoids resulted in lower hatching success and 

survival of offspring (MacLeod et al., 2018). 

Several studies have examined physiological responses of sharks to capture stress. For 

example, capture stress results in an increase in anaerobic metabolism and a cascade of other 

physiological changes (Hoffmayer and Parsons, 2001; Mandelman & Skomal, 2008; Frick et al., 

2010). Elevations in lactate can alter the physiology of a shark in a way that negatively affects 

survival.  Upon capture, the animal will accumulate an oxygen debt through a drastic increase in 

activity or by failing to meet the regular energy demands of cellular respiration. This failure may 

lead to the production of lactate, a decline in blood pH, and an alteration in the structure of 



 

12 

proteins (Dumetz et al., 2008). However, little is known about endocrine aspects of the stress 

response in sharks.  

Historically, there was no commercially available labeled and unlabeled forms of the 

unique interrenal glucocorticoid produced in this group (i.e., 1α-hydroxycorticosterone, or 

1αOHB, derived from  hydroxylation of corticosterone, Lambert, 2014) and a lack of antibodies 

against this hormone that are required to develop an assay for quantification (Anderson, 2012). 

However, a monoclonal antibody against 1α-OHB has been recently developed (Wheaton et al.,  

2018), along with an assay for measurement of this hormone but it is not commercially available. 

Several studies (Rasmussen and Crow, 1993; Karsten and Turner, 2003; Manire et al., 2007) 

have quantified corticosterone, but because it is not the primary glucocorticoid produced by 

elasmobranchs it is unclear whether measures of this hormone accurately reflect the endocrine 

stress response. Therefore, a new approach is necessary to obtain a better understanding of the 

direct effects of stress on the alarm stage of the GAS.   

To examine the endocrine stress response during capture in elasmobranchs, we measured 

levels of ACTH, which, in contrast to glucocorticoids, is conserved across chondrichthyans and 

other vertebrates (Costa et al., 2004). We combined measures of ACTH with measures of plasma 

lactate and osmolality in Atlantic Sharpnose Sharks, Rhizoprionodon terraenovae. This species 

is relatively abundant in the northern Gulf of Mexico and frequently captured as bycatch. We 

used a standard capture stress protocol to understand the potential impact of bycatch on ACTH 

levels, lactate levels, and osmolality. We also asked how capture stress affects release behavior. 
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METHODS 

General Procedures 

 

Sampling was conducted from May-August in 2017 and 2018 in the Mississippi Sound of 

the Gulf of Mexico. Rhizoprionodon terraenovae were collected via baited hook-and-line 

between 0800 and 1800 hours with chum as an attractant. When a shark was hooked, it was 

immediately brought to the surface for identification. A subset of sharks was sampled 

immediately after capture to obtain an approximation of baseline values for all measured 

variables. Blood samples were collected within 2-3 minutes of capture and may not represent a 

true baseline value. Sharks not subjected to immediate blood sampling were released and 

allowed to swim while hooked on the unspooled line for randomly (with a random number 

generator, www.random.org) assigned time periods of: 15, 30, 45, or 60 minutes. These sharks 

were then brought on the boat and rapidly (within three minutes) sampled for up to 1 ml of blood 

via caudal venipuncture with a Becton, Dickson and Company (BD) 21G 1” Vacutainer Eclipse 

blood collection needle (catalog no. 368650) and BD brand EDTA treated vacutainer (catalog 

no. 367835). Each shark was sampled in the same manner across all treatments to account for the 

stress caused by blood collection. Blood loss from being hooked could not be accounted for and 

could have influenced concentrations of stress indicators. Standard length (measured from the tip 

of the rostrum to the caudal peduncle), fork length (from the tip of the rostrum to the fork in the 

caudal fin), and stretched total length (from the rostrum to the tip of the upper lobe of the caudal 

fin) were then measured in centimeters. Weight (kg) was also measured by gently placing the 

animals in a bucket suspended on a hanging scale. Water temperature (°C) at the site of 

collection was recorded with an optical dissolved oxygen probe, the Yellow Springs Instrument 
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(YSI) ProODO Optical Dissolved Oxygen Instrument (SKU no. 626281). The shark was then 

released and post-release behavior was recorded using a subjective ranking based on its behavior 

immediately after release, which depending on condition, ranged from a few seconds to a minute 

(Table 1; modified from Manire et al., 2001). Post-release behavior was observed and recorded 

by the same individual for each shark to avoid inter-observer bias. All blood samples were kept 

on ice until they were brought to the laboratory, after which they were centrifuged (3,400 rpm, 4 

minutes) and plasma was retained and kept in a -80°C freezer until analyzed for ACTH, lactate, 

and osmolality. All procedures were approved by the University of Mississippi’s Institutional 

Animal Care and Use Committee (protocol # 15-002). 

Quantification of ACTH, lactate and osmolality 

 

 ACTH. Undiluted plasma from 25 R. terraenovae (run in duplicate) was thawed and 

analyzed for ACTH using a commercially available ELISA kit (Cusabio Biotech, Houston, TX, 

Product Code: CSB-E15926FH). All 25 samples were assayed with a single kit. Validation of the 

kit was done by comparing the slope of the standard curve constructed as per the 

recommendation of the manufacturer to the slope of a second standard curve spiked with 10 µl of 

pooled R. terraenovae plasma as is (n = 20) and a third curve constructed with 10 µl of deionized 

water that replaced shark plasma to account for the volume of plasma in the spiked standard 

curve. Using pooled plasma from 20 individuals, increased the probability of detecting cross-

reactivity. Curves consisted of 5 points (representing different ACTH concentrations) ranging 

from 75 to 1200 pg/ml that were each constructed in duplicate. Use of this assay requires 

confirmation that the ELISA antibody only binds to ACTH, and does not cross-react with other 
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plasma constituents. The observation that there were no statistical differences in the slopes of the 

standard curves would validate the assay for use in this species. 

Lactate and osmolality. Plasma lactate concentrations were measured with a commercially 

available lactate kit (Eton Bioscience Inc., San Diego, CA, SKU #1200011002 ). Osmolality of 

the plasma samples (run in duplicate) was measured via use of an Osmette freezing-point 

depression osmometer (Precision Instruments Inc., Natick, MA). 

Statistical analyses 

 

Analysis of covariance (ANCOVA) was utilized to test for significant differences in 

slopes of the three standard curves. Welch’s t-tests were utilized to determine if there were 

significant differences in levels of ACTH, lactate, or osmolality between sexes. ANCOVA and 

Tukey HSD tests were used to determine if ACTH, lactate, and osmolality differed over the five 

sampling times and to determine if covariates (sex, weight, temperature, and time of day of 

sample collection) explained a significant amount of variation. The time that the shark was kept 

on the line was coded as a factor to compare parameters among time periods. An ordinal logistic 

regression model was utilized to determine if release behavior (factored as an ordinal categorical 

variable) could be predicted by duration of the stressor (time on line), ACTH levels, osmolality, 

and lactate levels. All analyses utilized a 95% level of significance and were performed in R 

version 3.5.1. (R Core Team, 2018) using car (v2; Fox and Weisberg, 2011), doBy (v4.6-2; 

Højsgaard and Halekoh, 2018), rms (v5.1-3.1.; Harrell, 2019), ggplot2 (Wickham, 2016), and 

sciplot (v1.1-1.; Morales, 2017) packages. 

Table 1. A description of release behavior rating (subjective score between 0 and 5) based on the behavior of the 

shark observed from a few seconds to a minute post-release. Table was modified from Manire et al. (2001). 

 

Rating Behavior Displayed 
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0 Sank to bottom without swimming, no movement during revival or post-release 

1 Sank to bottom without swimming, but exhibited some movement during revival 

2 Exhibited weak swimming movements 

3 Slowly swam away at surface 

4 Did not remain at surface while swimming away 

5 Quickly swam down into the water 

RESULTS 

 

Twenty-five sharks were captured by hook-and-line and utilized in this study (5 per 

treatment) including 18 males and seven females (Table 2). Sampling took place between May 

and August of 2017 and 2018. There was no significant difference between the concentrations of 

ACTH (t(2.5)=0.24, p=0.83), lactate (t(2.13)=-0.4, p=0.72), or osmolality (t(1.8)=-1.36, p=0.32)  

between sexes, therefore, males and females were pooled for all analyses. All sharks were 

hooked in the mouth and did not show signs of impairment or injury upon capture. Sharks 

typically responded to being allowed to swim freely on the line by swimming around with 

minimal exhibition of an additional burst escape response. Blood samples were returned to the 

lab for processing after a 2-10 hour delay. This delay was required because blood was collected 

at sea and was returned to the lab for same-day processing. The delay in blood sample processing 

may have contributed to variation around the mean of measured parameters but this would not 

affect the overall interpretation of the results. 

Table 2. Description of R. terraenovae collected for this study. 

 

Time on Line 

 

n 

Sex Proportion  

(M/F) 

Mean Total Length  

(cm) ± SE 

Mean Weight  

(g) ± SE 

0 5 5/0 81.2 ± 3.6 3137.5 ± 508.4 
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15 5 3/2 74.8 ± 4.9 1737.8 ± 407.7 

30 5 3/2 72.7 ± 5.6 1602.5 ± 446.1 

45 5 4/1 74.7 ± 4.5 1570.5 ± 385.05 

60 5 3/2 74.5 ± 4.3 1686.2 ± 296.4 

Total N=25 18/7 75.7 ± 1.9 1910.1 ± 203.3 

 

ACTH 

 

There was no evidence of heterogeneity of slopes among the standard and validation 

curves (F(2,36)=1.78, p=0.18; Figure 2). The standard mixed with plasma displayed higher 

concentrations of ACTH, as expected. While there was no significant difference between the 

standard alone and the standard mixed with water, it was expected that the diluted standard 

would exhibit lower concentrations of ACTH. This was not the case, possibly due to variation or 

pipetting error. The intra-assay coefficient of variation was calculated to be 5.27%, indicating 

negligible variation between duplicates. Adrenocorticotropic hormone concentrations varied 

significantly over the sampling periods (F(4,15)=8.63, p=0.0008). Specifically, ACTH was 

higher after 15, 30, 45, and 60 minutes compared to baseline (0 minutes) (p=0.0004, p=0.024, 

p=0.002, p=0.022, respectively) (Fig. 3).  There was a significant relationship between ACTH 

and temperature in which higher temperatures were associated with higher ACTH levels 

(F(1,15)=12.06, p=0.003; Figure 4). Adrenocorticotropic hormone concentrations were not 

significantly affected by sex (p=0.29), weight (p=0.45), or time of day of sample collection 

(p=0.17). 
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Figure 2. Parallel relationship between three standard curves of ACTH: 1.) Standard only (represented by filled 

circles, 2.) Standard mixed with a pooled plasma sample from 20 R. terraenovae (represented by white circles) 

collected from the Mississippi sound of the Gulf of Mexico, and 3.) Standard mixed with deionized water 

(represented by boxes). Absorbance was measured at a wavelength of 450 nm. 
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Figure 3. The differences in ACTH concentration (pg/ml) of R. terraenovae captured from the Mississippi Sound in 

the Gulf of Mexico that were allowed to swim freely on the line for different sampling time intervals (n=5). 

Concentrations include +/- 1 standard error. Significant comparisons (p<0.05) indicated by different letters. 

a 

b 

b 

b 
b 
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Figure 4. The relationships between ACTH (pg/ml) of R. terraenovae captured from the Mississippi Sound in the 

Gulf of Mexico and temperature (°C) at the site and time of collection (p<0.05; N=21). Axes represent regressed 

residuals of temperature and ACTH concentrations.  

 

Lactate and osmolality 

 

 Plasma lactate concentrations differed significantly among treatments (F(4,20)=4.60, 

p=0.008). Lactate concentrations were significantly higher than baseline at both 45 and 60 

minutes (p=0.04 and 0.01, respectively) (Figure 5). Lactate concentrations were not significantly 

affected by sex (p=0.43), weight (p=0.83), temperature (p=0.75), or time of day of sample 

collection (p=0.28). Osmolality did not differ significantly among treatments (F(4,12)=1.5832, 

p=0.24) (Figure 6). However, osmolality was positively affected by the time of sample collection 

and temperature (F(1,12)=7.0995, p=0.02; F(1,12)=31.0490, p=0.0001 respectively). Osmolality 

was not affected by the other covariates, sex (p=0.67) and weight (p=0.85). 
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Figure 5. The relationship between lactate (pg/ml) of R. terraenovae captured from the Mississippi Sound in the 

Gulf of Mexico and time interval that the shark was held on the line (p<0.05; n=5). Significant comparisons 

(p<0.05) indicated by different letters and all other pairwise contrasts were nonsignificant (p ≥ 0.05). 

2-3 
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Figure 6. Changes in plasma osmolality of R. terraenovae captured from the Mississippi Sound in the Gulf of 

Mexico between time intervals that the sharks were held on the line (n=5). Bars include +/- 1 standard error. There 

was no significant difference in osmolality over time (p ≥ 0.05). 

 
Release behavior 

 

No sharks had a release behavior score of 0, two sharks had a score of one, nine sharks 

had a score of two, nine sharks received a score of three, one shark received a score of four, and 

zero sharks had a score of 5. There was no significant relationship between the duration of the 

stressor and release behavior (χ
2
(4)= 4.25, p = 0.37) . Levels of ACTH (χ

2
(1)= 1.74, β = 0.04, p = 

0.19)  and plasma osmolality (χ
2
(1)= 1.03, β = 0.01, p = 0.31) were also not significant predictors 

of release behavior. Lactate significantly predicted release behavior (χ
2
(1)= 7.73, β = -2.1 p = 

2-3 
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0.005). An inverse relationship was observed between these variables, such that individuals with 

higher lactate levels exhibited lower release behavior ratings (Figure 7). 

 

Figure 7. The relationship between lactate concentration (mmol/L) of R. terraenovae captured from the Mississippi 

Sound in the Gulf of Mexico and release behavior (p < 0.05; N=21), which was coded on a scale of 0-5. 

Concentrations include +/- 1 standard error. 

 

DISCUSSION 

ACTH 

 

During the alarm stage of the stress response, the recognition of the stressor stimulates 

the release of corticotropin-releasing hormone (CRH) from the hypothalamus, which binds to the 

anterior pituitary. This in turn results in the release of ACTH from the anterior pituitary. 

Adrenocorticotropic hormone binds to the interrenal gland and stimulates the release of 
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glucocorticoids into the circulation, resulting in glucose increase in the blood. This cascade 

results in energy mobilization, aiding in homeostatic maintenance in response to the stressor.   

Despite the importance of ACTH in this hormonal cascade, there is a surprising dearth of 

information on ACTH levels in the vertebrate response to stress. To our knowledge, this is the 

first study that has quantified ACTH in response to stress in elasmobranchs. For example, a 

literature search using Scopus revealed only six studies that quantified ACTH in response to 

stress; three in teleosts (Sumpter and Donaldson, 1986; Arends et al., 1999; Long et al., 2019) 

and three in mammals (Coe, 1978; Liberzon et al., 1997; Gadek-Michalska et al., 2019). Our 

results indicate that circulating levels of ACTH were higher (120 pg/ml) 15 minutes after capture 

in R. terraenovae and remained elevated for the subsequent sampling periods, which is expected 

to correspond to increased glucocorticoid production. Studies in birds indicate that blood 

samples collected within 2-3 minutes of capture represent baseline levels of glucocorticoids that 

can rapidly change following this time period (Wingfield et al., 1982; Romero and Wingfield, 

2001; Romero and Reed, 2005). If glucocorticoids increase significantly from baseline in 3 

minutes, then upstream increases in ACTH are likely to be detected more rapidly. This capture 

stress protocol is commonly used in studies of this nature, however, caution must be exercised 

when interpreting these as baseline values. We obtained blood samples as early as practically 

possible but these may not represent the lowest, un-stressed values. Nevertheless, the initial 

stress indicators were significantly lower than later time periods. In studies involving salmonids, 

ACTH was increased (50 pg/ml) from baseline after two minutes of handling and confinement 

stress and continued to increase for the duration of a 60 minute stressor (up to 140 pg/ml; 

Sumpter and Donaldson, 1986), similar to our findings. Similar results have also been found in 

rats where ACTH is significantly higher (150 pg/ml) five minutes after a stress event and 



 

25 

continued to rise for 30 minutes thereafter (up to 280 pg/ml; Liberzon et al., 1997). Arends 

(1999) did not observe a maximum ACTH level in the sea bream (Sparus aurata) until one hour 

after the stressor, whereas, in our study, we observed maximum ACTH levels after 15 minutes of 

exposure to the stressor. This could be due to temperature differences in our study (25-28° C) 

compared to the Arends (1999) study (18-22° C) or due to species differences.   

Feedback inhibition can occur wherein elevated glucocorticoid levels inhibit further 

release of ACTH. Coe (1978) observed glucocorticoid feedback inhibition on ACTH release two 

hours after the stressor in squirrel monkeys (Saimiri sciureus). However, inhibition was not 

apparent in this study, indicated by the continued elevation of ACTH. If ACTH measurement 

had continued after the 60 minute period in this study, feedback inhibition may have been 

observed. Although there was no significant relationship between ACTH and the behavior of the 

sharks upon release, the persistent capture stress resulted in elevation of the stress response over 

the 60 minute sampling period. 

Lactate 

 

 No studies have investigated the relationship between indicators of the alarm stage of the 

GAS with indicators of the resistance stage. However, several studies have examined the 

resistance stage, describing elevations in lactate levels in fishes after a stressor. For instance, 

peak lactate levels (10 mmol/L) were observed in the gummy shark, Mustelus antarcticus, three 

hours after capture and lactate returned to baseline levels (0.5 mmol/L) 24 hours post-stress 

(Frick et al., 2012). Lactate levels also peaked (9 mmol/L) three hours after a capture stress event 

in juvenile sand tiger sharks, Carcharhinus taurus, and were significantly higher than baseline 

levels up to 12 hours post-stress (Kneebone et al., 2013). The elevated lactate values at 45 (5.6 
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mmol/L) and 60 (5.9 mmol/L) minutes in this study are supported by other studies as well. For 

example, R. terraenovae showed a significant increase in lactate (11 mmol/L) from baseline (1 

mmol/L) after 30 minutes (Hoffmayer et al., 2015). Similarly, the sea bream, Sparus auratus, 

had higher lactate levels (1.5 mmol/L) 30 minutes after an air exposure event (Arends et al., 

1999). 

Our results revealed a relationship between lactate and release behavior, in which sharks with 

higher lactate levels scored lower on the release behavior scale. While this relationship may be 

strengthened by a higher sample size, similar results have been observed in other studies as well. 

For example, lactate levels were seen to be significantly higher in moribund sharks compared to 

sharks in good condition (Moyes et al., 2006; Marshall et al., 2012) and elevated lactate has been 

associated with impairment of reflexes (Jerome et al., 2018). The results of the present study 

suggest that elevated lactate affects the physiology of sharks by altering body chemistry, which 

is something that been seen to affect post-release survival in other studies. 

Osmolality 

 

 Capture stress may lead to a disruption of the ability to osmoregulate in aquatic animals. 

Elasmobranchs possess unique osmoregulatory ability in that they are able to regulate internal 

ion concentrations via gill tissues but also through use of the rectal gland (MacLellan et al., 

2015). This allows sharks to regulate their internal osmolality as a mechanism to compensate for 

fluxes in water between the shark and its environment. The increased energetic and respiratory 

demand during a stress response will result in increased ventilation, perfusion of the gills with 

blood, and the recruitment of additional gill lamellae. This may result in an increase in osmotic 

influx of water into the animal when in a hypotonic environment. The R. terraenovae sampled 
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from the Mississippi Sound in this study would have all been in a dilute environment, therefore, 

we would expect to see declines in osmolality when the animal was subjected to stress in a way 

to impact its ability to maintain homeostasis. Despite this, we found no evidence of a significant 

difference in osmolality between sampling periods which was likewise observed in the same 

species by Hoffmayer et al. ( 2015) and in M. antarcticus (Guida et al., 2016). The possibility of 

recovery at the later time periods could explain the lack of an expected significant decline in 

osmolality. Alternatively, significant differences in osmolality may have been observed for 

stressors applied for periods longer than 60 minutes. It is also possible that the salinity of the 

collection site had an influence on the osmolality of the shark that may have negated an effect of 

the stressor. However, there was a positive effect of temperature and time of day of sample 

collection on osmolality values, in which lower osmolality values were seen earlier in the day 

and at lower temperatures. This indicates that the sharks had a reduced ability to maintain a 

steady osmolality under these circumstances, potentially due to the presence of a stressor. Many 

studies have demonstrated that animals are subject to circadian rhythms of glucocorticoid levels, 

with levels peaking shortly before the active period of the day (Kuhn et al., 1986; Breuner et al., 

1999; Dickmeis, 2008). It is possible that the circadian rhythm of glucocorticoids may explain 

the time of day effect on osmolality in this study. Similarly, the effect of temperature on 

osmolality could have also been due to a circadian rhythm of glucocorticoids since lower 

osmolality values were associated with lower temperatures experienced earlier in the day. While 

there have been studies on the effects of salinity on osmoregulation (Bryne et al., 1972; Cramp et 

al., 2015), the literature on the effects of other environmental parameters, such as temperature, 

are lacking. This highlights the need for studies that examine the effects of environmental 

parameters on osmoregulatory ability in elasmobranchs. 
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CONCLUSIONS 

 

   Our validation of this commercial ELISA for quantification of ACTH in this 

species expands the toolkit available to researchers. These results provide the shark 

physiologist the means to easily assess the primary stress response in this group. Our results 

indicate an increase in ACTH within the first 15 minutes that remained elevated for the 

duration of the 60 minute stressor in Atlantic Sharpnose sharks. This provides insight into 

aspects of the endocrine stress response that was not previously available in elasmobranchs. 

Additionally, we show an increase in lactate levels over the course of the 60 min sampling 

period that corresponded to poor release behavior. This provides a potential link between a 

physiological indicator of stress and post-release survival. Future studies should examine 

how the stress response of sharks affects survival to better understand how capture stress 

associated with incidental bycatch impacts shark populations. 

 

   Conservation physiology is defined as “the study of physiological responses of 

organisms to human alteration of the environment that might cause or contribute to 

population declines” (Wikelski and Cooke, 2006). Our study of the fundamental stress 

indicators presented here provide the framework for potentially understanding the link 

between anthropogenic stress and species preservation. These results can inform researchers 

on the health of species. Our validation and quantification of ACTH represents a major step 

in understanding the alarm stage of the stress response in this species. For example, the 

ability to identify elevated ACTH levels provides a means for documenting chronic levels 

of stress that can be important in many conservation biology applications. Additionally, 

elevated lactate resulting from the stress response may reduce survivorship or ultimately 

alter fitness. Studies that combine quantification of physiological stress indicators and 
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estimates of post-release survival are necessary to understand the full impact of capture 

stress on elasmobranchs.
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CHAPTER 3: 

THE EFFECTS OF AIR EXPOSURE ON THE STRESS RESPONSE OF BLACKTIP 

SHARKS, Carcharhinus limbatus 

ABSTRACT 

 
Air exposure is a common stressor that aquatic animals may experience during capture. Air 

exposure in fishes could result in collapse of the gills, the prevention of gas exchange and could 

result in the accumulation of lactate and other waste products in the blood. Although studies have 

investigated the effects of air exposure on both teleosts and elasmobranchs, few have utilized 

multiple durations of exposure. Therefore, we subjected blacktip sharks (Carcharhinus limbatus) 

to 0, 5, 10, or 15 minutes of air exposure and examined various blood parameters. We likewise 

tested the nictitating eyelid reflex (NER) after air exposure and categorized behavior during 

release. Results revealed that lactate was significantly higher after 10 and 15 minutes of air 

exposure compared to baseline levels. Release behavior was poorer after five, 10, and 15 minutes 

of air exposure compared to baseline and 15 minutes of air exposure resulted in complete 

impairment of the NMR. These results suggest that for blacktip sharks and perhaps other closely 

related species, fishers should limit exposure to air to no more than five minutes during capture 

in order to provide the highest chance of survival after release
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INTRODUCTION 

 

Upon capture by commercial and recreational fishers, sharks are exposed to a variety of 

stressors, such as hook injury, fight time, handling, and exposure to air. Air exposure could occur 

during both commercial and recreational fishing while the remainder of the catch is being sorted, 

during photo opportunities, and while measurements are being obtained (Ferguson and Tuft, 

1992). Fishers often view sharks as dangerous, so they are typically cautious during gear 

retrieval or even allow the shark to tire on the deck of the boat before handling. It is likely that 

exposure to air will result in effects upon the physiology of aquatic animals. The lamellae of the 

gills, the primary site of gas exchange in fishes, are suspended and separated due to water 

flowing through the gills. During air exposure the lamellae collapse onto each other which 

disrupts gas exchange so that new oxygen cannot diffuse into the blood and waste products 

cannot be released, resulting in an oxygen debt. This would force them to enter anaerobic 

respiration, resulting in a build-up of the byproduct lactate, which would acidify the blood and 

lead to significant physiological perturbation (Cicia et al., 2012). Because waste products would 

be unable to escape from the gills during air exposure, sharks would also experience a build-up 

of CO2 in the blood, resulting in further acidification and a potential Bohr shift that decreases the 

affinity of hemoglobin for binding oxygen (Gingerich et al., 2007). Therefore, not only would 

the sharks be unable to acquire oxygen through gas exchange, they may also have lower 

efficiency of oxygen transport to oxygen starved tissues. This stress could result in severe 

physiological disturbance and increased mortality after capture. 



 

32 

A handful of studies have considered the effects of air exposure on teleosts that are 

frequently captured by fishers. Three minutes of air exposure resulted in a 50 fold increase in 

cortisol of gilthead sea bream (Sparus aurata) as well as increases in levels of plasma glucose 

and lactate (Arends et al., 1999). This indicates that air exposure elicits a stress response in fish 

that then leads to the secondary, metabolic stress response. Studies have also reported 

disturbances due to air exposure can lead to mortality in fishes. For example, increased mortality 

rates were noted after 30 minutes of air exposure and behavioral impairment (startle behavior 

and orientation) after 10 minutes of air exposure (Davis and Parker, 2004). Studies have also 

demonstrated that air exposure after a bout of exercise, typical of a capture event, exacerbates the 

stress response (Suski et al., 2007). Likewise, higher lactate and CO2 were observed in the blood 

of rainbow trout (Onchorynchus mykiss) that had been aerially exposed after exercise (Ferguson 

and Tuft, 1992). Studies examining the physiological response of elasmobranchs to the stress of 

air exposure have reported elevations in plasma lactate along with changes in other physiological 

parameters (Frick et al., 2010; Cicia et al., 2012; Lambert et al. 2018). An increase in the 

temperature difference between water and air temperatures (thermal gradient) has also been 

indicated as having a compounding effect on the severity of the stress response (Cicia et al., 

2012).  

Measures of post-release survival can be difficult and costly when dealing with elusive 

marine animals. Despite this, there are a few studies that tracked movement and short term 

survival of elamsobranchs after capture (Moyes et al., 2006a; Afonso and Hazin, 2014; Gallagher 

et al., 2014; Hutchinson et al., 2015; Eddy et al., 2016, etc.). Other studies have quantified 

behavior during release and tested reflexes as a measure of condition of the shark (Manire et al., 

2001; Gallagher et al., 2014; Jerome et al., 2018; Raoult et al., 2019). The nictitating eyelid 
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reflex (NER) is commonly used in fisheries (Musyl and Gilman, 2018) and involves observation 

of the movement of the nictitating eyelid over the eye. The addition of survival measurements, 

whether direct or indirect, to studies investigating the effect of capture stress can help to form a 

link between physiological measures of stress and fitness. 

Blacktip sharks (Carcharhinus limbatus) are often targeted by recreational sport fishers 

due to their vigorous reaction when hooked. These sharks are common in Gulf of Mexico waters 

which makes them a good target for fisheries and for this study. In this study, we endeavored to 

answer the following questions: (1.) How does air exposure affect the stress response? (2.) Do 

environmental and individual variables explain a significant amount of variation in this effect? 

(3.) Will air exposure affect release behavior and can levels of stress indicators predict release 

behavior? (4.) Does air exposure affect the propensity to display the NER? 

METHODS 

Aerial Exposure 

 

Carcharhinus limbauts were captured using hook and line from the Mississippi Sound in 

the Gulf of Mexico between May and October of 2016-2018. Sharks were brought onto the boat 

within an average of 3.5 minutes and remained on the deck during aerial exposure for 5, 10, or 

15 minutes, after which sharks were rapidly (within 3 minutes) sampled for up to 1 ml of blood 

via caudal venipuncture with a 21G needle and BD brand EDTA treated vacutainer. A subset of 

sharks was sampled for blood immediately after capture (within 3 minutes) to serve as a control. 

The nictitating membrane response was examined in all sharks by ejecting seawater at the eye 

using a needle-less syringe and recording if the nictitating membrane closed over the eye. The 

total (from the rostrum to the tip of the upper lobe of the caudal fin), standard (measured from 
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the tip of the rostrum to the caudal peduncle), and fork (from the tip of the rostrum to the fork in 

the caudal fin) lengths were then measured from each shark after which it was revived by slowly 

moving it through the water to facilitate oxygen uptake at the gills before release. The immediate 

release behavior was categorized on a subjective scale based on its behavior during release 

(Table 1; modified from Manire et al., 2001). Environmental data was recorded when each shark 

was captured including dissolved oxygen (mg/L), water temperature (°C), and air temperature 

(°C). A thermal gradient, the difference between water and air temperatures, was also calculated 

to determine if it has an exacerbating effect on the stress response.  All procedures were 

approved by the University of Mississippi’s Institutional Animal Care and Use Committee 

(protocol # 15-002). 

Blood and Statistical Analyses 

 

Blood samples were kept on ice and returned to the lab for analysis. Whole blood 

samples were analyzed for lactate (mmol/L) with CG4+ cartridges and an I-Stat Vetscan 1. 

Glucose (mg/dL) was measured from whole blood using a handheld meter (ReliOn Prime Blood 

Glucose Monitoring System and ReliOn Prime Blood Glucose Test Strips) similar to other 

studies (Cooke et al., 2008; Awruch et al., 2011; Danylchuk et al., 2014; French et al., 2015; 

Bouyoucos et al., 2017). Hematocrit was measured by centrifuging whole blood in a capillary 

tube then measuring the proportion of red blood cells to whole blood. 

 Air exposure duration was coded as a categorical variable to be able to compare between 

the durations. Analyses of covariance (ANCOVAs) and Tukey HSD post-hoc tests were utilized 

to determine if response variables (lactate, glucose, and hematocrit) were significantly affected 

by air exposure duration or any measured environmental or individual variables (total length, 

sex, thermal gradient, and dissolved oxygen). An ordinal logistic regression model was utilized 
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to determine if the duration of air exposure or levels of stress indicators (lactate, glucose, and 

hematocrit) could significantly predict release behavior (factored as an ordinal categorical 

variable). A Monte-Carlo randomization test was utilized to determine if the duration of air 

exposure affected the propensity for sharks to display the NMR. All analyses were performed in 

R version 3.5.1 using car, ggplot2, and sciplot packages. 

RESULTS 

 

Forty C. limbatus were captured by hook-and-line and utilized in this study (5 per 

treatment) including 25 females and 15 males (Table 3). All sharks utilized in this study were 

hooked in the mouth and did not show signs of impairment or injury upon capture. 

 

Table 3. Description of C. limbatus collected for this study. 

 

Air Exposure 

Duration  

 

n 

Sex Proportion  

(M/F) 

Mean Total Length  

(cm) ± SE 

0 10 5/5 91.3 ± 11.2 

5 10 4/6 87.6 ± 7.5 

10 10 4/6 83.9 ± 9.3 

15 10 2/8 78.6 ± 9.1 

Total N=40 15/25 84.9 ± 4.4 

 

Effects on Stress Indicators 

 

The duration of air exposure significantly affected lactate concentrations (F(3,35)=5.83, 

p=0.0024) with longer air exposure leading to higher lactate levels. Lactate was significantly 

higher than baseline levels after 10 and 15 minutes of air exposure (p=0.028 and 0.0018, 

respectively; Figure 8). Duration of air exposure significantly affected blood glucose 

concentrations (F(3,22)=3.34, p=0.038) with longer air exposure leading to higher glucose 
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levels. Glucose was significantly higher after 15 minutes of air exposure than after 5 minutes of 

air exposure (p=0.046, Figure 9). None of the environmental or observational variables 

significantly affected glucose (p>0.07). Neither air exposure nor environmental variables had an 

effect on hematocrit levels (F(3,23)=1.69, p=0.18). 
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Figure 8. The differences in plasma lactate concentration (mmol/L) of  C. limbatus captured from the Mississippi 

Sound in the Gulf of Mexico between air exposure duration (minutes). Concentrations include +/- 1 standard error. 

Significant comparisons (p<0.05) indicated by different letters. 

a 

ab 

b 

b 
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Figure 9. The differences in plasma glucose concentration (mg/dL) of C. limbatus captured from the Mississippi 

Sound in the Gulf of Mexico between air exposure durations (minutes). Concentrations include +/- 1 standard error. 

Significant comparisons (p<0.05) indicated different letters. 

 

Effects on Release Behavior and NER 

 

 Air exposure duration significantly affected release behavior (χ
2
(3)= 21.32, p = 1e-04), 

with release behavior scores indicating more sluggish sharks after 5, 10, and 15 minutes of air 

exposure compared to baseline scores (all p<0.0038, Figure 10). Other stress indicators (lactate, 

glucose, and hematocrit) were not significant indicators of release condition (p>0.08). Air 

exposure significantly affected the propensity of sharks to display the nictitating membrane 

reflex (χ
2
=9.95, p=0.016) in which higher levels of air exposure resulted in decreased displays of 

the NER (Figure 11).  
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Figure 10. The differences in release behavior (ranked on a scale of 0-5) of captured C. limbatus captured from the 

Mississippi Sound in the Gulf of Mexico between air exposure durations (minutes). Significant comparisons 

(p<0.05) indicated by different letters. 
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Figure 11. The proportion of C. limbatus captured from the Mississippi Sound in the Gulf of Mexico exhibiting 

(yes) the NER  versus those not exhibiting (no) the NER across different durations (minutes) of air exposure. The 

NER was tested by squirting water at the eye and recording whether the nictitating eyelid covered the eye. 

 

DISCUSSION 

Effects on Stress Indicators 

 

Our study demonstrated significant effects of air exposure on the physiology of captured 

C. limbatus. Our results indicate an increase in plasma lactate concentrations with increasing 

duration of air exposure. Specifically, after only 10 minutes of air exposure, lactate levels were 

significantly higher than baseline levels with 15 minutes of air exposure resulting in an even 

larger difference. This effect is well-supported by existing literature. For example, an increase in 

lactate levels due to air exposure has been documented in teleosts such as the gilthead sea bream 

(Sparus aurata; Arends et al., 1999) and bonefish (Albula vulpes; Suski et al., 2007) as well as 

elasmobranchs such as the Atlantic stingray (Hypanus Sabina; Lambert et al., 2018), sparsely 
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spotted stingaree (Urolophus paucimaculatus; Heard et al., 2014), and the little skate (Leucoraja 

erinacea; Cicia et al., 2012). The majority of these studies examined air exposure over much 

longer time periods. The exposure durations used here (5, 10 and 15 minutes) provided the 

opportunity to examine fine scale stress response development in C. limbatus. Additionally, we 

believe that these selected intervals are reasonable approximations of the amount of time that 

fishers hold sharks out of water. Lactate levels observed here after only 10 minutes of air 

exposure (~5 mmol/L) were equivalent to those observed after one hour of gill net capture stress 

(~4.7 mmol/L; Manire et al., 2001) in C. limbatus. This highlights the severity of air exposure as 

a stressor compared to capture stress alone, as well as the severe physiological effects that 

exposure may have. Elevated lactate as a result of the stress response can cause alterations in 

protein structure and protein-protein interactions (Dumetz et al., 2008) along with a drop in pH 

of the blood. Similar to the results presented here, other studies on capture stress have reported 

high lactate levels correlated with poor release condition ( Moyes et al., 2006; Marshall et al., 

2012).  

 Not only does air exposure result in a shift to anaerobic respiration, but it also stimulates 

the hypothalamic-pituitary-interrenal (HPI) axis. The perception of a stressor will result in the 

stimulation of the hypothalamus and anterior pituitary, causing a release in glucocorticoids from 

the interrenal tissue. Glucocorticoids will stimulate the mobilization of glucose as an energy 

source to the body. Previous studies on the effects of air exposure on plasma glucose levels have 

reported mixed results ranging from no effect (Suski et al., 2007; Cicia et al., 2012), to an 

increase in glucose (Arends et al., 1999; Lambert et al., 2018; Heard et al., 2014; Cicia et al., 

2012), and a decrease in glucose (Frick et al., 2010). Our results show glucose levels decreasing, 

although not significantly, after 5 minutes of air exposure compared to baseline levels, followed 
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by an incremental increase in glucose after 10 and 15 minutes of air exposure. This is possibly 

due to the increased levels of activity that C. limbatus engage in during the first few minutes of 

capture and air exposure. Without exception, sharks thrashed on the deck in an attempt to escape 

the stressor. Physiologically, this could imply that the increased activity during the first five 

minutes of air exposure resulted in a depletion of blood glucose. This increased activity abated 

after longer periods of air exposure which may explain why glucose levels were observed to 

increase again at the 10 and 15 minute time periods. Within the first three minutes of a stressor, 

glucocorticoids will be released, which will allow for breakdown of glycogen and production of 

more glucose, which could also account for the elevated glucose levels after 10 and 15 minutes 

of air exposure. This pattern has been observed in H. sabina in which glucose levels decrease 

within the first 15 minutes of air exposure but then increase at the 15 and 30 minute time periods 

(Lambert et al., 2018). However, it is also possible that there may have been a large amount of 

variation in initial glucose measurements due to the possibility of some sharks having eaten more 

recently than others before capture or due to the low sample size.  

 During a stress response, catecholamines (epinephrine and norepinephrine) are released 

from the chromaffin tissue, which result in increased blood flow throughout the body. Blood 

flow will also increase at the gills, allowing for more gill lamellae to be perfused with blood, a 

process known as lamellar recruitment (Bennett and Rankin, 1987). This results in an increase in 

gill permeability to water between the body of the shark and the environment which can lead to 

hemodilution or hemoconcentration, depending upon salinity. Despite this possibility, the 

literature surrounding the effects of air exposure on hematocrit typically show no effect (Lambert 

et al., 2018; Cicia et al., 2012). An increase in hematocrit with the addition of air exposure to an 

exercise stressor was observed when compared to the effects of exercise alone in A. vulpes 
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(Suski et al., 2007). In the present study, hematocrit was not significantly affected by air 

exposure duration, which fits with the previously mentioned literature on elasmobranchs 

(Lambert et al., 2018; Cicia et al., 2012). 

Effects on Release Behavior 

 

The scoring of release behavior has the potential to provide insight into the condition and, 

possibly, chances of survival of the animal after release when direct measures of survival are not 

feasible (Campbell et al., 2009; Brownscombe et al., 2017). Previous studies investigating the 

effect of air exposure on behavior after release are fairly consistent. For example, A. vulpes that 

were exposed to air took significantly longer to regain equilibrium than those not exposed to air. 

They also noted that most predation events of the released A. vulpes occurred within 20 minutes 

of release, possibly relating to more sluggish behavior after the stressor (Suski et al., 2007). 

Behavioral impairment following 10 minutes of air exposure was also observed in sablefish, 

Anoplopoma fimbria, along with an effect of size class in which smaller fish exhibited more 

impairment and mortality in response to air exposure than large fish (Davis and Parker, 2004). A 

study on the draughtboard, Cephaloscyllium laticeps, and piked spurdog, Squalus megalops, 

sharks noted lower post-release activity levels following 15 minutes of air exposure (Raoult et 

al., 2019). In the present study, release behavior was categorized as significantly more sluggish 

after 5, 10, and 15 minutes of air exposure when compared to sharks that were not air exposed. 

This indicates that even 5 minutes of air exposure could impair the animal's ability to escape a 

threat immediately after release. Although not observed in the current study, others have 

demonstrated an interaction between air exposure duration and temperature in which animals 

exposed to air during high temperatures exhibited greater behavioral impairment (Gingerich et 



 

44 

al., 2007) and higher mortality rates (Gingerich et al., 2007; Cicia et al., 2012). The only 

mortality experienced in this study was during the highest air exposure treatment (15 minutes). 

Despite our results of air exposure on release behavior and the common use of immediate 

release behavior as an indicator of survival, caution must be taken when drawing conclusions 

because long-term survivorship could not be verified. In a study that observed behavior up to 

five minutes post-release, it was noted that behavior of elasmobranchs did not differ significantly 

between air exposed and control sharks during the first 30 seconds after release, whereas activity 

was significantly lower in air exposed sharks five minutes after release (Raoult et al., 2019). This 

indicates that immediate release behavior (within 30 seconds after release) may not be 

representative of long-term release behavior or survivorship.  

Effects on the Nictitating Eyelid Reflex 

 

Reflex impairment can greatly affect an animal’s fitness by decreasing the likelihood of a 

timely escape from a threat (Campbell et al., 2010). Capture stress has a high possibility of 

resulting in reflex impairment, due to the animal utilizing their energy stores in an attempt to 

escape the stressor. Because of this, measures of reflex impairment are common in capture stress 

studies. For instance, reflexes were significantly impaired in red snapper (Lutjanus 

campechanus) exposed to capture from deeper waters when compared to shallow waters 

(Campbell et al., 2010). The nictitating membrane reflex (NMR) is commonly utilized by fishers 

and scientists as an index of the condition of a captured animal (Poisson et al., 2014; Dapp et al., 

2017; Musyl and Gilman, 2018) and it has been suggested that the NMR should be measured 

across fisheries studies for comparison (Musyl and Gilman, 2018). A variety of reflexes can be 

measured, along with the NMR, as a measure of condition. Despite the widespread utilization of 
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the NMR as a measure of condition, impairment of the jaw reflex has been implicated as a more 

informative reflex as it was associated with multiple physiological stress indicators and, 

therefore, may better reflect physiological disturbance (Jerome et al., 2018). No other study 

investigating the effects of air exposure measured the NMR as a response variable so direct 

comparison with the current study was not possible. Our results demonstrate that the duration of 

air exposure had a significant effect on the NMR, with all sharks displaying the NMR 

immediately after capture and no displays of the NMR after 15 minutes of air exposure, 

indicating reflex impairment in air exposed sharks. These results, along with the negative effect 

of air exposure on release behavior, and the equivalence of stress indicators between 10 minutes 

of air exposure and an hour of capture stress indicate that air exposure is a more severe stressor 

to which aquatic animals may be subjected during capture. 

CONCLUSION 

 

Our results demonstrated elevated lactate after 10 and 15 minutes of air exposure 

compared to baseline levels, indicating a negative physiological disturbance after only 10 

minutes of air exposure. Air exposure also resulted in poorer release behavior after five minutes 

along with complete impairment of the NMR after 15 minutes. These results highlight the severe 

negative impact that even short durations of air exposure can have on captured sharks. We 

suggest that fishers limit air exposure of these animals to no more than five minutes in order to 

provide the highest chance of post-release survival. Due to species-specific variation in the 

response to capture stress, future studies should investigate the effects of acute air exposure 

durations on various species and attempt to relate these physiological and behavioral stress 

indicators to direct measures of post-release survival. 
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CHAPTER 4: 

EFFECTS OF ISO-EUGENOL ON THE STRESS AND RESPIRATION RATES OF 

ATLANTIC SHARPNOSE SHARKS (Rhizoprionodon terraenovae), WHTIE-SPOTTED 

BAMBOO SHARKS (Chilloscylium plagiosum), AND GOLDEN SHINERS (Notemigonus 

crysoleucas)  

ABSTRACT 

 

Sedatives are utilized by researchers, fisheries managers, veterinarians, and aquarium 

personnel in order to reduce stress and activity of fishes, which is useful during surgery, 

transport, and handling. A variety of sedatives are currently utilized such as MS-222, quinaldine, 

metomidate, benzocaine, etc., but these sedative are not all FDA approved for use in fishes due 

to negative side-effects. Clove oil, with an active component of eugenol, has shown potential as a 

natural fish sedative; however, few studies have investigated its effects on elasmobranchs. This 

study is an investigation into the effects of iso-eugenol on physiological stress indicators, 

including lactate, glucose, hematocrit, and respiration, of two elasmobranchs, Atlantic sharpnose 

sharks (Rhizoprionodon terraenovae) and white-spotted bamboo sharks (Chiloscyllium 

plagiosum), and a teleost, golden shiners (Notemigonus crysoleucas). Our results demonstrated 

that  immersion in a 10 mg/L solution of iso-eugenol significantly reduced lactate, glucose, and 

hematocrit levels in R. terraenovae, while also resulting in more sluggish release behavior. The 

effects on respiration rates were variable, with 5 mg/L iso-eugenol resulting in higher rates in R. 

terraenovae, lower rates in C. plagiosum, and no significant difference in N. crysoleucas. 
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These results highlight the extreme variation in effects of sedatives between species and 

indicate that preliminary trials must be conducted on any species of interest before utilization of 

iso-eugenol as a sedative. While iso-eugenol had a negative effect on release behavior, it also 

demonstrated potential in reducing the magnitude of stress in response to capture. 

INTRODUCTION 

 

Sedation and anesthesia have proven to be powerful tools to reduce stress in fishes during 

handling and transport by lowering cortisol levels (Iversen et al., 2003, 2009) and by reducing 

plasma lactate in response to low oxygen (Small, 2004). Anesthetics can also minimize the 

effects of stress after a stress response has already been initiated (Wagner et al., 2003). Sedation 

can reduce metabolic rate and, therefore, decrease oxygen demand, reduce activity, and allow for 

easier handling for scientists or fishers (Cooke et al., 2004). In contrast, other studies have shown 

negative effects of sedation, such as increased cortisol levels (Weber et al., 2011) and a risk of 

ventilatory failure when high doses are administered (Sladky et al., 2001). 

In fishes, studies have shown an increase in heart rate at low concentrations of anesthesia 

and a decrease at higher concentrations (Sneddon, 2012). Iso-eugenol is a derivative of clove oil, 

a commonly used sedative for fishes. Fishes exposed to clove oil had a calmer induction into 

anesthesia than fishes exposed to other sedatives (Munday and Wilson, 1997). Similarly, 

rainbow trout (Oncorhynchus mykiss) were found to have a quicker induction into anesthesia 

with low concentrations of clove oil compared to other sedatives (Keene et al., 1998). However, 

Sladky et al. (2001) found that red pacu (Piaractus brachypomus) exposed to tricaine-

methanesulfate had a much larger margin of safety than those exposed to clove oil, meaning that 

fishes exposed to clove oil were more likely to have ventilatory failure. Few studies are available 
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regarding the effects of sedation on elasmobranchs. Aquarium fishes and elasmobranchs 

anesthetized with quinaldine did not resist gentle handling over a short time period (e.g. 5 mins) 

(Dempster, 1968). A minor increase in plasma lactate was seen in sharks after sedation with 

Aqui-S, a clove oil-derived sedative (Frick et al., 2009). These results emphasize the species-

specific responses to anesthetics and the general lack of studies dealing with elasmobranchs.  

Only a handful of studies have been conducted to investigate the effects of sedatives on 

physiological indicators of the secondary stress response. Studies on the sedative effects of stress 

reduction in fishes have focused on quantification of cortisol, the primary glucocorticoid in 

teleosts. The majority of studies have reported increases in cortisol in response to sedative 

exposure (Thomas and Robertson, 1991; Iversen et al., 2003, 2009; Davis and Griffin, 2004; 

Weber et al., 2011; Yousefi et al., 2018) with the exception of metomidate, which has been seen 

to block the cortisol stress response (Thomas and Robertson, 1991; Davis and Griffin, 2004). 

Due to difficulties quantifying the glucocorticoid stress response of elasmobranchs, stress studies 

typically focus on physiological indicators of the secondary stress response. Despite this, there is 

only one (to the author’s knowledge) study that has examined the effects of a sedative on the 

secondary stress response of an elasmobranch (Frick et al., 2009). This study noted significantly 

higher lactate levels in Australian swellsharks (Cephaloscyllium laticeps) exposed to sedation 

with Aqui-S (a commercial form of iso-eugenol) than control sharks. Similar results have been 

found in teleosts in which sedation with either clove oil, eugenol, or iso-eugenol resulted in 

increased lactate levels (Iversen et al., 2003; Weber et al., 2011; Yousefi et al., 2018). These 

results indicate that, with the exception of metomidate, sedatives may be perceived as noxious 

stimuli by fishes, resulting in a glucocorticoid and secondary stress response. 
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The objective of this study was to identify a possible method that could be applied to 

reduce the stress response of captured sharks. Specifically, we aimed to determine if a sedative, 

iso-eugenol, has an effect on the development of the stress response and respiration rates of wild-

caught sharpnose sharks, Rhizoprionodon terraenovae, captive white-spotted bamboo sharks, 

Chiloscyllium plagiosum, and golden shiners, Notemigonus crysoleucas. This allowed for 

comparison between sharks with different life histories and for comparison between 

elasmobranchs and teleosts. For R. terraenovae, we aimed to answer the following questions: 

(1.) Does sedation affect levels of stress indicators (such as lactate, glucose, and hematocrit) over 

time and do covariates (water temperature, salinity, dissolved oxygen, and weight) explain a 

significant amount of variation? (2.) Does sedation affect the respiration rate of sharks over the 

30 minute trial and do environmental variables explain a significant amount of variation in this 

effect? (3.) Can release behavior be predicted by the type of sedation or by levels of stress 

indicators at the time of release? For both C. plagiosum and N. crysoleucas we aimed to 

determine if sedation significantly affected the respiration rates of the subjects while also 

controlling for covariates of temperature (°C) and weight (g). 

METHODS 

Atlantic Sharpnose 

 

Collection and Experimental Procedure 

Rhizoprionodon terraenovae were collected by hook-and-line around Horn Island off the 

coast of Mississippi in the Gulf of Mexico between May and October of 2016, 2017, and 2018. 

Upon capture and identification as R. terraenovae, the individual was sampled (within 3 

minutes) for up to 1 ml of blood as a baseline blood sample via caudal venipuncture with a 21G 
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needle and BD brand EDTA treated vacutainer. The shark was then placed into a respiration tank 

(a 204.2 L sealed tank with a dissolved oxygen probe inserted in the lid; Figure 12) on board for 

30 minutes. Each shark was randomly assigned a treatment, either iso-eugenol (5 or 10 mg/L; 

mixed with ethanol), ethanol concentrations equal to that which was mixed with iso-eugenol (5 

or 10 mg/L), or control (seawater only) which was mixed with seawater from the sampling site. 

During the 30 minute trial, blood was serially sampled and dissolved oxygen recorded every 10 

minutes. This required us to open the chamber and remove the shark during the experiment 

which could have introduced oxygen into the chamber. To try and account for this effect, all 

dissolved oxygen measurements were taken immediately before opening the chamber and 

removing the shark. After the 30 minute trial, the standard (measured from the tip of the rostrum 

to the caudal peduncle), fork (from the tip of the rostrum to the fork in the caudal fin), and 

stretched total length (from the rostrum to the tip of the upper lobe of the caudal fin) (cm) and 

weight (g) was measured for each shark before release. The immediate release behavior was 

categorized on a subjective scale based on its behavior during release (Table 1; modified from 

Manire et al., 2001). Environmental data was recorded when each shark was captured including 

dissolved oxygen (mg/L), water temperature (°C), and salinity (ppt). 

 

Figure 12. The respiration tank constructed and utilized for sedation experiments with wild R. terraenovae. 
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Blood Analysis 

Blood samples were kept on ice and returned to the lab for analysis. Whole blood 

samples were analyzed for glucose (mmol/L) with a glucose meter (Reli-On Prime Glucose 

Monitoring System and associated strips) similar to other studies (Cooke et al., 2008; Awruch et 

al., 2011; Danylchuk et al., 2014; French et al., 2015; Bouyoucos et al., 2017). Hematocrit (%) 

was measured as the proportion of red blood cells to whole blood in centrifuged samples. Plasma 

was separated from whole blood by centrifugation (3,400 rpm) and was kept in a -80°C freezer 

until analyzed for lactate (mmol/L) with a lactate kit (Eton Bioscience Inc., San Diego, CA, SKU 

#1200011002). 

Calculations and Statistical Analyses 

A linear mixed-effects model was performed in R using the lmer function in the lmerTest 

package to determine if treatment, time, and covariates (weight, water temperature, salinity, and 

environmental dissolved oxygen) had an effect on lactate, glucose, and hematocrit. An individual 

ID was assigned to each shark and that was introduced as a random effect to account for repeated 

measures from the same individual.  

 Total relative respiration rates (mgO2/g/hr) were calculated by measuring the 

decline in dissolved oxygen of the tank over the 30 minute trial per gram mass of the shark. 

Respiration rates (mgO2/g/hr) were also calculated by measuring the decline in dissolved oxygen 

in the tank between only the last two time periods (20 and 30 minutes) to try and remove a 

potential effect of stress of introduction to the chamber. ANCOVAs were conducted using the 

aov function in R followed by Tukey HSD tests to determine if treatment or covariates (water 

temperature and environmental DO) had an effect on either respiration rate.  
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 A logistic regression model was conducted to determine if treatment or levels of 

stress indicators (lactate, glucose, hematocrit, and respiration rate) at time of release had a 

significant effect on release behavior (coded as an ordinal categorical variable). 

White-Spotted Bamboo Sharks 

 

Husbandry 

 Five juvenile female C. plagiosum with a mean weight of 272 grams (±102.7 SE) were 

kept in a 350 gallon saltwater aquarium. Water quality parameters (nitrites, nitrates, ammonia, 

pH, temperature, dissolved oxygen, and salinity) were checked and the aquarium was cleaned 

and vacuumed daily. The sharks were fed a mixed diet of shrimp, tilapia, and squid by hand 

every three days. 

Respiration Chamber 

 The respiration chamber consisted of an acrylic tube with a threaded PVC cleanout 

adapter and screw-in plug fitted onto each end and secured with aquarium-safe silicone. The plug 

on one end was permanently secured with aquarium-safe silicone, allowing only one end to place 

the shark into and out of the chamber. A hole was drilled into the secured cleanout adapter into 

which a vacutainer lid was secured to allow for injection of the treatment into the chamber. A 

hole was drilled into the acrylic tube to securely fit a dissolved oxygen probe.  A small 

submersible pump was connected to the chamber via clear vinyl tubing attached to adapters 

securely fixed into the acrylic chamber. This allowed for low water flow through the chamber 

and over the dissolved oxygen probe (Figure 13). The respiration chamber was submerged in a 

tank filled with saltwater to facilitate filling of the chamber tubing without air bubbles. 
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Figure 13. The respiration chamber constructed and utilized for sedation experiments with C. plagiosum. 

Experimental Procedure 

 A shark was captured from the main aquarium and quickly (within 30 seconds) placed 

into a submerged respiration chamber that was then sealed. A treatment was randomly assigned 

to each trial and injected into the respiration chamber. Possible treatments included iso-eugenol 

(5 mg/L) mixed with ethanol for dissolving, ethanol concentration equal to that which was mixed 

with iso-eugenol (5 mg/L), or control (saltwater only). The shark remained in the chamber for 30 

minutes, during which dissolved oxygen was measured and the number of gill ventilations was 

counted (if possible) every minute. After 30 minutes, the shark was carefully removed from the 

chamber and weighed on a digital scale. Blood sampling to evaluate stress indicators was not 

conducted for this study due to the small size of the animals. Sharks were allowed to recover for 

30 minutes in a holding tank before being placed back into the main aquarium. 

Calculations and Statistical Analyses 
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 The relative respiration rate (mgO2/g/hr) was calculated from each 30 minute trial using 

the decline in total oxygen in the respiration chamber, the mass of the shark, and the time period. 

An ANCOVA was performed using the lmer function in the lmerTest package in R to determine 

if treatment or covariates, water temperature (°C) and weight (g), significantly affected the 

respiration rates of C. plagiosum. The number of gill ventilations per minute was averaged for 

each shark and an ANCOVA was utilized to determine if treatment or the same covariates 

significantly affected the average number of ventilations. Because each shark was utilized for 

experiments more than once, an identification number was assigned to the sharks and was 

introduced into the model as a random effect to account for repeated measures. The emmean 

function from the emmeans package in R was utilized for post-hoc analyses. The bargraph.CI 

function in the sciplot package was utilized for creation of figures. 

Golden Shiners 

 

Specimen Collection and Experimental Treatment 

 Notemigonus crysoleucas were purchased locally and transported to the lab where they 

were held under aeration until experimental trials. Respiration chambers consisted of 1 L plastic 

Ziploc containers with a hole drilled in the lid to fit a dissolved oxygen probe. Treatments 

consisted of iso-eugenol (5 mg/L) in an ethanol solution, ethanol concentration equal to that 

which was mixed with iso-eugenol (5 mg/L), or a control (reverse osmosis water only). 

Treatments were randomly assigned to each subject and either ethanol, iso-eugenol, or no 

treatment was added to the water in each chamber prior to sealing the fish in the chamber. 

Dissolved oxygen (mg/L) and temperature (°C) was measured every 10 minutes for an hour. 

After the last measurement, the subject was removed from the chamber and weighed (g). 
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Subjects were euthanized after experimentation via submergence in concentrated iso-eugenol 

under a fume hood. 

Calculations and Statistical Analyses 

 Relative respiration rates for N. crysoleucas were calculated over each one hour trial 

using the same method described for C. plagiosum along with respiration rates calculated from 

the difference in dissolved oxygen between the 50 and 60 minute time periods. Similarly, an 

ANCOVA was performed using the lmer function in the lmerTest package in R to determine if 

treatment or covariates, water temperature (°C) and weight (g), significantly affected either 

respiration rate of the shiners. The bargraph.CI function in the sciplot package was utilized for 

construction of figures. All statistical analyses were conducted with R version 3.4.2 (“Short 

Summer”). 

RESULTS 

Atlantic Sharpnose 

 

Forty-nine male R. terraenovae were captured by hook-and-line and utilized in this study 

(Table 4). Ten sharks were utilized for the treatments of 10 mg/L of iso-eugenol, 5 and 10 mg/L 

of ethanol, and control while nine sharks were utilized for the 5 mg/L dose of iso-eugenol. 

 

Table 4. Description of R. terraenovae collected for this study. 

 

Treatment 

 

n 

Sex Proportion  

(M/F) 

Mean Total Length  

(cm) ± SE 

Mean Weight  

(g) ± SE 

Control 10 10/0 80.8 ± 3.4 2273.6 ± 318.4 

5 mg/L Ethanol 10 10/0 77.8 ± 2.2 1916.5 ± 229.3 

10 mg/L Ethanol 10 10/0 79.0 ± 3.2 2154.9 ± 307.4 
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5 mg/L Iso-eugenol 9 9/0 76.8 ± 3.5 1734.0 ± 210.7 

10 mg/L Iso-eugenol 10 10/0 76.8 ± 4.2 1974.3 ± 313.8 

Total N=49 49/0 78.3 ± 1.5 2013.4 ± 123.5 

 

Lactate concentration (mmol/L) was significantly affected by a treatment by time 

interaction (F(12,130)=5.28,p=3.335e-07; Figure 14) in which lactate increased over the course 

of the 30 minute trial in all treatments. Lactate levels in sharks exposed to 10 mg/L of ethanol 

were significantly higher than those exposed to 10 mg/L of clove oil (p=0.0023). There was no 

significant difference between sharks exposed to 5 mg/L of ethanol and 5 mg/L of clove oil 

(p=0.6) or between control and any other treatment (p>0.11). Lactate in sharks exposed to 5 

mg/L clove oil was significantly lower than sharks exposed to 10 mg/L of ethanol (p=0.019). No 

covariate (weight, water temperature, salinity or environmental DO) had a significant effect on 

lactate levels (p>0.15). 
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Figure 14. Difference in plasma lactate (mmol/L) change over time (minutes) of R. terraenovae captured fro the 

Mississippi Sound in the Gulf of Mexico between treatments. Concentrations include mean +/- 1 standard error. 

 

Treatment had a significant effect on glucose levels (F(4,38)=3.35, p=0.019) in which 

glucose was significantly higher in control sharks than those exposed to 5 or 10 mg/L of clove 

oil (p=0.03 and p=0.01, respectively; Figure 15). Glucose levels were significantly different 

between sampling times (F(3,128)=18.24, p= 6.402e-10) in which glucose levels were higher 

than baseline after 10, 20, and 30 minutes of treatment (p=0.0012, <0.0001, and <0.0001, 

respectively). Glucose levels were also significantly higher after 30 minutes of treatment when 

compared with the 10 minute treatment (p=0.03). Covariates (weight, water temperature, salinity 

or environmental DO) all had a non-significant effect on glucose (p>0.11). 
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Figure 15. Difference in glucose concentrations (mmol/L) of R. terraenovae exposed to different treatments 

averaged over the 30 minute experimental trial. Sharks were captured from the Mississippi Sound in the Gulf of 

Mexico. Concentrations include mean +/- 1 standard error. Significant comparisons indicated by different letters. 

 

Hematocrit levels were significantly influenced by a treatment by time interaction 

(F(12,99)=1.94,p=0.038; Figure 16). Sharks exposed to 10 mg/L of clove oil had significantly 

lower hematocrit than sharks exposed to 5 and 10 mg/L of ethanol (p=0.04 and 0.048, 

respectively) and control sharks (p=0.013). Hematocrit did not differ between sampling times 

alone (p>0.58). No covariate (weight, water temperature, salinity or environmental DO) had a 

significant effect on hematocrit levels (p>0.26). 

a 
a 

b 

ab ab 
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Figure 16. Comparison of hematocrit (%) between treatments and at the different sampling periods (minutes) in R. 

terraenovae captured from the Mississippi Sound in the Gulf of Mexico. Concentrations include +/- 1 standard error. 

 

Respiration rates were significantly different between treatments (F(4,35)=3.91, p=0.01). 

Respiration rates were significantly higher in sharks exposed to 5 mg/L of clove oil than those 

exposed to 10 mg/L of clove oil (p=0.007; Figure 17). Respiration rates calculated between the 

20 and 30 minute time periods were not significantly affected by treatment (F(4, 41)=1.39, 

p=0.25). Covariates (water temperature and environmental DO) did not significantly affect either 

respiration rates (p>0.11).  
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Figure 17. Difference in total respiration rates (mgO2/g/hr) of R. terraenovae exposed to different treatments. 

Sharks were captured from the Mississippi Sound in the Gulf of Mexico. Concentrations include +/- 1 standard 

error. Significant comparisons are indicated by different letters. 

 

Release behavior was significantly different between treatments (χ
2
(4)= 12.36, p = 0.015) 

in which sharks exposed to 10 mg/L of clove oil had significantly lower release behavior ratings 

than sharks exposed to 10 mg/L of ethanol (p=0.0087; Figure 18). No other variable was a 

significant predictor of release behavior (p>0.20). 

a 

b 

ab 

a 

ab 
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Figure 18. Difference in release behavior (a subjective ranking based on the behavior of the shark upon release, +/- 

1 standard error) of R. terraenovae exposed to different treatments. Sharks were captured from the Mississippi 

Sound in the Gulf of Mexico. Significant comparisons are indicated by different letters.  

 

White-spotted Bamboo Sharks 

 

Treatment had a significant effect on respiration rates (F(2,8.7)=15.15, p=0.0015) in 

which respiration rates of sharks exposed to clove oil were lower than those exposed to control 

and ethanol (Figure 19). Neither water temperature nor weight had a significant effect on 

respiration rates (p>0.27). 

Treatment had a significant effect on the mean number of gill ventilations 

(F(2,3.04)=141.84, p=0.00099). Sharks exposed to 5 mg/L of iso-eugenol exhibited significantly 

ab 
ab 

ab 

a 
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lower respiration rates than sharks exposed to 5 mg/L of ethanol (p=0.0013) or saltwater only 

(p=0.0022) (Figure 20).  

 

Figure 19. Difference in total respiration rates (mgO2/g/hr) of captive C. plagiosum exposed to different treatments. 

Respiration rates include +/- 1 standard error. Significant comparisons indicated by different letters.  

 

b 

a 

b 
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Figure 20. Difference in average ventilation rates of captive C. plagiosum exposed to different treatments. 

Ventilation rates include +/- 1 standard error. Significant comparisons indicated by different letters. 

 

Golden Shiners 

 

Of the fifty-nine N. crysoleucas utilized in this study, 20 were exposed to 5 mg/L of 

ethanol, 19 to 5 mg/L of iso-eugenol, and 20 controls (Table 5). Treatment did not have a 

significant effect on total respiration rates (F(2,56)=2.9, p=0.063; Figure 21). Treatment did not 

have a significant effect on the respiration rates of N. crysoleucas (F(2,48)=0.59, p=0.56; Figure 

22) calculated between the 50 and 60 minute time periods. Neither temperature nor weight had a 

significant effect on either respiration rate (p>0.66). 

Table 5. Description of N. crysoleucas collected for this study. 

a 

b b 
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Treatment n Mean Weight (g) ± SE 

Control 20 2.0 ± 0.09 

5 mg/L Ethanol 20 1.9 ± 0.1 

5 mg/L Iso-eugenol 19 1.8 ± 0.09 

Total N=59 1.9 ± 0.06 

 

 

Figure 21. Non-significant difference in total respiration rates (mgO2/g/hr) of N. crysoleucas exposed to different 

treatments. Respiration rates include +/- 1 standard error.  
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Figure 22. Non-significant difference in respiration rates calculated between the 50 and 60 minute time periods 

(mgO2/g/hr) of N. crysoleucas exposed to different treatments. Respiration rates include +/- 1 standard error. 

 

DISCUSSION 

Effects on Physiological Stress Indicators 

 

Our results demonstrate lower lactate and glucose concentrations in R. terraenovae 

exposed to 10 mg/L of clove oil, which may be indicative of a stress reducing effect. This is in 

contrast to results commonly seen in the literature. However, it is possible that rather than clove 

oil having a stress-reducing effect, ethanol may have a stress-inducing effect. Ethanol was not 

observed to have a significant effect on behavior or ventilation rate in flowerhorn (Amphilophus 

labiatus x Amphilophus trimaculatus) (Tarkhani et al., 2017). This lack of an effect of ethanol 
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supports the idea that clove oil may have a stress-reducing effect in R. terraenovae. The 

difference in our results compared to previous studies could also be a result of species-specific 

variation in the effects of clove oil. A study examining the effect of clove oil sedation on six 

species of teleost (brown trout, Salmo trutta; Atlantic salmon, Salmo salar; rainbow trout, 

Oncorhynchus mykiss; whitefish, Coregonus lavaretus; perch, Perca fluviatilis; and roach, 

Rutilus rutilus) observed large variation in sedative effects between species and even individuals 

of the same species, forcing the authors to conclude that finding an optimal dose for a species 

may be difficult (Hoskonen and Pirhonen, 2004).  

The primary stress response commonly seen in other studies would, theoretically, lead to 

changes in glucose concentrations as a function of both catecholamines and cortisol, both of 

which mobilize glucose throughout the body (Thomas and Robertson, 1991). It is possible that 

sedatives could prevent the breakdown of excess energy stores of the liver, therefore, not 

resulting in an increase in blood glucose. The literature on the physiological effects of sedatives 

has demonstrated mixed results when it comes to changes in glucose levels. Many studies have 

observed increases in glucose following elevations in glucocorticoids (Thomas and Robertson, 

1991; Sladky et al., 2001; Davis and Griffin, 2004; Weber et al., 2011). These studies, similar to 

the results seen with cortisol during sedation, implicate a minor stress response due to exposure 

to sedatives as the cause for these results. However, some studies have observed no effect of 

sedative exposure on glucose levels (Iversen et al., 2003; Davis and Griffin, 2004). Additionally, 

the only study examining the physiological response of an elasmobranch to sedation observed no 

change in glucose in sharks exposed to clove oil (Frick et al., 2009). The above results are all in 

contrast to the results seen in the present study in which iso-eugenol at both 5 and 10 mg/L 

resulted in significantly lower glucose levels than control sharks, indicating a potential reduction 
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in either the sympathetic or HPI-axis based stress response (both of which can be responsible for 

elevated glucose). Despite this, we also noted significantly poorer release behavior in sharks 

exposed to the high dose of clove oil compared to ethanol. This could be indicative of negative 

physiological effects of clove oil on parameters not measured in this study or it could be due to 

the longer recovery times that are typical of clove oil sedation (Stamper and Neiffer, 2009).  

During a stress event, a process known as lamellar recruitment may occur as a result of 

increased blood flow in the gill lamellae due to catecholamine release.  This process can increase 

the permeability of the gills to water fluxes between the shark and its environment, leading to 

hemodilution, fluxes of water across vascular compartments, and potentially severe disruptions 

to osmotic balance. However the potential of sedatives to reduce the stress response could also 

reduce the likelihood of these negative effects. Some studies investigating the physiological 

effects of sedatives in fishes have not observed a significant change in hematocrit upon sedation 

(Cooper and Morris, 1998; Weber et al., 2011), while one study observed an increase in 

hematocrit in response to sedation (Sladky et al., 2001). Our results demonstrate a reduction in 

hematocrit of sharks exposed to clove oil at 10 mg/L than that observed in sharks exposed to the 

equivalent amount of ethanol contained in the 10 mg/L clove oil mixture. This could represent 

hemodilution that may be indicative of a stress response, contrary to the results from other stress 

indicators, such as glucose and lactate.  

Effects on Respiration 

 

The stress response is likely to have direct or indirect effects on respiration and 

ventilation rates. During stress, an oxygen debt may be generated due to a shift to anaerobic 

respiration and an increase in activity, which will also result in a build-up of carbon dioxide and 
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acidification of the blood. Hyperventilation is a common coping mechanism for blood 

acidification because it allows for the release of built up carbon dioxide and the introduction of 

more oxygen into the body (Cooper and Morris, 1998). There is evidence of elevated carbon 

dioxide levels stimulating hyperventilation in fishes along with a possible role of catecholamines 

in directly stimulating hyperventilation (Wood and Munger, 1994). It is likely that some 

combination of these factors stimulates increased respiration and ventilation rates as a way of 

offsetting acidosis. Because of this, measures of respiration and ventilation are commonly 

utilized as a reliable indicator of physiological impairments due to stress and have also been 

utilized to determine the physiological effects of sedatives. 

The majority of sedatives commonly used in fishes (clove oil, metomidate, 2-

phenoxyethanol, and quinaldine) have a suppressing effect on the respiratory system. Lower 

rates of either respiration or ventilation have been reported as a result of sedative exposure in 

fishes (Sneddon, 2012). However, some studies on fishes have noted increased ventilation rates 

upon immediate exposure to sedatives such as MS-222 and benzocaine (Sneddon, 2012). 

Sedation with a form of eugenol (eugenol, iso-eugenol, or clove oil) typically results in 

suppressed respiratory function (Sladky et al., 2001; Javahery et al., 2012; Sneddon, 2012) and 

can even result in complete respiratory failure, requiring resuscitation (Sladky et al., 2001). It is 

thought that this is due to either inhibition of the respiratory center of the medulla oblongata or 

due to neurotoxic or hepatotoxic properties (Javahery et al., 2012). Studies with mammals have 

revealed neurotoxic, hepatotoxic, and irritant properties of clove oil (Sladky et al., 2001). Our 

results revealed that lower doses of clove oil (5 mg/L) resulted in respiration rates that were 

significantly higher in this treatment than 10 mg/L of both clove oil and ethanol in R. 

terraenovae. It is possible that the low dose of clove oil is not enough to fully sedate the animal 
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so that exposure to a novel substance results in a minor stress response. In fact, sedating doses of 

clove oil in other studies have been higher than those used here, such as 10-15, 20, 24, 30, 50, 

and 80 mg/L (Iversen et al., 2003; Cooke et al., 2004; Pattanasiri et al., 2008; Frick et al., 2009; 

Weber et al., 2011; Tarkhani et al., 2017), indicating that 5 mg/L was likely too low of a dose to 

result in full sedation.  Our results also showed significantly lower ventilation rates in C. 

plagiosum exposed to iso-eugenol, similar to reports in the literature (Sneddon, 2012). 

The extreme interspecific variation in the physiological effects of sedatives reported by 

Hoskonen and Pirhonen (2004) were also observed in the present study. Significantly lower 

respiration rates were seen in C. plagiosum exposed to 5 mg/L of clove oil compared to ethanol 

and control sharks, indicating a potential stress-reducing effect of 5 mg/L clove oil in these 

sharks, whereas this was not the case in R. terraenovae. Our results also demonstrate that 

respiration rates of N. chrysoleucas were not affected by exposure to 5 mg/L of clove oil. The 

contrasting results between these species highlight the species-specific variation in effects of 

sedatives. It is possible that this variation is due to differences in life history and lifestyle of the 

sharks, in which R. terraenovae are ram ventilators and C. plagiosum can utilize a buccal pump 

while resting on the ocean floor. This typically leads to differences in activity levels with ram 

ventilators being more active. Even though N. chrysoleucas also utilize a buccal pump, they are 

likely more active than C. plagiosum since N. chrysoleucas are not a benthic species. However, 

higher activity levels should lead to higher metabolic rates which are thought to increase the 

effect of and recovery from sedation (Javahery et al., 2012). Despite this C. plagiosum, the least 

active species seemed to experience a sedative effect of clove oil at a low dose than was not 

experienced by R. terraenovae or N. chrysoleucas. It is also possible that this species-specific 

difference could be related to differences in size of the fishes and may require the use of larger 
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doses in larger animals. Our results on sharks would support this, in that larger R. terraenovae 

had reductions in stress indicators with only the high dose of iso-eugenol, whereas the smaller C. 

plagiosum had potential detrimental effects on ventilation with the low dose of iso-eugenol. 

 

CONCLUSIONS: CLOVE OIL AS A SEDATIVE 

 

Many researchers and fisheries biologists are intrigued by the possibility of clove oil as a 

sedative due to quick induction to sedation, availability, low cost, and efficacy at a range of 

temperatures. However, effects such as elevated cortisol (Thomas and Robertson, 1991; Iversen 

et al., 2003; Davis and Griffin, 2004; Yousefi et al., 2018), lactate (indicative of a stress 

response) (Iversen et al., 2003; Frick et al., 2009; Weber et al., 2011; Yousefi et al., 2018), and 

respiratory failure (Sladky et al., 2001; Javahery et al., 2012) indicate that further study is 

necessary to determine if it is a safer alternative to the commonly utilized sedatives in fishes. Our 

results demonstrated that 10 mg/L of clove oil resulted in lower lactate, glucose, and hematocrit 

levels, indicating a possible reduction in the stress response of R. terraenovae. However, release 

behavior was significantly lower in sharks exposed to 10 mg/L of clove oil in comparison with 

the equivalent amount of ethanol. This effect may have been observed due to the longer recovery 

times that are typically necessary for animals exposed to clove oil compared to other sedatives 

(Stamper and Neiffer, 2009). A low dose of clove oil appears to be effective at reducing 

respiration and ventilation rates of C. plagiosum, but the possibility of ventilatory failure persists. 

It is possible that a higher dose of clove oil could effectively reduce respiration rates of N. 

chrysoleucas, therefore, further research is necessary. The variation between species in this study 

indicates that the effect of clove oil cannot be generalized across species and trials are necessary 
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to determine a safe dosage for each species of interest. Although more research is necessary, the 

potential for ventilatory failure and the poor release condition of sharks exposed to high 

concentrations of clove oil indicate that it may not be a safe alternative for R. terraenovae. 
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CHAPTER 5: 

RECOMMENDATIONS TO MANAGERS, FISHERS, AND SCIENTISTS 

The purpose of this project was to perform descriptive and experimental research with the goal 

of having results that could be directly applicable to fishers, fisheries managers, and scientists. 

The type of applied research helps to bridge the gap between information that exists in scientific 

literature and the information that managers utilize when developing management plans. The 

publication of these types of research in journals with an applied management focus can also 

help to bridge the gap between scientists and managers. 

 First, this work can provide recommendations to other elasmobranch stress physiologists. 

Our work validating and quantifying ACTH with a commercially available ELISA kit opens up 

this opportunity to other researchers as well. We have developed a reliable method of validating 

the kit for use in a particular species through ensuring cross-reactivity does not occur with other 

constituents in plasma. This procedure can easily be adopted by other researchers aiming to 

validate this ELISA in a different species. Our use of a commercial kit also makes it much easier 

and less time-intensive to understand more about the alarm stage of the stress response. While 

researchers are making progress towards measurement of 1α-OHB (Wheaton et al., 2018), this 

process still involves synthesis of the hormone and development of an antibody against it. Until 

this hormone is made readily available, quantification of ACTH will still provide quick and easy 

insight into the alarm stage. We recommend that researchers focusing on the resistance stage,
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 through measurement of lactate, glucose, hematocrit, osmolality, etc., add quantification of 

ACTH to the suite of physiological indicators being investigated. Doing this will broaden the 

view of the stress response that researchers are able to obtain through measurement of indicators 

of the alarm and resistance stages. The difference in timing of the alarm and resistance stage 

makes it important to understand more about the effects of both. For example, the alarm stage 

involves the immediate effects within minutes of the perception of the stressor (Sumpter and 

Donaldson, 1986; Liberson et al., 1997), which may be important to researchers interested in the 

acute response to stress. However, the resistance stage can occur and last anywhere from 15 

minutes to hours after perception of the stressor (Arends et al., 1999; Frick et al., 2012; 

Kneebone et al., 2013; Hoffmayer et al., 2015), therefore, this can provide a view of the delayed 

or more long-term effects of the stressor. Including measurement of both of these stages will help 

to strengthen studies on the stress physiology of elasmobranchs. 

 Next, we can make recommendations directly to fishers and managers through applied 

experimental research. While there are many studies that investigate the physiological effects of 

air exposure on fishes (Arends et al., 1999; Davis and Parker, 2004; Suski et al., 2007; Frick et 

al., 2010; Cicia et al., 2012; Lambert et al., 2018), none of these have utilized a fine-scale of air 

exposure durations to help determine how long fishers can keep fish out of the water. Our use of 

0, 5, 10, and 15 minutes of air exposure allow us to achieve that goal. With this, we can 

confidently recommend to fishers and managers that captured C. limbatus be released back into 

the water within five minutes. According to our results, doing this will result in lactate levels that 

are not significantly higher than those measured within minutes of capture. Limiting air exposure 

to five minutes will also avoid negative effects on release behavior and reflex impairment. While 
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we were not able to link these effects directly to post-release survival, we can assume that 

limiting these effects will allow the animals the best chance of survival after capture.  

 Lastly, our investigation into iso-eugenol as a means of reducing the magnitude of the 

stress response provides a base of information on which future studies may build. Iso-eugenol 

demonstrated potential stress reduction through decreases in secondary stress indicators, such as 

lactate, glucose, and hematocrit. However, this research also demonstrated the need for extended 

recovery times from the sedative before release. Our study noted dramatic species-specific 

variation in the effects of iso-eugenol with potentially stress reducing effects in R. terraenovae, 

possibly detrimental respiratory effects in C. plagiosum, and no obvious effect in N. crysoleucas. 

Because of this, we can only recommend the use of iso-eugenol for stress reduction after having 

run preliminary trials on the species in question and with a range of doses to determine what is 

appropriate on an individual basis.  

 We hope that the results of these studies can be utilized by researchers, managers, and 

fishers to improve our understanding of the elasmobranch stress response and to aid in reduction 

of stress as a means to increase chances of post-release survival. While there have been many 

studies to quantify the physiological response to stress, very few have investigated methods to 

reduce stress of captured sharks. The continued decline in populations of some elasmobranchs 

due to overfishing and the stress associated with bycatch makes it critical to take the next step 

and find reliable methods of stress reduction in these animals. 
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Table A. Summary of statistical results 

Response Variable: ACTH                                                  Chapter 2 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF  F p 

Fixed effects      

Time on line 4790.5 4  8.63 0.0008 

Sex 210.11 1  1.24 0.29 

Weight 105.06 1  0.62 0.45 

Temperature 1675.0 1  12.06 0.003 

               Time of day of collection 382.65 1    2.26       

0.17 

Response Variable: Lactate                                                          Chapter 2 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF  F p  

Fixed effects      

Time on line    32.49 4  4.60 0.008 

Sex 0.53 1  0.67 0.43 

Weight 0.037 1  0.047 0.83 

Temperature 0.087 1  0.11 0.75 

               Time of day of collection 1.05 1       1.33      

0.28 

Response Variable: Osmolality                                                                 Chapter 2 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF   F p  

Fixed effects     

Time on line 7880 4 1.58 0.24 

Sex 277.0 1 0.18 0.67 

Weight 55.2 1 0.04 0.85 

Temperature 38634 1 31.05 0.0001 

               Time of day of collection 8834 1       7.10 0.02 

Response Variable: Release Behavior   Chapter 2 Ordinal Logistic Regression 

Predictor Variables: Χ2 df p (>|t|) 

Fixed effects    

Time on line 4.25 4 0.37 

Lactate 7.73 1 0.005 

ACTH 1.74 1 0.19 

Osmolality 1.03 1 0.31 

Response Variable: Lactate    Chapter 3 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF F p  

Fixed effects     

Air exposure duration 24.3 3 4.35 0.01 

Total length 2.10 1 1.05 0.32 

Sex 6.25 1 3.11 0.09 

Thermal Gradient 1.58 1 0.79 0.38 

Dissolved oxygen 1.72 1 0.86 0.36 
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Response Variable: Glucose                                Chapter 3 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF F p  

Fixed effects     

Air exposure duration 0.16 3 3.34 0.038 

Total length 0.04 1 3.64 0.07 

Sex 0.000001 1 0.0001 0.99 

Thermal Gradient 0.0007 1 0.06 0.81 

Dissolved oxygen 0.015 1 1.33 0.26 

Response Variable: Hematocrit                                Chapter 3 ANCOVA 

Predictor Variables: Sum of 

Squares 

DF F p  

Fixed effects     

Air exposure duration 2.64 3 1.02 0.4 

Total length 0.13 1 0.20 0.66 

Sex 1.21 1 1.82 0.20 

Thermal Gradient 0.03 1 0.05 0.83 

Dissolved oxygen 2.47 1 3.70 0.07 

Response Variable: Release Behavior                            Chapter 3 Ordinal Logistic Regression 

Predictor Variables: Χ2 df p (>|t|) 

Fixed effects    

Air exposure duration 21.32 3 1e-04 

Lactate 3.07 1 0.08 

Glucose −1.551 1 0.51 

Hematocrit 4.587 1 0.19 

Response Variable: Lactate                                  Chapter 4 Linear Mixed Effects Model 

Predictor Variables: Sum of 

Squares 

Mean 

Square 

Df 

(Num/Den) 

F p  

Fixed effects      

Treatment 49.02 12.26 4/128.85 2.16 0.077 

Time 1317.32 1317.32 1/140.45 231.94 <2.2e-

16 

Mass 0.05 0.05 1/16.4 0.011 0.92 

Water temperature 4.06 4.06 1/15.9 0.88 0.36 

Salinity 13.32 13.32 1/19.5 2.35 0.14 

Dissolved oxygen 8.07 8.07 1/22.7 1.42 0.25 

Treatment*time interaction 322.38 80.59 4/140.4 14.2 9.45e-

10 

 

Response Variable: Glucose                                  Chapter 4 Linear Mixed Effects Model 

Predictor Variables: Sum of 

Squares 

Mean 

Square 

Df 

(Num/Den) 

F p  

Fixed effects      

Treatment 5104.7 1276.2 4/51.79 3.06 0.025 

Time 19891.8 19891.8 1/126.13 47.65 2.2e-

10 
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Mass 1097.9 1097.9 1/16.1 2.78 0.11 

Water temperature 848.4 848.4 1/16.0 2.15 0.16 

Salinity 484.2 484.2 1/16.0 1.23 0.28 

Dissolved oxygen 5421.5 5421.5 1/16.1 1.37 0.19 

Treatment*time interaction 1292.6 323.2 4/69.14 0.82 0.52 
 

Response Variable: Hematocrit                                  Chapter 4 Linear Mixed Effects Model 

Predictor Variables: Sum of 

Squares 

Mean 

Square 

Df 

(Num/Den) 

F p  

Fixed effects      

Treatment 33.6 8.40 4/22.5 0.47 0.76 

Time 15.04 15.04 1/55.2 0.84 0.36 

Mass 0.061 0.061 1/13.7 0.003 0.95 

Water temperature 22.87 22.87 1/12.9 1.28 0.28 

Salinity 2.21 2.21 1/13.0 0.12 0.73 

Dissolved oxygen 0.37 0.37 1/14.01 0.02 0.89 

Treatment*time interaction 47.02 47.02 4/55.63 0.66 0.62 

Response Variable: Respiration Rate                                                    Chapter 4 ANCOVA 

Sharpnose 

Predictor Variables: Sum of 

Squares 

DF F p  

Fixed effects     

Treatment 0.10 4 3.91 0.0099 

Temperature 0.03 1 0.05 0.27 

Dissolved oxygen 0.00017 1 0.03 0.87 

Response Variable: Release Behavior                            Chapter 4 Ordinal Logistic 

Regression 

Predictor Variables: Χ2 df p (>|t|) 

Fixed effects    

Treatment 12.36 4 0.015 

Lactate 0.03 1 0.86 

Glucose 0.08 1 0.78 

Hematocrit 1.62 1 0.20 

Respiration rate 0.94 1 0.33 

Response Variable: Respiration Rate                            Chapter 4 ANCOVA Bamboo Sharks 

Predictor Variables: Sum of 

Squares 

Df (Num/Den) F p 

Fixed effects     

Treatment 0.006 2/8.7 15.15 0.0015 

Temperature 0.0003 1/6.6 1.45 0.27 

Weight 0.00017 1/2.07 0.82 0.46 

Response Variable: Ventilation Rate                            Chapter 4 ANCOVA Bamboo Sharks 

Predictor Variables: Sum of 

Squares 

Df (Num/Den) F p 

Fixed effects     

Treatment 2327.02 2/3.04 141.84 0.001 
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Temperature 102.16 1/3.33 1.23 0.33 

Weight 2.15 1/2.89 0.26 0.65 

Response Variable: Respiration Rate                                           Chapter 4 ANCOVA Shiners 

Predictor Variables: Sum of 

Squares 

Df  F p 

Fixed effects     

Treatment 0.019 2 2.90 0.063 

Temperature 0.0007 1 0.20 0.66 

Weight 0.00004 1 0.01 0.92 
 

Bold = Significant 
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