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ABSTRACT 

 Multiple attempts were made to deprotect TBDMS-protected (tert-butyldimethylsilyl 

protected) serinol and swallowtailed PBI (Compound 2), synthesized by past researcher Tarrah 

Frederick, to generate Compound 1. The theoretical Compound 1 product is intended for use in 

molecular rectification of electricity because the perylene core acts as a good acceptor with high 

electron affinity, and it does not require an electron donor group. Many rectification molecules 

are amphiphilic Donor-σ-Acceptor compounds, which allow for electron transfer through 

localized molecular orbitals when placed between electrodes (Langmuir-Blodgett Method). 

However, PBIs can transfer electrons from one electrode, through the LUMO of perylene, and to 

the other electrode at specific voltages by asymmetric rectification. Thus, PBIs have been 

particular molecules of interest as molecular rectifiers with only an acceptor and no donor.5 

 Several issues arose during the synthesis of Compound 1 and deprotection of 

Compound 2, such as unknown impurities, byproducts, molecular orientations, intramolecular 

forces, and other complexities. All of these difficulties resulted in unsuccessful deprotection and 

ultimately unclear NMR spectra, despite similarly published literature procedures.5 However, the 

addition of β-alanine to PMA provided a similar, more concise, and more successful method for 

addition of a polar, hydrophilic group to PMA (Compound 4), though further analysis is needed 

for confirmation.4 Continued experimentation with deprotection and β-alanine addition was 

halted after coordination with other research groups retired. More research is needed moving 

forward to understand the addition and deprotection of groups on PMA and PBI.9 
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 Furthermore, the pursuit of pyrenylcyclohexyl imide (PCHI) group addition to PMA was 

explored (Compound 3). Synthesis of this group and subsequent addition of it to PMA would 

progress towards the desired product of the Hammer Proposal (Compound 3),7 which seeks to 

understand and synthesize unimolecular rectifiers with various carbon tethers on PMA. 

Numerous difficulties were encountered during synthesis of the PCHI with bromine Grignards. 

Formation of the perylene Grignard with Br proves quite difficult, so synthesis of this Grignard 

with iodine was explored instead. Iodopyrene was successfully synthesized3, but the Grignard 

struggled to form again. Perhaps treatment with butyl lithium offers further investigation of 

PCHI and the Hammer Proposal.7 

 All in all, the reactions and methods described in this text provide useful information for 

synthesis and future investigation of targeted PBI molecules for molecular rectification. 
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I. INTRODUCTION 

1.1 Background and Rectification 

 

Figure I-1: When D-σ-A compounds are organized into a monolayer and placed between Au 

electrodes, they can be rectifiers of electron flow in a single direction.10 

As proposed by Ari Aviram and Mark Ratner in 1974, unimolecular rectifiers are single 

molecules that pass electric current preferentially in one direction. Perhaps the most well-known 

molecular rectifiers are known as Donor-Sigma-Acceptor (D-σ-A) compounds. As the name 

suggests, the donor and acceptor groups are bound by a σ bond/bridge that ultimately hinders 

intermolecular orbital interactions between the two groups, basically insulating them. Ideally, 

good acceptor groups have a high affinity for electrons, meaning the acquisition of an electron is 

favorable and increases acceptor stability. The acceptor’s ability to obtain electrons results from 
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its low energy molecular orbitals. On the opposite hand, good donors have lower electron affinity 

in addition to a low ionization energy. Essentially, a good donor would rather give up or donate 

electrons, potentially becoming a cation, than accept electrons to achieve stability. As such, 

donors tend to have high energy molecular orbitals. Between the donor and acceptor, the σ 

bridge seeks to isolate, decouple, and reduce molecular overlap of the donor and acceptor. 

Typically, the σ bridge consists of repeated methylene subunits or unsaturated π vinyl bonds, 

which cause dihedral twist relative to the donor and acceptors and minimize the overlap of 

molecular orbitals.5 

 For Aviram-Ratner (AR) rectification, D-σ-A compounds rectify electricity when 

properly aligned in register within a monolayer and sandwiched between two electrodes. 

Depending on the position of donor and acceptor, electricity can flow preferentially in one of two 

directions. Figure I-1 shows individual molecules in two such monolayers. The flow of electrons 

results from the adjacent acceptor’s lowest unoccupied molecular orbital (LUMO) and the 

donor’s highest occupied molecular orbital (HOMO) having different energies. Under electrical 

bias with enough voltage difference from electrodes (-2 V), electrons flow in a single direction. 

Therefore, electrons can travel from cathode, to acceptor, to donor, and finally to anode. Without 

a large enough voltage difference (-1 V or 0 V), no electron flow occurs.5 

AR rectification occurs due to energy differences between the localized molecular orbital 

of the acceptor and donor groups. An example by previous researcher Tarrah Frederick explains 

that an electrical current is possible from acceptor to donor when an electron in the acceptor’s 

LUMO is at a higher energy level than a vacancy (hole) in the donor’s HOMO. The D-σ-A 

molecule can pass electrons through resonance and intramolecular transfer. During this electron 
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transfer, a D+-σ-A- zwitterion is formed, returning to D0-σ-A0 as the electrons travel downhill 

from cathode to anode.5 

   

Figure I-2: Molecular Orbital Diagram of D-σ-A compounds. The height of the bars represents 

the voltage difference, and molecular orbitals raise in energy next to high-voltage electrodes. 

Electrons essentially need adjacent “stair-steps” for transfer.5, 10 

Despite Aviram and Ratner’s molecular rectification proposal, it has also been theorized 

that rectification can also occur at positive voltages, such as +1 V or +2 V biases, preferentially 

passing electrons from anode to donor to acceptor to cathode. Thus, this form of electron flow is 

dubbed Anti-Aviram-Ratner (Anti-AR) rectification. During this type of electrical current flow, 

electrons can transfer from one electrode to the donor’s HOMO or the acceptor’s LUMO to the 

other electrode. The increased, electrical voltage of the electrodes allows for Anti-AR flow of 

electrons at +1 V and +2 V as opposed to conventional flow in AR rectification at -2 V. 

Depending on the voltage bias applied and the molecule used, some compounds favor one 

direction or rectify in both directions (though current flow only occurs in one direction at a time); 

No 

Rectification 

No 

Rectification 
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for example, some molecules strangely exhibit preferential two-direction Anti-AR rectification at 

+1 V and AR rectification at -2 V. This effect has been coined the Janus Effect.5, 10 

 

Figure I-3: Molecular Orbital Diagram of PBIs. 5, 10 

Many additional factors beyond what have been described are at play in determining if 

molecular orbitals successfully fall within the appropriate energy gap of the electrodes. These 

other variables alongside the discovery of preferential two-direction flow have spurred 

hypotheses of rectification with only an acceptor (no donor group). Instead of flowing through 

the adjacent HOMO and/or LUMO, a single electro-active acceptor group asymmetrically placed 

between two electrodes should theoretically rectify current through only the LUMO.5 Specific 

candidates of interest have been perylene bisimides (PBIs), which have been pursued in 

Mattern’s lab. 

 

 

 

No 

Rectification 

 

No 

Rectification 

 

No 

Rectification 
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1.2 Langmuir-Blodgett Method 

 

Figure I-4: Simplified compression and monolayer formation of amphiphilic D-σ-A molecules 

using the Langmuir-Blodgett technique (left to right).5, 10 

The Langmuir-Blodgett (LB) Method can be used to align molecules into a monolayer 

with the same orientation, such that they can be tested as an ensemble for electrical conductivity. 

The architecture of compounds for the LB Method is particularly important: one end of the 

compound must be hydrophilic (seeking a polar substance, such as water), and the other end 

must be hydrophobic (seeking air, in this case). Molecules with distinct regions of 

hydrophobicity and hydrophilicity are called amphiphilic. Thus, D-σ-A molecules that are also 

amphiphilic can be placed onto an aqueous layer like mentioned above (Figure 1-4). As a result, 

the nonpolar, hydrophobic ends (usually hydrocarbon swallowtails) of the molecules stick out of 

the water while the polar, hydrophilic ends associate with the water. The long molecules can then 

be compressed together to form a tight monolayer, allowing for π-π orbital stacking. When an 

electrode is introduced, the monolayer will deposit onto it; with repeated dipping of the 

electrode, multilayers can form. This procedure has implications with microtechnology, such that 

thin layers of amphiphilic molecules could be used to pass electric current in devices.10, 11 The 

LB Method was also used by research collaborator Robert M. Metzger at the University of 
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Alabama,11 where samples from Mattern’s laboratory have been sent for measurement of 

electrical properties.5  

 

1.3 Perylene Bisimide (PBI) 

 

Figure I-5: Perylene Bisimide as an acceptor without a donor. 

As stated earlier, it has been proposed that rectification with only an acceptor (not 

through adjacent HOMO and LUMO) that is asymmetrically oriented between two electrodes 

should conduct electricity, in theory.5, 11 One particular target of interest has been perylene 

bisimide (PBI), which lacks a donor group. PBIs are synthesized from perylenetetracarboxylic 

dianhydride (PTCDA), containing numerous aromatic rings and four carbonyls capable of 

accepting electrons and withdrawing electron density from π orbitals.11 Naphthalene subunits 

make up part of each perylene unit. The opposing anhydrides are available for reactivity, and the 

R-groups of the imides can vary greatly (Figure I-5). One end could be composed of a 

hydrophobic swallowtail moiety and the other could contain a hydrophilic, polar group, like a 

carboxylic acid or alcohol. These opposing polar and nonpolar groups make the entire molecule 

amphiphilic for LB film formation. 
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Scheme I-1: Amines can attack the carbonyls of an anhydride on PTCDA or PMA, thus 

adding any R group connected to the amine into the ring structure and removing a water. 
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1.4 Frederick’s Research 

Prior to this thesis, previous researcher Tarrah Frederick synthesized and studied many 

PBI products and protecting groups under Dr. Daniell Mattern.9 The following is a brief 

summary of her work which is relevant to the research continued within this thesis. Overall, she 

successfully synthesized PBIs with swallowtail and silyl ether-protected serinol (Compound 2) 

from PMA and silyl ether-protected serinol. For more information on products synthesized prior 

to the continuation of Frederick’s research, please visit Frederick’s thesis.5 

 1.4.1 Attempted Synthesis of N-(10-Nonadecyl)-N'-(1,3-dihydroxypropan-2- 

yl)perylene-3,4,9,10- bis(dicarboximide), Compound 1 

 

Scheme I-2: Alkylated ketones can become amines, which then add to perylenetetracarboxylic 

dianhydride (PTCDA) to form PMA/PIA.5Also see Scheme I-1 

According to Frederick’s thesis, PMA was “created by refluxing perylene-3,4,9,10- 

tetracarboxylic dianhydride and a hydrocarbon swallowtailed amine, followed by semi-

hydrolysis.”5 The name perylene monoanhydride (PMA), or imide anhydride (PIA), suggests that 

one of the anhydrides of perylene has been replaced by an imine; in this case, PMA/PIA will 

refer to perylene with one anhydride available for reactivity and the other replaced with a 
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hydrocarbon swallowtail amine (specifically nonadecyl groups).5

 

Scheme I-3: Reflux of PMA and serinol in toluene and benzene with heat yields 

Compound 1 PBI with swallowtail and serinol groups.5 

After mono-alkylation, PMA was refluxed with serinol, proceeding via acyl substitution 

to yield Compound 1. However, while proton nuclear magnetic resonance (1H-NMR) spectra of 

the sample did reveal mostly expected peaks for the desired product, 2 unknown peaks were 

observed. These 2 mysterious peaks were ultimately hypothesized to come from intramolecular 

reactions between the hydroxyl groups of serinol. In the end, with additional complications from 

lower than expected integration values from 1H-NMR spectra (even after column 

chromatography purification) results were inconclusive. Thus, protection of the serinol group 

was proposed to avoid these obscurities and potential intramolecular interactions.5, 9 

  1.4.2 Protection of Hydroxyl Groups of Serinol on Compound 1 PBI with 

TBDMSCl 

 

Scheme I-4: Addition of TBDMSCl to Compound 1 PBI in imidazole and DMF yields 

TBDMSCl-protected serinol PBI with swallowtails, Compound 2.5, 9 

1 2 

1 
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 Continuing with the product from the previous section, tert-butyldimethylsilyl chloride 

(TBDMSCl) was used to protect the hydroxyls of the serinol group and remedy the unknown 1H-

NMR peaks mentioned above. After completion of the reaction, 1H-NMR revealed a low yield of 

di-protected PBI (Compound 2) along with byproducts and unknown impurities. With additional 

difficulties arising from solubility of PBI products during product extraction, results of 

successful di-protected product formation became unclear as well. Therefore, attempts were 

made to protect serinol prior to its addition to PBI for improved synthesis results.5, 9 

  1.4.3 Protection of Serinol (2-amino-1,3-propanediol) using TBDMSCl 

 

Scheme I-5: Prior protection of serinol before addition to PMA.5 

Serinol was reacted with TBDMSCl to form protected serinol before addition to PMA. 

While some serinol remained unreacted and some was either mono- or tri-protected, a low but 

significant yield of di-protected serinol was isolated via column chromatography and confirmed 

with expected peaks from 1H-NMR. With TBDMS-protection of serinol before its addition to 

PMA, the unclear results from direct addition of TBDMSCl to the serinol on Compound 1 could 

be avoided and give more informative results.5 
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1.4.4 Addition of TBDMS-protected Serinol to PMA 

 

Scheme I-6: Alternative protected synthesis route for Compound 2.5 

With successful formation of TBDMS-protected serinol, the protected diol was added to 

PMA to form TBSMD-protected PBI (Compound 2). While 1H-NMR did show indicative peaks 

for the desired product, many unknown impurities remained despite purification by column 

chromatography. Swallowtail regions on 1H-NMR were also excessively large. These impurities 

were assumed to be caused by use of impure PMA, so pure PMA was used in a rerun. This time, 

1H-NMR spectra were much cleaner and illustrated more reasonable swallowtail integration, 

though still slightly larger than expected. Some starting material was also noted on 1H-NMR.5 

Three product spots were observed on thin layer chromatography (TLC). Products with 

the two highest Rf values contained very similar peaks on 1H-NMR. Depending on the direction 

of addition, Compound 2 can have amine R-groups positioned in the same direction outward 

from the aromatic center (cis) or in opposite directions (trans) (Figure I-6). These isomers could 

cause differing migration patterns on TLC since positioning of the protected serinol could cause 

it to migrate on the silica gel differently; more confirmation is needed to confirm this theory 

though. Moreover, one product with a low Rf appeared on TLC, likely not to be Compound 2 

due to drastically different distance from the two higher Rf products. The low Rf product proved 

insoluble in the eluting solvent in addition to many other solvents, too. 1H-NMR of this low Rf 

product yielded no desired product formation and many impurities. Ultimately, the higher Rf 

2 
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product was isolated via column chromatography to yield TBDMS-protected PBI (Compound 

2) according to 1H-NMR.5 

 

Figure I-6: Cis and Trans isomers of Compound 2.5 

  1.4.5 Other Serinol Protection Methods 

Frederick also explored other serinol protection methods. However, synthesis of these 

additional protection techniques ultimately provided no desired product formation or destroyed 

the amino group of serinol.5 While unsuccessful, these other protection modes still provide 

significant insight for protection of diols and could provide a protection mechanism if these 

reactions are better understood in the future. 

 

Scheme I-7: Cyclo-protection of serinol with 2-methoxypropene.5 

2 
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Scheme I-8: Alternate cyclo-protection of serinol with 2-methoxypropene.5 

 

Scheme I-9: Cyclo-protection of serinol with benzaldehyde.5 

 For more information regarding serinol protection, rectification, and synthesis of PMA and 

PBI, Frederick’s thesis can be referenced. Her thesis provides more insight into methods used 

prior to the continued experimentation of PBIs found in this document.5 
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 1.5 The Hammer Proposal 

  

Figure I-7: Photoexcitation and electron transfer (PET) from pyrene to PBI (also called 

perylene diimide, or PDI). 

  As computer chips quickly approach the limits of miniaturization, perhaps the most 

challenging progress in electrical innovation is that of single molecule rectifiers. Dr. Nathaniel 

Hammer and Dr. Daniell Mattern at the University of Mississippi’s Department of Chemistry 

have synthesized and investigated numerous single molecule rectifiers in the past. Most of these 

rectifiers illustrate Anti-AR electron flow, and more research on these is still needed. However, 

pyrene-related rectifiers may provide the next step in single-molecule rectification and electrical 

innovation. The presence of pyrene appears to affect blink-off time and orientation of molecules 

on thin polymer films. These differences may be related to the tether length and dihedral angles 

between the aromatic planes of pyrene (Figure I-7). Notably, variation in photophysical 

properties between rectifiers appears to depend on chain length and environment. The open 

anhydride of PMA allows for a great diversity of carbon tethering through imide addition. This 
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variability in carbon tethering may also account for variation in chemical/electrical behavior 

between PBI molecules.7 

 

Figure I-8: Pyrene is a flat, aromatic, 4-ringed compound with significant electron density from 

conjugated double bonds, consisting of 2 naphthalene subunits. 

  The Hammer Proposal suggests four specific perylene-related molecules for testing.7 

These molecules contain the typical alkyl swallowtails on one end and either a cis- or trans-

pyrenylcyclohexyl (Compound 3), pyrenylethyl, or methyl group by acyl substitution on the 

available anhydride of PMA. This text seeks to achieve the pyrenylcyclohexyl imide (PCHI) 

addition to PMA, generating Compound 3. This compound can conform in one of two 

orientations relative to the cyclohexyl group: cis (axial) or trans (equatorial), which may also 

suggest differences in electrical behavior. Electrons from pyrene (Figure I-8) have been 

observed to jump into the empty orbitals of PBI after excitation of PBI by light. Experimentation 

ultimately seeks to clarify whether the carbon tether distance or bond angle between the pyrene 

group and PBI molecule affects the electron transfer between the two groups.7 Synthesis of the 

Compound 3 may provide further innovation, understanding, and discovery in microtechnology 

and PBIs.10, 11 
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Figure I-9: Desired perylene-related molecules of the Hammer Proposal, including Compound 

3.7 
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II. RESULTS AND DISCUSSION 

2.1 Attempted Deprotection of TBDMSCl-protected PBI (Compound 2) 

 2.1.1 Deprotection via TBAF 

 

Scheme II-1: Attempted deprotection of Compound 2 using TBAF 

Experimentation begins with the last synthesized PBI product left by researcher Tarrah 

Frederick in 2019: Compound 2, a PBI with swallowtail and TBDMS-protected serinol.5 The 

serinol remains protected until the silyl ether TBDMS group is removed. The proceeding 

reaction seeks to remove the protecting group on PBI9 and restore the diol of serinol, generating 

the desired Compound 1. Procedures to remove the silyl ether involved a charged ammonium 

salt, tetra-n-butylammonium fluoride (TBAF), to liberate the TBDMS group.9  Half of 

Frederick’s Compound 2 was used. 

In this mechanism, deprotection occurs through a penta-coordinate intermediate. Silyl 

cations are unstable so the mechanism unlikely proceeds via SN1-style addition. Instead, this 

mechanism likely follows a concerted SN2 mechanism. Firstly, the negatively charged fluoride 

ion attacks the silicon of the silyl ether protecting group: the Si-F bond is ~30 kcal/mol stronger 

than the Si-O bond. As a result, the electrons in the bond between silicon and oxygen jump onto 

oxygen to form a negatively charged oxide, freeing the TBDMS-protecting group from 

2 1 
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Compound 2.9 Oxygen then picks up a proton from the surrounding environment to generate the 

alcohol. If deprotection with fluoride is performed on both oxygens of the protected-serinol, this 

mechanism will restore the diol. After removal of TBSMS ether, the protected serinol would then 

be reverted to the diol, finally yielding the desired Compound 1. 

 

Scheme II-2: Mechanism for attack by fluoride in TBAF on silyl ether protecting group.9 

Thus, Compound 2 and TBAF were combined and stirred at ambient temperature for 

over 12 hours, and the solution became deep green and gradually darkened to black. This color 

change is unusual PBIs which usually have a vibrant red/orange color. To clarify the unexpected 

resulting color change of this reaction, TLC revealed unpromising migration for deprotection. 

Successful deprotection would generate the Compound 1 diol, and the new molecule would 

contain two highly electronegative oxygens bound to hydrogen. The electronegativity of oxygen 

and subsequent intermolecular forces from hydrogen bonding would create a more polar 

compound than the protected species. Thus, Compound 1 should not migrate as far as 

Compound 2 during TLC in a polar solvent. Nonetheless, migration of the initial and final 

materials was similar in developing solvent.  

To further unveil the unexpected results of the attempted deprotection with TBAF, 1H-

NMR spectra of the crude product and compared to spectra of the initial protected molecule left 

by Frederick. While the crude product spectra did illustrate that some initial signals had 
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disappeared, these signs were ultimately indicative that the molecule had only decomposed. 

What occurred to the protected silyl ether group is uncertain, but our leading hypothesis is 

perhaps that the solution contained a radical, possibly causing expected Compound 1 to turn an 

abnormal color as a radical anion and degrade. In a last attempt to scavenge the potentially 

radical contaminated PBI, a single electron oxidant, Br2, was used. Bromine was dissolved in 

chloroform and added to Compound 1 solution, hoping a bromine radical would pick up the 

radical of the contaminated PBI. If bromine successfully acquired the radical from PBI, the 

grayish green color from PBI contamination should revert to the vibrant red/orange from before. 

However, the resulting solution took on the deep brown color of bromine, providing further 

uncertainty. Ultimately, this deprotection method with TBAF provided no desired deprotected 

Compound 1 PBI product and was abandoned. 

 2.1.2 Deprotection via Copper (II) Sulfate 

 

Scheme II-3: Deprotection of Compound 2 using copper (II) sulfate in methanol,6, 9, 13 

Moving forward, with only half of protected Compound 2 PBI remaining, another 

deprotection method was attempted. This time, Compound 2 was dissolved in methanol and 

heated. To this solution, copper (II) sulfate was added, and the mixture was stirred for several 

hours with a reflux condenser.6, 13 The mechanism of deprotection with copper (II) sulfate is not 

completely understood, but it may involve the protonation of the oxygen and attack by water on 

silicon since copper (II) sulfate tends to associate with water molecules. The ether oxygen could 

2 1 



20 
 

be protonated to form a positively charged oxygen by an acid or water. Then, the oxygen of 

another water molecule could attack the silyl ether and kick off electrons onto the positively 

charged oxygen to generate an alcohol and silyl alcohol. Nonetheless, how copper (II) sulfate 

removes the silyl ether mechanistically is uncertain. 

 

Scheme II-4: Acid/Water Deprotection of silyl ether protecting group. 

Notably, upon initiation of the reaction, Compound 2 and copper (II) sulfate both 

struggled to dissolve, but over time and with heat, both eventually met dissolution in MeOH. The 

solution began as a bright orange color and transitioned to maroon after the addition of copper 

(II) sulfate. This color shift seemed to indicate a chemical change, but the color change may have 

simply resulted from the orange color of the protected ether and blue color copper (II) sulfate 

combining. The solution was eventually cooled after several hours of refluxing, and TLC 

followed.6, 13 

Promisingly, TLC indicated a clear change in migration between starting Compound 2 

and crude product, suggesting that a chemical change had indeed occurred. To purify the crude 

sample, the product was vacuum filtered, and copper (II) sulfate was separated via solubility in 

methylene chloride in a separatory funnel.6, 13 The excess solvent was then removed by rotary 

evaporation, leaving slightly under 5 mg of concentrated dark red powder as crude product. 

Despite optimistic indications throughout the reaction, 1H-NMR of the crude sample in 
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chloroform-d conveyed impurities, decomposition products, some unreacted starting material, 

and overall uncertain results. No desired Compound 1 product formation was noted in spectra.  

Deprotection of silyl ether-protected serinol on Compound 29 proved unusually difficult 

despite such simple procedures detailing silyl ether removal. Failures to produce Compound 1 

with Frederick’s penultimate Compound 2 product5 ultimately ended with the loss of all 

Compound 2 in unsuccessful deprotection attempts. However, the final ~5 mg of dark red 

product from the copper (II) sulfate deprotection reaction may be purified and further analyzed in 

the future to provide more definitive answers to the uncertain spectra. At this point, deprotection 

of Compound 2 to produce Compound 1 diol was abandoned for the addition of a different 

polar group to PMA, namely a carboxylic acid (Compound 4). Addition of a carboxylic acid to 

PMA could prove easier and likewise be just as effective as the diol in the LB Method; thus 

efforts to add a carboxylic acid group to PMA were subsequently explored. 
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2.2 Addition of Carboxylic Acid in Lieu of Serinol 

2.2.1 Addition of 3-aminopropanoic acid (β -alanine) to PMA, Compound 4 

 

Scheme II-5: Addition of β-alanine (3-aminopropanoic acid) analog to PMA, generating 

Compound 4.4 

  With the TBDMS-protected serinol and swallowtailed Compound 2 PBI lost, reactions 

with PMA precursors continued. Several vials of PMA with one swallowtail were left behind by 

Tarrah and previous researchers. Since deprotection of serinol was unsuccessful previously, 

another similarly polar/hydrophilic group was attempted on the PMA: a carboxylic acid (via β-

alanine). Procedures from Reference 4 were applied using the β-alanine (3-aminopropanoic 

acid) analog to PMA, generating Compound 4.4 Though 3-aminobutyric acid (used in the 

Reference 4 procedure) and 3-aminopropanoic acid differ by one carbon, reactivity should be 

similar. Amine addition of β-alanine follows the same mechanism of Scheme I-1.Thus, β-alanine 

and PMA in imidazole solvent were refluxed for several hours. According to TLC, pure PMA 

with one swallowtail migrated distinctly from PMA reacted with β-alanine, indicating a chemical 

change did occur. About four notably concentrated products were observed on TLC after PMA 

reaction with β-alanine.  

To separate the products within the crude reaction mixture, column chromatography was 

performed using methylene chloride and methanol. In total, 46 fractions were acquired, though 

some stubborn material remained at the origin regardless of various solvents used. Visual 

analysis of the fractions revealed Fractions 8, 15, 24, and 38 to contain the darkest yellowish 

4 
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orange/red colors, indicating the highest concentrations of product and likely purest products 

from the crude mixture. The stubborn products left at the column’s origin were successfully re-

dissolved and obtained by mixing the sand and silica gel containing the products in methylene 

chloride and filtering off the sand and silica (Fraction L). Each of the fractions was concentrated 

by rotary evaporation to remove any excess solvent, yielding a thin, red film on each fraction’s 

flask except for Fraction L, which produced deep red oil. Each of the products was then 

dissolved in deuterated chloroform and analyzed by 1H-NMR spectra. 

After observation of these spectra, Fractions 8 and 15 seemed to indicate little to no 

absorbance in the carboxylic acid region (10-12 ppm), intense absorbance in the aromatic region 

(~7 ppm), intense absorbance in the swallowtail alkane region (~1 ppm), and some other 

uncertain signals. No desired product was expected in Fractions 8 and 15 as a result. However, 

Fractions 24 and 38 did reveal expected signals for Compound 4, but these fractions contained 

many unknown impurities as well. Ultimately, it seems the desired Compound 4 product was 

made, but it was crowded with other stubborn byproducts and contaminants. Due to these 

uncertainties alongside the recent retirement of research collaborator Robert Metzger, further 

purification and analysis of Compound 4 was halted. While these fractions can be investigated 

more in future research, definitive confirmation was not pursued. As such, more understanding 

of carboxylic acid addition to PMA is still needed, but this initial research does pose a potentially 

optimistic future for future synthesis of Compound 4; samples of these fractions have been 

stored in the lab. 
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2.3 Bromine Grignard Additions 

 

Scheme II-6: Synthetic Grignard pathway of the Hammer Proposal for the formation of 

Compound 8 (4-pyrenylcyclohexan-1-amine) from 1-bromopyrene. Compound 8 is a 

component of Compound 3, one of the desired products of the Hammer Proposal.7 

With deprotection and carboxylic addition of PBI abandoned, research proceeded with 

Grignard reactions of the Hammer Proposal. This procedure illustrates halopyrene Grignard and 

1,4-cyclohexanedione monoethyleneketal (Compound 5)1 synthesizing Compound 6 alcohol, 

which is protected by a cyclic monoethyleneketal. This alcohol can then be deprotected and 

dehydrated to yield Compound 7 ketone, then aminated to Compound 8 amine product. The 

amine could then be used from synthetic addition to perylene molecules, such as PMA to 

generate Compound 3.7 Since this synthetic scheme used bromine specifically as the primary 

halogen for Grignard addition, investigation began with brominated compounds for synthetic 

addition. 

5 

6 

7 

8 



25 
 

 

Scheme II-7: Grignard Formation. 

Grignard formation initiates when magnesium donates a single electron to an alkylhalide. 

The halide picks up this radical electron to form an alkylated halide radical anion and radical 

magnesium cation. Proceeding, the bond between the alkyl group and halide radical donates a 

single electron in both directions, generating a halide anion with a lone pair, and an alkyl radical. 

This alky radical must be stabilized to form, usually by methyl groups on the radical center or 

resonance (pyrene offers immense radical stabilization through its conjugated aromatic rings). 

The alkyl radical then bonds with the single electron of the magnesium cation radial, producing a 

full bond. With the attachment of magnesium to the alkyl group, the halide anion performs 

nucleophilic attack on the positively charged magnesium to complete the Grignard formation. 

 

Scheme II-8: Nucleophilic Attack of a Ketone. 
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With a successful Grignard reactant formed, the bond between the alkyl group and Mg-X 

can perform nucleophilic attack on carbonyl groups. Carbonyl groups contain a partial negative 

charge at the oxygen and a partial positive charge at the carbonyl carbon. Thus, electrons 

between Mg-X and the alkyl group attack the carbonyl, disassociating MgX from the alkyl group 

and alkylating the carbonyl species. As the alkyl group bonds to the carbonyl carbon, electrons 

are kicked up onto the oxygen, which grabs a nearby proton to generate an alcohol. In the 

proceeding reactions, the carbonyl used for nucleophilic attack will be a ketone, which always 

produces a tertiary alcohol. This chemical signature can later be used for product verification on 

NMR spectra. This mechanism will be used in all proceeding Grignard reactions in this text. 

2.3.1 Attempted Synthesis of 1-phenylcyclohexan-1-ol 

 

Scheme II-9: Bromobenzene Grignard addition to cyclohexanone to form 1-phenylcyclohexan-

1-ol, Compound 9.2, 8, 12 

 To gauge the viability of future Grignard reactions with brominated compounds and 

ketones, a model ketone was used first: the smaller, simpler cyclohexanone compared to 

Compound 5. Thus, bromobenzene and cyclohexanone were refluxed to produce Compound 9, 

1-phenylcyclohexan-1-ol. Firstly, bromobenzene was dissolved in dry THF in a round bottom 

flask filled with N2 atmosphere. Following, Mg solid turning were added to the flask with a small 

9 
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crystal of iodine to initiate the reaction. The iodine helps to clean the surface of the magnesium 

metal, which contains metal oxides, and initiate reaction. At this point, the benzene Grignard 

began formation as magnesium was visibly consumed. The solution was allowed to stir on heat 

for several hours, then cyclohexanone was dissolved dry THF and slowly added to the 

bromobenzene solution. This reaction was refluxed with continued heat for several more hours 

before cooling to room temperature.2, 8, 12 

The solution was then quenched with HCl (donating protons to form the alcohol), and the 

desired product was separated via separatory funnel using Et2O solvent. The aqueous layer was 

drained off, and the organic layer was dried with anhydrous MgSO4 before being vacuum-

filtered of the desired product into a separate round bottom flask. The Et2O solvent was finally 

concentrated by rotary evaporation, leaving behind crude product.2, 8, 12 TLC of the starting 

material and crude product with CH2Cl2 as the developing solvent seemed to indicate a 

successful reaction and alcohol formation from streaking. Synthesis of Compound 9 was further 

solidified by NMR spectroscopy. While Compound 9 is no part of the Hammer Proposal,7 it can 

help gauge the viability of more complicated Grignards; thus, no further purification or analysis 

was performed on the crude product. 
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Figure II-1: 1H-NMR spectrum of crude Compound 9, showing indicative peaks between 7-8 

ppm for aromatic hydrogens, and ~2 ppm for hydrogens on cyclohexane; protons closers to the 

alcohol are more deshielded to 2.1 ppm while protons further on the cyclohexane ring appear 

around 1.5 ppm. 

2.3.2 Attempted Synthesis of 1-pyreny-4-monoethyleneketalcyclohexan-1-ol 

(Compound 6) with Bromopyrene 

 

Scheme II-10: Bromopyrene Grignard addition to Compound 5, generating Compound 6; the 

first steps of the Hammer Proposal.1, 8, 7 

5 
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 With successful formation of Compound 9, reactions with 1-bromopyrene proceeded. 

Similar procedures were used as the previous Grignard reaction except the brominated 

compound and ketone were changed. This experiment aimed to react bromopyrene with 

Compound 5 (1,4-cyclohexanedione monoethyleneketal)1 to form the subsequent Compound 6 

(1-pyrenylcyclohexan-1-ol-4-monoethyleneketal). Synthesis of this product was attempted twice. 

In the first run, 1-bromopyrene was dissolved dry THF. Following, clean Mg turnings were 

added to the flask under a N2 atmosphere. At this point, the solution was clear or extremely pale 

yellow. To the flask was also added a small crystal of iodine, after which the solution became a 

light brown color. The subsequent solution was stirred on slight heat for 2 hours.2, 8 

 Next, Compound 5 was dissolved in dry THF and added to the flask containing 1-

bromopyrene and Mg. The reaction was allowed to reflux for several hours before it was cooled, 

quenched with HCl, dried with MgSO4, and filtered. The desired Compound 6 product was 

expected to separate into the organic layer after washing with Et2O in a separatory funnel. The 

organic layer was filtered into a flask and concentrated via rotary evaporation to reveal the crude 

product. TLC of the concentrated crude product illustrated various spots, some similar and some 

different from the bromopyrene and ketone starting materials.1, 2, 8 

Furthermore, components of the crude product mixture were separated and purified by 

column chromatography. Similar fractions were combined into 5 collective super-fractions 

(CF1-5). 13C-NMR and 1H-NMR of each fraction was then taken thereafter. NMR spectroscopy 

of CF1 indicated a messy mixture of starting materials and some unknown signals. CF2 was 

presumed to be mostly mixed bromopyrene and ketone. CF3 and CF5 conveyed weak 

absorbance and ethanol solvent from NMR, so no useful interpretations of molecular 

components was deduced. TLC revealed streaking of the components in CF4, which is typically 
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indicative of alcohols such as the desired Grignard product Compound 6. However, CF4 

contained disproportional aromatic shifts and a mess of aliphatic absorbances, perhaps from 

deprotection of the ethyleneketal. A weak but clear carbonyl absorption was also found, 

indicating incomplete reaction of the starting ketone. There was no obvious peak from the 

tertiary alcohol of the expected Compound 6 product either. Ultimately, no indicative results of 

successful Compound 6 product were found. 

  2.3.3 Repeat of Attempted Synthesis of Compound 6 with Bromopyrene 

Grignard 

After the unclear results from the first attempt of Compound 6 synthesis, the reaction 

was repeated with more precaution.1, 2, 8 All glassware was washed with soap, distilled water, and 

acetone, then dried in an oven, and isolated in a desiccator. These measures were taken to ensure 

neither water nor organic contaminants could negatively affect the desired Grignard reaction. 

The aforementioned procedures for this reaction were repeated with minor adjustments. An oil 

bath was used to heat the solution instead of a water bath to ensure no water contaminated the 

Grignard. Additionally, all flasks were filled with inert N2 atmosphere and covered with film to 

prevent leaking of N2. Since atmospheric water vapor could potentially affect the Grignard, this 

additional precaution was taken. Furthermore, steps where the reaction was allowed to run on 

heat for a few hours were changed to allowing the reaction to mix on heat for nearly 48 hours. 

More time may allow the reaction more time to form properly. In the end, magnesium notably 

struggled to dissolve and no precipitate was formed. 

Perhaps one of the most notable observational changes was significantly cleaner NMR 

spectra. With these cleaner spectra, the components of the expected crude product mixture could 

be better deduced. Analysis began with the 13C-NMR. Firstly, a particularly important shift that 
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was expected to disappear was the C-Br absorbance at 119.8 ppm, but this peak was visible. 

Moreover, the aromatic carbons shown on the 13C-NMR spectrum match the literature values for 

bromopyrene. Strangely, expected peaks a 265 ppm for the carbonyl carbon of the ketone were 

missing, suggesting some successful conversion to product. The quaternary carbon containing 

the alcohol was also missing, however, suggesting no product conversion. With a lack of 

hydrogens, chemical shifts from the carbonyl carbon and alcohol carbon usually yield small 

absorbances. These signals were potentially buried in the noise during shift acquisition, but these 

signals may have been more distinguishable with a long acquisition time. The only unexpected 

peak occurred around 127 ppm.  

Moving to the 1H-NMR spectrum, in the aliphatic region, two triplet signals for the 

starting ketone matched literature values, indicating that the ketone was not fully consumed. 

Moreover, three new, unexpected singlets appeared. These singlets may have resulted from 

protection of the starting ketone Compound 5 by ethanediol; deprotection would yield 1,4-

cyclohexanedione, producing a singlet at 2.7 ppm. Further, the sequestered ethanediol protecting 

group could re-protect Compound 5 starting material, creating a di-protected diketone with 

chemical shifts of 3.9 ppm and 1.8 ppm. Ultimately, no definitive signals for desired Compound 

6 formation were observed (Figure II-2).  

 

Scheme II-11: Protection and deprotection of Compound 5 may explain unknown absorptions 

on NMR spectra. 

5 
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The overall conclusion is that either one of two steps in the Grignard reaction is failing: 

formation of the pyrene Grignard itself, or nucleophilic attack on the ketone by the Grignard. In 

analysis of the results and observations noted throughout the experiments, it seems pyrene 

Grignard is likely very difficult to form. Magnesium struggles to dissolve and form the Mg-Br-R 

bond. As such, it is presumed that the Grignard formation is the failed step, causing lingering 

starting materials, such as Compound 5, to separate via chromatography. Thus, since the 

Grignard is not forming at all, no reaction continues from there. From the failure of bromopyrene 

Grignard formation and with reanalysis of the Hammer Proposal,7 perhaps another halogen could 

offer more reactivity and easier Grignard formation. Therefore, focus to using a more reactive 

halogen for pyrene Grignard formation was explored moving forward. The larger size and 

reduced electronegativity of another halogen, iodine, may deliver more promising results. 

 

Figure II-2: 1H-NMR spectrum of crude product from attempted bromopyrene Grignard 

reaction, containing unexpected peaks and no successful Compound 6 formation. 
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2.4 Iodine Grignard Additions 

2.4.1 Attempted Synthesis of Iodopyrene 

 

Scheme II-12: Synthesis of iodopyrene from pyrene and periodic acid. While the mechanism is 

not completely understood, it is presumed that periodic acid adds an iodine to pyrene through 

electrophilic aromatic substitution, forming iodopyrene.3 

 Since no iodopyrene was readily available as a starting material, it was synthesized using 

pyrene and periodic acid.3 To begin, pyrene and periodic acid were dissolved in 95% EtOH in a 

round bottom flask. The subsequent solution was maintained on reflux for several hours, during 

which a pale to dark yellow color change was observed, followed by a transition to a light, 

vibrant red. Eventually, the solution color became an extremely dark crimson. Some black 

particulate was visibly noted on the flask, presumed to be polymerized tar. The reaction flask 

was then cooled, and TLC was performed with the crude product and starting materials.  

While migrations between the crude product mixture and the starting materials were 

similar, new spots also appears. Namely, bromopyrene was used as reference for similar 

migration as iodopyrene. Thus, NMR was performed to clarify. 13C-NMR of the crude product 

mixture was taken, and two peaks of particular interest were observed: one at 96.2 ppm and 

another at 136.7 ppm. These shifts are radically different from those of pyrene. When compared 



34 
 

to literature values for iodopyrene chemical shifts, these peaks indicate successful synthesis of 

iodopyrene.3 Moving forward, the crude iodopyrene product was isolated from the polymerized 

tar and purified via column chromatography. 

 

Figure II-3: 13C-NMR spectrum of crude iodopyrene synthesis product, including indicative 

peaks at 96 ppm and 137 ppm.3 

  2.4.2 Attempted Synthesis of 1-pyrenyl-4-monoethyleneketalcyclohexan-1-ol 

(Compound 6) with Iodopyrene Grignard 

 

Scheme II-13: Iodopyrene Grignard addition to Compound 5, generating Compound 6.1, 3 

6 
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 With the successful synthesis, isolation, and purification of iodopyrene, it was combined 

with clean Mg turnings in dry THF. This solution was refluxed for several hours before addition 

of Compound 5 in anhydrous THF, followed by further refluxing. The same procedures and 

precautions from the second bromopyrene Grignard run were essentially repeated. Again, the Mg 

struggled to dissolve and form the Grignard reagent. With both bromopyrene and iodopyrene 

unsuccessful in Grignard formation, perhaps treating either with butyl lithium to generate a 

pyrenyl lithium species offers more reactivity and optimism for continued research. 
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III. FUTURE WORK 

D-σ-A molecules have opened the door to the miniaturization of electronics. 

Unimolecular electronics from LB films of D-σ-A molecules could unveil new microtechnology 

innovations. Thus, continued research efforts on PMA, PBI, pyrene, and other D-σ-A molecules 

offers enormous opportunity and promise for innovation in the field of miniaturized 

technology.10, 11 

 

Scheme III-1: Complete synthetic pathway of the Hammer Proposal for pyrenylcyclohexyl 

addition.7 

The synthetic products from iodopyrene synthesis and Grignard addition offer optimism 

for continuing the Hammer Proposal. The last product synthesized in this paper is iodopyrene, 

which can form a Grignard reagent to add to Compound 5, then be deprotected and dehydrated 

(Compound 7), and finally aminated to form 1-pyrenylcyclohexan-4-amine (Compound 8). 

Addition of Compound 8 to PMA would create the desired Compound 3 PBI product. As 

5 

6 7 8 
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previously mentioned, depending on the direction of addition to PMA, cis and trans isomers of 

Compound 3 can form. Future research may seek to understand how/why these differences 

affect electron transfer to excited PBI from pyrene; if significant differences are noted, it may be 

useful to understand methods to preferentially add specific isomers to PMA.7 

 

Scheme III-2: Latter synthesis in Hammer Proposal, illustrating cis/trans orientation of pyrene 

group based on axial (trans) or equatorial (cis) positions on Compound 3.7 

Moreover, the other products of Figure 7 could be produced: PMA with methyl amine as 

a no-pyrene control and pyrenylethyl amine addition to introduce a flexible tether. Perhaps these 

synthetic products hold more success or promising results than does the addition of 1-

pyrenylcyclohexan-4-amide to Compound 3. The synthesis of Compounds 1 and 2 could be 

3 



38 
 

reinvestigated to give insight into the aforementioned complexities of spectra from Tarrah and 

Stark. Clearly, much is still to be learned and understood about the specifics of PBI deprotection 

and synthesis. Furthermore, other methods of serinol protection could also prove useful to related 

research. Protecting groups can prevent hydrogen bonding, intramolecular forces, and 

undesirable functional groups from perturbing spectra, as observed in Frederick’s research.5, 9 

Ultimately, many methods of protection are known, but some seem to work only under specific 

circumstances for certain molecules. 

In an attempt to better understand Grignard difficulties experienced in this research 

thesis, it also may be worthwhile to see if bromobenzene or iodobenzene Grignard will react with 

Compound 5 as a model ketone. It’s ultimately hypothesized that bromopyrene Grignard 

formation is too difficult, but perhaps 1,4-cyclohexanediol monoethyleneketal (Compound 5) 

introduces challenges too.1 Reaction of bromopyrene or iodopyrene with cyclohexanone may 

also reveal useful information regarding the behavior of this Grignard. 

 

Scheme III-3: Halobenzene Grignard addition to 1,4-cyclohexanedione monoethyleneketal to 

form 4-hydroxy-4-phenylcyclohexan-1-one.1, 2, 8 
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Scheme III-4: Halopyrene Grignard addition to cyclohexanone to form 1-pyrenylcyclohecxan-

1-ol. 

To continue reactions down the Hammer Proposal with the aforementioned bromopyrene and 

iodopyrene compounds, wither could be treated with butyl lithium in a chemical exhange. The 

products of this chemical exchange are butyl halide and pyrenyl lithium. Just like the R-MgX 

bond that seems to struggle formation with pyrene, the bond between pyrene and lithium should 

be quite reactive. If successfully synthesizes, pyrenyl lithium may offer another mode of 

nucleophilic attack of ketones, such as Compound 5. Future research should pursue use of butyl 

lithium in an attempt to continue the Hammer Proposal. 
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IV. CONCLUSION 

 Though seemingly simple, deprotection of Compound 2 proved quite difficult. 

Sometimes reactions regarded as simple have their complexities when accounting for steric 

hindrance, intramolecular forces, hydrogen bonding, etc. on larger more intricate molecules. 

What causes these uncertainties on NMR is still not fully understood. While samples of 

Compound 2 were ultimately lost, two graces push this research forward. Firstly, PMA can be 

reacted according to Frederick’s procedures to recreate Compound 2 for further exploration. 

The protected-serinol PBI that was reacted with copper (II) sulfate13 could also be purified and 

pursued further. Secondly, while the serinol diol ultimately proved difficult to deprotect, the 

addition of β-alanine to PMA forming Compound 4 appears promising. Though the crude 

product of β-alanine addition to PMA4 was not purified and confirmed, many indicators suggest 

successful formation alongside other impurities and byproducts. If this reaction can be better 

performed and understood, perhaps the addition of a carboxyl group will behave similarly, more 

easily, and potentially better in LB Methods. Nonetheless, more research on PBI protection, 

deprotection, and addition is needed. 

Furthermore, moving from the carboxyl and diol groups, continued synthesis efforts 

towards Compounds 3 and 9 could provide another molecule for single-molecule spectroscopy. 

While bromopyrene ultimately proved too difficult for Grignard formation and addition to 

Compound 5 ketone,1 formation of the more reactive iodopyrene3 suggests another synthesis 

route to the desired end molecule of the Hammer Proposal. Perhaps steric hindrance from nearby 

hydrogen in the aromatic rings blocks the halogen from forming the Grignard, but confirmation 
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is needed. With the iodopyrene product produced, future experimentation and research can be 

pursued. Iodopyrene can continue down this synthetic Hammer Proposal pathway to generate 

Compound 8, which can be added to PMA to create Compound 3.7 Synthesis of pyrenyl 

lithium from halopyrene may also be worthy perusing for an even more reactive pyrene species. 

Though many difficulties and complexities in the lab and through the COVID-19 pandemic have 

stunted synthetic progress, iodopyrene and butyl lithium hold promise for future research into 

unimolecular electric rectification. 
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V. EXPERIMENTAL 

 5.1 Procedures for Deprotection of TMDMS-protected PBI 

  5.1.1 TBAF 

 

Scheme II-1 

 Compound 2 (10 mg; 0.011 mmol), THF (50 mL), and TBAF (30 mL, 0.03 mmol) were 

combined in a 100 mL round bottom flask and stirred at ambient temperature for 12 hours. A 

notable color change from red/orange to grey/green was noted, perhaps from radical 

contamination. The resulting solution was concentrated via rotary evaporation and developed on 

TLC; the product illustrated similar migration as the starting material on TLC. While 1H-NMR 

did show the disappearance of some peaks, none were indicative of deprotection of serinol. No 

desired Compound 1 product formation was observed. (Yield: 4 mg; 40%). 
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  5.1.2 Copper (II) Sulfate 

 

Scheme II-313 

 Compound 2 (10 mg; 0.011 mmol), MeOH (25 mL), and copper (II) sulfate (2 mg, .012 

mmol) were combined into a 50 mL round bottom flask and refluxed at 50℃ for 24 hours. The 

PBI and copper (II) sulfate were notably hesitant to dissolve but eventually met dissolution. A 

notable color change from red/orange to a darker maroon was observed. The resulting solution 

was vacuum filtered, and copper (II) sulfate was removed from solution via solubility in CH2Cl2 

in a separatory funnel. The organic layer was concentrated via rotary evaporation to yield a dark 

red powder (~5 mg).13 TLC indicated the disappearance of starting material and the migration of 

a new material; however, 1H-NMR revealed unknown impurities and decomposition products. 

No desired Compound 1 product formation was observed (Yield: 5 mg; 50%). 
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5.2 Procedures for Addition of Carboxylic Acid to PMA 

 

Scheme II-54 

 PMA (100 mg; 0.7 mmol), β-alanine (45 mg; 0.6 mmol), and imidazole (30 mL) were 

combined into a 50 mL round bottom flask.4, 7 TCL and NMR indicated successful synthesis of 

Compound 4, though contaminated with unknown byproducts. With the recent termination of 

collaborated research with Dr. Metzger’s group at the University of Alabama, no further 

purification or analysis was pursued. 
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 5.3 Bromine Grignard Additions 

  5.3.1 Bromobenzene Grignard Addition to Cyclohexanone 

 

Scheme II-9 2, 8, 12 

 Bromobenzene (1.0 g; 5.50 mmol) and 100 mL of anhydrous THF were added to a 200 

mL round bottom flask filled with N2 atmosphere. Mg turnings (0.155 g; 6.3 mmol) were then 

added to the flask along with a small crystal of iodine. Mg turnings were visibly consumed. The 

solution was allowed to reflux at ~65℃ for 6 hours, followed by the slow addition of 

cyclohexanone (0.446 g; 4 mmol) in 50 mL of THF. The solution was allowed to cool to room 

temperature before quenching with HCl (5 mmol). The expected product was removed from 

solution by Et2O in a separatory funnel, dried with anhydrous MgSO4, and filtered into a round 

bottom flask.2, 8, 12 The resulting solution was concentrated by rotary evaporation and used for 

TLC. Disappearance of starting material and new substance migration was noted. These findings 

were solidified by 1H-NMR of the crude product. While further purification and isolation of the 

product is possible, this reaction simply functioned as a model ketone test. The desired 1-

phenylcyclohexanol product was formed (0.53 mg; 3 mmol). (Yield: 55%) 
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  5.3.2 Bromopyrene Grignard Addition to 1,4-cyclohexanedione 

monoethyleneketal, Compound 5 

 

Scheme II-10 1, 8 

 1-Bromopyrene (2.81 g; 10 mmol) was dissolved in 200 mL of anhydrous THF in a 500 

mL round bottom flask filled with N2 atmosphere, followed by clean Mg turnings (0.25 g; 11 

mmol) and a crystal of iodine. A notable pale yellow/brown color was observed. The solution 

was refluxed at 50 ℃ for 2 hours, followed by the addition of Compound 5 (1,4-

cyclohexanedione monoethyleneketal) (1.56 g; 10 mmol) dissolved in 100 mL of dry THF. This 

solution was refluxed on light heat for 8 hours, then cooled. The expected product was separated 

from the crude mixture and aqueous layer by 3 washings of 100 mL Et2O in a separatory 

funnel.1, 8 The organic layer was then concentrated by rotary evaporation. TLC of the crude 

mixture indicated multiple spots. The crude product was then purified via column 

chromatography with 1% MeOH/DCM elution solvent. Several products were isolated from the 

crude mixture and clarified by 1H-NMR, such as both starting materials, several unknown 

impurities, and multi-protected/deprotected ketones. Ultimately, no desired Compound 6 

product formation was observed.7 

5 

6 
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5.4 Iodine Grignard Additions 

  5.4.1 Synthesis of Iodopyrene 

 

Scheme II-12 3 

 Pyrene (2.00 g; 10 mmols), periodic acid (5.50 g, 9.90 mmol), and 100 mL of 95% EtOH 

were combined into a 200 mL round bottom flask. The subsequent solution was refluxed with 

light heat for 48 hours, transitioning from yellow, to red, to black/crimson.3 The reaction flask 

was cooled, and TLC revealed disappearance of starting material and new product formation. 

This was further clarified by 13C-NMR. Thus, the expected product was separated from the tar by 

warm chloroform and concentrated by rotary evaporation. The concentrated crude product was 

purified by column chromatography, yielding the desired iodopyrene product. (Yield: 213 mg). 
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