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ABSTRACT

MUKESH GHIMIRE: A Study of Deep Reinforcement Learning in Autonomous

Racing Using DeepRacer Car (Under the direction of Dr. Yixin Chen)

Reinforcement learning is thought to be a promising branch of machine learn-

ing that has the potential to help us develop an Artificial General Intelligence (AGI)

machine. Among the machine learning algorithms, primarily, supervised, semi super-

vised, unsupervised and reinforcement learning, reinforcement learning is different in

a sense that it explores the environment without prior knowledge, and determines the

optimal action. This study attempts to understand the concept behind reinforcement

learning, the mathematics behind it and see it in action by deploying the trained

model in Amazon’s DeepRacer car. DeepRacer, a 1

18th
scaled autonomous car, is the

agent which is trained to race autonomously on a track. Optimum race line coor-

dinates were calculated which allowed the agent to follow the fastest possible route

on a given track. The agent was then trained using proximal policy optimization

(PPO). Performance metrics such as the average reward per episode and cumulative

reward were examined to fine tune the model. To further understand the distribu-

tion of action spaces, log analyses tools provided by the amazon was used. Based

on the log analysis data, any un-used action was removed for efficient training. The

trained model was uploaded into the DeepRacer car to test it in a race track outside

of simulation.
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1 Introduction

1.1 Autonomous Systems and Robotics

Autonomous robots will soon be ubiquitous in the world we live in. From

getting the food delivered to our footsteps to driving us to work, autonomous systems

are going to be an important aspect of our daily lives. Advancement in the field of

Machine Learning and Artificial Intelligence, along with the computing power have

allowed the dream of self-driving cars come to life. With increase in air and land

traffic, use of autonomous vehicles will lead to efficient use of the available resources.

A system can be said to be “autonomous” when all the dynamic tasks are

performed by the system itself [1]. For instance, in the case of self-driving car, it

should be able to perform the driving tasks, at all driving environment only using

its automated system [1]. Autonomous robots are useful in the scenarios (such as

in high air traffic) where human control is either infeasible or not cost-effective [2].

For instance, in the case of air traffic, imagine thousands of airplane flying in close

proximity. A slight deviation of one airplane’s trajectory could affect the entire herd

of airplanes. This information needs to be relayed to every other airplane that would

be affected, and decision be made in split second. This task is painstakingly hard and

has a high potential to go awry. However, if the airplanes have a level of autonomy

and given that they would be communicating to everyone nearby, the path planning

algorithm would instantly update for every airplane. Hence, avoiding the catastrophe

much easily and efficiently.
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1.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning framework that is useful

in decision-making scenarios when an agent interacts with an environment through

trial-and-error to discover the most efficient behavior [3]. It should not be confused

with Genetic Algorithm, where an agent also employs the method of trial-and-error,

but only the best offspring that survives proceeds to give rise to future generation.

Whereas, in RL there is usually one agent that learns the optimal behavior following

an iterative process.

Reinforcement Learning resembles biological systems that also learn to adapt

to the environment through trial-and-error. The most common example would be

training a dog. It is often seen that in order to train a dog to follow certain com-

mands, the trainer uses “treats” to reinforce the correct behavior. In psychology,

encouraging actions by the help of reward is referred to as Positive Reinforcement,

whereas discouraging a behaviour through the means of punishment is referred to as

Negative Reinforcement.

The central goal of reinforcement learning is maximizing the overall reward.

Each action of an agent corresponds to a reward, and hence the agent tries to ac-

cumulate as much reward as possible in an episode and further tries to repeat the

higher-reward yielding actions. In order to assess the nature of the reward, one could

say that the agent needs to try every possible action. We can easily see how this

could be an issue, and indeed this is one of the challenges in reinforcement learning.

The problem, often referred to as the exploration/exploitation trade-off.

As explained in the Reinforcement Learning book [4], for an agent to maximize

its rewards, it has to select actions that was found effective in the past, i.e. exploit

the existing actions and at the same time identify such possible actions. However, to

identify such actions, it needs to try newer actions, i.e. it has to explore. An agent

2



cannot both exploit and explore at the same time, and too much of one can prevent

us from reaching our goal. There has to be a good balance and a good approximation

can be made based on trial-and-error.

1.2.1 Reinforcement Learning Framework

As explained earlier, the reinforcement learning framework consists of an agent,

environment, states, actions, and rewards. Figure 1 shows the simplest representation

of the RL framework.

Figure 1: Agent-Environment Loop. [5]

At first, the agent receives the state S0 from the environment which may

contain information such as the image captured by the agent, its speed, and other

sensory data. The agent then acts on the provided state S0 with an action A0. As a

result of the action, the environment switches to a new state S1 and the environment

provides a reward R1 to the agent. This loop continues until the episode is over and

each loop returns current state (S0) and action (A0), and future state (S1) and reward

(R1). A comprehensive representation of the process is shown in figure 2.

The agent’s goal is to always maximize the expected reward. This concept

is known as the Reward Hypothesis which, as explained in [6], in the most naive

approach, can be expressed as the following:

Gt = Rt+1 +Rt+2 + ... (1)
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Figure 2: RL Framework.

Gt =
∞∑
k=0

Rt+k+1 (2)

The equation 2 assumes that the rewards at all instance of time have same

weight. However, this cannot be true, for instance, rewards that come sooner are

more likely to happen than the rewards that occur much later [6]. Hence, the idea of

a discount factor (γ) is essential. Adding γ to equation 2, we get

Gt =
∞∑
k=0

γkRt+k+1, where γ ∈ [0,1) (3)

A classic example of mouse in a maze can be used to visualize this. In figure

3, the goal of the mouse is to collect as much cheese as possible, without getting

eaten by the cat. It is apparent that collecting the cheese nearby the mouse is more

rewarding than attempting to go for the cheese near the cat.

Figure 3: A game where a mouse collects cheese in a maze. [6]
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1.2.2 Reinforcement Learning Approaches

1.2.2.1 Value Based RL

Value based RL is used in Q-learning algorithm where the objective is to

maximize the total expected discounted reward (or minimize the total discounted

expected cost) [7]. The total expected discounted reward, here known as the “value

function”, is the maximum expected future reward that the agent receives at each

state.

An agent following the Q-learning algorithm in an environment is expressed

as a finite Markov Decision Process (MDP) [7]. MDPs, in the simplest term, refer to

the RL framework mentioned in the section 1.2.1. It is a set of tuple (S,A, P,R, γ),

where S is the state, A is the action, P is the state transition probability function,

R is the reward function, and γ is the discount factor. At each time step, the agent

in some state st ∈ S chooses an action at ∈ A, assigns it to the environment which

results in a state transition to st+1 ∈ S with the probability P (st+1|st, at). It is then

provided with the expected reward of R(st, at, st+1). Finally, the value of each state

is the total expected reward that the agent can accumulate over the future beginning

in that state.

vπ(st, at) = Eπ [ Rt+1 + γRt+2 + γ2Rt+3 + ... | st, at ] (4)

Consider a maze in figure 4, where an agent starting in the left has to reach

the goal on the right. The numbers in the figure are the results of the value function,

i.e. each cell correspond to the maximum expected future reward for that given state.

The agent is able to complete the maze following the optimization goal of maximizing

the future reward.

5
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Figure 4: Maze Example with the Value of Each State. [6]

Algorithm 1: Q-Learning Algorithm.

Result: Optimum Q Table

Initialize Q Table;

while not end of training do

choose action, a;

perform action;

measure reward;

update Q;

end

1.2.2.2 Policy Based RL

Policy (π) refers to a function that maps states to action i.e. it takes in the

current state as input and decides what action to take next. In policy-based learning,

the goal of the agent is to learn the optimum policy (π∗) that maximizes the expected

reward. Policy could be either deterministic or stochastic. A deterministic policy

always returns one action for the given state, whereas a stochastic policy returns the

probability distribution of the action for the given state. Equation 5 and 6 represent

how the actions are selected in deterministic and stochastic policies respectively.

a = π(s) (5)
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π(a|s) = P (A | s) (6)

To solve an RL problem, the goal is to find an optimum policy, which is able to

“recommend” actions that produce maximum expected reward. The optimum policy

can be found by directly training the policy, which can be done using deep neural

networks. In figure 5, the policy network takes in a frame from the game and produces

a probability distribution over the action space (L or R) [8]. In order to train the

policy, a function is required which can be used to quantify the quality of the policy.

As our goal is to maximize the expected reward, the expected rewards can be used

as the objective function.

J(θ) = Eπθ

[
T∑
t=0

γr(st, at)

]
(7)

where θ represents parameters of the policy.

Figure 5: Neural Network for training policy. [8]
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2 DeepRacer

2.1 The Vehicle

DeepRacer is a fully autonomous 1/18th scale model of a racer car driven using

reinforcement learning. It was developed by Amazon for users of all level to learn

about reinforcement learning [9]. It allows users to learn reinforcement learning by

doing, primarily through their DeepRacer Console. Users have the option to deploy

their model to the vehicle after they train the model. Figure 6 shows the front and

side view of the physical car that was used to test the model in real life scenario.

(a) Front View of the car (b) Side view of the car

Figure 6: DeepRacer Car.

The vehicle is able to run autonomously by running the inference based on the

reinforcement learning model that is uploaded by the user [9]. It can also be operated

manually using its internal console. The vehicle is powered by brushed motor and its

speed is controlled using a voltage regulator that controls the motor. The steering

is controlled by the servomechanism [9]. As shown in figure 6, the vehicle used in

this project was equipped with steoreo cameras and a LiDAR sensor to enable object

avoidance and head-to-head racing. For the purpose of this thesis, only time-trial

race setting was used. However, LiDAR was still used in order to provide robustness
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to the model as building a good DIY physical track on which the vehicle is supposed

to race is difficult. The forward facing stereo cameras help the car learn the depth

information from the images.

2.2 Environment

The primary method of training a model to run the deepracer car autonomously

is via the AWS DeepRacer console. The console is an interactive platform that allows

users to monitor training and evaluation of the model while displaying the primary

log metrics (reward, percent completion during training and evaluation). The console

view during training is shown in figure 7.

Figure 7: Screenshot of the console during training.
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2.2.1 Service Architecture

The AWS Deepracer environment is comprised of SageMaker, RoboMaker

along with the other AWS cloud services [9]. SageMaker is an AWS machine learn-

ing platform that allows to train ML models and RoboMaker is a cloud service for

developing, testing and deploying robotic solutions. DeepRacer encorporates these

platforms to train reinforcement learning models and to create virtual agent and

environment using SageMaker and RoboMaker respectively. It uses cloud storage

platform S3 to store trained models along with the training logs and other related

artifacts [9].

AWS RoboMaker generates a virtual environment for the agent to drive along

a defined track within the AWS DeepRacer architecture. The agent operates in

accordance with the policy network model that has been trained in SageMaker up

to a certain point. An episode is described as a run that begins at the starting line

and ends at the finishing line or off the track [9]. The course is divided into segments

of a fixed number of steps for each episode. “Experiences” are cached in Redis as

an experience buffer in each segment. Experience buffer is defined as an ordered list

of the tuples of (state, action, reward, new state) for each steps [9]. Redis is an in-

memory database that is used by AWS DeepRacer as an experience buffer to select

training data to train the policy neural network. SageMaker randomly pulls training

data from the experience buffer in batches and feeds it to the neural network to update

the weights. The revised model is then stored in S3 for SageMaker to use in order to

generate more experiences. This loop runs until the training is completed. In the very

first episode of the training, the experienced buffer is initialized with random actions.

Figures 8 and 9 illustrate this architecture. Using this setup is beneficial because it

allows running multiple simulations to train a model on several different segments of

a track simultaneously or to train the model in multiple tracks simultaneously [9].

10



Figure 8: AWS DeepRacer Architecture. [9]

Figure 9: AWS DeepRacer Schematics. [9]
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2.2.2 Major Components

The primary components that the users have the freedom to explore are the

Action Space and the Reward Function.

2.2.2.1 Action Space

Action space refers to the set of all valid actions or choices available to an

agent while it interacts in the environment. Action space can be further classified

into discrete or continuous action space. A discrete action space, by definition, is just

a set of all possible action spaces for each state. In terms of the reinforcement learning

problem, the underlying algorithm selects one action from the set of actions based

on given state. In the case of the DeepRacer car, there are two actions – steering

(direction) and speed. Based on the input to the camera and LiDAR sensor, the

neural network selects a speed and direction for the car. The default discrete action

space is shown in table 1.

Table 1: AWS DeepRacer Discrete Action Space. [9]

Action number Steering Speed

0 -30 degrees 0.4 m/s
1 -30 degrees 0.8 m/s
2 -15 degrees 0.4 m/s
3 -15 degrees 0.8 m/s
4 0 degrees 0.4 m/s
5 0 degrees 0.8 m/s
6 15 degrees 0.4 m/s
7 15 degrees 0.8 m/s
8 30 degrees 0.4 m/s
9 30 degrees 0.8 m/s

Unlike discrete action space, a continuous action space allows the agent to

select an action from a range of values for each state [9]. Similar to the discrete

case, the agent selects direction-speed pair based on the environmental situation that

is received from the camera and LiDAR inputs. However, in the continuous action

12



space, the agent has a range of options to pick from. There is a trade off between

performance and training time for these two action spaces. While continuous action

space provides a better optimization as there are range of values to pick from and the

agent could select the optimum value pairs to improve performance than compared

to a discrete action space where the agent is forced to pick from a set of allowable

actions. However, the fact that there are range of values in a continuous action space

means that the agent has to train longer, which increases resource utilization.

2.2.2.2 Reward Function

Reward is the central idea in reinforcement learning. RL is guided by reward

hypothesis, which basically states that the goal of the agent is to maximize the ex-

pected reward. But, how do we reward the agent while it is training? The answer is

with the help of a “Reward Function”. Reward function is one of the most important

parts of the AWS DeepRacer platform, which essentially provides the motivation to

the agent to take actions. In the case of the DeepRacer, the reward function is a

python function that takes in a dictionary object of parameters containing present

state information and returns a numerical estimation of reward. Inside the function,

the user can “reward” a certain action or “penilize” it. User has the choice to provide

a fixed reward or a reward that is a function of the parameters. The general outline

of a reward function is shown below.

1 def reward_function(params) :

2 reward = ...

3 return float(reward)

The params dictionary contains key-value pairs of the state measurements

shown in table 2. It is not necessary to use all of these parameters in designing

the reward function. A simple reward function might also lead to a satisfactory per-

formance. However, some or all of the parameters might come in handy when writing

reward functions for complicated tracks that may require the agent to focus on several

13



different parameters simultaneously to complete the race.

Table 2: Key-value pairs in params. [9]

key value detail

all wheels on track Boolean flag to indicate if the agent is on the track
x float agent’s x-coordinate in meters
y float agent’s y-coordinate in meters
closest objects [int, int] zero-based indices of the two closest ob-

jects to the agent’s current position of (x,
y)

closest waypoints [int, int] indices of the two nearest waypoints
distance from center float distance in meters from the track center
is crashed Boolean Boolean flag to indicate whether the agent

has crashed
is left of center Boolean Flag to indicate if the agent is on the left

side to the track center or not
is offtrack Boolean Boolean flag to indicate whether the agent

has gone off track
is reversed Boolean flag to indicate if the agent is driving clock-

wise (True) or counter clockwise (False)
heading float agent’s yaw in degrees
objects distance [float, ] list of the objects’ distances in meters be-

tween 0 and track length in relation to the
starting line

objects heading [float, ] list of the objects’ headings in degrees be-
tween -180 and 180

objects left of center [Boolean,] list of Boolean flags indicating whether ele-
ments’ objects are left of the center (True)
or not (False)

objects location [(float, float),] list of object locations [(x,y), ...]
objects speed [float, ] list of the objects’ speeds in meters per sec-

ond
progress float percentage of track completed
speed float agent’s speed in meters per second (m/s)
steering angle float agent’s steering angle in degrees
steps int number steps completed
track length float track length in meters
track width float width of the track
waypoints [(float, float), ] list of (x,y) as milestones along the track

center

A simple example of reward function that encourages the agent to closely

14



follow the center line is shown below [9]. This reward function determines how far

away the car is from the center line of the track and assigns higher reward if it is closer

to the center line. This reward function leverages only two parameters – ‘track width’

and ‘distance from center’.

1 def reward_function(params):

2 '''

3 Example of rewarding the agent to follow center line

4 '''

5

6 # Read input parameters

7 track_width = params['track_width ']

8 distance_from_center = params['distance_from_center ']

9

10 # Calculate 3 markers that are increasingly further away from

the center line

11 marker_1 = 0.1 * track_width

12 marker_2 = 0.25 * track_width

13 marker_3 = 0.5 * track_width

14

15 # Give higher reward if the car is closer to center line and

vice versa

16 if distance_from_center <= marker_1:

17 reward = 1

18 elif distance_from_center <= marker_2:

19 reward = 0.5

20 elif distance_from_center <= marker_3:

21 reward = 0.1

22 else:

23 reward = 1e-3 # likely crashed/ close to off track

24

25 return reward

15



2.2.3 Network Architecture

The default algorithm in DeepRacer is Proximal Policy Optimization (PPO)

algorithm. Recently, aws has also added another algorithm called Soft Actor Critic

(SAC) algorithm. PPO and SAC are similar in the sense that they both learn a

policy and value function at the same time [9]. However, their strategies vary. For

this project, only PPO was used as SAC is a very recent addition to the platform.

PPO uses two neural networks namely a policy network and a value network.

The policy network, also known as the actor network decides which action to take

based on the input (camera image and LiDAR input) [10]. The value network, also

known as the critic network estimates the cumulative reward based on the inputs [10].

Out of the two networks, the policy network interacts with the simulator and gets

deployed to the car. Figure 10 shows the architecture of the network.

Figure 10: Network Architecture. [10]

2.2.3.1 Hyperparameters of PPO

Hyperparameters are the variables that affect the training process and are not

an intrinsic property of the model. Choosing optimal hyperparameters, unfortunately,

is an empirical process. There are no formulation to find the best set of hyperpa-
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rameters and requires systematic experimentation to derive. Before discussing about

the hyperparameters of the DeepRacer model, it is necessary to understand a few

terminologies. We have discussed experience, experience buffer and episode before.

The other two terms are batch and training data. A batch is an ordered list of ex-

periences, representing a portion of simulation over a period of time, and is used to

update the policy network weights [9]. A training data is a set of random batches

from an experience buffer which is also used for training the policy network weights

[9].

The hyperparameters of the PPO, along with their descriptions are listed in

table 3.
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Table 3: Hyperparameters of PPO. [9]

Hyperparameters Description

Gradient descent batch size The number recent vehicle experiences
sampled at random from an experience
buffer and used for updating the un-
derlying deep-learning neural network
weights

Number of epochs The number of passes through the train-
ing data to update the neural network
weights during gradient descent

Learning rate The learning rate controls how much a
gradient-descent (or ascent) update con-
tributes to the network weights

Entropy A degree of uncertainty used to deter-
mine when to add randomness to the
policy distribution. The added uncer-
tainty helps the AWS DeepRacer vehicle
explore the action space more broadly

Discount factor A factor specifies how much of the fu-
ture rewards contribute to the expected
reward. The larger the Discount factor
value is, the farther out contributions
the vehicle considers to make a move and
the slower the training

Loss type Type of the objective function used to
update the network weights Valid val-
ues: Huber loss, Mean Squared er-
ror loss

Number of experience episodes between
each policy-updating iteration

The size of the experience buffer used to
draw training data from for learning pol-
icy network weights. Valid values: Inte-
ger between 5 and 100.

2.2.4 Local Training

Using AWS services online can be a costly option as training reinforcement

learning models is a computationally expensive process requiring GPUs. Fortunately,

due to huge community involvement and collaboration between the developers, several

local training environments are available. However, due to compatibility issues and
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lack of powerful GPUs, local training was not feasible for this project. The setup

that was intended to use allowed user to train DeepRacer without the use of the

DeepRacer console, SageMaker, or RoboMaker services [11]. All of the services could

be installed locally in the system and the model could be trained completely offline.

A good future project would be to utilize these resources to setup local training as it

provides significantly higher freedom and is cheaper.

2.2.5 Training in SageMaker Notebooks

The training method discussed earlier included the DeepRacer console, which

provides an integrated experience to train and evaluate DeepRacer models. The con-

sole uses SageMaker and RoboMaker behind the scenes to allow the user to train and

evaluate the models seamlessly [9]. The SageMaker notebook provides a “jailbreak”

experience of AWS DeepRacer by giving us more control over the training/simulation

process and RL algorithm tuning. Figure 9 in an earlier section shows an example of

distributed RL training across SageMaker and two RoboMaker simulation environ-

ments that perform rollouts – execute a fixed number of episodes using the current

model or policy. The rollouts collect agent experiences (state-transition tuples) and

share this data with SageMaker for training. SageMaker updates the model pol-

icy which is then used to execute the next sequence of rollouts. This training loop

continues until the model converges [9].
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3 Development

The initial step in this project was to come up with an effective reward func-

tion. At first, the default reward function was used to train the network. The

hyperparameters were also set to default values. The training time was set to one

hour. After training, the model was also evaluated in the same track for three trials.

The total reward per each episode and percent completion is shown in figure 11.

Figure 11: Training Metrics.

Evaluation metrics are shown in figure 12. The evaluation trials were not able

to fully complete the track. The second trial was able to complete 94% of the track
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before getting off track. The probable reason behind the failure was less training

time.

Figure 12: Evaluation Metrics.

3.1 Optimum Race Line

In order to optimize the reward function so as to enable the agent to finish the

race faster. The algorithm was introduced in the PhD thesis of Remi Coulom [12].

The idea is to calculate the optimum race line path for a given track and encourage

the agent to follow that path. A race track is defined using three sets of co-ordinates –

outer and inner boundaries along with the mid-point. Using the algorithm mentioned

in [12], optimum race line for any track represented using the three coordinate sets,

[13] developed a python function to generate the race track with the “optimum” path.

An example of this method in use is shown in figure 13.

In the K1999 algorithm, ci of the track is the curvature at each point ~x i and is

computed as the inverse of the circumscribed circle for points ~x i−1, ~x i and ~x i+1 [12].

The curvature is positive for curves to the left and negative for curves to the right.

The points are initially set at the center of the track.
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Algorithm 2: K1999 PATH OPTIMIZATION ALGORITHM. [12]

for i = 1 to n do
c1 ← ci−1
c2 ← ci+1

set ~x i at equal distance to ~x i−1 so that ci = 1
2
(c1 + c2)

if ~x i is out of the track then
Move ~x i back onto the track

(a) Original Race Track (b) Calculated Race Line

Figure 13: Reinvent-base Race Track. [13]

The model was trained using the reward function provided in [13] that im-

plemented the K1999 Race-Line Optimization algorithm. The reward accumulated

during training is shown in figure 14.

Figure 14: Reward with K1999 Implementation.

Though the rewards in figure 14 seem good, it is not in the best interest for

the purpose of this work. Training with this reward function has a high chance of
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over-fitting to a track. Implementing the optimum race-line track allows the model to

perform best only on the track it was trained on. Since the end goal of this thesis is

to run the DeepRacer car on a physical track, it is necessary that the model is able to

tackle unknown track. The track designed for testing the car might not resemble the

tracks that the model is trained on. Hence, it is necessary that we create a “universal”

model.

3.2 Universal Model

Training DeepRacer models for one track provides a satisfactory result for

that particular track and is not really a robust model that can be used across all

the available tracks in the DeepRacer. Inspired from [14], a more generalized reward

function was used to train a model on multiple tracks by cloning a model after each

training session. The reward function that was used for this purpose adapted from

[14] is shown below. The hyperparameters for the universal model training is shown

in figure 15.

1 def reward_function(params):

2 reward = 0.001

3 if params["all_wheels_on_track"]:

4 reward += 1

5 if abs(params["steering_angle"]) < 5:

6 reward += 1

7 reward += ( params["speed"] / 8 )

8

9 return float(reward)
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Figure 15: Hyperparameters for the Universal Model.

At first the model was trained on the oval track for an hour. The reward graph

is shown in figure 16 and the Oval track is shown in figure 17. The training time was

set to one hour because the model would be cloned to train it on another track. By

cloning, the current network weights would stay the same so that the “knowledge”

from training in this track would carry over to the next. It can also be seen from

the reward graph that the model was not able to complete the track during training.

The best model is also shown in the graph based on the completion of the track.
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Figure 16: Reward Graph for Oval Track.

Figure 17: Oval Track.

The model was cloned to train on the Reinvent-base track. Since it is a cloned

model, the reward function and the hyperparameters were the same. Figures 18 and

19 are the reward graph and the track layout respectively. Both the reward and track

completion showed significant improvement in this training session.
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Figure 18: Reward Graph for Reinvent-base Track.

Figure 19: Reinvent-base Track.

This model was cloned to further train on a rather difficult track – Bowtie

track. The track is shown in figure 20. This track turned out to be a challenging

one due to the bow shape. The agent was not able to comprehend the curve in the

middle as it could “see” the track on the other side of the curve and wanted to take

a “shortcut” every time it encountered those curves. As a result the completion rate
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fell down in this training session, which can be seen in the reward graph in figure

21. The reward was also impacted possibly due to the same reason. Since the model

performance was good on the reinvent track, it was further trained to get even better

results.

Figure 20: Bowtie Track.

Figure 21: Reward Graph for Bowtie Track.
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4 Conclusion

AWS DeepRacer is a good platform to understand reinforcement learning and

see it in action. It provides easy-to-understand instructions for beginners to get into

RL as well as allows an “advanced” user to access the backdoor. Different reward

functions along with the state of the art optimization algorithms were used to train

the models with the aim to run the physical car autonomously. However, building

the track required high precision and meticulousness as the training method employed

could produce satisfactory result only when the track resembled the training track.

AWS has provided a step-by-step guide to building tracks with the purchase of their

track bundle. Using the model trained in this project, the car was able to navigate

around an empty room with race track like boundaries. With appropriate track

building tools, the car would be able to successfully navigate the race-track it was

trained on just like during the simulated evaluation.
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5 Future Work

This project was rather comprehensive which meant dealing with every vari-

able in the DeepRacer model training. A good approach for future work would be

to keep everything constant except for one variable, such as the effect of varying re-

ward scaling, effect of different hyperparameters. Topics like these provide a deeper

understanding of the material and the results would be highly interpretable.

Another aspect that hampered the flow of this project was lack of resources

for training. The AWS DeepRacer service, though convenient, is a costly option to

train and evaluate the model. Reinforcement learning method is a training intensive

process, that is, the more it gets to interact with the environment the more it learns.

Despite several attempts to setup local training, due to lack of GPU and CPU re-

sources and other compatibility issues, local training could not be set up successfully.

For future purposes it would be wise to setup the training platform on a powerful

Ubuntu machine so as to eliminate any compatibility issues. Developers around the

world have gotten together to create a local environment that seamlessly connects the

AWS servers to allow model submission for both verification and competition. The

models developed during this project helped to understand the concept of reinforce-

ment learning. With appropriate resources and adequate hours of training, models

could be submitted in the future to participate in both virtual and physical races.
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