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ABSTRACT 

The Mississippi Alluvial Plain (MAP) is a premier region for irrigated agriculture in the 

United States, producing approximately 9 billion dollars in annual revenues. The region receives 

around 138 cm of precipitation annually; however, irrigation is necessary to maximize crop 

yields as most of the precipitation does not occur during the growing season. There are 8 million 

irrigated acres within the Mississippi Alluvial Plain. The source of most of the irrigated water is 

the surficial aquifer in the Mississippi Embayment, the Mississippi River Valley Alluvial 

Aquifer (MRVAA), and due to the reliance on irrigation for maximum crop yields, recent 

potentiometric surface maps of the MRVAA show 1-1.5 ft/yr declines in groundwater levels. 

The US Geological Survey and US Department of Agriculture have produced models of the 

MRVAA to address groundwater sustainability issues. A large source of uncertainty within the 

Mississippi Embayment Regional Aquifer System (MERAS) and MAP project models is the 

contribution to groundwater from surface streams. Geophysical data estimating streambed 

sediment texture has been collected on numerous reaches within the MAP, but physical 

measurements are still desirable to constrain modeling efforts. Seepage meters are a potential 

tool for physical measurements of streambed seepage. Like all instruments, seepage meters must 

be calibrated to validate field measurements. Due to space limitations within the USDA National 

Sedimentation Laboratory, a tank with sufficient surface area to test a full-scale seepage meter 

was not feasible. Therefore, a scale-model seepage meter and seepage flux tank were 

constructed. Any consistent bias, if present, in measured seepage rates through the seepage flux 

tank could be accounted for by applying a correction coefficient. From the seepage flux tank 
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data, a 95% confidence interval was calculated for the linear regression trendline through the 

data. The 1:1 line lies within the 95% confidence interval, indicating there is no need for a 

correction factor and any bias in measurements is due to installation of the instrument and not to 

system configuration. A field demonstration of the seepage meter was conducted within 

Goodwin Creek in Panola County, Mississippi yielding results consistent with estimates of 

seepage calculated using creek parameters and measured discharges. 
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CHAPTER I 

INTRODUCTION 

Understanding the interactions between groundwater and surface water is critical for 

modeling water resources and managing sustainable use (Sophocleous, 2002). Rivers and 

streams may contribute water to aquifers or receive water from aquifers (Doppler et al., 2007). 

The rate at which water is contributed (infiltration/seepage rate) or received (exfiltration rate) 

can be substantial and critical to the balance and understanding of the groundwater system.  

The rates and direction of groundwater-surface water interaction depend on 

hydrogeologic parameters such as (1) the distribution and magnitude of the hydraulic 

conductivity of the aquifer and riverbed; (2) the head distribution of the aquifer; (3) the 

relationship between the stream gage and the adjacent water level; and (4) the geometry and 

position of the stream channel within the alluvial plain (Doppler et al., 2007; Sophocleous, 

2002). Head levels within an aquifer can be influenced by human processes such as groundwater 

pumping. When sufficient pumping rates are present, reduced head levels induce seepage from 

surface water into the aquifer (Sophocleous, 2002). Quantifying the rate of recharge, or seepage, 

is essential to the understanding of the direction, magnitude, and timing of exchange between 

aquifers and surface streams. 

The Mississippi River Valley Alluvial Aquifer (MRVAA) is the primary supplier of 

water for irrigation in the Mississippi River Valley Alluvial Plain, locally known as the “Delta”, 

one of the most productive agricultural regions in the U.S. (Alhassan et al., 2019). Previous 

research suggests that recharge into the MRVAA could come from: surface hydrologic features 



2 
 

such as rivers, streams, and lakes that breach the confining silt-clay unit (Bordonne et al., 2009); 

direct infiltration of meteoric water and surface runoff where the aquifer units outcrop at the 

surface; and inflow from the underlying tertiary aquifer (Mason, 2010). In the region of interest, 

the aquifer is mostly unconfined due to long-term water level declines and a fine-textured 

surficial layer that limits recharge by infiltration. The numerous rivers and streams that penetrate 

the MRVAA have become a source of much inflow since the development of the aquifer 

(Ackerman, 1989); however, the connection between the streams and the MRVAA is uncertain 

as no physical measurements have been made. A calibrated seepage meter is a potential method 

to quantify the connection between streams and aquifers within the MRVAA. Physical 

measurements could validate or change the estimates of stream recharge in the region and better 

quantify the connection between streams and the aquifer, thus providing critical data for aquifer 

management and the sustainability of agriculture in the region (Dyer et al., 2015).  

The primary objective of this project is to develop a calibrated seepage meter to measure 

stream-aquifer interaction in the Mississippi Delta. To accomplish this, a seepage flux tank was 

constructed where a range of known seepage fluxes can be generated across the sediment-water 

interface to test the efficiency of a seepage meter in a laboratory. A scale-model seepage meter 

was built for testing within the seepage flux tank and a full-scale seepage meter for field 

measurements. Testing a range of flux rates through the seepage flux tank will determine 

whether a correction factor is necessary for field data. 

This paper proceeds as follows. In the background section, the study area is described, 

previous work in the area is discussed, and the importance of my work is identified. Similar 

research conducted by others is presented along with the theory and design of the seepage meter. 

The details of the construction of the seepage flux tank are provided. I discuss the results from 
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the seepage flux tank, the functionality and usefulness of seepage meters and their various 

components, losses associated with the design of the system, and the error associated with 

seepage meters. Finally, I detail the field demonstration conducted in Goodwin Creek 

Experimental Watershed.  
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CHAPTER II 

BACKGROUND 

The MRVAA is the uppermost aquifer in the Mississippi Embayment Regional Aquifer 

System (MERAS) (Figure 1*), and it ranks as one of the principal shallow aquifers for 

agricultural irrigation in the United States, underlying an 85,000 square kilometer area located 

primarily within Arkansas, Mississippi, Louisiana, and Missouri (Renken, 1998). The MRVAA 

supplies nearly 9,300 million gallons of water per day (MGal/day), making it the second most 

productive shallow aquifer in the U.S. behind the Ogallala Aquifer, which provides 

approximately 17,500 MGal/day (Maupin & Barber, 2005; Barlow & Clark, 2011). Groundwater 

withdrawals have impacted baseflow throughout the region, and twenty-year net change in 

groundwater levels shows 1-1.5 ft/year declines in northwestern Mississippi (Barlow & Clark, 

2011).  

The U.S. Geological Survey (USGS), the U.S. Department of Agriculture (USDA), and 

many other agencies have been modeling the MRVAA to assess the sustainability of water levels 

within the aquifer. Data used for modeling includes topographic data; climate data, such as 

precipitation, runoff, and evapotranspiration; geologic data; hydrogeologic data, such as 

hydraulic conductivities and total groundwater head; recharge rates (infiltration/seepage rates); 

and pumping data, including irrigation. The model is calibrated to fit the available data and can 

be simulated for future scenarios (Clark & Hart, 2009). Stream contributions to recharge were 

identified as a major source of uncertainty in current models as no physical, or direct, 

measurements have been made within the MRVAA. Current iterations of the MERAS model 

*all figures located in Appendix A 
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assign a single coefficient to entire rivers through the region based on literature values from 

other systems (Figure 2) (Clark & Hart, 2009). Riverbed material in Mississippi is often 

heterogeneous, locally varying from coarse sand to clay. Select rivers in the region are believed 

to be strongly connected with the MRVAA, many of which would be desirable targets for direct 

seepage measurements. Direct measurements of seepage would be beneficial to the model, as 

they would allow for the verification of current seepage estimates or justify necessary 

adjustments to the estimates.  

Direct seepage rate measurements can be obtained by seepage meters (Figure 3). Seepage 

meters have been in use since the 1940’s and were originally developed to quantify water losses 

from irrigation canals (Israelson & Reeve, 1944; Warnick, 1951; Robinson & Rohwer, 1952).  

Seepage meters are designed to measure the rate of flow across a sediment-water interface by 

isolating an area of the sediment within a cylinder (Martinez, 2013). The base of the cylinder is 

open to underlying sediment and the top is vented to a collection bag, or bladder. The seepage 

rate is found by measuring the change in the volume of water within the bladder over a known 

time interval.  

Lee (1977) constructed a seepage meter to measure seepage flux in lakes and estuaries. 

The seepage meter was built from an end-section of a 57 cm diameter steel drum. A one-hole 

rubber stopper with a polyethylene tube attached the steel drum to the 0.79 cm ID polyethylene 

tubing, which connects to a 4 L thin-walled collection membrane. Issues with seepage 

measurements were reported when the seepage cylinder was improperly placed with the 

connection hole not at the highest point above the sediment-water interface. Lee (1977) also 

reported erratic results from blowouts caused by inserting the seepage meter too rapidly into the 

sediment. Multiple closely placed seepage meters yielded reproducible results in their research.  
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Landon, Rus, and Harvey (2001) conducted a comparison of instream measurements to 

determine hydraulic conductivity in sandy streambeds. They tested three seepage meters of the 

following materials and diameters: 28 cm schedule 80 PVC sealed with sheet metal on one end, 

an end section of a 61 cm steel drum, and an end from a 91 cm circular livestock watering tank. 

All tests were conducted with gusseted 4.4 L measurement bags connected via 1.1 cm ID 

reinforced plastic tubing and a valve to control the measurement period. Bag shelters were used 

to minimize the effects of stream velocity on the measurement bag. Landon, Rus, and Harvey 

(2001) reported similar seepage rates with all three sizes of seepage meters where duplicate 

measurements were successful. However, they also state that individual seepage meter tests 

coupled with hydraulic gradient measurements were unsuccessful at determining vertical 

hydraulic conductivity about 40% of the time regardless of seepage meter diameter. According to 

their results, 58% of failures were caused by groundwater/surface water gradients measured to be 

opposite the flux direction indicated by the seepage bag, 18% caused by holes in the 

measurement bag, 11% due to bedload deposition on top of the measurement bag, and 10% due 

to holes in other parts and procedural errors.  

Rosenberry (2005) conducted a study to address local-scale heterogeneity in seepage 

measurements by linking multiple seepage meters together with a single measurement bladder. 

Four seepage meters were made using end sections of high-density polyethylene plastic drums 

ported with garden hose fittings. Standard 1.43 cm ID garden hose and Y-connectors were used 

to link the seepage meters. A 4 L thin-walled plastic bag served as the measurement bladder by 

bunching it together at the opening and connecting a garden hose shutoff valve. The focus of the 

study was to assess whether watershed-scale seepage rates could be estimated through ganged 

seepage meters, the spatial scale that most water managers are interested in (Rosenberry, 2005). 
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According to his study, ganged seepage meters have many benefits compared to single seepage 

meters such as: labor costs reduced, time of testing reduced by a factor of two or more, and the 

number of bag measurements reduced by like amounts. Shallow, relatively wave-free sites 

provided an ideal testing environment for the ganged seepage meter concept. Results from 

Rosenberry’s (2005) study indicate that seepage meters can be ganged together to integrate 

seepage heterogeneity and reduce labor costs with little loss of seepage-meter efficiency. Ganged 

systems could experience failure in highly permeable substrate due to frictional losses in the 

garden hose and Y-connectors (Rosenberry, 2005).  
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CHAPTER III 

SEEPAGE METER DESIGN 

The efficiency of a seepage meter design can be tested by utilizing a seepage-flux tank, 

where a range of known seepage fluxes across the sediment-water interface can be generated. By 

placing manometers on the perimeter of the seepage meter, a comparison can be made between 

the head inside and outside the seepage meter. The head loss inside the seepage meter can be 

attributed to frictional losses and inefficiencies of the bladder plumbing. Devices for generating 

controlled rates of seepage have been described in several reports (Lee, 1977; Erickson, 1981; 

McBride, 1987; Shaw & Prepas, 1989; Asbury, 1990; Belanger & Montgomery, 1992, 

Rosenberry & Menheer, 2006). If necessary, a correction factor that compensates for 

measurement inefficiencies can be found using a seepage-flux tank, which converts seepage flux 

measured in the field to true seepage flux.   

The seepage meter was designed and built based on the “half-barrel” seepage meter 

(Figure 4) (Lee, 1977). It was constructed out of one-half of a 115-liter Grainger closed-head, 

steel transport drum. The closed-end of the drum will be vented with two-centimeter latex hose 

via a quick-connect coupler to a two-liter bladder containing a known volume of water. The two-

liter bladder has a shutoff valve to quickly start and stop the flow of water through the seepage 

meter. A scale-model was constructed out of a 15-centimeter steel pipe (Figure 5) for testing and 

calibration. The scale model features the same two-centimeter garden hose and two-liter bladder 

that will be connected to the full-size seepage meter. A parts list for construction of both full-

scale and scale-model seepage meters is presented in Appendix B.  
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CHAPTER IV 

SEEPAGE FLUX TANK DESIGN 

The seepage-flux tank was constructed using a 380-liter polyethylene open-top tank that 

is operable with a lid (Figure 6) or with the top open (Figure 7). The tank features a single PVC 

outlet at its base connected to a high-precision valve to allow for incremental adjustments to the 

tank discharge. An aluminum flange was attached to the top of the tank for testing with head 

elevations higher than the top of the tank. Manometer ports were added to determine the pressure 

gradient within the tank at the following increments measured from the top of the flange: 10 cm, 

50 cm, 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, and 116.5 cm. The lowermost manometer at 116.5 

cm beneath the tank flange is beneath the porous medium. Three additional manometer ports 

were added around the perimeter of the tank at 60 cm, 80 cm, and 100 cm below the flange to 

quantify any spatial variation in pressure. A metal grate was cut and placed at the bottom of the 

tank to provide a uniform, level base for sediment within the tank (Figure 8). Above the metal 

grate, there is one sheet of steel mesh (Figure 9), two sheets of window bug screen (Figure 10), a 

five-centimeter layer of pea-gravel (Figure 11), and a two-centimeter layer of coarse sand 

(Figure 12).These layers were placed at the bottom to keep the testing medium in place and 

prevent it from falling to the bottom of the tank. The tank was then filled with the testing 

medium (Figure 13).  

Outside the tank, 0.5 cm ID clear vinyl tubing connected the manometer ports to the 

manometer board (Figure 14). The tank was filled slowly from the bottom to force out any air 

trapped in the sediment. Each time the sediment was changed, the tank was filled and drained 
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eight times to remove air from pore spaces. The seepage meter was then placed in the 

desired location within the tank penetrating the medium such that the seepage meter flange was 

flush with the medium (Figure 15). The methodology for setup and operation of the seepage flux 

tank can be found in Appendix C.  
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CHAPTER V 

CALCULATION OF SEEPAGE RATES 

Seepage rates were calculated for the seepage flux tank and the seepage meter. To 

calculate seepage through the meter, discharge through the attached bladder is measured five 

times (QB1…QB5) using 

𝑄𝑄𝐵𝐵 =  
𝑀𝑀𝐼𝐼 −𝑀𝑀𝐹𝐹

𝑇𝑇
 

 where MI is the initial weight of the bladder, MF is the final weight of the bladder, and T is the 

amount of time that flow from the bladder occurs. Bladder discharge is then converted to seepage 

through the meter (SSM) using  

𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑄𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴𝑆𝑆𝑆𝑆

 

where QBmean is the mean of QB1…QB5 and ASM is the cross-sectional area of the seepage meter.  

Tank discharge is found mechanically using a graduated cylinder to catch a sample 

volume from the tank outflow over a known amount of time. A minimum of five sample 

volumes were taken to minimize the associated error. Tank discharge (QT) is calculated using  

Q𝑇𝑇 =  
𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑇𝑇  

where Vmean is the mean volume of water captured in the graduated cylinder and T is the amount 

of time used for sample collection. Tank discharge is then converted to tank seepage (ST) using  
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𝑆𝑆𝑇𝑇 =  
(𝑄𝑄𝑇𝑇 − 𝑄𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)

𝐴𝐴𝐸𝐸𝐹𝐹𝐹𝐹
 

where QOUT is tank discharge, QBmean is mean bladder discharge when the seepage meter is 

actively measuring, and AEFF is the effective seepage area within the tank.  
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CHAPTER VI 

METHODS 

The efficiency of the scale-model seepage meter was tested using tank flux rates ranging 

from 60-2300 L/hr/m2, heads above the sediment-water interface of 0.53-2.1 meters, and through 

two different porous media M1 (300 µm sand) and M2 (100 µm sand). The seepage meter was 

tested in two different positions for each testing medium. Tests were run with the lid for M1 and 

without the lid for M2. 

M1 tests were conducted with the machined aluminum lid attached allowing the head to 

be varied along with the discharge rate from the seepage flux tank. With the lid attached, the 

head elevation can be varied from a maximum of 2.1 m above the sediment-water interface to a 

minimum of 1.62 m above the sediment water interface. Higher and lower head elevations can be 

achieved with longer hoses connecting the constant head reservoir to the tank. M1 tests were 

conducted at head elevations of 2.1 m, 1.84 m, and 1.62 m above the sediment-water interface. 

Tank seepage rates ranged from 640 to 2300 L/hr/m2. Twenty-six measurements were taken with 

the seepage meter in position 1 and twelve in position 2 (Figure 16). Time of testing with the 

bladder attached to the seepage meter ranged from 1.5 to 3 minutes due to the high discharge rate 

through the coarse sand medium.  

M2 tests were performed with the lid removed from the seepage flux tank, fixing the head 

elevation at 0.5 m above the sediment-water interface. Lower head elevations are attainable by 

adding an outflow valve at a lower point on the tank. Higher elevations cannot be accomplished 

without major modifications to the seepage flux tank. Five measurements were taken in position 
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1 and six in position 3 (Figure 16). Due to the low discharge rate through the finer sand 

medium, time of testing bladder discharge through the seepage meter was increased to 20 

minutes.   

Losses within the seepage flux tank system were considered using the Darcy-Weisbach 

equation for head loss due to friction through a known length of pipe. Local losses were 

determined by subtracting the head loss due to friction through the pipe from the difference in 

head inside and outside the seepage meter. Formulas used for head loss calculations can be seen 

in Appendix D.  
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CHAPTER VII 

SEEPAGE FLUX TANK RESULTS 

Data from the seepage flux tank indicates a net 0.6% overestimation of true seepage with 

the seepage meter but varies with positioning of the seepage meter within the seepage flux tank 

and with the testing medium. Each of the four datasets were fit with a linear trendline with a 

fixed intercept. M1 center shows a 6% overestimation of seepage (Figure 17), whereas M1 off-

center shows a 24% underestimation of true seepage (Figure 18). With the lid removed, the 

seepage meter overestimates seepage through M2 by 8% in the center (Figure 19) and 0.8% off-

center (Figure 20). A linear trendline fit to all data yields a 0.6% underestimation of true seepage 

through the seepage meter, which is essentially 1:1 (Figure 21). A 95% confidence interval was 

calculated on the slope of the regression line through all data which reflects the 95% confidence 

interval for the slope of the regression, not for individual points (Figure 22). Standard error of 

individual predictions can be seen in Figure 23.  

Evaluation of head losses within the system showed a difference in head inside and 

outside the seepage meter ranging from 0.3 – 2.2 cm with the lid attached and 1.2 – 3.9 cm with 

the lid removed. The average differences were 0.3 cm and 2.1 cm, respectively. The Darcy-

Weisbach head loss calculation yielded average losses of 0.1 cm with the lid and 0.01 cm 

without. Average local losses with and without the lid were 0.8 cm and 1.7 cm, respectively.  
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CHAPTER VIII 

DISCUSSION 

While testing with the lid attached to the tank, and the constant head elevation above the 

height of the flange, seepage through the meter was inconsistent when compared to tank seepage, 

which is suspected to be air trapped within the tank underneath the lid. Although the medium 

was filled from the bottom and drained numerous times to purge air from the medium, the 

inconsistent data indicates that air is still present within the seepage flux tank. The air release 

valve shown in Figure 6 was intended to purge all air from the tank when pressurized; however, 

air could remain pressed against the machined aluminum plate and influence flow within the 

tank. Air bubbles present in the lines connecting the reservoirs to the tank can be seen through 

the clear hoses but are not detectable if present in the 2 cm hose from the seepage meter to the 

bladder. Due to the consistency of the data with the tank lid removed vs data with the tank lid 

attached, air bubbles remaining inside the tank even after purging the lines and the air release 

valve, which may explain the inconsistent seepage rates seen in the data from M1. To test the 

hypothesis of air within the tank, the lid was removed and the constant head level was 

maintained within the seepage flux tank. To eliminate air from the tank entirely would require 

pressurization of the tank with CO2 and subsequent injection of water into the pressurized tank. 

This is beyond the scope of the current project but planned for future work.   

In conjunction with the suspected air uncertainty, the inflow through the hose attached to 

the tank lid is influencing flow across the sediment-water interface. Inflow occurs through a 7.0 

cm vinyl hose oriented perpendicular to the sediment surface. Flow into the tank from the hose 
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leaves a scour hole on the sediment surface on the inlet side of the tank. Due to the scour 

holes, flow to and through the sediment-water interface is influenced by pressure variations 

above the sediment surface. Relocation of the inflow pipe to the side of the seepage flux tank 

would likely minimize the vertical pressure variations and yield more consistent flow through the 

seepage meter. Also, smaller inflow rates would stabilize the flow above the sediment-water 

surface and reduce the range of seepage rates measured through the seepage meter.  

Tests conducted inside the tank for calibration purposes assume uniform distribution of 

flow across the sediment water interface; however, seepage heterogeneity was also shown to 

exist within the seepage flux tank. Differences in seepage rates through the meter compared to 

seepage through the tank occurred each time the seepage meter was moved to a different 

position, indicating that spatial heterogeneity of seepage exists even in a homogeneously 

distributed sand. Shaw and Prepas (1990) indicated that seepage varied by a factor of two or 

more between two seepage meters spaced only 1.0 m apart. Rosenberry and Menheer (2006) 

reported similar spatial heterogeneity through a comparable flow system and suggested that 

several seepage meters or larger diameter seepage meters should be used to average out the 

effects of heterogeneity during calibration testing.  

Although there is a relatively high amount of spread in the data from the seepage flux 

tank, the linear regression trendline is essentially 1:1. With the 1:1 line lying within the 95% 

confidence interval for the slope of the regression, no correction factor is needed for the seepage 

meter as it is currently configured. If there is a bias in data from the seepage meter, it is due to 

the installation of the device and not to the configuration of the system.  

Calculations of head losses within the seepage flux tank system revealed average local 

losses of 0.8 cm with the lid and 1.7 cm without the lid. Per the Darcy-Weisbach equation, 
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higher velocities within the pipe led to higher head losses due to friction. Efforts were made to 

minimize frictional losses by increasing the diameter of the pipe from 0.6 cm to 2.0 cm during 

initial testing of the seepage flux tank system before the collection of data. Frictional losses 

through the initial tubing were such that there was no measurable seepage through the seepage 

flux tank. With the lid removed and finer medium in the tank, head readings inside the seepage 

meter were consistently 0 – 0.1 cm higher than the head outside the seepage meter.  

When considering data from the full-scale seepage meter in the field, it is important to 

consider the effects of the seepage meter on parameters within the stream. The seepage cylinder 

is affected by local changes in streamflow velocity and pressure due to the diversion of water 

above and around the seepage cylinder (Rosenberry, 2008). The resulting pressure distribution in 

the immediate vicinity of the cylinder is complex and temporally variable and can generate 

hyporheic exchange whose flowpath length is dependent upon streamflow velocity (Cardenas & 

Wilson, 2007a,b). The integrated pressure-head difference, the resistance to flow presented by 

stream sediments, and the depth of insertion of the seepage cylinder, determine the rate of 

streamflow-induced seepage (Rosenberry, 2008). Therefore, streams with low streamflow 

velocities coupled with a low-profile seepage meter would minimize the local effects of velocity 

on seepage measurements.   

Likewise, the effects of water velocity on the collection bladder must be considered when 

testing a seepage meter. Effects of bladder-related velocity effects can be negated by utilizing a 

submerged shelter (Libelo & MacIntyre, 1994; Landon et al., 2001; Murdoch & Kelly, 2003; 

Schneider et al., 2005). Although the effects of water velocity can be counteracted with a 

submerged shelter for the bladder, river depth acts as a limiting factor for seepage meter site 

selection as the shelter and bladder need to be attached to or near the seepage cylinder so the 
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hydraulic heads are the same. If the assumption of equal hydraulic head is not valid, bias is 

introduced to seepage meter measurements. Rosenberry (2005) found that hose lengths of 10-15 

m connecting the bladder to seepage meters does not result in appreciable head loss unless 

seepage velocity is very fast.  
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CHAPTER IX 

FIELD DEMONSTRATION 

A field demonstration of the full-scale seepage meter was conducted within the Goodwin 

Creek Experimental Watershed (GCEW) in Panola County, Mississippi (Kuhnle et al., 2008). 

The GCEW lies in the bluff hills physiographic subprovince just east of the Mississippi River 

alluvial valley in a region with erodible soils, high rainfall (1358 mm/year), and relatively steep 

slopes in the main channel. Designated as one of twelve benchmark watersheds of the 

Conservation Effects Assessment Project in 2005, the major focus of research on the watershed 

is the effect of conservation practices on watershed sediment load. Kuhnle et al. (2008) states 

that channels in GCEW are deeply incised and generally oversized for their drainage area. These 

channels contain 14 supercritical flow structures designed and installed by the Vicksburg District 

of the US Army Corps of Engineers to stabilize the bed elevation of the channels and serve as 

monitoring sites for stage, discharge, and sediment yield (Figure 24). Streambed material in 

GCEW is primarily medium sand to gravel but often overlies clay and ironstone. At a depth 

approximately 0.3 m beneath the streambed exists a relatively uniform clay layer that acts as a 

confining layer. A hand auger was used to find testing locations within the creek where the clay 

layer was absent.  

Field data was collected from three sites along the main channel within GCEW. Field 

tests were conducted over three days, May 1, 2019 and June 4-5, 2019. Station 01 data from May 

1 indicated an inflow from groundwater to the channel at rates of 1.7, 2.1, and 2.45 L/hr/m2. 

Testing at nearly the same location upstream from Station 01 on June 4 showed gaining 
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conditions of 3.87 and 3.26 L/hr/m2. Data from stations 2 and 3 show inflows of 0.35, 0.61 and 

1.12, 1.48 L/hr/m2, respectively. Insufficient water depths prohibit testing of the seepage meter 

upstream of Station 3. Methods for operation of the seepage meter can be found in Appendix E.  

Seepage rates from each site were averaged and a single value was used for each station 

(Table 1). Data from Station 2 does not fit within the range expected between Stations 1 and 3, 

which is believed to be due to subsurface complications at the testing site. Station 2 has a high 

presence of ironstone and the confining clay unit is more continuous. Assuming linear seepage 

across the reach between Stations 1 and 3, the average seepage rate, the average cross-sectional 

area of the creek, and the length of creek between Stations 1 and 3 can be used to find the 

contribution from seepage between the two stations. The contribution from seepage between 

Stations 1 and 3 was found to be 0.022 m3/sec whereas the difference in discharge between the 

two stations at the time of measurements was 0.023 m3/sec (Appendix F).  

 

Location Measured 

Seepage 

Flux Rate 

(L/hr/m^2) 

Water 

Depth 

(cm) 

Seepage 

meter seating 

depth 

(cm) 

Discharge 

measured at 

Station 

(m^3/sec) 

Station 1 3.57 88 18 0.060 

Station 2 0.48 54 23 0.045 

Station 3 1.30 66 20 0.037 

Table 1.  Measured seepage flux rates from Goodwin Creek 
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CHAPTER X 

CONCLUSION 

Direct measurements of seepage have proven to be reliable and are very cost-effective 

compared to other streambed data collection methods. Inefficiencies in seepage meter designs 

can be accounted for by applying correction factors, when necessary, to account for losses 

associated with routing water through valves and tubing. A seepage flux tank was designed and 

constructed that permits the measurement of seepage through a tank and through a seepage meter 

that covers a small area within the tank. By doing this it was determined that the current 

configuration of the seepage meter needs no correction factor, and field measurements are 

accurate to an acceptable degree. Testing with the lid attached to the seepage flux tank yielded a 

larger range of seepage rates than testing with the lid removed. However, a linear regression 

trendline through all data was still nearly 1:1. 95% confidence intervals were calculated from the 

linear regression through the data showing the 1:1 line within the determined interval, meaning 

any bias in field data is due to installation of the seepage meter and not to the configuration of 

the system. Field data collected in Goodwin Creek Experimental Watershed all produced gaining 

conditions; therefore, no field data is available for losing conditions like those recorded using the 

seepage flux tank. However, seepage meter measurements closely resembled calculated 

estimates of seepage using the reach and cross-sectional area of the creek and the measured 

discharge of the creek. Seepage meters, when placed in the proper environments, yield reliable 

and consistent streambed data. Future work will include deployment of the seepage meter in 

rivers in the Mississippi Alluvial Plain.  
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Figures 

 

Figure 1. Mississippi Embayment Regional Aquifer System (Clark et al. 2011). 
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Figure 2. Streams simulated in MERAS model showing single values representing entire reaches 
of streams (Clark & Hart, 2009). 
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Figure 3. Half-barrel seepage meter installed in Goodwin Creek, Batesville, MS.  
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Figure 4. Schematic of full-scale seepage meter. 
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Figure 5. Schematic of scale-model seepage meter. 



34 
 

 

Figure 6. Schematic of seepage flux tank with lid on. 
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Figure 7. Schematic of Seepage Flux tank with lid off. 
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Figure 8. Metal grate placed at the base of the seepage flux tank. 

 

Figure 9. Steel mesh to prevent passing of coarse sediment. 
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Figure 10. Two layers of bug screen to prevent passing of fine sediment. 

 

Figure 11. Pea-gravel placed to stop passing of coarse sand. 

 



38 
 

 

Figure 12. Coarse sand to prevent passing of fine sediment. 
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Figure 13. Tank filled with testing medium. 
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Figure 14. Manometer board attached to seepage flux tank. 
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Figure 15. Scale model seepage meter placed in seepage flux tank. 
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Figure 16. Seepage meter testing locations within the seepage flux tank. 

 

Figure 17. Tank Seepage vs Meter Seepage for M1 center. 
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Figure 18. Tank Seepage vs Meter Seepage for M1 off-center. 

 
Figure 19. Tank Seepage vs Meter Seepage for M2 center. 
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Figure 20. Tank Seepage vs Meter Seepage for M2 off-center. 

 

Figure 21. Tank Seepage vs Meter Seepage for All Data. 
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Figure 22. 95% Confidence Interval for the Linear Regression of M2 data forecasted over all 
data. 

 

Figure 23. Standard Error of Individual Seepage Measurements. 
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Figure 24. Map of GCEW with elevation contours, station numbers, and rain gauge locations 
(Kuhnle et al., 2008). 
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APPENDIX B 

Parts List for Seepage Meters 
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Parts List for Seepage Meters 

Full Scale Seepage Meter 

1. Grainger 30-gallon steel closed head transport drum 

2. Garden hose to National Pipe Thread adapter 

3. Garden hose quick connect kit 

4. Platypus 2-Liter bladder 

5. Brass gooseneck with shutoff valve 

Scale-Model Seepage Meter 

1. 6-inch thin-walled steel pipe 

2. ½-inch sheet of PVC cut to 6-inch circle to cap one end of the steel pipe 

3. Garden hose to National Pipe Thread adapter 

4. Platypus 2-Liter bladder 

5. Brass gooseneck with shutoff valve 
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APPENDIX C 

Setup of the Seepage Flux Tank 

Determining Seepage through the Meter (SSM) 

Determining Tank Seepage (ST) 
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Setup of Seepage Flux Tank 

1. Set the constant head level at the desired location above the tank flange, verify that all 

manometers are reading the same head in the tank.  

2. Open the valve at the base of the seepage flux tank until you reach the desired head 

gradient and/or tank discharge.  

3. Allow water to flow through the tank for at least 30 minutes prior to testing to allow 

manometer readings to stabilize.  

Determining Seepage through the Meter (SSM) 

1. Fill the two-liter bladder to or near the two-liter mark and seal it ensuring that no air is 

present inside. Weigh the bladder and record the initial weight (MI).  

2. Insert the bladder into the reservoir opposite the constant head tank with the nozzle 

inverted and attach the bladder to the hose. 

3. Simultaneously open the valve on the bladder and start a timer.  

4. Allow flow through the bladder for 3-20 minutes, depending on the seepage tank 

discharge, the constant head elevation, and the testing medium.   

5. Close the valve on the bladder and stop the timer.  

6. Record the amount of time that flow was occurring from the bladder (T). 

7. Weigh the bladder and record the final weight (MF).  

8. Repeat at least five times. 

9. Calculate bladder discharge (QB1…QB5) using  

𝑄𝑄𝐵𝐵 =  
𝑀𝑀𝐼𝐼 −𝑀𝑀𝐹𝐹

𝑇𝑇
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where MI is the initial weight of the bladder, MF is the final weight of the bladder, and T 

is the time of testing.  

10. Calculate the mean bladder discharge (QBmean) from QB1…QB5.  

11. Convert QBmean to meter seepage rate (SSM) using  

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑄𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴𝑆𝑆𝑆𝑆

  

where QBmean is the mean bladder discharge and ASM is the cross-sectional area of the 

seepage meter.  

 

Determining Tank Seepage (ST) 

1. Using a graduated cylinder, catch a sample volume from the tank’s drain for a known 

amount of time. Record each sample volume.  

2. Repeat at least five times to minimize the error associated with the tank outflow rate.  

3. Calculate tank discharge (QT) using 

Q𝑇𝑇 =  
𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑇𝑇 

 

where Vmean is the mean volume of water captured in the graduated cylinder and T 

is the amount time the sample was collected.  

4. Convert tank discharge (QT) to tank seepage (ST) using 

𝑆𝑆𝑇𝑇 =  (𝑄𝑄𝑇𝑇−𝑄𝑄𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸

  

where QT is tank discharge, QBmean is mean bladder discharge, and AEFF is the 

effective seepage area within the tank. 
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APPENDIX D 

Calculation of Losses within the Seepage Flux Tank 
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Calculation of Losses within the Seepage Flux Tank 

1. Determine difference in head inside the seepage meter using  

𝑑𝑑ℎ = ℎ𝑂𝑂 − ℎ𝐼𝐼 

where hO and hI are the heads outside and inside the seepage meter, respectively.  

2. Determine the head loss due to friction in the pipe (hL) using the Darcy-Weisbach 

equation using  

ℎ𝐿𝐿 =  𝑓𝑓𝐷𝐷
𝐿𝐿
𝐷𝐷
𝑉𝑉2

2𝑔𝑔
 

where fD is the Darcy friction factor, L is the length of pipe in meters, D is the hydraulic 

diameter in meters, V is the fluid flow velocity through the pipe, and g is acceleration due 

to gravity.  

3. Calculate local losses (LL) using  

𝐿𝐿𝐿𝐿 =  𝑑𝑑ℎ −  ℎ𝐿𝐿 

where dh is the difference in head inside and outside the seepage meter and hL is the head 

loss due to friction in the pipe from the Darcy-Weisbach equation.  
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APPENDIX E 

Operation of Seepage Meter 
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Operation of Seepage Meter 

1. Fill the two-liter bladder approximately half-way with water and record the initial weight 

(MI).  

2. Seat the seepage meter in the desired location in the bed of a wadable stream.  

3. Insert the bladder into the stream with the nozzle inverted and attach the bladder to the 

seepage meter.  

4. Simultaneously open the valve on the bladder and start a timer.  

5. Allow flow through the bladder for 30 to 60 minutes.   

6. Close the valve on the bladder and stop the timer.  

7. Record the amount of time that flow was occurring from the bladder (T). 

8. Weigh the bladder and record the final weight (MF).  

9. Calculate the seepage flux rate using 

𝑄𝑄 =  (𝑆𝑆𝐼𝐼−𝑆𝑆𝐸𝐸)
𝑇𝑇∗𝐴𝐴

 [ 𝐿𝐿
ℎ𝑟𝑟∗𝐵𝐵2]  

where MI is the initial weight of the bladder, MF is the final weight of the bladder, T is 

the time that flow occurs to/from the bladder, and A is the cross-sectional area of the 

seepage meter. 

10. Apply the correction factor from the laboratory experiments to the seepage flux rate 

measured in the field.  
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APPENDIX F 

Comparison of Field Seepage Measurements to Seepage Estimates 
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Comparison of Field Seepage Measurements to Seepage Estimates 

 

Average seepage between Stations 1 and 3 = 2.435 L/hr/m2 

Length of reach between Stations 1 and 3 = 5,400 m 

Average width of the channel = 6 m 

Seepage contribution between Stations 1 and 3 = 78,894 L/hr or 0.022 m3/sec 

Difference in discharge between Stations 1 and 3 = 0.023 m3/sec 
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