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Abstract

Wind causes local pressure fluctuations over the ground. The pressure waves couples with the

ground and transmits into the ground as seismic waves. The seismic wave, in turn, causes

ground motion. Naderyan et al. [9] developed a prediction of the ground displacements

spectra from the measured ground properties and predicted pressure and shear stress at the

ground surface. Naderyan modeled the ground as a linearly elastic half space bounded by an

infinite plane on one side. The quasi-static model for predicting displacement components

in the ground is effective for the vertical component of the displacement response, but the

model significantly underpredicted the horizontal component. In this paper, the displacement

response of a half space bounded by a low shear strength surface layer and a high compression

speed layer at 0.5 m depth is investigated. The addition of a water-saturated layer as the

bottom half space showed an improved prediction in the horizontal displacement of the

ground.. The inhomogeneity of the ground was modeled by subdividing the intermediate

layer between the low shear velocity layer and a water table to ten discrete layers with

randomly varying parameters. Introducing inhomogeneity in the ground model did not

improve the prediction for the displacement response of the ground.
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1 Introduction

Seismologists rely on measuring seismic waves for locating earthquakes, for fossil fuel explo-

ration, for monitoring volcanic activities and to study the earth’s structure. Wind causes

velocity changes over the ground which result in pressure fluctuations on the surface which in

turn induce seismic motion in the ground. The localized pressure fluctuation perturbations

on the ground surface are a source of seismic motion. This phenomenon poses a difficulty

with infrasonic measurements and affects the measurement recorded by a sensor deployed at

or near the surface of the earth.

The quasi-static model adopted by Naderyan et al. [9] does not correctly predict the

vertical to horizontal displacement ratio of the ground as depth varies. This paper aims

to include the theory behind the coupling of slow moving plane pressure fluctuations into

vertical and horizontal ground displacement motion in a homogeneous elastic half space

as presented by Sorrells [13]. Furthermore, the acoustic-seismic coupling theory is used to

obtain the displacement response of an elastic half-space and a multi-layered inhomogeneous

elastic media. The multi-layer media consists of ten separate layers, with stochastic layer

parameters, sandwiched between a soft shear layer near the surface and a water table as the

lower half space. This paper also investigates the effectiveness of acoustic-seismic coupling

theory in predicting the displacements as a function of depth in an inhomogeneous ground.

Section 2 includes the necessary theory behind acoustic to seismic coupling using Sor-

rells[13] wave model and also discusses the improved version of the transfer matrix method,

by Lévesque and Piché [6], used to propagate shear stress and displacements across multilay-

ered media. Section 3 investigates the displacement response of an elastic half space, similar

to Naderyan et al. [9] model, and discusses the limitation of quasi-static model on predicting

ground response. Section 4 studies the predicted displacement components for a multilayer

inhomogeneous ground conditions. Section 5 presents the conclusions of the study.
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2 Theory

2.1 Acoustic to Seismic Coupling

As stated in Section 1, wind poses difficulty in measurement of seismic waves, especially

if the sensor is deployed near the surface of the earth. It is therefore required to have an

understanding of how a plane pressure wave, generated as a result of pressure fluctuation

due to wind, couples with an elastic media and results in its elastic deformation.

2.2 Displacement Response of an Elastic Half-Space

The coupling of a plane pressure wave into a homogeneous elastic half space is presented in

this section. Setup for the theory is same as Raspet et al. [10] which follows Sorrells [13] in

the notation of Brekhovskikh [1].

Let x and z be the Cartesian co-ordinates in directions parallel to the wind and perpendicular

to the surface of the medium respectively. The normal component z denotes the depth into

the ground. The displacement solution can be expressed in terms of a compression potential

and a shear potential. These potentials obey the wave equation as:

∇2ϕ =
1

α2

(
∂2ϕ

∂t2

)
(1)

∇2ψ =
1

β2

(
∂2ψ

∂t2

)
(2)

where α and β are compression and shear wave speed respectively.

A wind moving at a speed c creates pressure fluctuations in local space over the ground and

the speed of propagation of pressure is given by the convection velocity, which is usually

taken as 0.7 times the average wind speed at 2.0 m above the ground surface. The wave

number (horizontal component) is given by k = ω
c

where angular frequency ω = 2πf where

f is the wave frequency.

8



For simplification purpose, Po is taken as unit pressure field and the pressure wave is

given by:

P (x, t) = Po e
i(kx−ωt) (3)

Where a harmonic time dependence e−iωt is assumed. The harmonic excitation represented

by (3) gives compression wave (4) and shear wave (5) in the medium:

ϕ = ϕo e
−γz ei(kx−ωt) (4)

ψ = ψo e
−δz ei(kx−ωt) (5)

Equations (4) & (5) suggest that the shear potential and compression potential decrease

exponentially with the increase in depth for a given homogeneous medium. Here, δ and γ

give the attenuation in z direction for shear and compression wave respectively.

δ =

√
k2 −

(
ω

β

)2

(6)

γ =

√
k2 −

(ω
α

)2

(7)

Harmonic pressure waves with the dependence of all quantities on time t and the coordi-

nate x in the form of ei(kx−wt) are considered throughout this paper. Since, horizontal wave

number k is conserved in the transition through the interface; ∂
∂x

= i k and ∂
∂t

= −i ω.

In general, the displacement vector ~a can be expressed in terms of scalar ϕ and vector ψ.

~a = ∇ϕ+∇× ~ψ (8)

9



We now obtain horizontal displacement u and vertical displacement w as:

u = ikϕ−
(
∂ψ

∂z

)
(9)

w = ikψ +

(
∂ϕ

∂z

)
(10)

The final expression for displacement response of an elastic half space at depth z due to

plane pressure wave near the surface of the ground.

u =
(
i ϕo k e

−γz + ψo δ e
−δz)× ei(kx−ωt) (11)

w =
(
−ϕo γ e−γz + i ψo k e

−δz)× ei(kx−ωt) (12)

u and w are the displacement components in positive x and z direction inside the elastic

half-space. The components of displacement vector should be continuous in penetration of

the interface and the components of stress tensor should be continuous at the boundary.

Zz = λ

(
∂u

∂x
+
∂w

∂z

)
+ 2µ

(
∂w

∂z

)
(13)

Zx = µ

(
∂u

∂z
+
∂w

∂x

)
(14)

Zy = 0 (from setup). (15)

Here; λ and µ are Lamé parameters. If ρ is the density of an elastic medium, the Lamé

parameters are given in terms of wave speed by:

λ = ρ
(
α2 − 2β2

)
(16)

µ = β2ρ (17)
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Following continuity of displacement and stress criteria remains valid on the boundaries of

separation of media in order to facilitate a smooth propagation of wave. [Zz] = 0 and [Zx]

= 0. “[ ]”, represents difference across the boundary between any two media. According to

the coordinate setup, we get:

Zz = −Po ei(kx−wt) |z=0 ; (18)

Zx = 0 |z=0 (19)

Figure 1 shows a plane pressure harmonic wave propagating near the surface of the

earth and coupling with the ground, causing a displacement response of the ground in both

horizontal and vertical directions. The wave in the ground is elliptically polarized with a

phase difference of between displacements which varies with depth and the wave amplitude

decays exponentially with the increase in depth.

Figure 1: Displacement response of elastic half space due to plane
pressure wave above the ground [10]
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2.3 Displacement Response of a Multi-layer Elastic Media

Previous sections explicitly deal with a homogeneous half space. This section investigates the

displacement response of a multi-layer elastic media and develops the theory to obtain the

vertical displacement and horizontal displacement. Determining the displacement response

at an arbitrary depth z, below the ground, for a multi-layer media requires a different

approach and is not as simple as the case of a homogeneous elastic half-space. Thomson

[14] and Haskell [4] proposed a matrix method that transfers stress and displacement across

the interfaces as a systematic approach to evaluating acoustic propagation in multilayered

systems.

Figure 3 shows an elastic medium with a discrete number of layer ranging from 1st to

nth. The region above Z0 is the atmosphere and the region below Zn is considered to be a

water-saturated layer. A plane pressure wave due to wind passes just above Z0, couples with

the elastic media and causes displacement response within the media at any given depth Z.

Figure 2: Geometry of multi-layered elastic media
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Note: To eliminate any possible confusion, Lévesque and Piché’s [6] use of ξ for wave

number is adopted, instead of k.

Since the medium is multi-layer, the compression potential (4) and the shear potential (5)

now include both the upwards (-) and downwards (+) coefficients. The set of compression

potential and shear potential vectors for a given layer, at any depth z, consists of following:

ϕ =
(
ϕo

+e−γz + ϕo
−eγz

)
ei(ξx−ωt) (20)

ψ =
(
ψo

+e−δz + ψo
−eδz

)
ei(ξx−ωt) (21)

The horizontal displacement (u) and vertical displacement (w) are given by:

u =

(
∂ϕ

∂x
− ∂ψ

∂z

)
(22)

w =

(
∂ϕ

∂z
+
∂ψ

∂x

)
(23)

For rigidly bonded interfaces between layers, there exists continuity in displacements and

stresses values. From equations (13), (14), (22) and (23), the boundary condition for interface

at depth Zm between layers (m) and (m+ 1) are given by

um(zm) = um+1(zm); wm(zm) = wm+1(zm) (24)

Zm
z (zm) = Zm+1

z (zm); Zm
x (zm) = Zm+1

x (zm) (25)

Let z represent the depth such that zm−1 ≤ z ≤ zm. Similar to improved transfer matrix

formalism by Lévesque and Piché [6], the following matrix relations are obtained as a basis

13



for propagating stress and displacements across different layers.

{qm(z)} = [Tm]{pm(z)} (26)

{pm(z)} = [Tm]−1{qm(z)} (27)

Here; qm(z), [Tm] and pm(z) represent displacement/stress vector, transfer matrix and po-

tential vector respectively for the mth layer at z depth and are given by:

qm(z) =



u

w

Zz

Zx


; [Tm] =



iξ δ iξ −δ

−γ iξ γ iξ

−Γ −i2µξδ −Γ i2µξδ

−i2µξγ Γ i2µξγ Γ



pm(z) =



ϕ+
o

ψ+
o

ϕ−o

ψo−


; [Tm]−1 = 1

2 ρm ω2



i2µξ Γ
γ

1 −iξ
γ

−Γ
δ

i2µξ −iξ
δ
−1

i2µξ −Γ
γ

1 iξ
γ

Γ
δ

i2µξ iξ
δ
−1


where Γ = (ρω2 − 2ρβ2ξ2)

As shown in equation (20) and (21), the exponents e±γdm and e±δdm are responsible for

attenuation of displacement/shear components and the conversion of displacement vector

from top of mth layer at depth Zm−1 to bottom at Zm i.e. {qm(zm)} = [Em]{qm(zm−1)}.

Where;

[Em] =



e−γdm 0 0 0

0 e−δdm 0 0

0 0 eγdm 0

0 0 0 eδdm


(28)

Conversely, the displacement at depth Zm−1 based on the displacement at depth Zm is given

14



by {qm(zm−1)} = [Em]−1{qm(zm)}

[Em]−1 =



eγdm 0 0 0

0 eδdm 0 0

0 0 e−γdm 0

0 0 0 e−δdm


(29)

Lévesque and Piché[6] show the displacement and stress values at in layer m−1 depth Zm−1

based on the displacement and stress values at depth Zm in layer m is given by;



u

w

Zz

Zx


m−1

= [Tm][Em]−1[Tm]−1



u

w

Zz

Zx


m

(30)

Let [Bm] denote [Tm][Em]−1[Tm]−1. Using (30), the displacement and stress values at depth

Zn can be related to the values at Z0 as:



uo

wo

P

o


0

= [B1][B2].....[Bn−1][Bn]



u

w

Zz

Zx


z=n

(31)
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Based on (31), displacement/stress vector at the surface is given in terms of the potentials

at depth Zn by the matrix relation below;



uo

wo

P

o


z=0

= [B1][B2].....[Bn−1][Bn][Tn+1]



ϕ+

ψ+

0

0


n+1

(32)

Let [H] denote [B1][B2].....[Bn−1][Bn][Tn+1]. Now, (32) can be written as;



uo

wo

P

o


z=0

= [H]



ϕ+

ψ+

0

0


n+1

(33)

[H] is a 4× 4 matrix and the solution for (33) is:

ϕ+
n+1 = P

(
H42

H31H42 −H32H41

)
(34)

ψ+
n+1 = −P

(
H41

H31H42 −H32H41

)
(35)

Equations (34) and (35) give the shear potential and compression potential values at the

bottom half space. However, numeric difficulties arise in the denominator. Therefore, to

improve stability in numeric computation, Dunkin[2] introduced a delta matrix operator

[H]∆ which consists of 2 × 2 subdeterminants of [H] i.e. A∆
ij = Apqrs, where pq and rs = 12,

13, 14, 23, 24 and 34. These numbers correspond to i or j = 1, 2, 3, 4, 5, and 6 respectively.

16



In our case, the denominator in (34) and (35) is resolved into:

H31H42 −H32H41 = H34
12 = H∆

61 (36)

H∆ = B∆
1 B

∆
2 B

∆
3 .....B

∆
n T

∆
n+1; and the B∆

m can be calculated analytically, eliminating numer-

ical problems with equations (34) and (35).

After computing the values for shear potential and compression potential from (34) and

(35), we calculate the displacement/stress at an arbitrary depth Zm−1 < Z < Zm by;



u

w

Zz

Zx


Zm−1<Z<Zm

= [Bm(Zm−Z)][Bm+1].....[Bn−1][Bn][Tn+1]



ϕ+

ψ+

0

0


n+1

(37)

Here;

[Bm(Zm−Z)] = [Tm][Em(Zm−Z)]
−1[Tm]−1 (38)

[Bm(Zm−Z)] transports displacement/stress components from Zm to an arbitrary depth Z

located between Zm−1 and Zm. [Bm+1] and other terms in (37) are evaluated for Zm+1 and

so on.

3 Model I: Half-Space Media

In seismology, the elastic homogeneous half-space is the simplest mathematical model of

the structure of the Earth bounded by only one plane surface. The model is large in other

dimensions so that only the boundary affects the results. We start with the solutions for

a half-space model because they are often the first step in understanding the effects of free

surfaces on a seismic system.

17



Naderyan et al. [9] conducted field measurement on the displacement response of the

ground and found out that the vertical component of displacement is in same order of

magnitude as the horizontal component for a sensor located at depths of 2.5 cm, 20 cm and

40 cm. The increase in depth did not significantly affect the behavior of ground motion

across a wide range of frequency 1-100 Hz. The predicted vertical displacement was in

good agreement with the experimental value. However, predicted horizontal displacement

was significantly lower in magnitude compared to the experimental data. Furthermore,

the predictions for displacement response showed a large decrease in the displacement with

depth.

The effect of the burial depth and wind velocity on the displacements showed that the

wind noise on the sensor above ground was dominated by the direct interaction of the wind

with the sensor [9] . Therefore, this study deals with the displacement response at depths of

0.025 m, 0.2m and 0.4 m to rule out direct wind interference with the sensor.

Figure 4 is developed using equation (28) and (29) to obtain ϕo and ψ0 for the elastic

half-space using MATLAB [7] and then using equations (26), (27) and (34) for evaluating

effective horizontal displacement and vertical displacement at various frequencies and depths.

Model parameters used in Table 1 for the elastic half-space are same as the model used by

Naderyan et al. [9].

Table 1: Model parameter for elastic half-space

Density: ρ (kgm−3) Shear speed: β (ms−1) Compression speed: α (ms−1)

1995 140 285

18



For this model parameters;

Poisson′s ratio =
α2 − β2

2 (α2 − β2)
= 0.341

Young′s modulus =
ρβ2 (3α2 − 4β2)

α2 − β2
= 1.048× 108Pa

We are interested in the displacement response of the elastic half-space at frequencies rang-

ing from 1 Hz to 100 Hz at the location of sensor mounted flushed to the surface (0.025 m)

and at moderate depths (0.2 m, 0.40 m) for an average convective velocity of 4.948 m/s.

Figure 4 shows apparent ground motion, at different depths, due to harmonic pressure fluc-

tuation on the ground across various frequency range. To maintain the resolution of figure,

it is represented in logarithmic scale for frequency as well as for displacement magnitude.

Displacement magnitude is expressed as a ratio of displacement per unit pressure amplitude.

Horizontal displacement and vertical displacement are denoted by solid line and dotted line

respectively.

For a half space, the wave model for predicting ground motion shows that the vertical

component of displacement dominates over horizontal component for all frequencies 1-100

Hz for sensor at depth 0.025 m. In case of burial depths at 0.2 m and 0.4 m, it predicts

the dominance of vertical component over horizontal only for frequencies below 20 Hz. This

displacement behavior is similar to quasi-static model adopted by Nadaryan et al. [9] and

does not explicitly agree with the experimental value. Therefore, the wave model for a

homogeneous half space is not effective theory to be considered for improving displacement

response for an elastic half space. Figure 4 provides an insight to the degree of involvement

of wind noise at different depths in the ground. The dips are observed as a result of phase

change for horizontal component at certain frequencies.

19



(a) (b)

(c) (d)

Figure 3: Effect of depth on horizontal and vertical component at (a) at 0.025 m (b) at depth of
0.2 m and (c) at depth of 0.4 m, for an average convective wind speed of 4.948 m/s. 4(d) represents
(a), (b) and (c) in a single plot for comparison purpose.
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4 Multi-Layer Models

4.1 Model II: Elastic Media over a Water Table

In an effort to improve the prediction of horizontal to vertical displacement ratio at lower

frequency range, a more realistic ground model than an elastic half space is introduced.

The water table is an underground boundary between the soil surface and the area where

ground-water saturates spaces between sediments and cracks in rock. At this boundary,

water pressure and atmospheric pressure are equal. The soil surface above the water table is

called the unsaturated zone, where both oxygen and water fill the spaces between sediments.

The shape and height of water table is influenced by the land surface that lies above it [12].

Model II consists of an elastic half space media, same as Naderyan’s [9], over the water

saturated layer. Table 2 shows value of various parameters as well as thickness (d) for layers.

Shear and compression wave velocity for water-rich sediments are based on sample K019 [11].

Table 2: Model parameters for a multi-layer model II

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

1995 140 285 0.50

2000 541.60 1743.08 -

Figure 5 shows the displacement response as a function of frequency, at different depths,

for the multi-layer model discussed above. The average convective velocity is taken as 4.948

m/s for this model as well. Comparison between Figure 3 and Figure 4 suggests that the

response at higher frequencies is unaffected by the presence of the water table but shows an

improved prediction at lower frequencies for sensors at 0.2 m and 0.4 m depth.
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(a) (b)

(c) (d)

Figure 4: Effect of depth on horizontal and vertical component at (a) at 0.025 m (b) at depth of
0.2 m (c) at depth of 0.4 m, for an average convective wind speed of 4.948 m/s and (d) shows a
cumulative plot.

Higher compression and shear velocities at depth may reduce vertical vs horizontal motion

of ground because of less displacement at the interface between two layers. However, the

presence of water table still shows a rapid attenuation of displacement behaviour with depth,

which is not in agreement with experimental data shown by Nadeyran et al. [9].
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4.2 Model III: Elastic Media Between a Thin Shear Layer and a

Water Table

Model II showed an improvement in displacement ratio at lower frequencies. To model the

ground more realistically, a thin top shear layer is introduced to Model II. In general, the

top layer of the soil is associated with low shear speed. To model this, the shear speed of

top layer soil with a thickness of 0.05 m is taken as 70 m/s which is half of the bulk value

[5]. The middle layer has the same parameters as in the case of Model I and Model II.

Table 3 shows model parameters for an elastic media between a thin shear layer and a

water table. Thickness of the middle layer is 0.45 m and water table acts as a half-space for

Model III.

Table 3: Model parameters for a multi-layer model III

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

1900 70 240 0.05

1995 140 285 0.45

2000 541.60 1743.08 -

Figure 6 portrays the displacement response of Model III as a function of frequency at dif-

ferent depths for an average convective speed of 4.948 m/s. At lower frequency range, Model

III shows an improvement in horizontal to vertical ratio especially for burial depth of 0.4

m. Displacement response for a sensor location at 0.2 m remains comparatively unchanged

when compared with Figure 5(d). Ground motion at depth 0.025 shows a smooth response

without the presence of dips. For most runs, a minima of the horizontal displacement was

observed between 4-6 Hz.
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(a) (b)

(c) (d)

Figure 5: Effect of depth on horizontal and vertical component at (a) at 0.025 m (b) at depth of
0.2 m (c) at depth of 0.4 m, for an average convective wind speed of 4.948 m/s and (d) shows a
cumulative plot.

4.3 Model IV: Inhomogeneous Media with Random Parameters

Ground does not exhibit uniform characteristics and is highly inhomogeneous and anisotropic

in nature. Many studies have been conducted on inhomogeneous elastic media with random

parameters in layers to investigate various phenomenon. Gilbert [3] used randomly layered
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turbide model to study the reflection of sound from the ocean bottom. Similarly, Wheeler [5]

also used a layered model to conduct sensitivity analysis to understand the effects of physical

parameters on his modeled acoustic/seismic signature.

This section deals with the dynamic response of the ground due to pressure perturba-

tions on the surface. This model is an extension of Model III, and consists of same thin

shear top layer and water table as the bottom half-space. However, the middle layer is split

into 10 discrete layers with randomly varying parameters. Random values for the model

parameter follow normal distribution with mean values same as that of the middle layer in

Model III. The degree of inhomogeneity in the discrete layers is introduced by setting dif-

ferent values of standard deviation σ for the normal distribution. Introducing such random

layers to our model helps in predicting more accurate displacement response of the media

and does a better work of physically representing the ground. We examine the effect of in-

creasing inhomogeneity in ground to better understand the effects of the physical parameters

on the Acoustic/Seismic coupling. Introducing such multiple layers with randomly varied

parameters between a thin shear layer and a water table may reduce vertical with respect to

horizontal because of interference of reflected waves from each layer.

Figure 6 shows a histogram plot of densities for various layers. Normal random distribu-

tion with a mean value of 1995 kg/m3 and a standard deviation of 5 % is used to generate

the plot. Similar procedure can be used to generate random values for compression wave

speed, shear wave speed and layer thickness. Furthermore, the average for each components

of displacement are obtained by dividing the total sum of values from each run by the num-

ber of runs. Thus, obtained mean values are plotted to show an average displacement for

the vertical and horizontal components.
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Figure 6: Histogram showing normal distribution of randomly generated
values for density

4.3.1 Displacement Response at σ = 5%

Figure 7 portrays displacement magnitude as a function of frequency at different depths and

models that at a standard deviation of 5% from the corresponding mean parameter value

(middle layer: Model III). The solid line in Figure 6 corresponds to horizontal component

and dotted line corresponds to vertical component of displacement.

Since, every run of the program yields an unique result, Figure 7 compiles six plots for

every run in one graph for a given depth and also shows an average of the six plots. Table

4 shows the mean and standard deviation used to generate normal distribution of random

numbers for discrete layers.
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Table 4: Basis for normal distribution of layer parameters for figure 6

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

µ 1995 140 285 0.045

σ (5%) 99.75 7 14.25 0.00225

(a) (b)

(c)

Figure 7: Effect of Inhomogeneity with σ = 5% on horizontal and vertical component at (a) at
0.025 m (b) at depth of 0.2 m and (c) at depth of 0.4 m, for an average wind speed of 4.948 m/s.
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Introducing 5% inhomogeneity in the ground did not improve the prediction for the

displacement response of the ground.

4.3.2 Displacement Response at σ = 10%

We increase the degree of inhomogeneity to σ = 10% in subdivided layers to see if it makes

the prediction for the displacement response agree with experimental data. Table 5 shows

the tabulated data at σ = 10%.

Table 5: Basis for normal distribution of layer parameters for figure 7

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

µ 1995 140 285 0.045

σ (10%) 199.5 14 28.5 0.0045

Figure 8 captures the behavior of displacement response when the standard deviation

for random normal distribution is increased. In comparison to σ = 5%, the results in

displacement response of inhomogeneous ground at σ = 10% indicate general similarities in

their trends, and the measured amplitude attenuate at the same rate with the increase in

frequency range. This behaviour is more apparent at depths of 0.2 m and 0.4 m than at

flush mounted surface location. Increase in the degree of inhomogeneity to σ = 10% did

not improve the predictions for displacement behaviour. However, occasional minima (dips)

were observed in horizontal displacement component for lower frequencies at measurement

depth of 0.025 m.
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(a) (b)

(c)

Figure 8: Effect of Inhomogeneity with σ = 10% on horizontal and vertical component at (a) at
0.025 m (b) at depth of 0.2 m and (c) at depth of 0.4 m, for an average wind speed of 4.948 m/s.
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4.3.3 Displacement Response at σ = 20%

When the layer parameters are varied at 20% above and below the base values, displacement

response exhibit similar trend as in 4.3.1 and 4.3.2. However, multiple numeric simulation

show that, at measurement depth of 2.5 cm, the horizontal component of displacement

exhibit dips at lower frequency range. Table 6 reflects tabulated data of model parameters

for discrete layers. Figure 9 suggests that, with the increase in depth, the displacement

magnitudes are lowered at a given frequency.

Table 6: Basis for normal distribution of layer parameters for figure 8

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

µ 1995 140 285 0.045

σ (20%) 399 28 57 0.009

Figure 9 shows the displacement behaviour of inhomogeneous ground at σ = 20%. Even

if the degree of inhomogeneity is increased, we do not observe any significant change in

the horizontal component. For the measurement at 0.025 m depth, multiple dips in the

horizontal are observed at lower frequencies as a result of phase change at those frequencies.

Furthermore, the increase in inhomogeneity to 20% does not improve the prediction for the

attenuation of ground motion with the increase in depth.
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(a) (b)

(c)

Figure 9: Effect of Inhomogeneity with σ = 20% on horizontal and vertical component at (a) at
0.025 m (b) at depth of 0.2 m and (c) at depth of 0.4 m, for an average wind speed of 4.948 m/s.

31



4.3.4 Displacement Response at σ = 20% with no variation in density

Often times variations in density above or below 20% of the mean ground model density is

not realized. Therefore, we investigate the displacement behaviour of our inhomogeneous

ground model at σ = 20% without any change in value for the density. Table 7 shows

tabulated data of model parameters for discrete layers.

Table 7: Basis for normal distribution of layer parameters for Figure 9

ρ (kgm−3) β (ms−1) α (ms−1) d (m)

µ 1995 140 285 0.045

σ (20%) 0 28 57 0.009

Figure 10 shows the averaged behaviour of ground motion due to sinusoidal pressure

fluctuation above the ground surface. Displacement behaviour remained fairly constant,

especially at higher frequencies. In comparison to Figure 9 (a), Figure 10 (a) showed an

improvement in prediction for horizontal component at lower frequencies for the measurement

depth of 0.025 m. Furthermore, dips were not observed as often as for the varying density

case.
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(a) (b)

(c)

Figure 10: Effect of Inhomogeneity with σ = 20% on horizontal and vertical component at (a) at
0.025 m (b) at depth of 0.2 m and (c) at depth of 0.4 m, for an average wind speed of 4.948 m/s.
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5 Conclusion

The quasi-static model used by Naderyan et al. [9] predicts that the vertical displacement

is larger than the horizontal displacement and that the displacements decay rapidly with

depth. The model did predict vertical ground displacements in good agreement with the

measured vertical displacement. The horizontal ground displacements were significantly

underpredicted and Naderyan et al. suggested that shear stress must be of the same order

of magnitude of the normal pressure on the ground surface. Mohammadi[8] argues that the

shear stresses are not large enough to account for the horizontal seismic wind noise data. In

this study, a theoretical wave based approach - acoustic to seismic coupling, was adopted

to predict the wind induced noise at different depths and frequencies. For better estimation

of wind-noise, the ground was modeled as inhomogeneous elastic media that consists of a

thin shear layer top surface followed by ten discrete layers with randomly varying layer

parameters, which in turn followed by a bottom half space consisting of the water-saturated

region known as the water table.

Naderyan’s model shows displacement models are convergent at higher frequencies and

that the ground motion had large decay with the increase in depths of measurement. The

wave model based on Sorrells[13] predicts that vertical and horizontal displacements converge

at higher frequencies but this is dependent on depth. A comparison between an elastic

half space (Model I) and an elastic media with water table (Model II, III IV) suggests

that introducing a water saturated layer as the bottom half space for Model I shows an

improvement in horizontal to vertical displacement ratio at lower frequency range of 1-10

Hz. Higher compression and shear velocities at depth may reduce vertical vs horizontal

motion of ground because of less displacement at the interface between the layers and the

half space. For the frequency range of 1-10 Hz, at an average convective wind speed of

4.948 m/s, the horizontal component (Model II,III IV) is much lower than the vertical

component for an elastic half-space over the same frequency range. Addition of water table
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also decreases the vertical component of displacement slightly by a factor of 1.26 over the

same frequency band. Furthermore, introducing a soft shear layer on top and a water table

on the bottom of half space predicted the horizontal component very close to the vertical

component at frequencies above 10 Hz, which is an improvement over Naderyan et al. [9] and

Mohammadi [8]’s model. In the case of the inhomogeneous random layer model, increasing

the degree of randomness in model parameters did not significantly affect the predictions

for both components of displacement response of the ground. Acoustic to seismic coupling

of ground model with a constant density for discrete layers and variable shear, compression

wave velocities and depth also did not predict an improvement in horizontal displacement

response at depth of 0.2 and 0.4 m.

When the measurement depth is increased, the vertical component and horizontal com-

ponent attenuate rapidly and their ratio approaches closer to 1 beyond ∼ 50 Hz. It is also

worth mentioning that results obtained from inhomogeneous stochastic layer model for the

elastic media largely depend on the parameter values for each layer. Therefore, a large sam-

ple of data should be numerically computed in order to obtain accurate predictions on the

displacement response of the in-homogeneous multi-layer model.
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