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ABSTRACT

The thesis presents new results for the reflection and transmission coefficients for

Cherenkov photons in a strong magnetic field at the interface between the fused quartz

of and the surrounding nitrogen gas within the iTOP particle detector, a sub-system of

the Belle II experiment. The iTOP is a component of the particle identification system at

Belle II which distinguishes between kaons and pions in final states after collision. These

coefficients are important in understanding how photons propagate through the iTOP taking

into consideration polarization at the reflection and transmission interfaces in the Belle II

magnetic field because the polarization affects the light collection efficiency of the detector.

A new coordinate system was employed which is valid for any face of the iTOP. Solu-

tions for the electric and magnetic fields were found and verified using several wave equations

that were derived from Maxwell’s equations. Boundary conditions at the interface were writ-

ten in the new coordinate system and solved to find the coefficients. These coefficients will

be used in Monte Carlo simulations of photons propagating within the iTOP.

ii



LIST OF ABBREVIATIONS AND SYMBOLS

CKM Cabibbo-Kobayashi-Maskawa matrix

V Verdet constant

B Magnetic flux density

d Distance traveled

n Index of refraction

c Speed of light in vacuum

v Speed of light in a medium

iTOP Imaging Time of Propagation detector

KEK Kō Eneruḡı Kasokuki Kenkyū Kikō

(High Energy Accelerator Research Organization)

CP Charge-Parity

MC-PMT Micro-Channel Photomultiplier tube

D Electric displacement field

ε Permittivity

E Electric field

ω Angular frequency

ωL Larmor frequency

t Time

k Wave vector

µ Permeability

H Magnetic field strength

TE Transverse electric

TM Transverse magnetic
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α Ratio of off diagonal to on diagonal elements of the permittivity tensor

r+ Reflection coefficient

t+ Transmission coefficient
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CHAPTER 1

HISTORICAL CONTEXT OF THE FARADAY EFFECT

Michael Faraday, pictured in Figure 1, was born in 1791 in South London to James

Faraday, a blacksmith’s apprentice. The third of four children in a lower class family, Michael

for the most part was forced to educate himself. At the age of 14, he took an apprenticeship

with a local bookseller where he got the opportunity to read many books and develop an

interest in science. At the end of his apprenticeship, Faraday started to attend chemistry

lectures by Humphry Davy and soon became his assistant. During his work with Davy,

he discovered two new compounds of chlorine and carbon, invented an early form of the

Bunsen burner, and discovered the law of electrolysis. Throughout the 1820s and 30s, he

began to experiment with electromagnetism which eventually led to his discovery of the law

of induction. Even before his work, it was known that the polarization of light could be

changed by certain materials. Because Faraday maintained that light was fundamentally

electromagnetic in nature, he started to experiment with the effects a magnetic field might

have on light as it passed through different objects. In 1845, he observed the rotation of

the polarization of light due to the presence of a magnetic field. In his journal, he noted

“[W]hen the contrary magnetic poles were on the same side, there was an effect produced

on the polarized ray, and thus magnetic force and light were proved to have relation to

each other.” This phenomenon is now called the Faraday effect, and it shows that the angle

of rotation is proportional to the strength of the magnetic field and the distance traveled

through the object. Namely,

θ = V Bd (1)
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where θ is the angular rotation of the polarization, B is the magnetic field, d is the distance

traveled, and the proportionality constant V is the Verdet constant. A more complicated

expression must be used when the direction of propagation does not coincide with the direc-

tion of the B field. We refer to this general theory of propagation as the generalized Faraday

rotation. It is described in detail in Belle Note 39 [1] and for Corning 7980 fused quartz

glass, the rate of rotation, as determined by our measurements described in this Belle Note,

is given by

dθ

dz
= B

(
−0.6786− 0.8119

e

2mc
λ
dn

dλ

)
cosθB (2)

where θB is the angle between the magnetic field and the direction of propagation, the units

are rad/m, and the field is in Tesla.

Figure 1: Michael Faraday

2



CHAPTER 2

CHERENKOV RADIATION

First detected in 1934, Cherenkov radiation, as shown in Figure 2, is a process by

which charged particles moving through a medium can give off photons [2]. Normally, par-

ticles are limited by the speed of light in vacuum, c. However, within a medium, the phase

velocity of light, v, changes depending on the index of refraction, n, of the medium, given

by n = c
v
. Since the speed of light is lowered by media of a higher index, it is possible for a

particle to enter a medium traveling faster than the phase velocity of light in that medium.

When this occurs, photons on a wave front are given off on a conical wave front, similarly

to a sonic boom when an object exceeds the speed of sound.

Figure 2: Cherenkov Radiation. A kaon and pion of the same momentum traversing the
iTOP quartz will produce cones of Cherenkov radiation at different opening angles.
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Figure 3: Opening Angle for Cherenkov Radiation. Diagram of the opening angle for
Cherenkov radiation showing the angular dependence on the speed of the particle.

Now, it can be shown (see Figure 3.) that the angle that a photon makes with the

incoming particle depends on its velocity as given by θc = cos( 1
nβ

), where β = v
c
. Therefore,

given the initial momentum of the particle, the angle can also determine the mass of the

particle. It is then possible, given tracking information on the trajectory and momentum of

the incident particle, to distinguish between different types of particles by determining the

angle at which the Cherenkov photons deviate from the direction of the incident particle.
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Figure 4: Opening Angle vs. Momentum. Opening Angle of the Cherenkov Photon in
the fused quartz vs. Momentum at the BaBar experiment [3]. This distribution is almost
identical to that obtained using data from the Belle II experiment. This plot demonstrates
the difference in the opening angles of the photons produced in Cherenkov radiation for
particles of different mass.
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CHAPTER 3

THE BELLE II DETECTOR

The Belle II detector is an experiment that takes data at the Japanese high-energy

accelerator complex KEK in Tsukuba, Japan [4, 5]. The accelerator collides 7 GeV electrons

with 4 GeV positrons to produce large numbers of B mesons [6]. B mesons are very short-

lived particles that contain a bottom quark or antiquark along with another quark. This

experiment is trying to find and explain new physics beyond the standard model such as CP

violation which can be used to explain the matter-antimatter asymmetry in the universe.

There are many different sub-detectors in the Belle II experiment, but this project focuses

mainly on the imaging time of propagation (iTOP) detector [7, 8, 9]. The iTOP is used for

particle identification, especially to distinguish between pions and kaons. It is important to

correctly identify these particles so that the B meson signal is as pure as possible since the

B mesons decay preferentially to kaons. The iTOP is a long piece of quartz with a mirror

on one end and a set of photodetectors on the other end.

Figure 5: The iTOP Detector. Left: Rough dimensions of the fused quartz glass bar, prism
and mirror of the iTOP. Right: A complete iTOP quartz assembly in fabrication.
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Figure 6: Photons in the iTOP Detector. (Bottom) Laser light is introduced into the
iTOP quartz bar to observe the optical quality of the quartz bar and glue joints. The
light undergoes many internal reflections. (Center) For comparison the internal reflections
of Cherenkov photons from kaon and pion incident particles are shown schematically, (Top)
also a schematic of the quartz, mirror and electronics.

When pions and kaons enter the iTOP, they produce cones of Cherenkov photons

which propagate through the quartz and are detected at the end. From this detection,

combined with the knowledge of the trajectory of the track, the time of flight information

for all photons can be transformed into information about the opening angle. Since the angle

between the photons and the particles depends on the mass of the particles, this can be used
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to distinguish whether the particles were pions or kaons.

Figure 7: The Photomultiplier Tube. Pictures of the MC-PMTs attached to the end of
the iTOP. Left is an array of 8 MC-PMTs attached to the electronics. Right is a single
MC-PMT.

Figure 8: The iTOP Connected to the MC-PMTs. The figure shows how the iTOP bar is
situated within the detector, connected to the MC-PMTs and the electronics.
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CHAPTER 4

ANALYSIS OF ITOP OPTICS STUDIES

This thesis describes one of the four main steps in an overall program to determine

the effect of the 1.5 T magnetic field [10] inside the Belle II detector on the efficiency for

collecting Cherenkov photons in the iTOP detector. The Cherenkov photons produced by

charged particles passing through the fused quartz of the iTOP travel by total internal

reflection to photodetectors beyond the end of the quartz. At each bounce the photons are

altered by reflection and change their polarization state to a different ellipticity. This is true

even in the absence of a magnetic field. The Cherenkov photons are generated in a linearly

polarized state. This is the basis for all simulations of the photons in Belle II software.

However, in a magnetic field, the basis states are elliptically polarized waves of different

phase velocity, and the reflection coefficients are different due to the field. In addition, the

magnetic field strongly alters the polarization by rotating the polarization axis about the

propagation direction, meaning that the existing Belle II simulation is based on inexact

assumptions. This does not invalidate the key calculation of the time of flight vs. opening

angle which has been expertly implemented for Belle II [11, 12]. However, inclusion of

the generalized Faraday effect and proper reflection coefficients will reweight the individual

photons because the probability that the photons will be transmitted beyond the end of the

quartz bar is affected, and the probability of detection of the photons by the photocathode

is also affected, since the photocathode has a quantum efficiency which depends strongly on

the polarization state.

9



Figure 9: Quantum Efficiency vs. Incident Angle. The quantum efficiency of the iTOP
MC-PMT photodiodes for s-wave (TE) and p-wave (TM) components of linear polarization
as a function of angle of incidence. (Source: Kodai Matsuoka [13])

There are also prospects for subtle interference effects. At any reflection, even an

internal reflection, part of the right-handed wave reflects as left-handed and vice versa. The

two different helicity basis waves have minutely different indices of refraction, and therefore

the outgoing right- and left-handed reflected waves come off at slightly different angles. The

wave which eventually reaches the photocathode is a combination of right- and left-handed

contributions with numerous different phases and as many possible directions. See Figure

10.
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Figure 10: Angular Deviation from Incident Angle. The deviation δpm in radians due to a
plus wave reflecting as minus handedness, and δmp, the deviation due to minus handedness
reflecting as plus handed.

In the first stage of this project the general nature of the propagation of waves within

the fused quartz was studied. The early literature developed in this context of the “gener-

alized Faraday Effect” was developed both in the context of propagation of radio waves in

the ionosphere and in optics. And the general formalism which gives the Appleton equation

to determine the velocity of the waves of each handedness was used to find the relation-

ship of the tabulated index of refraction in the fused quartz to permittivity components of

the medium, and to predict the Verdet constants for the fused quartz (which has not been

tabulated anywhere to our knowledge outside of our own Belle note 39 [1]).

In the second stage, samples of the fused quartz glass (Corning 7980) were purchased,

and the Verdet constants for the glass was measured. The measured values were in good

11



agreement with the predictions of Belle note 39. This measurement is detailed in Samyukta

Krishnamurthy’s Honors Thesis [14]. At this stage the model of the generalized Faraday

propagation was introduced into a Mathematica based Monte Carlo simulation to determine

the effects of the magnetic field on the probability of a photon reaching the photocathode.

A brief summary of these results is included below.

Figure 11: Effects of Faraday Rotation. The effects of the generalized Faraday rotation
are seen in a standalone Monte Carlo build in Mathematica. The same photons have been
generated with and without the Faraday rotation. Since the axis of polarization is rotated
through many radians, the fraction of s-wave (TE) and p-wave (TM) is constantly changing,
as well as changes in the ellipticity due to reflection. We see that different photons reach
the MC-PMT with different ellipticity. Comparison of the naive Monte Carlo results at
high momentum show that the chance of early arriving photons produced by incident kaons
increases when the field is present.

In the next stage of the program, which this thesis details, reflection coefficients

appropriate to strong magnetic fields were calculated. This was performed at an earlier

stage under restricted conditions for which the glass-air interface was required to be parallel

to the field. But these results are insufficient for simulating the iTOP, in which some of the

latest and most crucial reflections come off of surfaces which are not parallel to the magnetic

12



field. There are beveled edges and truncated corners, but more importantly, the bottom of

the prism is steeply sloped and the mirrored end of the quartz bar is a spherical surface. The

prism surface was designed to permit an expansion of the bar to accommodate a double set

of MC-PMTs at the readout end, but the additional position information comes at a cost of

some difficulty in analyzing out-of-time hits due to trapping of photons in the prism.

Figure 12: A Photon Trapped Within the Prism Volume.

This thesis details the special coordinate system and detailed calculations which led

to correct reflection coefficients for all surfaces excepting at the mirrored surface at the end of

the waveguide which is opposite the photodetector. That reflection requires separate treat-

ment, outside of the current study due to the aluminum coating in the magnetic field. The

solution of the reflection coefficients is described in detail below. Our group has previously

calculated the reflection and transmission coefficients under the restricted assumption that

the normal direction for the interface between the fused quartz and the outside nitrogen, at

the point where reflection or transmission is about to occur, has no component along the

ambient magnetic field. The main characteristic of this work is a new choice of coordinate

system, motivated by the fact that the assumption of faces parallel to the magnetic field

is invalid for many of the reflections, and consequently an entirely new style of solution is

adopted.

In the remaining stage the treatment of the reflection coefficients in the mirrored

surface are to be completed. Then the effects of ambient B field on inefficiencies, interference

effects, etc., will be studied in our standalone Monte Carlo program. Finally the whole sweep

13



of the program is intended to be included as a set of special processes, particle classes, and

physics lists in the GEANT4 [15] Monte Carlo, both for Belle II and for general use.
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CHAPTER 5

MEASUREMENT OF THE VERDET CONSTANT

As part of Samyukta Krishnamurthy’s Honors Thesis, the Verdet [14] constant was

measured in the fused quartz Corning 7980, which is the material that makes up the main

component of the iTOP detector. A sample of this material was purchased and placed inside

a solenoid to produce a magnetic field. Next, a laser was shone through a polarizer in order

to make the photons linearly polarized. Then, the light passed through the quartz with the

magnetic field, was processed by an analyzer, and was measured by a photodiode.

Figure 13: Faraday Effect Apparatus. The Faraday effect apparatus used for the determi-
nation of Verdet’s constant in Corning 7980.

This allowed the rotation angle of the polarization to be measured which allowed for

a measurement of the Verdet constant, which was found to be in good agreement with the

theoretical predictions for various wavelengths.
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The Faraday rotation data may be seen in Figure 14 a). It exhibits good linearity for

each of the four wavelengths. In Figure 14 b) the measured Verdet constants for the four

wavelengths are fit to a two-component parameterization of the form due to Tan and Arndt

[16]. The precision is good over the range of our measured wavelengths.

Figure 14: Verdet Constant Data. (a) Faraday rotation angle vs. magnetic field strength.
(b) Verdet’s constants data [14] for wavelengths 405 nm, 447 nm, 532 nm and 650 nm plotted
against the two parameter Verdet’s constant fit of the form derived by Tan and Arndt [16].

We used tabulated data for the index of refraction of Corning 7980 as a function of

wavelength to extract our own permittivity tensor as described in Belle note 39 [1]. When

we then used the calculated permittivity to calculate the Verdet constant as a function of

frequency, it compared very well to our measurement of the Verdet constant data when we

employed a two-parameter fit as suggested by Tan and Arndt [16] to improve the match to

permittivity constants. Precise knowledge of the permittivity tensor is needed in order to

get good reflection coefficients.
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Figure 15: Verdet Constant Data Compared to Theory. A two parameter fit of the Verdet
constant data to predictions based on our permittivity values. This is the basis for equation
2 above.
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CHAPTER 6

DERIVATION OF THE PERMITTIVITY TENSOR, INDEX OF REFRACTION, AND

ROTATION ANGLE

In many situations, the electric field vector and the electric displacement vector can

be related by a scalar permittivity as ~D = ε ~E. However, in some media, the permittivity

is not isotropic and must be represented by a tensor. For gyro-electric media, i.e., isotropic

media in the presence of an external magnetic field, the permittivity can be represented by


ε1 iε2 0

−iε2 ε1 0

0 0 ε3


Many advanced optics textbooks offer derivations of this form, and the associated

Verdet constant in terms of frequency, the Larmor frequency of the medium (which for fused

silica glass is about B∗1.32×1011 ), and resonant frequencies of the medium. The derivation

found in Guenther is reproduced below [17].

The term “gyrotropic” is used for a medium that obeys the relationship between the

displacement vector and the electric field:

Dj =
3∑

k=1

εjkEk + i( ~E × ~g)j (3)

where g is the gyration vector. The equation of motion is then

d2~r

dt2
+ ω2

0~r = − e

m
( ~E +

d~r

dt
× ~B) (4)

18



Assuming that the ambient magnetic field and propagation vectors are along the z

axis and casting the equation into circular motion, we get

d2R±

dt2
∓ e

m
iBz

dR±

dt
+ ω2

0R± = − e

m
E± (5)

where R is the radial coordinate given by R± = x ± iy and E is the electric field given by

E± = Ex ± iEy. Assuming a solution of the form

R± = Cei(ωt−k±z), (6)

equation (4) becomes

−ω2R± ±
e

m
BzωR± + ω2

0R± = − e

m
E± (7)

which gives a solution of the form

R± =
e
m
Ex

(ω2
0 − ω2)± e

m
Bzω

(8)

which means the polarization vector is given by

P± =
N e2

m
E±

(ω2
0 − ω2)± e

m
Bzω

(9)

Now, let the Larmor precession frequency (the frequency at which the magnetic moment of

the photon precesses) be

ωL =
e

2m
Bz (10)

Then, we can write

(ω0 ± ωL)2 = ω2
0

[
1± 2

ωL
ω0

+ (
ωL
ω0

)2
]

(11)

This shows that the magnetic field splits the resonant frequency into two new frequencies.
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The index of refraction can then be found using

n2
± = 1 +

ω2
p

(ω0 ± ωL)2 − ω2
(12)

This means that the two polarization states will travel through the medium at different

velocities. Now, the index of refraction and the permittivity are related by

n =

√
ε

ε0
(13)

The fact that there are more than one value for the index of refraction implies an anisotropic

permittivity and a need for a permittivity tensor. This also means the polarization will be

rotated through an angle

θ =
πL

λ0
(n− − n+) =

ωL

c
(n− − n+) (14)

which can be approximated by

θ =
ωω2

PL

cn0

2ω0ωL
(ω2

0 + ω2
L − ω2)2 − 4ω2

0ω
2
L

(15)

which is in agreement with equation (1).
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CHAPTER 7

FINDING A PLANE WAVE SOLUTION FOR THE FIELDS

First we will seek a plane wave solution for the electric field in the form

~E = ~E0e
i(ωt−~k·~x) (16)

Now, we know the fields have to satisfy Maxwell’s equations which take the form

k̂ × ~E =
µc

n
~H

k̂ × ~H = − c
n
ε~

~

· ~E

k̂ · ~H = 0

k̂ · (ε~

~

· ~E) = 0

which lead to the set of equations relating the D and E fields

∇× (∇× ~E) = −iωµ0∇× ~H = ω2µ0D

k̂ × ( ~E × k̂)− 1

ε0n2
D = 0

21



The E and H fields can then be found using Maxwell’s equations. These solutions

for the E and H waves have been shown to satisfy the following equations.

k̂ · ε~

~

~E = 0 (17)

k̂ · ~H = 0 (18)

~E − 1

ε0n2
±
ε~

~

~E = k̂ × (k̂ · ~E) (19)

∇×∇× ~E = −µ0ε~

~

∂2 ~E

∂t2
(20)

∇× ε~

~

−1n±(∇× ~H) = ∇× ∂ ~E

∂t
(21)

−k̂ ×
(
k̂ × ε~

~

−1 · ~D
)
− 1

ε0n2
±

~D = 0 (22)
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CHAPTER 8

CHANGING TO A NEW BASIS

One purpose of this study is to determine whether the inclusion of polarization related

effects would improve the simulation of the iTOP by the GEANT4 Monte Carlo software

package over the existing simulation. The current simulation of the Belle II iTOP uses a large

fraction of the CPU time that Belle II GEANT4 simulation consumes due to the fact that it

simulates optical photons in painstaking detail. (See Figure 16.) We sought a streamlined

calculation for reflection and transmission coefficients that would work correctly for surfaces

of the iTOP fused quartz that were oriented in arbitrary directions in comparison to the

magnetic field. The coefficients were previously solved for the case of faces that were parallel

to the field, but needed to be generalized, and sped up as well.

Figure 16: CPU Profile. CPU time for simulation of events by subsystem, for a sample of
10,000 events in GEANT4. Simulation of iTOP photons is the main contributor. Figure due
to Thomas Kuhr [18], Belle II Collaboration.
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It was necessary to cast the system into a new basis for efficiency and completeness

of the solution. Prior to this work, a solution was found under the generalized Faraday effect

in the x, y, z basis, in the particular case that the magnetic field aligns with the z axis,

i.e., the longitudinal axis of the quartz bar. Reflection and transmission coefficients were

found, but only for faces that were parallel to the B field. Initially, we followed a paper

by Hillion[19], which also worked out a solution in the x, y, z basis, but had typographical

errors. Correcting these errors and changing to a consistent unit system showed that they

agreed with our results. There was very little guidance in the literature about the boundary

value problem and analytic calculation of the coefficients, as much of it was concerned with

radio waves and propagation in the ionosphere and used many approximations that would

not hold in our system. The expressions for the coefficients found initially were very large

and difficult to use in a Monte Carlo simulation, so we sought to find a more compact solution

that could also be used for arbitrarily oriented axes of the interfaces. A thesis by Reichl [20]

was used at first to find a new basis, which chose the direction of propagation as one of

the basis vectors. Reichl used two approximations, that εxx = εzz, which we will refer to as

approximation 1, and the approximation that

(
εxy
εxx

)2

= 0, (23)

which we will refer to as approximation 2. While the first approximation is commonly made

and seemed to hold well, the second leads to inaccuracies in the difference between right-

handed and left-handed indices of the order 10−6, which may invalidate the polarization

simulation after around 100 reflections. Without this second approximation, the Reichl form

is not simple and we sought a new basis.

In order to satisfy the boundary conditions, another basis must be chosen. A basis

was chosen with η̂ and two vectors within the plane of incidence, one normal to the boundary,

n̂, and one along the boundary, ζ̂.
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Figure 17: New Coordinate System. The coordinate system used to solve simultaneously
for the reflection and transmission coefficients are shown. The n̂ direction is an inward
normal to the interface between fused quartz and nitrogen. The η̂ direction is in the plane
of the interface and perpendicular to plane formed by the incoming and outgoing waves. It
corresponds to the TE direction for the electric field. The ζ̂ direction lies in the interface
and is the projection of the propagation axis onto the plane of the interface.

We need to transform the permittivity from x, y, z coordinates to n̂, η̂, ζ̂ where

η̂ =
k̂ × n̂
|k̂ × n̂|

(24)

ζ̂ = n̂× η̂ (25)

and the transformation is given by:

ε~

~

nηζ =


nx ny nz

ηx ηy ηz

ζx ζy ζz

 ε~

~

xyz = ε1


1 iαζz −iαηz

−iαζz 1 iαnz

iαηz −iαnz 1

 (26)

In the n̂, η̂, ζ̂ coordinate system, the curl becomes:
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∇×
⇀

H =


n̂ η̂ ζ̂

(k̂ · n̂) 0 (ζ̂ · k̂)

Hn Hη Hζ

 (27)

Some other definitions in the new basis include

k̂ = (−cosθi, 0, sinθi) (28)

k̂+TE = k+TM = (−cosθt, 0, sinθt) (29)

where θi is the incident angle, θt is the transmitted angle, sinθt = n+sinθi
nbox

, and cosθt =√
1− n2

+

n2
box
sin2θi.

k̂−TE = k−TM = (−cosθt, 0, sinθt) (30)

where sinθt = n−sinθi
nbox

, and cosθt =

√
1− n2

−
n2
box
sin2θi unless θi > θc. In that case, cosθt =

i

√
n2
−

n2
box
sin2θi − 1. Now, if n̂ · ẑ = 0, then θi = θr and

k̂pp = k̂mm = (cosθi, 0, sinθi). (31)

Otherwise, it is solved for by an iterative procedure by expanding around k̂pp ≈

k̂ − 2n̂(k̂ · n̂).

k̂pm = (cosθpm, 0, sinθpm) (32)

k̂mp = (cosθmp, 0, sinθmp) (33)

where n+sinθi = n−sinθpm and n−sinθi = n+sinθmp.
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|k̂ × n̂| = sin(θi) (34)

In this basis, the wave vector is

k̂nηζ =
{

(k̂ · n̂), 0, (ζ̂ · k̂)
}

(35)

which can be shown to satisfy the equation

k̂nηζ · ~Dnηζ = 0 (36)

As a consequence of equation 36, the electric displacement takes the form

~Dnηζ =

{
Dn, Dη,−Dn

(k̂ · n̂)

(ζ̂ · k̂)

}
(37)

which must satisfy the equation

[(
−k̂ × k̂×

)
· ε~

~

−1 − 1

ε0n2
±

]
· ~Dnηζ = 0 (38)

Or, in vector form,

[(
−k̂ × k̂×

)
·
((
−1 + α2

)
ε1
)
× ε~

~

−1 − (−1 + α2) ε1

ε0n2
±

]
·


Gn(ζ̂ · k̂)

Gη(ζ̂ · k̂)

−Gn(k̂ · n̂)

 =


0

0

0

 (39)

where Gn is related to Dn by a constant. Now, in the new coordinate system,the expression

that gives the k × k× operator is
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−
(
k̂nηζ × k̂nηζ×

)
=


(ζ̂ · k̂)2 0 −(k̂ · n̂)(ζ̂ · k̂)

0 1 0

−(k̂ · n̂)(ζ̂ · k̂) 0 (k̂ · n̂)2


and the inverse permittivity in this coordinate system becomes

ε~

~

nηζ
−1 =


1− nz2α2 α (iζz + nzαηz) α (nzαζz − iηz)

α (−iζz + nzαηz) 1− α2ηz
2 α (inz + αζzηz)

α (nzαζz + iηz) α (−inz + αζzηz) 1− α2ζz
2



The solution of equation 39 gives the same results for the positive and negative plane wave

solution as the Appleton equation:

n2
+ =

(
2−

(
1− kz2

)
α2 + α

√
4kz

2 +
(
1− kz2

)2
α2

)
ε1

2ε0
(40)

n2
− =

(
2−

(
1− kz2

)
α2 − α

√
4kz

2 +
(
1− kz2

)2
α2

)
ε1

2ε0
(41)

The positive plane wave solution is


−Dζ(ζ̂·k̂)

(k̂·n̂)
Dζα(e

2
1z−η2z)−Dζ

√
4k2z−(1+k2z)

2α2

2(k̂·n̂)(ikz+e1zαηz)

Dζ

 e
−i
(
ω
√

n2+0
c

(n̂(k̂·n̂)+ζ̂(ζ̂·k̂))·~r−ωt
)

(42)
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and the negative solution is


−Dζ(ζ̂·k̂)

(k̂·n̂)
Dζα(e

2
1z−η2z)−Dζ

√
4k2z−(1+k2z)

2α2

2(k̂·n̂)(ikz+e1zαηz)

Dζ

 e
−i
(
ω
√

n2−0
c

(n̂(k̂·n̂)+ζ̂(ζ̂·k̂))·~r−ωt
)

(43)

The positive and negative solutions for the electric field are then given by

~E =Dn


−(ζ̂ · k̂) + α(e1znzα + i(k̂ · n̂)ηz) + Pηα(−ikz + e1zαηz)(iζz + nzαηz)

(α(−ikz + e1zαηz) + Pη(−ikz + e1zαηz)(−1 + α2η2z)

(k̂ · n̂) + α(e1zαζz + i(ζ̂ · k̂)ηz) + Pηα(−ikz + e1zαηz)(−inz + αζzηz)


e
−i
(
ω
√

n2−0
c

(n̂(k̂·n̂)+ζ̂(ζ̂·k̂))·~r−ωt
)

(44)

and

~E =Dn


−(ζ̂ · k̂) + α(e1znzα + i(k̂ · n̂)ηz) +Mηα(−ikz + e1zαηz)(iζz + nzαηz)

(α(−ikz + e1zαηz) +Mη(−ikz + e1zαηz)(−1 + α2η2z)

(k̂ · n̂) + α(e1zαζz + i(ζ̂ · k̂)ηz) +Mηα(−ikz + e1zαηz)(−inz + αζzηz)


e
−i
(
ω
√

n2−0
c

(n̂(k̂·n̂)+ζ̂(ζ̂·k̂))·~r−ωt
)

(45)

where Pη =

√
4k2z+(−1+k2z)

2α2+α(−1+k2z+2η2z)

2(k2z+e1
2
zα

2η2z)
, Mη =

−
√

4k2z+(−1+k2z)
2α2+α(−1+k2z+2η2z)

2(k2z+e1
2
zα

2η2z)
, and α = ε2

ε1
.

Note that the normalization of the fields here is arbitrary.
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CHAPTER 9

BOUNDARY CONDITIONS AT THE INTERFACE

When a photon hits a face of the iTOP, part of the light is reflected and part of it

is transmitted to the other side. For each right-handed incoming wave, with electric field

denoted by E+0, the reflected wave can either be right-handed or left-handed, denoted by

E++ and E+− respectively. The transmitted wave can be in either the transverse electric

or transverse magnetic state, denoted by E+TE and E+TM respectively. There are similar

denotations for the magnetic field, H. Now, the components of these fields must be the same

across the boundary. Since the basis also needs to be consistent across the boundary, it

will be pertinent to use the nηζ basis. The equations that will be most useful are for the

components parallel to the interface. This gives

~E+0 · η̂ + r++
~E++ · η̂ + r+− ~E+− · η̂ − t+TM ~E+TM · η̂ − t+TE ~E+TE · η̂ = 0 (46)

~E+0 · ζ̂ + r++
~E++ · ζ̂ + r+− ~E+− · ζ̂ − t+TM ~E+TM · ζ̂ − t+TE ~E+TE · ζ̂ = 0 (47)

~D+0 · n̂+ r++
~D++ · n̂+ r+− ~D+− · n̂− t+TM ~D+TM · n̂− t+TE ~D+TE · n̂ = 0 (48)

~H+0 · η̂ + r++
~H++ · η̂ + r+− ~H+− · η̂ − t+TM ~H+TM · η̂ − t+TE ~H+TE · η̂ = 0 (49)

~H+0 · ζ̂ + r++
~H++ · ζ̂ + r+− ~H+− · ζ̂ − t+TM ~H+TM · ζ̂ − t+TE ~H+TE · ζ̂ = 0 (50)

Now, for the transverse electric wave, the electric field has no ζ̂ component and the magnetic

field has no η̂ component. Similarly for the transverse magnetic wave, the electric field has

no η̂ component and the magnetic field has no ζ̂ component.
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These equations then become

~E+0 · η̂ + r++
~E++ · η̂ + r+− ~E+− · η̂ − t+TE ~E+TE · η̂ = 0 (51)

~E+0 · ζ̂ + r++
~E++ · ζ̂ + r+− ~E+− · ζ̂ − t+TM ~E+TM · ζ̂ = 0 (52)

~H+0 · η̂ + r++
~H++ · η̂ + r+− ~H+− · η̂ − t+TM ~H+TM · η̂ = 0 (53)

~H+0 · ζ̂ + r++
~H++ · ζ̂ + r+− ~H+− · ζ̂ − t+TE ~H+TE · ζ̂ = 0 (54)

Similarly, the boundary conditions can be written for an incoming wave with minus polar-

ization.

~E−0 · η̂ + r−+
~E−+ · η̂ + r−− ~E−− · η̂ − t−TE ~E−TE · η̂ = 0 (55)

~E−0 · ζ̂ + r−+
~E−+ · ζ̂ + r−− ~E−− · ζ̂ − t−TM ~E−TM · ζ̂ = 0 (56)

~H−0 · η̂ + r−+
~H−+ · η̂ + r−− ~H−− · η̂ − t−TM ~H−TM · η̂ = 0 (57)

~H−0 · ζ̂ + r−+
~H−+ · ζ̂ + r−− ~H−− · ζ̂ − t−TE ~H−TE · ζ̂ = 0 (58)

Since the H field can be found from the E field using our form of Maxwell’s equations,

these equations can be used to solve for the reflection and transmission coefficients, r++, r+−,

r−+, r−−, t+TM , t+TE, t−TM , and t−TE.

Now, each component of the E and H fields can be broken up into real and imaginary

parts to make the calculations simpler. The incoming electric field then becomes

~E+0 = (A+ iB, C + iD,E + iF ) (59)

After expanding each component of the electric field and simplifying, the incoming field
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becomes

~E+0 =− (kz + ie1zαηz)(−2kz((ζ̂ · k̂)− i(k̂ · n̂)αηz) + e21zα
2(−ζz − inzαηz)+

α(ζz − inzαηz)(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z)+

2e1zα(kznzα + ηz(i(ζ̂ · k̂) + (k̂ · n̂)αηz),

i(kz + ie1zαηz)(2k
2
zα + (

√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z)

(−1 + α2η2z) + e21z(α + α3η2z)),

− (kz + ie1zαηz)(2(k̂ · n̂)(kz − ie1zαηz) + α(e21zα(nz − iαζzηz) + 2e1zα(kzζz + (ζ̂ · k̂)η2z)

− i(−2kz(ζ̂ · k̂)ηz − inz(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z)

+ αζzηz(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z))))

(60)

Now, the H field can be found from the equation ~k × ~E = ωµ0
~H so that, using k̂ =

((k̂ · n̂), 0, (ζ̂ · k̂)) for the n, η, ζ basis, ~H becomes

~H+0 =
n

cµ0

(−(ζ̂ · k̂)(C + iD), (ζ̂ · k̂)(A+ iB)− (k̂ · n̂)(E + iF ), (k̂ · n̂)(C + iD)) (61)

In full form, the incoming H field is then

~H+0 =
n

cµ0

((ζ̂ · k̂)(−ikz + e1zαηz)(2k
2
zα+

(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z)(−1 + α2η2z) + e21z(α + α3η2z)),

(kz + ie1zαηz)(2(k̂ · n̂)2(kz − ie1zαηz) + (ζ̂ · k̂)(2kz(ζ̂ · k̂) + e21zα
2(ζz + inzαηz)−

2e1zα(kznzα + i(ζ̂ · k̂)ηz) + iα(iζz + nzαηz)(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z))+

(k̂ · n̂)α(2e1zkzαζz + e1z2α(nz − iαζzηz)(
√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z))),

i(k̂ · n̂)(kz + ie1zαηz)(2k
2
zα + (

√
α2 + k4zα

2 − 2k2z(−2 + α2) + αη2z)(−1 + α2η2z)+

e21z(α + α3η2z)))

(62)
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Given the values for A, B, C, D, E, and F, it is possible to normalize the fields using

~E+0 =
1

N
(A+0 + iB+0, C+0 + iD+0, E+0 + iF+0) (63)

where N =
√
A2 +B2 + C2 +D2 + E2 + F 2. The Normalizations of the D and H fields are

determined by the normalization of E.

In order to crosscheck the validity of the fields, Maxwell’s equations are used in the

form

~k · ~D = 0 (64)

~k × ~H = −ω ~D (65)

~k · ~H = 0 (66)
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CHAPTER 10

RESULTS FOR THE COEFFICIENTS

In the presence of strong magnetic fields fused quartz is gyro-electric, and the basis

states are not linearly polarized waves but counter-rotating elliptically polarized waves with

different indices of refraction for each handedness. We derived reflection coefficients for right-

handed to right-handed and left-handed to left-handed reflections, and also for right-handed

to left-handed reflections and vice versa. Transmission coefficients for left- and right-handed

waves to transmitted TM and transmitted TE waves are also found. There was not very

much guidance in the literature for this step. On the one hand, we have to produce reflections

of very high precision in order to get the phase changes correct for each handedness even

after hundreds of bounces. Much of the literature is within the area of radio waves in the

ionosphere and the approximations are far too large for our purposes. The case of optical

literature is very often for limited cases of no use to this effort where more general solutions

are needed.

Even consulting experts in gyrotropic media, we found that not much guidance could

be offered beyond reaffirmation of the boundary conditions. Due to the dozens of internal

reflections a photon will undergo, and the consequent fact that errors in the coefficients

would be compounded by each new reflection, we set aside some standard approximations

and performed an analytic solution to the boundary value problem in Mathematica to obtain

the coefficients, up to approximation 1.
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The results of this solution are given in full in the appendix. Some examples of the

calculated coefficients are given by

r++ =(NormPpp(((k̂ · n̂)pm

√
n2
−pm − (k̂ · n̂)PTnbox)ξmηpm

((k̂ · n̂)PT (ζ̂ · k̂)
√
n2
+ξpn + (−(k̂ · n̂)PT (k̂ · n̂)

√
n2
+ + nbox)ξpζ)−

((k̂ · n̂)
√
n2
+ − (k̂ · n̂)PTnbox)((k̂ · n̂)PT (ζ̂ · k̂)pm

√
n2
−pmξmnpm+

(−(k̂ · n̂)pm(k̂ · n̂)PT

√
n2
−pm + nbox)ξmζpm)ξpη))/

(NormP (−((k̂ · n̂)pm

√
n2
−pm − (k̂ · n̂)PTnbox)ξmηpm

((k̂ · n̂)PT (ζ̂ · k̂)pp

√
n2
+ppξpnpp + (−(k̂ · n̂)pp(k̂ · n̂)PT

√
n2
+pp + nbox)ξpζpp)+

((k̂ · n̂)pp

√
n2
+pp − (k̂ · n̂)PTnbox)((k̂ · n̂)PT (ζ̂ · k̂)pm

√
n2
−pmξmnpm+

(−(k̂ · n̂)pm(k̂ · n̂)PT

√
n2
−pm + nbox)ξmζpm)ξpηpp))

(67)

r+− =(NormMpm

((
(k̂ · n̂)

√
n2
+ − (k̂ · n̂)PTnbox

)(
(k̂ · n̂)PT (ζ̂ · k̂)pp

√
n2
+ppξpnpp+(

−(k̂ · n̂)pp(k̂ · n̂)PT

√
n2
+pp + nbox

)
ξpζpp

)
ξpη −

(
(k̂ · n̂)pp

√
n2
+pp − (k̂ · n̂)PTnbox

)
(

(k̂ · n̂)PT (ζ̂ · k̂)ξpn

√
n2
+ +

(
−(k̂ · n̂)PT (k̂ · n̂)

√
n2
+ + nbox

)
ξpζ

)
ξpηpp

))
/(

NormP
((
−(k̂ · n̂)pm

√
n2
−pm + (k̂ · n̂)PTnbox

)
ξmηpm((k̂ · n̂)PT (ζ̂ · k̂)pp√

n2
+ppξpnpp +

(
−(k̂ · n̂)pp(k̂ · n̂)PT

√
n2
+pp + nbox

)
ξpζpp

)
+(

(k̂ · n̂)pp

√
n2
+pp − (k̂ · n̂)PTnbox

) (
(k̂ · n̂)PT (ζ̂ · k̂)pm

√
n2
−pmξmnpm+(

−(k̂ · n̂)pm(k̂ · n̂)PT

√
n2
−pm + nbox

)
ξmζpm

)
ξpηpp

))
(68)

where (k̂ · n̂)pm = k̂pm · n̂ and NormP , etc., are normalizations.

The results show that the plus to minus coefficients are essentially identical and that

the new results for the coefficients agree with the previously tabulated results when restricted

to the same conditions.
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Figure 18: Plus Reflection Coefficients. Reflection coefficients for right-handed to right-
handed (a) and right-handed to left-handed (b) elliptical waves in the iTOP for the plane of
incidence parallel to the B field.
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Figure 19: Reflection Coefficients Comparison. Reflection coefficients for right-handed to
left-handed and left-handed to right-handed elliptical waves in the iTOP for the plane of
incidence parallel to the ~B field. A small offset has been added to the latter to make both
curves visible as they are indistinguishable in the unaltered plot.
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CHAPTER 11

CONCLUSION

A new set of reflection and transmission coefficients was found using the boundary

conditions for the electric and magnetic fields at the interface of the iTOP. They can be used

for any face of the iTOP (except the mirror). These coefficients are shown to agree with

previously calculated results when restricted to the same conditions. In addition, the electric

and magnetic fields themselves are shown to satisfy the wave equations that govern the

behavior of electromagnetic waves. The coefficients will be used in simulations to distinguish

between kaons and pions which will help to reconstruct particle collisions in the Belle II

experiment.
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APPENDIX
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(k̂ · n̂) = kxnx + kyny + kznz (69)
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