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ABSTRACT 

The overarching goal of this research is to explore the biological mechanisms of 

aging and formulate novel therapeutic approaches to mitigate age-related impairments. 

The presence and pervasiveness of ~24 hour (circadian) rhythms in molecular and 

behavioral dynamics suggests that the mechanisms regulating these rhythms are 

integral to biological aging and possibly amenable to therapeutic interventions. Based 

on evidence presented in this dissertation, we conclude that the endocannabinoid 

system is a mediator of both central and peripheral circadian physiology. Additionally, 

the hormetic pharmacological properties of the synthetic cannabinoid CP55940 suggest 

that bidirectional modulation of circadian rhythms via cannabinoids is possible.  

Chapter 1 summarizes seminal work and recent advances in the fields of 

biological aging, circadian rhythms, cannabinoid pharmacology, and the concept of 

hormesis. The culmination of this chapter poses the central question: are exogenous 

cannabinoids capable of bidirectionally restoring age-related changes in circadian 

rhythms? Chapter 2 describes behavioral pharmacology studies wherein young and 

aged mice were administered varying doses of CP55940 to determine how exogenous 

cannabinoids affect locomotion, body temperature, and nociception. Data acquired from 

these high-powered experiments demonstrate that CP55940 is significantly more potent 

and efficacious in old mice, and that extremely low doses of this exogenous 

cannabinoid elicit paradoxical locomotor stimulation in young mice.  
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In Chapter 3 we quantified the age- and sex-specific characteristics of voluntary 

wheel running (VWR) in mice housed under constant darkness - a model for age-related 

circadian rhythm disruption. We then assessed the ability of CP55940 to alter the timing 

of activity onset, offset, and total locomotion. Our results indicate that higher doses of 

CP55940 given immediately after waking acutely suppress wheel running behavior but 

lead to a rebound in activity later in the day. The final chapter summarizes these results 

and discusses future studies which can expound upon this novel research. Collectively, 

this work establishes experimental and analytical methods useful for investigating 

cannabinoid pharmacology and evaluating circadian rhythm-restoring therapeutics in 

aged rodents. Given the recent surge in cannabinoid use and the lack of preclinical 

evidence of these compounds in elderly subjects, these results provide a critically 

needed foundation for future experimental work.   
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CHAPTER 1:  

AGING, CIRCADIAN RHYTHMS, AND CANNABINOIDS 

ABSTRACT 

Numerous aspects of mammalian physiology exhibit cyclic daily patterns, known 

as circadian rhythms. However, studies in aged humans and animals indicate that these 

physiological rhythms are not consistent throughout the life span. The simultaneous 

development of disrupted circadian rhythms and age-related impairments suggests a 

shared mechanism which may be amenable to therapeutic intervention. Recently, the 

endocannabinoid system has emerged as a complex signaling network which regulates 

numerous aspects of circadian physiology relevant to the neurobiology of aging. 

Agonists of cannabinoid receptor-1 (CB1) have consistently decrease neuronal activity, 

core body temperature, locomotion, and cognitive function. Paradoxically, several lines 

of evidence now suggest that very low doses of cannabinoids are beneficial in 

advanced age. One potential explanation for this phenomenon is that these drugs 

exhibit hormesis - a biphasic dose-response wherein low doses produce the opposite 

effects of higher doses. Therefore, it is important to determine the dose-, age-, and 

time-dependent effects of these substances on the regulation of circadian rhythms and 

other processes dysregulated in aging. This review highlights three fields - biological 

aging, circadian rhythms, and endocannabinoid signaling - to critically assess the 

therapeutic potential of endocannabinoid modulation in aged individuals. If the hormetic 

properties of exogenous cannabinoids are confirmed, we conclude that precise 
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administration of these compounds may bidirectionally entrain central and 

peripheral circadian clocks and benefit multiple aspects of aging physiology. 

BIOLOGICAL AGING 

In humans, it is well accepted that the end of life is wrought with numerous 

concomitant disease states which impose immense personal and social burden. As 

such, the study of core biological processes involved in aging has become an 

increasingly prominent topic. Interestingly, there is a clear dichotomy among individuals 

regarding measures of age-related performance 1. This phenotypic heterogeneity is 

particularly important when considering cognitive ability, since the deterioration of 

mental functions can greatly influence a person’s quality of life. Though many aspects of 

cognition decline with age, spatial orientation and speed of processing appear 

particularly susceptible to age-related dysfunction 2. Physiologically, the loss of neuronal 

synapses, chronic inflammation, oxidative stress, and impaired neurovascular coupling 

all contribute to declining cognitive performance with age 3-5. Fortunately, several 

studies indicate age-related cognitive impairment can be partially prevented or delayed 

using targeted pharmacological or hormonal interventions 6-10.  

One of the earliest reported symptoms of aging is disturbed sleep 11,12. 

Sleep/wake cycles are one example of the biologic phenomenon known as circadian 

rhythms. Though sleep requirements change throughout the lifespan, sleep quality and 

consistency are known to markedly deteriorate with age (Figure 1.1) 13. This is relevant 

to cognitive decline since sleep is an integral factor in the consolidation of memory, and 

age-related sleep disruptions are often concomitant with cognitive impairment and/or 

neurodegenerative diseases 14-19. Despite the necessity of sleep for survival, defining 
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the physiological purpose of sleep has been exceedingly difficult. However, relatively 

recent discovery of the glymphatic system and the sleep-dependent regulation of 

metabolite clearance from the brain indicates that sleep is vital to the maintenance of 

proteostasis in the central nervous system20. Since proteostatic dysfunction is common 

in many pathologies of aging, disturbed sleep may play a causal role in age-related 

cognitive disorders. Although it remains unclear how age-dependent changes in the 

physiologic regulation of sleep are controlled, the maintenance of healthy sleep patterns 

in advanced age seems undeniably important to cognitive function.  

CIRCADIAN RHYTHMS AND AGING 

Circadian rhythms are scale-invariant biological patterns that correlate to the 

cyclic relationship of the Sun and Earth21,22. Extrinsic cues such as light and 

environmental temperature are known as zeitgebers (time-givers) which entrain 

organisms’ behaviors to particular times of day and improve evolutionary fitness (Figure 

1.2)23,24. Though it has long been observed that animals behave in a manner inherently 

tied to the time of day, only recently have the molecular and physiological underpinnings 

of these processes been elucidated25-27. Importantly, changes in these clock genes are 

attributed to both the process of aging and the pathogenesis of age-related diseases 

11,28,29. 

Seminal work in hamsters and mice revealed that when aged animals are 

housed in complete darkness, their free-running (intrinsic) circadian rhythms of 

locomotion are significantly different from younger animals 30-32. Additionally, studies of 

molecular clocks indicate that both rhythm amplitude and regularity deteriorate with age 

33. More recent studies have confirmed these age-related changes in circadian rhythm 
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amplitude and period are exacerbated in the absence of environmental cues 34. Though 

these findings suggest deteriorating rhythms can be masked or compensated by 

environmental cues, aberrant sleep/wake cycles have also been observed in several 

species of aged subjects under normal lighting conditions 13,17,19,35.  

In addition to impaired sleep, the amplitude of circadian locomotor activity and 

body temperature are known to decline in aging humans and rodents 36-38. The 

circadian range of rectal temperature in mice is ~2.0°C, which declines to 0.5-1.0°C in 

advanced age; a similar reduction in range has been reported in humans 39-41. Daily 

locomotion also goes down in mice, with average daily running wheel counts declining 

by ~50% 42. Furthermore, sleep-dependent production of the pleiotropic humoral factor 

Growth Hormone declines with age, and it is reported that these disruptions precede or 

are comorbid with cognitive dysfunction 43,44. A recent study suggests that age-related 

changes in the epigenetic regulation of the clock gene Per1 underlies some aspects of 

cognitive decline 45. Whether circadian dysfunction is causal in age-related cognitive 

decline remains to be known, however the striking overlap of these observations 

warrants further investigation. Taken together, these observations suggest that both 

molecular and behavioral circadian rhythms might be responsive to- and responsible 

for- many aspects of biological aging. 

Within the brain, the suprachiasmatic nuclei (SCN) of the mammalian 

hypothalamus are believed to be the primary neural sites of circadian integration 46. The 

SCN as a whole, through unknown mechanisms, integrates the oscillatory rhythm of 

each constituent neuron and collectively adopts a unified tone 27,47,48. Neuronal 

projections from the SCN transmit this coordinated rhythm to surrounding hypothalamic 
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and brainstem structures responsible for basic physiological functions such as the 

sleep/wake cycle, locomotor activity, regulation of body temperature, and hormone 

production 49,50. At the molecular level, cellular circadian clocks consist of transcription-

translation feedback loops which exhibit tightly coupled daily rhythms (Figure 1.3). 

When exposed to a normal 24-hour light cycle, neurons of the SCN rhythmically 

express these clock genes that oscillate with periods of roughly 24 hours 49,51. Light, 

temperature, food, and pharmaceuticals can all act as zeitgebers, which modulate 

endogenous clock gene activity by extending or shortening the period of oscillation 52,53. 

Such drugs, known as chronobiotics, influence circadian physiology by either directly 

impinging on core clock molecules or altering entrainment systems. Therapeutically, 

chronobiotics are used to shift or amplify endogenous circadian rhythms and reduce 

dissonance with environmental conditions 54. Though circadian dysregulation is reported 

with chronic or uncontrolled use of exogenous substances such as caffeine, cannabis, 

and stimulant medications 55-58. Promising ongoing research suggests that chronobiotics 

may be beneficial in cases of jet-lag, shift-work, and potentially aging, 59,60. 

The SCN is often considered the primary regulator of mammalian circadian 

rhythms, although cell-autonomous molecular feedback loops have been observed in 

nearly all tissues throughout the body 61,62. In peripheral tissues, the period of each 

cell’s rhythm is very near to 24 hours, although their exact rates are determined by body 

temperature, humoral factors, and nutritional state 23,47,53,63-65. Critically, in contrast to 

the clock gene rhythms of peripheral tissues, neurons of the SCN appear resistant to 

entrainment by body temperature 66,67. Since the SCN is directly responsible for the 

rhythm of body temperature, this presents a potential mechanism through which the 
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SCN can regulate clocks in peripheral tissues 62,68. Core body temperature - a vital 

physiological output which exhibits circadian rhythmicity - declines with age, and older 

subjects exhibit impaired thermogenesis 69-71. If the circadian rhythms of peripheral 

tissues are functionally entrained by body temperature, then age-related impairments of 

thermoregulatory capacity could explain why the rhythms of some peripheral tissues are 

unable to be properly maintained. Furthermore, since neuronal activity in the SCN 

determines central clock rhythms, and peripheral cellular clocks are entrained by 

thermic signals, pharmacological interventions which influence both neuronal activity 

and body temperature are of particular interest. 

Declining circadian function with age is not associated with changes in overall 

SCN volume, however several studies report altered physiological properties in this 

brain region 72,73. In vivo electrophysiological recordings of the SCN show reduced 

amplitude and “noisy” signals as animals age, suggesting that neuronal function is 

compromised 32. Additionally, increases in reactive astrocytes have been observed in 

the SCN of aged rodents 72,73. This is further emphasized by the concomitant age-

related reduction in neural excitability within one downstream region of the 

hypothalamus innervated by the SCN, the subparaventricular zone. Mechanistically, 

reductions in several forms of potassium conductance have been shown to contribute to 

age-related alterations in SCN neural activity 74,75. More work is needed to understand 

the molecular mechanisms that precipitate these functional changes in the SCN and to 

determine their specific role age-related circadian dysfunction.  

Even if targeting the SCN is not currently feasible, several studies demonstrate 

pharmacological manipulation of the peripheral clock network is possible 61,76. One of 
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the most profound regulators of lifespan across species is caloric intake, and evidence 

in flies suggests that this effect on lifespan is mediated via peripheral circadian clock 

gene expression 77. Pharmacologically, dexamethasone was shown to alter clock gene 

expression in the liver, kidney, and heart via hormonal glucocorticoid signaling 78. 

Peripheral circadian rhythms have also been modulated by drug-induced increases in 

cAMP levels 61. These findings show that although some aged tissues are arrhythmic 

they can still be pharmacologically induced to oscillate. Such reports are promising, 

since they suggest the machinery governing clock gene expression in the periphery 

remains intact even when the system is desynchronized. Targeting cAMP receptors is 

particularly exciting, as G-protein coupled receptors (GPCRs) are often regulators of 

cAMP. GPCRs are commonly successful drug targets, and over 35% of currently 

approved drugs act on these receptors 79. Collectively, this implies that a large number 

of proteins may be amenable to therapeutically regulating circadian signaling. Future 

studies aimed at restoring circadian function within the SCN or preventing peripheral 

dysregulation may simultaneously benefit multiple pathologies of aging. 

THE ENDOCANNABINOID SYSTEM IN ADVANCED AGE  

One potential target for the pharmacological manipulation of circadian rhythms in 

advanced age is the endocannabinoid system 80. Discovery of the endocannabinoid 

system occurred when searching for the receptors responsible for the psychotropic 

effects of plants from the genus Cannabis 81-83. Multiple cannabinoid receptors have 

been identified in mammals, including the canonical CB1 and CB2 as well as more-

recently identified receptors like GPR55 and GPR18 80,84-86. These cannabinoid 

receptors are GPCRs which exhibit distinct binding affinities for various endogenous 
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and exogenous ligands 80,86,87. Radiographic localization of these receptors revealed 

profound expression of CB1 in the brain and central nervous tissue, while CB2 is 

primarily located in peripheral immune cells 88-90. The term cannabinoid refers to any 

compound which binds to these receptors, while the term endocannabinoid specifically 

refers to endogenously produced ligands 80. The endocannabinoid system consists of 

these receptors and their endogenous ligands, which include N-

arachidonoylethanolamine (Anandamide) and 2-Arachidonoyl glycerol (2-AG) among 

others 91,92. Numerous studies of the endocannabinoid system demonstrate that these 

ligands and receptors collectively regulate sleep, hunger, body temperature, and 

cognition – several of the circadian behaviors disrupted in advanced age 93-96.  

As with many other physiological processes, the endocannabinoid system varies 

markedly with age 97. There have been conflicting reports regarding age-related 

changes of CB1 in the brain. Some reports in rodents suggest that CB1 mRNA 

expression is reduced in advanced age 98,99, while others indicate there is no change or 

even region-specific increases in CB1 100-103. These discrepancies are also observed in 

humans, with post-mortem analyses showing reductions in CB1 radiolabeling in some 

studies, while newer PET scans of living individuals showing sex-specific increases in 

CB1 reactivity within aged females 104-106. Despite the various reported changes in 

expression, studies have shown a reduction in CB1-stimulated GTPγS functional activity 

in rodents and humans 98,103,104. In addition to potential changes in receptor expression 

and function, reductions in the endocannabinoid ligand 2-AG have been observed in 

advanced age 107. Considering the importance of this brain region to learning, memory, 

and pathologies of aging, it is likely that the changing endocannabinoid system impacts 
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cognitive behaviors. In support of this idea, studies using CB1-deficient mice show that 

reducing these signals leads to the development of unique age-related behavioral 

disturbances earlier than wildtype mice 108. Curiously, young CB1-deficient mice 

outperform wildtype controls in social and object recognition tasks as well as operant 

learning paradigms, suggesting that the effects of the endocannabinoid system are 

influenced by the developmental age of the animals 108-110. Although the exact 

mechanisms of these fluctuations are still under investigation, it appears that the 

preservation of endocannabinoid system function is vital to the aging brain. 

Given the extensive activity of endocannabinoids throughout the central nervous 

system, there appears to be a substantial link between the endocannabinoid system 

and those physiological processes subject to age-related dysfunction. Additional 

evidence suggests that the endocannabinoid system plays a key role in circadian 

physiology. Several circadian behaviors are intricately linked to endocannabinoid 

signaling, namely: thermoregulation, nociception, locomotion, and food-intake 93-96. 

Centrally, neurons of the SCN express CB1 and alter their rates of firing in the presence 

of synthetic cannabinoid agonists and antagonists 111,112. A recent primate study also 

revealed a circadian rhythm of cannabinoid receptor transcription in both the central 

nervous system and peripheral tissues 113. Moreover, cannabinoids are powerful 

regulators of body temperature - indicating that these compounds indirectly entrain 

peripheral cellular clocks. Taken together, these findings demonstrate a connection 

between the behavioral impairments observed in advanced age, disrupted circadian 

rhythms, and alterations in the endocannabinoid system.  

CANNABINOID BEHAVIORAL PHARMACOLOGY 
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Although the endocannabinoid system is regulated by endogenous molecules 

like 2-AG and anandamide, exogenous cannabinoids such as those found in Cannabis 

are also known to modulate this system. Rigorous pharmacological study of Cannabis 

(also known as Marijuana, Marihuana) has a long and complex history 114. Historical 

records of Cannabis-use have been documented for millennia, but the structures and 

potential functions of the chemicals synthesized within Cannabis are still being 

elucidated 81,82,115,116. Two of the most-studied phytocannabinoids (plant-derived 

cannabinoids), are Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), although 

growing bodies of literature exist for cannabigerol (CBG), cannabivarin (CBV), and 

many others 92. THC is considered to be the primary psychoactive compound in 

Cannabis and is an agonist of both CB1 and CB2 116. The mechanism by which CBD 

exerts its physiological effects is unknown and widely disputed, as the Ki for CB1 and 

CB2 is over 100 fold lower than that of THC on these receptors 117. Though most of the 

focus is on phytocannabinoids like THC, it is important to also note that Cannabis 

produces a wide variety of monoterpenoids and sesquiterpenoids - which may also act 

directly on cannabinoid receptors 118,119. Extensive reviews of Cannabis, 

phytocannabinoids 92, cannabinoid receptors 80, and endocannabinoid pharmacology 

120, have previously been published.  

Human empirical and anecdotal evidence demonstrates that exogenous 

cannabinoids profoundly impact cognition and physiology 114,115,121,122. However, studies 

of phytocannabinoids are somewhat difficult to interpret given the extreme diversity of 

compounds present in raw plant-matter or extracts. As such, knowledge of each 

cannabinoid’s specific pharmacological profile is crucial to consider any potential 
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therapeutic applications for these substances. Receptor-subtype-specific compounds 

have been vital to delineating the shared and specific effects of CB1 and CB2 on 

physiological functions 123,124. Many synthetic cannabinoids have been identified using 

the Tetrad Assay – a battery of behavioral tasks for assessing CB1 function in rodents 

80,125. These tests measure locomotion, catalepsy, thermoregulation, and analgesia as 

endpoints of CB1 receptor activity 125. Though the Tetrad Assay has proven useful as a 

drug screening mechanism, its relatively limited scope does not permit full 

characterization of an animal’s behavioral status, especially when one considers the 

behaviors altered in advanced age. In addition to nociception, locomotion, and 

thermoregulation, CB1 activity regulates learning and memory, sleep/wake activity, 

food-intake, anxiety, attention, and cardiovascular function 126-133.  

In both animals and humans, memory impairment following acute or chronic 

administration of CB1 agonists has been repeatedly reported 134-138. However, 

alternative studies indicate that these memory-impairing effects are dose- and age-

dependent 139-144. Recent evidence in rodents suggest that some these effects can be 

partially blocked by co-administration with CBD, a finding which may explain why 

anecdotes of whole-plant Cannabis-use often disagree with the receptor-specific effects 

seen in animal studies 145,146. The diverse behavioral phenotypes elicited from 

modulation of the endocannabinoid system emphasize the importance of understanding 

this integral physiological system. 

Despite the large volume of studies conducted on exogenously administered 

cannabinoids, synthesis of this data is difficult due to inconsistent compositions of 

phytocannabinoids, doses, and routes of administration (ROAs) 147-150. Additionally, 
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there is a significant disparity between preclinical dosing regimens and those currently 

accepted for human consumption. Regarding THC, many rodent experiments use 

intraperitoneal doses ranging from 1mg/kg to 30mg/kg, however, current recreational 

and clinical amounts for humans are closer to 0.15mg/kg orally 151-154. While the 

pharmacokinetic profiles vary markedly between rodents and humans 155, several 

studies now show that injections of THC can alter animal behavior and molecular 

signaling at doses as low as 0.002mg/kg 140,156. Recent attempts have been made to 

more adequately model the routes of administration used by humans 126,127,157-160. The 

results of these studies indicate that cannabinoids administered orally have a delayed 

onset and longer duration of action than when they are inhaled 127,158,161. These route of 

administration-dependent effects are to be expected; however, preliminary evidence 

suggests that chronic Cannabis-use may also alter the gut microbiome 162. Given that 

recreational and medicinal cannabinoids are often administered orally, future studies of 

microbiome-mediated cannabinoid metabolism are of particular importance.  Taken 

together, it is imperative that these discrepancies in dosing and route of administration 

are carefully considered and discussed in future studies. 

HORMESIS AND CANNABINOID CHRONOPHARMACOLOGY 

There is little debate regarding the deleterious effects of cannabinoids in high 

doses, however the reported effects of more modest amounts are somewhat conflicting. 

High doses of THC (≥3mg/kg in rodents, ≥0.15mg/kg in humans) are consistently 

reported to disrupt cognitive function in rodents and produce psychoactive effects in 

humans 136,138,142,163-165. Despite the consistent inhibitory or soporific effects of 

cannabinoids at higher doses, studies which have examined lower amounts often report 
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stimulatory effects at the lowest doses tested 143,166-172. Though exogenous 

cannabinoids are known to induce hypothermia and hypolocomotion, several 

investigations have reported increased body temperature and locomotion following 

treatment at low doses 171,173,174. A similar biphasic effect of THC on intracranial self-

stimulation was reported in rats treated with 0.1 or 1.0mg/kg 167. Based on this study, 

the authors concluded that an acute intraperitoneal injection of 0.1mg/kg THC induced 

reward-seeking behavior while the higher dose elicited anhedonia. Mechanistically, the 

effects of higher doses appear to be mediated in-part by CB1 signaling in GABAergic 

neurons 168. A growing body of literature now suggests that low doses (≤3mg/kg) of 

THC and other synthetic cannabinoids may prevent certain aspects of age-related 

cognitive decline in rodents 139,143,156,175.  

Within the context of exogenously administered cannabinoids and cognition, the 

hormetic dose-response of this compound may rectify these disparate reports 176. 

Hormesis describes a biphasic dose-response where low amounts of a substance 

produce opposite effects of higher doses 177. Great efforts have been made in recent 

years to catalog and characterize reports of dose-response experiments which cannot 

be explained by traditional, linear models 178. Continued work in this field now suggests 

that one explanation for this biphasic response is through preconditioning 179-181. This is 

in line with work previously presented by Sarne et al. which indicates that exposure to 

low doses of exogenous cannabinoids blunt the negative impacts of subsequent insults 

180,182. These findings have intriguing implications for the study of aging, since 

preconditioning biological systems during critical developmental windows may bolster 

resilience to age-related dysfunction 183,184.  
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Interestingly, the hormetic dose-response of THC on body temperature has been 

reported for many years (Figure 1.4A) 171,173,180. Additionally, exogenous cannabinoids 

alter anxiety-related behaviors in dose-dependent, bidirectional manner - although the 

nature of this relationship is poorly understood 185-188. Early observations regarding the 

time- and temperature-dependence of THC’s effects may also shed light on these 

seemingly incongruent findings. A classic study by Ernest Abel revealed that the time of 

day in which THC is administered drastically affects the physiological response, a 

phenomenon now referred to as chronopharmacology 189. Similarly, an elegant study by 

Pertwee and Tavendale in 1977 revealed that the ambient temperature markedly 

altered rates of oxygen consumption and body temperature changes induced by THC 

administration 190. Furthermore, sex-specific responses to cannabinoids may present a 

confounding factor when interpreting these results, as previous reports have indicated 

that doses of THC that impaired cognition in males actually improved measures in 

females 191,192.  

Given the current evidence, it is difficult to discern whether the cognitive-

enhancing effects of low-dose cannabinoids are due to ‘true’ hormesis, age-dependent 

changes in endocannabinoid function, or both. The work by Sarne and colleagues 

demonstrates that exceptionally small amounts of THC (0.002mg/kg) are sufficient to 

influence neurobiology. These studies reported that a single dose of 0.002mg/kg, IP 

produced neuroprotection in young male mice and lasting cognitive enhancement in old 

females 140,156,174,193. Critically, pilot studies at this dose were reported to increase body 

temperature and stimulate locomotion - a finding which supports the hormetic 

stimulatory response 180. While the evidence presented by Suliman also supports that 
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the effects of cannabinoids are age-dependent, the data from this study indicate that 

there is a ‘window’ in which cannabinoids may improve function 143. Although there are 

not enough doses in these studies to clearly demonstrate hormesis, we feel that this 

evidence is supportive nonetheless. 

The range of doses studied by Sarne et al. indicate that doses which improve 

cognitive performance in old animals (0.002mg/kg) cause impairments in young 

animals, and the studies by Bilkei Gorzo et al. (3mg/kg THC) in old animals also support 

this. These findings, and others, indicate a clear effect of aging on response to 

exogenous cannabinoid administration. The possibility remains, however, that the 

lowest dose of THC reported by Sarne et al. (0.0005mg/kg THC, IP) in young animals, 

may still lie above the stimulatory hormetic range for this age group. This hypothesis is 

supported by their biochemical studies which report the highest activation of P-ERK in 

the cerebella of young animals at this dose (0.0005mg/kg) (Amal 2010).  

To date, we are unaware of a modern study specifically designed to determine if 

cannabinoids exhibit hormesis, and whether this hormetic dose-range is altered with 

age. Even if preliminary evidence suggests there is cannabinoid hormesis in young 

animals, it remains to be seen if this same hormetic curve persists with age or if the 

stimulatory range might change. Though there are several potential mechanistic 

explanations for these age-dependent effects, recent studies support a desensitization 

of endocannabinoid machinery with age. Ultimately, additional studies testing multiple 

doses in young and old animals are required to directly compare the hormetic range of 

exogenous cannabinoids.  
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Despite the importance of these pharmacological considerations across different 

compounds and systems, hormesis and chronopharmacology remain understudied 

components of many biomedical studies - particularly those in aged animals 194. These 

two distinct properties have intriguing implications for the potential use of cannabinoids 

as therapeutics. Namely, that it may be possible to attain opposing physiological effects 

based solely on the dose- and time-of-administration. To this end, application of these 

pharmacological properties to a highly dynamic and heterogenous condition such as 

age-dependent circadian dysfunction, may provide a wide range of therapeutic potential 

(Figure 1.4B). 

CONCLUSIONS 

Taken together, the findings discussed here suggest that altered circadian 

rhythms are a potential biomarker of aging, and restoration or preservation of these 

rhythms in aged individuals might benefit certain age-related pathologies. The 

endocannabinoid system is a promising target in the treatment of age-related disease, 

given the diverse physiological processes it regulates. Centrally, modulation of SCN 

activity by cannabinoids supports their classification as a chronobiotics, and careful, 

therapeutic application use of these compounds may serve to restore abnormal 

behavioral rhythms in aged subjects. Moreover, the biphasic effects of cannabinoids on 

body temperature may allow for the “tuning” of peripheral molecular clocks (Figure 1.5). 

Many additional experiments are necessary to fully characterize the hormetic dose-

response of exogenous cannabinoids such as THC and examine their potential efficacy 

in the amelioration of age-related circadian dysfunction. As societal opinions of ‘aging 
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as a disease’ and ‘cannabinoids as medicine’ shift, further inquiry of these previously 

intractable topics may prove greatly beneficial to human health. 

FIGURES 

 

Figure 1.1: The relationship between lifespan, healthspan, cognition, disease burden, 

and survival. 
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Figure 1.2: Environmental inputs and physiological outputs of mammalian circadian 

rhythms.  

Routine daily exposure to light entrains the SCN to a 24-hour period via the 

retinohypothalamic tract. Neurons of the SCN rhythmically alter their rates of firing in 

response to changing environmental conditions and humoral signals. Outputs from SCN 

neurons drive central rhythms in hormone production, locomotor activity, feeding 

behavior, and body temperature. Peripherally, cellular rhythms are entrained by the 

daily oscillation of body temperature and food-intake. Since endocannabinoid activity is 
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known to regulate SCN neurons, body temperature, and food-intake, evidence suggests 

that the endocannabinoid system is a key component of physiological circadian 

rhythms. 
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Figure 1.3: Molecular components of cellular circadian rhythms.  

The core circadian molecular loop consists of two proteins, Brain and muscle arnt-like 1 

(BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), which interact to 

form a transcriptional activator complex that stimulates transcription of the Period and 

Cryptochrome genes (PER1, PER2, CRY1, and CRY2). The Per and Cry proteins 

accumulate in the cytoplasm throughout the day and ultimately bind to the 

BMAL1:CLOCK complex. Sufficient binding of the PER:CRY complex to the 

BMAL1:CLOCK complex prohibits transcription of PER and CRY mRNA. As protein 
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levels of PER and CRY diminish, the BMAL1:CLOCK complex is allowed to stimulate 

transcription once more.  
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Figure 1.4: Hormesis and the chronobiotic potential of THC in aged subjects.  

Panel A) Hormetic dose-response of THC on rectal temperature in rats. Data redrawn 

from: Sofia, R.D., 1972. A paradoxical effect for 1-tetrahydrocannabinol on rectal 

temperature in rats. Research communications in chemical pathology and 

pharmacology, 4(2), pp.281-288.  

Panel B) Declining amplitude and increasing lability of central and peripheral rhythms 

with age may be amenable to therapeutics which simultaneously alter neuronal activity 

in the SCN and body temperature. Using the chronopharmacological properties and 

hormetic dose-response of THC, low-dose exposure may help to rescue dysfunctional 

clocks in aging systems. 
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Figure 1.5: Hypothetical model of cannabinoid hormesis in the restoration of age-related 

circadian rhythm disruption.  
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CHAPTER 2:  

AGE-DEPENDENT HORMESIS-LIKE EFFECTS OF THE  

SYNTHETIC CANNABINOID CP55940 IN C57BL/6 MICE. 

ABSTRACT  

Use of cannabis and cannabinoid-containing substances is increasing among 

geriatric patients, despite relatively sparse preclinical evidence in aged models. To 

better understand the effects of exogenous cannabinoids on aging male and females, 

we compared the age- and dose-dependent physiological and behavioral effects of the 

synthetic cannabinoid CP55940 in adult and aged C57BL/6 mice. Locomotion, body 

temperature, thermal nociception, and fecal output were measured following CP55940 

administration. Our findings indicate that CP55940 is more potent and efficacious in 

older mice, evidenced by exaggerated antinociceptive and soporific responses when 

compared to younger adult mice. Additionally, we report that low doses of CP55940 

paradoxically stimulate locomotion in young mice, however this hormesis-like response 

is not as evident in aged animals. These bidirectional effects appear to be mediated via 

the endocannabinoid CB1 and CB2 receptors.  

INTRODUCTION 

Collectively, the canonical receptors (CB1 and CB2), endogenous ligands 

(anandamide and 2-arachidonoylglycerol), biosynthetic regulators (N-acyl 

phosphatidylethanolamine phospholipase D [NAPE-PLD] and diacylglycerol lipase-α 
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[DAGLα]), and metabolizing enzymes (fatty acid amide hydrolase [FAAH] and 

monoacylglycerol lipase [MGL]) of the endocannabinoid system are known to 

dynamically regulate numerous aspects of mammalian physiology. Though extensive 

work has been conducted on the behavioral and developmental effects of exogenous 

cannabinoids early in life, substantially less is known regarding the physiological effects 

of these substances in advanced age92,195. This lack of information, coupled with rapidly 

shifting trends in cannabis- and cannabinoid-use worldwide puts elderly patients 

particularly at-risk. Furthermore, emerging evidence suggests that the endocannabinoid 

system may play a fundamental role in the biological processes of aging. This is 

exemplified by transgenic mice that are genetically deficient in CB1, which exhibit 

progeroid cognitive and physiological phenotypes108. However, pharmacological 

manipulation of endocannabinoid signaling does not appear to produce consistent 

effects across the lifespan. This is evidenced in studies where chronic infusion of the 

phytocannabinoid Δ-9-tetrahydrocannabinol (THC) was shown to enhance cognition in 

aged mice at doses which impair younger animals’ performance139. 

Cannabis and cannabinoid-containing substances have been used 

therapeutically for millennia, but rigorous evaluation of their medical value is still 

ongoing115. In preclinical rodent models, the effects of CB1-acting compounds are 

traditionally measured using the “Tetrad Assay” - a battery of tests that measure 

locomotion (open field), body temperature (rectal probe), catalepsy (ring-immobility), 

and nociception (hot plate or tail withdrawal)196,197. The synthetic cannabinoid CP55940 

is a well-documented, high-affinity CB1/CB2 mixed agonist which elicits the hallmark 

phenotypes observed in these behavioral assays. Studies have demonstrated that the 
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phenotypes produced by CP55940 are similar to those produced by high doses of the 

phytocannabinoid THC - hypolocomotion, hypothermia, and antinociception - though 

CP55940 is substantially more potent and efficacious than THC in these assays198,199.  

While there is consensus regarding the soporific, aversive, and antinociceptive 

effects of CB1 agonists at high doses, several studies report contradictory stimulation of 

locomotion, body temperature, and cognitive behaviors at low or ultralow 

doses173,176,195,200. One explanation for these biphasic dose-responses is the biological 

adaptive response known as hormesis183. Though hormesis, preconditioning, and 

bidirectional dose-responses are widely evident in numerous biological systems, 

systematic reporting of these low-dose effects is exceedingly difficult and often 

overlooked. Such findings are critical, however, as the stimulatory hormesis-like effects 

observed with low doses of cannabinoids in young animals may underlie the differential 

cognitive effects reported in aged animals140,176,182. To date, we are unaware of a study 

which specifically permits the comparison of young vs aged animals’ responses to low 

doses of cannabinoids. To determine whether this biphasic response to cannabinoids is 

age-dependent, we experimentally assessed the dose-dependent physiological and 

behavioral effects of CP55940 at multiple doses in young and aged, male and female 

mice.  

RESULTS 

Acclimation to Vehicle Injection and Baseline 

In order to adequately capture potential biphasic behavioral and physiological 

responses elicited by the synthetic CB1/CB2 agonist CP55940, we administered this 

compound via intraperitoneal (IP) injection at the following weight-adjusted doses: 
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0.001, 0.01, 0.1, 0.4, and 0.8mg/kg. Prior to treatment with CP55940, animals 

underwent a 6-day acclimation period consisting of 3 days of handling and temperature 

measurement, followed by 3 additional days of temperature recordings before and after 

vehicle injection (1:1:18, EtOH:Kolliphor:Saline) (Figure 2.1). During the acclimation 

period, baseline temperature was measured immediately before and 60 minutes after 

injection using both a rectal probe and a non-contact infrared (IR) thermometer. During 

acclimation recordings, both age groups showed a slight but consistent average 

reduction in rectal and IR temperatures 60 minutes after injection of the vehicle solution 

(Figure 2.2). Additionally, old mice weighed more while having lower baseline rectal 

and skin/pelage temperatures than young mice (Figure 2.2).   

Behavioral and Physiological Responses to CP55940 

On the day of behavioral testing, male and female mice were injected with 

varying doses of CP55940 or vehicle then assessed for locomotor, thermoregulatory, or 

nociceptive responses. No sex-specific differences were observed throughout the study, 

thus data from both males and females was combined. Activity measurements recorded 

in the open field 30-60 minutes after injection indicate that treatment with CP55940 

displays a significant Age:Dose interaction effect on total locomotion 

(Locomotion~Age*Dose, H(5,351) = 11.451, p=0.043). Interestingly, young mice treated 

with the lowest dose of CP55940 tested (0.001mg/kg) exhibit significantly increased 

locomotion compared to age-matched vehicle-treated control animals (p<0.05, Fig. 

2.3A). However, old animals administered this same dose did not significantly differ 

from age-matched vehicle-treated controls. As expected, higher doses of CP55940 

significantly reduced locomotion in both young and aged animals though this 
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suppression was evident in aged animals at a dose of 0.1mg/kg, which was not soporific 

in young animals (Fig. 2.3A). In both age groups, doses of CP55940 ≥0.4mg/kg 

induced severe catalepsy (Fig. 2.3A). Though no effect of Age was detected on fecal 

output during the open field task (Feces~Age, H(1,297) = 1.57, p=0.210), young vehicle-

treated animals produced significantly more fecal pellets during the open field task than 

old control animals (p=0.004). Additionally, at doses of CP55940 ≥0.01mg/kg fecal 

output was significantly reduced in both age groups (Fig. 2.3B). 

Immediately following the 60-minute temperature recordings, nociception was 

quantified by placing each mouse onto a 52ºC heated plate and recording the latency to 

lick its hind-paw or jump. Significant simple main effects of Dose (Latency~Dose, 

H(5,353) = 149.41, p<0.001) and Age (Latency~Age, H(1,353) = 9.21, p=0.002) were 

detected in this assay, though no interaction between these factors was observed (Fig. 

2.3C). Among vehicle-treated animals, young mice were significantly quicker to respond 

than older mice (p=0.005). The antinociceptive effects of CP55940 were highly 

significant in both age-groups at doses of 0.4 and 0.8mg/kg, though aged animals were 

significantly slower to respond than young animals at both of these doses. In later 

cohorts of animals, nociception was also assessed via tail-immersion in a hot water bath 

(46ºC). The results from these tests were similar to the hot-plate, although no main 

effect of Age was detected (Fig. 2.3D). Intriguingly, a significant reduction in latency to 

withdraw tail was observed in old animals treated with the intermediate dose of 

0.01mg/kg (p=0.049). In agreement with the hot plate recordings, age groups showed 

highly significant antinociception at doses of CP55940 ≥0.4mg/kg. 
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Rectal and skin/pelage temperatures were measured 60 minutes post-injection 

via rectal probe and infrared thermography. Both of these measures displayed a 

significant main effect of Dose during behavioral testing (ΔRectal~Dose H(5,349) = 

182.01, p<0.001 and ΔSkin ~Dose, H(5,340) = 146.06, p<0.001 ). In vehicle-treated 

animals, rectal and skin/pelage temperatures were significantly elevated from baseline 

in young and old mice (Fig. 2.3E-F). When compared to vehicle-injected animals, high 

doses of CP55940 (0.4 and 0.8mg/kg, IP) significantly reduced rectal temperature in 

both age groups. Importantly, this decline in rectal temperature was more pronounced in 

aged mice, which exhibited reductions in rectal temperature at the dose of 0.1mg/kg 

which had no effect in younger animals.  

Responses to CP55940 and CB1 or CB2 Antagonism 

To determine whether the biphasic effects of CP55940 could be accounted for by 

activity at canonical cannabinoid receptors, we coadministered CP55940 with the CB1 

or CB2 inverse agonists - AM251 or AM630, respectively. Based on previous literature, 

doses of 3mg/kg AM251 or AM630 were administered to modulate CB1- and CB2-

mediated signaling and behavior201,202. Two doses of CP55940 shown to stimulate 

locomotion in young males (0.001 and 0.01mg/kg,IP) were administered alone or in the 

presence of AM251 or AM630; additionally, a high dose (0.8mg/kg) that significantly 

reduces locomotion in both young and old animals was coadministered with 

AM251(3mg/kg). AM251 alone significantly reduced locomotion (Fig. 2.4A) and 

attenuated both the stimulatory and inhibitory effects of CP55940 on locomotion in 

young males (Fig. 2.4A). In contrast, AM630 coadministration in young males 

significantly attenuated the psychomotor stimulation elicited by CP55940 but did not 
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block the reduction in fecal output produced by CP55940 at a dose of 0.01mg/kg (Fig. 

2.5).  

The CB1 inverse agonist AM251 also blocked the inhibitory effects of 0.01mg/kg 

CP55940 on fecal output in young males (Fig. 2.4B). Fecal output was significantly 

increased with coadministration of 0.8mg/kg CP55940 with AM251 compared to 

0.8mg/kg CP55940 alone; although this was a partial rescue by AM251, as a significant 

decrease from vehicle control was still observed with the coadministration of drugs (Fig 

2.4B). Similar to the rescue of catalepsy, the antinociceptive and hypothermic effects of 

0.8mg/kg CP55940 were abrogated by 3mg/kg AM251 (Fig. 2.4C-D), suggesting CB1 

mediates many responses following high dose synthetic cannabinoid administration.  

While aged animals did not show significant stimulatory locomotor effects with 

low doses of CP55940, we verified that the mechanism responsible for the changes 

observed with high doses of CP55940 was unchanged in advanced age. 

Coadministration of AM251 significantly attenuated the hypolocomotor, antinociceptive, 

and hypothermic effects of CP55940 in aged males (Fig. 2.4E-H). Similar to the effects 

in young males, changes in fecal output were partially rescued by coadministration of 

AM251 with CP55940 in aged males (Fig. 2.4F), although it is important to note that 

AM251 alone significantly increased fecal output (Fig. 2.4F). 3mg/kg of AM251 also 

reduced locomotor activity and significantly reduced body temperature in the aged mice 

(Fig. 2.4E and H), similar to the changes seen with AM251 alone in the young males 

(Fig. 2.4 A and D).  
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Pharmacokinetics of CP55940 and Endocannabinoid Gene Expression in the Brain 

To determine the mechanism for the enhanced potency of CP55940 seen in 

aged animals, pharmacokinetic distribution of CP55940 in the blood and brain was 

quantified following both 0.1 and 0.8mg/kg injections. Unfortunately, both of these 

efficacious doses fell below the LC-MS/MS detection limits in these samples (data not 

shown). Gene expression in brain tissue was also analyzed to determine whether the 

expression of endocannabinoid receptors or their regulatory proteins was increased in 

the aged animals that showed enhanced responses to CP55940. Significant reductions 

in CB1 gene expression were observed in both cortical and hypothalamic tissue 

samples from aged animals, (p=0.04 and 0.02, respectively) (Table 2.1). Fatty acid 

amide hydrolase expression was also significantly reduced in the cortex of aged mice 

(Table 2.1). No changes significant changes in CB2 were noted.  

DISCUSSION: 

Taken together, these findings reveal that the effects of CP55940 on 

thermoregulation and behavior are highly age- and dose-dependent. Importantly, 

CP55940 given to aged mice is significantly more efficacious than equivalent doses 

administered to young mice, and the dose of 0.1mg/kg appears to be a key inflection 

point in this differential response. In young mice, our data indicate that low (<0.01mg/kg, 

IP) and high (>0.1mg/kg, IP) doses of CP55940 bidirectionally regulate measures of 

locomotion, and these increases in total locomotion are not associated with thigmotactic 

aversive behavior (Figure 2.6)203. However, under the present conditions we did not 

detect significant CP55940-induced stimulation of locomotor activity in aged mice at any 

dose of CP55940 tested. The distinct locomotor responses observed in both age groups 
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at doses of 0.1mg/kg CP55940 indicate that continued characterization of this specific 

dosing window may help to clarify these differing effects176,182.  

In contrast to antinociceptive effects of CP55940 at doses ≥0.4mg/kg, 

significantly enhanced nociception was observed in aged but not young mice tested 

using the hot-water tail withdrawal task (Fig. 2.3D). As this task is less reliant on gross 

locomotor activity than the hind-paw licking measured in the hot plate assay, the ability 

to detect this effect highlights the importance of tasks with wide detection ranges and 

sensitivity when studying hormesis. Additionally, the age-dependent responses seen in 

these assays of nociception further highlight the importance of using multiple endpoints 

when studying aged animals. Given the high prevalence of elderly patients seeking 

cannabinoid-based therapeutics for chronic pain, additional studies in this model are 

greatly needed.  

During extensive vehicle acclimation recordings, both young and old mice 

exhibited slight reductions in core-body and skin/pelage temperatures 60 minutes post-

injection (Figure 2.2). However, on the day of behavioral testing, vehicle treated 

animals consistently showed increases in rectal and IR temperatures (Fig. 2.3D and E). 

One explanation for this differential response is that during behavioral testing, post-

injection temperatures were taken immediately after animals completed open field 

locomotor assessment. Therefore, it is possible that the hyperthermia observed 

following vehicle-treatment in this context is confounded by locomotion in the open field. 

Additionally, the high rectal temperatures recorded in young vehicle-treated mice 

following open field testing may represent a ceiling-effect, precluding the replication of 

previously-observed hyperthermia induced by low doses of cannabinoids173.  The 
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effects of cannabinoids on thermoregulation may not be limited to brain-stem mediated 

mechanisms and may also be influenced by peripheral vasodilation, as previously 

reported204. Thus, we chose to measure skin temperature in addition to core body 

temperature. A reduction in temperature of both measures was noted with high doses of 

CP55940 in all groups tested. 

Consistent with previous studies, no significant differences in locomotion were 

observed with AM630 alone in this study (Figure 2.5). However, we were surprised that 

the psychomotor stimulation with low doses of CP55940 was blocked by either AM251 

or AM630. This suggests that both CB1 and CB2 mediate, at least in part, the hormetic-

like response. Future studies comparing the effects of CB1 and CB2 antagonists using 

cognitive assays where ultralow doses of cannabinoids have demonstrated protective 

effects might further delineate whether the observed blockade of hormesis is unique to 

locomotion or extends to other behaviors in rodents156. 

It is not currently clear what the mechanism is which increases responsiveness to 

this cannabinoid in the aged mice. In the present study, we observed significantly 

decreased CB1 gene expression in aged mouse cortex and hypothalamus. This is 

similar to previous research which demonstrated CB1 levels vary throughout the 

lifespan, although these age-related changes appear to be region-specific99,103. A 

reduction in receptor-expression by aged animals that show enhanced CB1-dependent 

physiological phenotypes is perplexing, although a similar phenomenon was observed 

in dopaminergic GPCRS. Following chronic receptor blockade, production of DA 

receptor declines yet results in chemical “supersensitivity” 205. While CB1 expression 

was decreased, there was also a significant reduction in the expression of FAAH1 in the 



 

34 

aged cortex, suggesting potential elevations of endocannabinoid levels within our aged 

mice. Future studies of cannabinoid receptor heterodimerization and biased agonism, 

which have yet to be assessed in aged mammals, may also yield beneficial insight on 

this matter. An alternative hypothesis is that cannabinoids may have increased access 

to the central nervous system due to declining blood brain barrier function in aged 

animals. During the course of this study we attempted to assess the pharmacokinetic 

distribution of CP55940 in two independent cohorts of young and aged mice following 

an injection of 0.1mg/kg and 0.8mg/kg. Despite the fact that these doses consistently 

elicited behavioral phenotypes, this amount of CP55940 ultimately proved to be below 

our detection limits in serum, liver, and whole-brain tissue samples.  

Mechanistically, our studies with the CB1 and CB2 inverse agonists suggest that 

the psychomotor, thermoregulatory, and antinociceptive effects of CP55940 at doses of 

0.001 and 0.01mg/kg, IP are independently mediated by both receptors. Treatment with 

AM251 alone produced simultaneous reductions in locomotion and rectal temperature, 

while greatly increasing fecal output, suggesting that AM251 at a dose of 3mg/kg,IP is 

aversive in young male mice. The notable observation that CP55940 at 0.01mg/kg 

abrogates the antinociceptive effects of AM251 in young males (Fig. 2.4C) suggests 

that this dose of CP55940 in combination with AM251 may restore tonic 

endocannabinoid activity to baseline levels. The importance of maintaining tonic 

endocannabinoid signaling has been discussed in detail previously, and the limited 

effect of AM251 administration, by itself, suggests that the age-dependent responses 

we observed may be due to elevated endocannabinoid tone206. As discussed, our aged 

animals exhibited significant decreases in FAAH1, which could lead to increased 
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anandamide levels in the aged cortex. It is possible that increased anandamide, or other 

endocannabinoids, may contribute to the baseline difference in nociception between 

age groups (Fig. 2.3C). Regardless, CB1 antagonism rescues many of the phenotypic 

changes observed with high doses of CP55940 in both the young and old mice. 

However, the failure of AM251 coadministration to rescue the reduction in fecal output 

seen at the highest dose (0.8mg/kg,IP) of CP55940 tested (Fig. 2.4B) suggests a CB1-

independent mechanism, and may be due to interactions with the TRPV1 receptor as 

recently reported 207.  

We were surprised that the effects of CP55940 were not sex-specific, as aging 

rodent studies are often marked by pronounced sex-dependent phenotypes208-211. 

Moreover, studies of nociception and pain responses also commonly show sex-

dependent effects212,213, as well as known sex- and gender-specific differences in 

cannabis abuse and physiological responses following cannabis consumption in 

humans214,215. These studies often denote that such changes are driven in part by 

differences in muscle mass and fat tissue distribution. In the current study, we did not 

control for changes in body composition, estrous state, or the stage of reproductive 

senescence within our young or aged cohorts but weight was consistently recorded and 

all drugs were administered at weight-adjusted doses (Figure 2.2). Our data suggest 

that the psychostimulatory effects observed at low doses and the robust inhibitory 

effects seen at high doses are more strongly influenced by age than sex in mice.  

The present study offers substantial evidence that the behavioral and 

physiological effects of CP55940 are highly age-dependent, though several additional 

considerations remain to be addressed. Specifically, the current experiments utilized a 
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highly potent synthetic cannabinoid known to agonize both CB1 and CB2. Despite its 

high affinity for these receptors, high doses of CP55940 modulate additional receptors 

and influence physiological functions in cells that lack CB1 or CB2216. The expansive 

endocannabinoidome presents numerous additional targets, such as the previously 

mentioned TRPs or biosynthetic/metabolizing enzymes, which are also likely involved in 

mediating the diverse effects of CP55940217. Additionally, though the consumption of 

synthetic cannabinoids is increasing218, the use of cannabis and isolated 

phytocannabinoids is far more common. Many phytocannabinoids exhibit unique 

pharmacological profiles that target both canonical CB1 and CB2 endocannabinoid 

receptors as well as other nonclassical endocannabinoid targets217. Accordingly, 

expanded studies on the age-dependent effects of cannabis-derived compounds such 

as THC and non-psychoactive constituents like CBD and terpenes are now greatly 

needed. 

Rising healthcare costs coupled with the increased availability of cannabinoid-

based substances marketed as therapeutics have put elderly patients in a particularly 

vulnerable position. Although aging phenotypes in humans and rodents are multifaceted 

and exceedingly diverse, reduced physical activity, sleep disturbance, and chronic pain 

are some of the most commonly reported conditions reported in advanced age. The 

present study indicates that in mice, the synthetic cannabinoid CP55940 exhibits 

bidirectional and behavior-specific effects that are greatly influenced by the age of the 

subject. Therefore, additional studies are required to discern the mechanistic basis for 

this increased responsiveness in aged rodents and to determine whether these age-

dependent effects are species and/or compound-specific. In the wake of rapidly shifting 
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policies affecting access to cannabinoids worldwide, additional preclinical evidence in 

aged models will be vital to anticipate potential effects these substances may have on 

aging populations. 

METHODS 

Animals 

All procedures were approved by the University of Mississippi Institutional Animal 

Care and Use Committee (IACUC). Experimental cohorts consisted of two age groups: 

2-4 months (young) and 21-24 months (old) of age. Experiments were performed on 

male and female C57BL/6NHsd mice acquired from Envigo (Cat.#: 044) or C57BL/6 

mice from the National Institutes of Aging Aged Rodent Colony. A priori power analysis 

indicated that statistically significant differences based on a medium effect (Cohen’s f 

>0.25) could be detected with group sizes n>=10. The total number of animals used for 

this study is listed in Figure 2.8.  All animals were housed in the AALAC-accredited 

University of Mississippi Animal Facility and given access to food (Cat.#: 7001, Envigo 

Teklad 4% Fat Rodent Diet) and tap-water ad libitum for the duration of experiments. 

Mice were group-housed (4 mice/cage) in climate-controlled rooms (30-40% relative 

humidity, 21-23°C) under a 12:12 ‘reverse’ light cycle (lights OFF at 8:00am and ON at 

8pm). Upon arrival into the facility, animals were immediately group-housed in 75 in2 

clear polycarbonate cages (Cat.#: AN76, Ancare) with 1/8” corn cob bedding and 

environmental enrichment (Cotton Nestlets, Ancare, and Crink’l Nest, The Andersons 

Lab Bedding) then allowed to acclimate to the facility for 7 days before experimentation. 

Following this week of acclimation animals were weighed, fitted with a metal ear-tag 

(Cat.#: INS1005-1LSZ, Kent Scientific) and randomized into balanced experimental 
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treatment groups based on body weight. Mice were checked daily, and clean cages 

were replaced every week. All experiments and procedures were performed under dim 

red light (<1lux) during the animals’ active cycle.  

Blinding 

The experimenter was blinded to all treatment groups during drug-administration 

and experimentation through the use of arbitrarily coded drug-containers. 

Drugs, Dosing, and Administration 

The synthetic cannabinoid CP55940 (Cat.#:0949, Tocris) was initially diluted in 

100% ethanol (Cat.#:2701, Decon Labs) to a stock concentration of 10mg/mL and kept 

at -20°C. The CB1 antagonist, AM251 (Cat.#:1117, Tocris) was initially diluted in 100% 

ethanol (Cat.#:2701, Decon Labs) to a stock concentration of 10mg/mL and kept at -

20°C. The CB2 antagonist, AM630 (Cat.#:1120, Tocris) was initially diluted in 66.6% 

ethanol (Cat.#:2701, Decon Labs) and 33.3% Dimethyl sulfoxide (DMSO, Cat.#: 

276855, Sigma-Aldrich) to a stock concentration of 6.66mg/mL and kept at -20°C. On 

the day of each experiment, fresh vehicle solution was prepared by first dissolving 

Kolliphor EL (formerly known as Cremophor EL, Cat.#: C5135-500G, Sigma Life 

Science) in 100% ethanol, then adding sterile 0.9% HSP pH 7.4 saline (Cat.#: 

00409488810, Hospira) in a ratio of (1:1:18). Experiments using AM251 or AM630 were 

performed by pre-mixing either AM251 or AM630 with respective doses of CP55940 

prior to injection. All drug mixtures were administered at a volume of 1mL/100g body 

weight.  

During testing, the animal’s temperature and weight were recorded then a body 

weight-adjusted dose of vehicle or CP55940 was administered via intraperitoneal (IP) 
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injection using a 1mL syringe (Cat.# 309602, Becton, Dickinson and Company[BD]) and 

a 25 gauge needle (0.5 x 16mm, Cat.# 305122, BD). 

Acclimation 

On the day of behavioral testing, all animal cages were placed onto a plastic or 

metal cart and relocated to the testing room where they were allowed to acclimate for 3 

hours prior to testing. Throughout the acclimation and testing periods, the room 

remained dark and white noise was continuously played at a volume of ~60db.  

Body Weight 

Body weight was measured at the start of every experimental procedure to 

ensure accurate drug administration and as an endpoint for exclusion in the event that 

an animal’s mass decreased >10% in a week. Animals were gently removed from their 

cages by lightly gripping the base of their tail and placed into a lidless pipette-tip box on 

top of the balance. Once the animal ceased moving the mass was recorded. In between 

recordings, the pipette-tip box was wiped clean with ethanol, dried with a paper towel, 

and the balance was tared. 

Rectal and Pelage/Surface Temperature 

Rectal temperature was measured using a Digi-Sense Advanced Precalibrated 

Thermocouple Thermometer (Cat.#: EW-20250-91, Kent Scientific) which was 

connected to a 1.9cm x 0.165cm rectal probe (Cat.#: RET-3, Kent Scientific). Before 

measurement, the rectal probe was cleaned using 70% ethanol, dried, and lightly 

lubricated with petroleum jelly. Animals were briefly immobilized on the top of a metal 

cage lid, and then securely restrained by gripping the scruff (nape of the neck). After 

confirming the animal’s identification/ear tag, the rectal probe was gently inserted 1.9cm 
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into the animal’s rectum. Once a stable measurement was achieved (~3-5 seconds) the 

temperature was recorded.  

Skin/pelage temperature was measured via infrared thermography at the dorsal 

pelvis using a FLIR Non-Contact Infrared Spot Thermal Camera (Cat.#: TG165, FLIR). 

Emissivity was set to 0.85, as suggested previous research219. Immediately after 

weighing, while the animal was standing still and upright in an empty pipette-tip box, the 

thermal camera was held directly above the animal exactly 10cm away from the 

animal’s skin. Once a stable measurement was achieved (~3-5 seconds) the 

temperature was recorded. 

Locomotion - Open Field 

Locomotor activity was measured by placing a single mouse into a lidless clear-

plastic open field arena (41x41x38cm), which was surrounded by a 16x16 photobeam 

array (Photobeam Activity System, San Diego Instruments) or recorded using a ceiling-

mounted camera. Locomotion in the X and Y directions were quantified using beam 

breaks or software-based tracking (Ethovision XT-13, Noldus). During recording four 

open field arenas were used simultaneously, and each arena was shielded on three 

sides by 60cm black plastic dividers so that animals could not see each other. When 

administered at high doses, the psychoactive effects of CP55940 are pronounced from 

10-120 minutes. Thus, locomotor activity was measured continuously for 30 minutes, 

beginning 30 minutes after drug or vehicle injection. Beam breaks in the X and Y 

directions were sampled every 5 seconds for 30 minutes and then exported to 

spreadsheets at the conclusion of testing. Peripheral locomotion was defined as any 

locomotion which occurred in the outermost 50% of the open field arena. After removal 
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from the open field, animals were briefly (1-5 minutes) placed into temporary cages 

before testing on the hot plate.  

Nociception - Hot Plate 

Nociception was measured by placing a single mouse on top of a preheated 

52°C thermal block (Cat.#: PE34, IITC Life Sciences), and recording the latency to 

withdraw and/or lick their hind-paws. During testing, a hollow clear-plastic cylinder 25cm 

in diameter by 35cm high was placed on top of the heated thermal block to prevent 

animals from leaving the hot plate. Animals were placed in the cavity of the plastic 

cylinder directly in contact with the hot plate and closely monitored for phenotypic 

responses of nociception. Based on preliminary experiments, we concluded that the 

latency to lick the hind paws was the most reliable indicator of nociception. Immediately 

after licking their hind-paws, the timer was stopped and the animal was removed from 

the hot plate and placed back into a temporary cage. If an animal failed to respond to 

the thermal stimulus in 45 seconds, the timer was stopped and the animal was rapidly 

removed from the hot plate to prevent tissue damage.  

Nociception - Hot Water Tail Withdrawal 

Several cohorts of male and female mice were also tested using a hot-water bath 

preheated to 46°C. After testing on the hot plate, animals were allowed a 90s recovery 

period, then gently scruffed by the nape of the neck and their tails were dipped 1/3 from 

the tip into heated water. The latency to withdraw the tail was manually recorded using 

a stopwatch.  
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Gene Expression - qPCR 

Cortical, hippocampal, and hypothalamic RNA was isolated using the RNA-easy 

mini kit (Qiagen) and converted to cDNA using High-Capacity RNA-to-cDNA kit (Applied 

Biosystems). RT-PCR was performed using TaqMan Universal PCR Master mix (Life 

Technologies) and TaqMan validated primers (Mm01212171_s1 (Cnr1), 

Mm02620087_s1 (Cnr2), Mm01187898_m1 (Cnrip1), Mm00515684_m1 (FAAH), 

Mm03024075_m1 (HPRT), Mm99999915_g1 (GAPDH)) on the CFX Connect Real time 

PCR detection system (Bio-Rad). Results were normalized to the housekeeping gene 

HPRT. The experimenter was unaware of age group during testing and was unblinded 

during delta-delta CT analysis. 

Experimental Timeline 

After ear-tagging and enrollment into treatment groups, a 6-day acclimation 

period was begun. Initially, animals were acclimated for 3 days to handling, weighing, 

and temperature measurement with the rectal probe and IR camera. Next, the animals 

were acclimated for 3 days to all of the previous procedures, as well as IP injection of 

vehicle (1:1:18, Ethanol:Kolliphor EL:Saline) and a follow-up 60m temperature recording 

after the initial injection. Drug administration and behavioral experiments were 

performed on the 7th day. In the event of repeated testing such as the AM251 and 

AM630 studies (Figure 2.7), animals were left undisturbed for 7 days between rounds 

of testing. Subsequent rounds of testing used only a 3-day acclimation period, wherein 

the animals receive vehicle injections and 60m follow-up temperature recordings. 
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Data Analysis, Statistics, and Exclusions 

Data analysis was performed, collected, and analyzed using a combination of 

Microsoft Excel (v2016, Microsoft), RStudio (v.1.1.456, RStudio Team), MATLAB 

(r2019a, MathWorks), PAS (v2.0.3, San Diego Instruments), PAS Data Reporter 

(v1.0.1.0, San Diego Instruments), Ethovision XT (v13, Noldus), and G*Power (v3.1,220). 

Prior to omnibus testing, all data for a given measurement was tested for outliers, 

which was defined as those points that were greater or less than three interquartile 

ranges above or below the 3rd and first interquartile ranges within a single treatment 

group. After exclusion of these points, data from each measurement were assessed for 

a normal distribution (Shapiro-Wilk test) and equal variance (Levene test). Since all 

measures observed failed these tests, simple main effects and interactions were 

assessed using the non-parametric Scheirer-Ray-Hare (S-R-H) test. A priori 

significance was set at =0.05. Significant main-effects detected in S-R-H tests were 

followed by additional post-hoc testing using Dunn’s many-to-one method, which is ideal 

for comparing multiple dose-responses to vehicle/control treatments. The false 

discovery rate was corrected for using the Benjamini, Hochberg, and Yekutieli method. 

Additionally, notes regarding injection performance (by the experimenter) were kept 

during all procedures and were the primary determinant for other exclusions. To 

mitigate the effects of repeated testing, such as in the case of animals presented in 

Figure 2, data in this figure have been normalized to the responses of vehicle-treated 

animals that were tested at the same time. 
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FIGURES

 

Figure 2.1: Experimental timeline.  
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Figure 2.2: Baseline measures during vehicle acclimation. 
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Figure 2.3: Effects of CP55940 on locomotion, thermoregulation, and nociception in 

young-adult (4m) and old (22m) C57BL6 mice. 
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CP55940 was administered via intraperitoneal injection at doses ranging from 0.001-0.8 

mg/kg to young and old male and female mice. Individual data points for each testing 

group are overlaid on Tukey-style boxplots. The lower and upper edges of each box 

represent the first and third quartiles, respectively. The middle horizontal line in each 

box depicts the median of that dose/age group. Sample sizes for every treatment group 

and figure panel are listed in Figure 2.8. Statistical comparisons of Age, Dose, and 

Age:Dose interactions were made using the non-parametric Scheirer-Ray-Hare test. 

Significant omnibus results were followed by planned post-hoc contrasts of each dose 

vs. vehicle-treated control groups using Dunn’s method. The false discovery rate was 

corrected for using the Benjamini, Hochberg, and Yekutieli method. Within an age 

group, significant differences (p<0.05) between a given dose and the vehicle response 

(0 dose) are indicated using asterisks (*). Differences between age groups at a given 

dose are indicated by pound signs (#).  

Panels A-B) Total locomotion and fecal output during Open Field testing, 30-60 minutes 

after injection of CP55940 or vehicle.  

Panel C) Latency to exhibit nociceptive behavior when place on a 52ºC Hot Plate.  

Panel D) Latency to withdraw the tail from 46ºC water.  

Panel E) Change in rectal temperature 60m after injection of drug.  

Panel F) Change in infrared recording of skin/pelage temperature 60m after injection of 

drug. 
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Figure 2.4: Behavioral and physiological effects of CP55940 co-administered with the 

CB1 inverse agonist AM251 in young-adult (4m) and old (22m) male C57BL6 Mice. 

Varying doses of CP55940 were administered alone or in a pre-mixed solution with 

3mg/kg of AM251 Individual data points for each testing group are overlaid on Tukey-

style boxplots. The lower and upper edges of each box represent the first and third 

quartiles, respectively. The middle horizontal line in each box depicts the median of that 

dose/age group. Sample sizes for every treatment group and figure panel are listed in 

Figure 2.8. Significant omnibus results were followed by planned post-hoc contrasts of 

each dose vs. vehicle treated control-groups using Dunn’s method. The false discovery 

rate was corrected for using the Benjamini, Hochberg, and Yekutieli method. Within an 

age group, significant differences (p<0.05) between a given dose and the vehicle 

treated response (0 dose) are indicated using asterisks (*). Differences between 

CP55940 alone and CP55940+AM251 at a given dose are indicated by pound signs (#).   

Panels A-D) Behavioral and physiological responses of young adult (4m) male mice. 

Panels E-H) Responses of old (22m) male mice.   
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Table 2.1: Quantitative-PCR analysis of gene-expression in regions of brain tissue from 

young-adult (4m) and old (22m) male mice. 

  

Cortex n CB1 ± SE CB2 ± SE CRIP1 ± SE FAAH1 ± SE 

Young 6 1.01 ± 0.06 1.03 ± 0.09 1.07 ± 0.18 1.02 ± 0.10 
Aged  5 0.81 ± 0.05 0.82 ± 0.12 0.65 ± 0.08 0.59 ± 0.04 

  *p=0.04 p=0.19 p=0.08 *p=0.004 
       

Hypothalamus n CB1 ± SE CB2 ± SE CRIP1 ± SE FAAH1 ± SE 

Young  6 1.01± 0.06 1.4 ± 0.64 1.01 ± 0.06 1.00 ± 0.03 
Aged  5 0.60 ± 0.15 3.13 ± 1.12 1.11 ± 0.12 0.78 ± 0.11 

  *p=0.02 p=0.19 p=0.44 p=0.07 
*p ≤ 0.05 t-test, Young vs Aged 
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Figure 2.5: Effects of CP55940 and AM630 coadministration in young males. 
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Figure 2.6: Effects of CP55940 on peripheral locomotion in the open field.  
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Figure 2.7: Animal cohorts and experiments 
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Figure 2.8: Sample sizes. 
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CHAPTER 3:  

CANNABINOIDS AS CHRONOBIOTICS IN AGING MICE 

ABSTRACT  

A growing number of geriatric patients are seeking cannabinoid-based 

substances for relief from age-related ailments such as poor sleep, low energy, and 

chronic pain. Despite this increased demand for cannabinoid-based therapeutics, 

preclinical evidence of these compounds’ efficacy safety in aged subjects is limited. The 

current lack of preclinical studies in aged models and rapidly growing access to 

cannabinoid-containing substances has placed elderly patients particularly at-risk. 

Furthermore, a growing body of evidence suggests that the dose-response to 

exogenous cannabinoids is bidirectional in young animals but not in aged subjects. A 

critical limitation of previous studies is their relatively short duration, which precludes the 

ability to assess multi-day effects of these compounds. To address these gaps in 

knowledge, the present study examined the effects of age, sex, and treatment with 

varying doses of the synthetic cannabinoid CP55940 on circadian rhythms of 

locomotion in mice. Voluntary free wheel running behavior was monitored under normal 

lighting (12:12, LD), constant darkness, and also with doses of CP55940 ranging from 

0.001mg/kg to 0.1mg/kg, IP. Significant effects of both age, sex, and dose of CP55940, 

as well as interactions among these variables were observed. Dose-dependent changes 

in running behavior were observed on the day of cannabinoid treatment, as well as 
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Age:Sex and Dose:Sex in the time of activity onset on the day after treatment. 

Together, these data reinforce our previous findings that cannabinoids exert age-

dependent effects and establish a strong baseline for future studies aimed at testing 

potential chronobiotics in young and aged animals.  

INTRODUCTION: 

The cyclic pattern of Earth’s rotation on its axis and revolution around the sun 

has intimately shaped many aspects of biology. Though many of these biological 

rhythms are now known to be regulated by the daily light cycle, those physiological 

rhythms which persist in the absence of light are known as circadian rhythms. 

Throughout much of the mammalian lifespan these ~24-hour physiological rhythms are 

widely present and readily observable at numerous observational scales (molecular, 

cellular, behavioral, etc.). At the biomolecular level, circadian rhythms of body 

temperature dictate system enthalpy and, as a consequence, nearly all 

thermodynamically reliant biochemical reactions. At the genetic level, the well-

characterized circadian transcription and translation of ‘clock’ genes intricately regulates 

numerous aspects of cellular physiology. In mammalian organs and tissues, consistent 

rhythmic production of growth hormone, cortisol, and other endocrine modulators is vital 

for proper growth, development, and function. Circadian patterns of behavioral activity 

integrally shape organisms’ adaptation and evolutionary fitness within an ecosystem. 

Collectively, these biologically pervasive rhythms are critical determinants of organisms’ 

survival.  

The causal regulation of lifespan by circadian physiological rhythms is intuitive 

but the quantification and assessment of this relationship remains elusive. Though the 
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study of these two intricately related processes predates modern science, technical 

limitations have historically hindered scientists to making only qualitative descriptions of 

their relationship. Mus musculus (house mouse) is the most widely utilized mammalian 

model in aging research, and our rich understanding of this species’ circadian genetic, 

physiological, and behavioral characteristics is ideal for assessing pharmacological 

interventions. This established wealth of knowledge is vitally important to intellectually 

frame the observed outputs from these complex and dynamic biological systems. 

Recent technological advances now permit the acquisition and analysis of such high-

dimensional (multivariate) data which may help to describe the organization and 

behavior of many previously intractable biological processes.  

Measures of circadian physiology such as locomotor activity, sleep/wakefulness, 

and core body temperature are all regulated by rhythmic neuronal activity generated by 

cells in the suprachiasmatic nucleus of the hypothalamus (SCN)37,38,74. The amplitude of 

these neuronal rhythms, as well as measures of behavioral and physiological outputs, 

are reduced in advanced age75. Older subjects also exhibit impaired thermogenesis 

which may explain why peripheral tissues, whose rhythms are determined by changes 

in body temperature, display impaired synchronization with age66,69. Voluntary wheel 

running (VWR), also known as spontaneous wheel running, is a well-established and 

commonly reported measure of circadian locomotion in rodents21,30. When presented 

with a running wheel, mice, rats, hamsters, and many other species of animals will 

voluntarily run. In the laboratory setting, quantification of this activity reveals circadian 

patterns which correlate to the animal’s sleep/wake cycle and can be used as a 
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surrogate measurement for the intrinsic physiological processes now known to regulate 

this behavior.  

Therapeutically, drugs which influence circadian physiology are known as 

chronobiotics (e.g. melatonin) and are used to shift or amplify endogenous circadian 

rhythms and reduce dissonance with environmental conditions54. Both cannabinoid 

receptor-1 (CB1) transcript and protein are present in the SCN, and direct application of 

CB1 agonists alters the activity of these neurons. Given that sleep, body temperature, 

locomotion, and other daily physiological rhythms are primarily generated by neuronal 

activity in the suprachiasmatic nucleus, the presence of CB1 in these cells supports a 

role for endocannabinoids in circadian rhythm regulation112. Although preclinical and 

human studies overwhelmingly report deleterious outcomes on cognitive performance 

resulting from chronic high levels of cannabinoid-exposure early in life, several studies 

indicate that these memory-impairing effects are dose-, age-, and sex-

dependent97,128,134,141,143,191,192. 

CB1 agonists induce profound hypothermia and hypolocomotion at high doses in 

preclinical rodent models, though several investigations have reported increased body 

temperature and locomotion following treatment with much lower doses171,173,174. One 

explanation for these disparate reports is that exogenous cannabinoids exhibit 

hormesis; that is, low-doses of these compounds produce the opposite effects of high-

doses. Mechanistically, the effects of higher doses appear to be mediated in-part by 

CB1 signaling in GABAergic neurons, although this may not be the case for all 

behaviors168. Since neuronal activity in the SCN determines central clock rhythms, and 

peripheral cellular clocks are entrained by thermic signals, pharmacological 
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interventions like cannabinoids may provide a wide range of therapeutic potential due to 

their known influence on both neuronal activity and body temperature. 

CP55940 bidirectionally modulates locomotion in mice (Chapter 2), however it 

remains to be shown whether this compound can dose-dependently increase and 

decrease VWR in mice. Additionally, previous studies of hyper- and hypo-locomotion 

caused by synthetic cannabinoid agonists have been limited to short periods of time (<6 

hours) immediately following drug exposure. To address this, the current study permits 

the measurement of potentially multi-day behavioral effects resulting from a single 

exposure to CP55940.  

The fundamental hypothesis of this work is that circadian locomotion is a 

macroscopic readout of intrinsic physiological function, and the pharmacologic 

restoration of age-dependent changes of behavioral endpoints will correspondingly 

mitigate the onset of age-related pathology. To this end, the goal of this study was to 

explore a computationally-intense, quantitative approach to extract defined features that 

characterize circadian locomotion across the lifespan in mice. Our initial goal was to 

establish baseline measures of circadian locomotion by quantifying the age- and sex-

dependent characteristics of rhythmic VWR in C57BL6 mice under normal lighting 

conditions and in constant darkness. Once these age- and sex- specific rhythms were 

quantified, separate cohorts of mice were administered varying doses of the synthetic 

cannabinoid CP55940, and the efficacy of this compound to influence measures of 

circadian locomotion was assessed.   

RESULTS: 
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In order to test the hypothesis that cannabinoid agonists can modulate behavioral 

rhythms of spontaneous wheel running, we first sought to quantify baseline locomotor 

rhythms in young and aged male and female mice housed under normal (12:12, LD) 

lighting and constant darkness (00:24, DD). The use of these two lighting conditions 

was used to understand potential baseline differences among the age and sex groups 

which may only be present in the absence of light entrainment. Light is a profound 

regulator of mammalian locomotor rhythms; therefore, the presence of light can mask 

intrinsic ‘free-running’ locomotor rhythms34. Mice were group housed prior to wheel 

running and kept in a dedicated room with ‘reverse’ lighting - 12 hours of darkness, 

beginning at 8am (ZT hour 12), followed by 12 hours of light beginning at 8pm (ZT hour 

0). On the first day of testing during the animals’ active (dark) cycle, mice of a single 

age/sex group (n=11-12) were weighed then individually housed in cages containing 

remotely monitored running wheels. Mice were then left undisturbed for 7 days under 

normal lighting conditions (Fig. 3.1A) and wheel rotations per minute were recorded.  

At the end of 7 complete days, a customized light-proof breathable cage-rack 

cover was placed over all cages. Mice were then left undisturbed, in constant darkness, 

for an additional seven days of recording. Running wheel activity of each age and sex 

group during normal lighting and constant darkness has been summarized in Figure 

3.2. Under normal lighting conditions, all mice exhibited a clear entrainment to the lights, 

as evidenced by their consistent waking time shortly after lights-off (Zeitgeber Time [ZT 

Minute 720, ZT Hour 12]) and periods of activity very near to 24 hours (Fig. 3.2E-H). 

During normal (12:12) lighting, there were no significant differences between the Lomb-

Scargle computed periods of any age/sex groups. However, under constant darkness a 
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significant interaction of Age:Sex was detected (2-way ANOVA, DD_Period ~ Age * 

Sex, Age:Sex, p<0.001). Interestingly, post hoc analysis revealed that young males’ 

(YM) circadian periods were not different from those of old males (OM), but the periods 

of YM were significantly shorter than those of young females (p<0.001). Additionally, the 

circadian periods of young females (YF) were significantly longer than those of old 

females (OF, p<0.001); though no sex specific differences were observed in aged male 

and female circadian periods.  

In addition to quantifying the period, we also quantified total locomotion as well 

as the timing of activity onset and offset. Quantification of this baseline activity revealed 

that YM and YF mice exhibited sustained activity while the lights remained off, though 

male mice at both age groups had substantially lower RPMs than age-matched females. 

OM mice exhibited the lowest average daily activity, totaling only 11,925(± 1,301) total 

rotations compared to 42,7681(± 1,259) total rotations by YF under normal lighting 

conditions (Fig. 3.3J). YM averaged more daily activity than OM (p<0.001) under 

normal lighting and in constant darkness (Fig. 3.3J-I, p<0.001). Similarly, YF averaged 

more daily wheel rotations than OF in normal lighting as well as constant darkness (Fig. 

3.3J-I, p<001). All age groups averaged more activity during constant darkness; 

however, the change in activity from normal lighting to constant darkness was 

significantly higher in old females (OF) compared to OM (Fig. 3.3L, p<0.01). 

The timing of activity onset and offset were defined as the first 10-minute period 

of average wheel running that exceeded 20% of that age/sex group’s daily maximum. 

Using this threshold, we observed that under normal lighting conditions YM, YF, and OF 

all had prompt activity onset following lights off, but OM were significantly slower to 
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reach the activity onset threshold (Fig. 3.3A). Under constant darkness, we observed a 

significant Age:Sex interaction, wherein YM, OM, and OF mice all began to advance 

their circadian phases and began running earlier in the day than when housed under 

normal lighting (2-way ANOVA, Age:Sex, p=0.001). In contrast, YF mice remained 

remarkably consistent following the transition from normal lighting to constant darkness 

and were significantly different than young males (p<0.01, Fig. 3.3C). Substantially 

greater variability across all groups was seen in the timing of activity offset, even under 

normal lighting conditions (mean onset LD [730±6.0 minutes], mean offset DD 

[1286±24.8 minutes], Fig. 3.3D). Young male and female mice had significantly later 

offsets of activity than older mice during normal lighting (Fig. 3.3D). Nevertheless, a 

profound effect of age was observed when we quantified the timing of activity offset 

during LD and DD, with older animals ceasing activity significantly earlier than young 

mice (p<0.001, Fig. 3.3D-E). On average, YF had the latest activity offsets and were 

significantly later to stop activity in DD than young males (p<0.05, Fig. 3.3E).  

To account for the varying shifts in both onset and offset, we quantified overall 

duration of activity by subtracting the time of activity onset from the time of activity onset 

(Fig. 3.3G). Under both normal lighting and constant darkness, YM and YF groups had 

longer durations of activity than OM and OF groups (p<0.01) though there were no 

significant differences between the sexes in either age group (Fig. 3.3G-H). Despite 

this, the change in duration of activity from normal lighting to constant darkness was 

greater in young mice compared to old mice. To our surprise, substantial heterogeneity 

in onset and offset timing was observed among animals of the same age/sex when 

transitioning from LD to DD. Table 3.1 qualitatively categorizes these differences, based 
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on whether individual animals advanced or delayed their respective time of onset or 

offset by ±15 minutes. In DD, the majority of YM and OM advanced their phases. In 

contrast, while all of the OF mice were phase advanced, YF tended to onset and offset 

activity later (Fisher’s Exact Test, YF:OF, p= 0.006, Table 3.1).  

After completing the baseline recordings, cohorts of naïve young and old male 

and female mice were used to assess the ability of the synthetic cannabinoid CP55940 

to alter locomotor rhythms (Fig. 3.1B). In these experiments, mice were exclusively 

housed under normal lighting (12:12, LD) and allowed to acclimate to single-housing 

and wheel-running for 14 days prior to drug treatment. Beginning 30-60 minutes after 

lights off on the 15th day (8:30-9:00am, ZT hour 12.5-13), animals were administered a 

single intraperitoneal injection of either vehicle (1:1:18, ethanol:Kolliphor:saline) or one 

of three doses of the synthetic CB1/CB2 agonist, CP55940 (0.001mg/kg [Low], 

0.01mg/kg [Med], 0.1mg/kg [High]). Following injections of the synthetic CB1/CB2 

agonist , animals were returned to their cages and allowed to freely run for 72 hours 

before receiving the next of the 3 remaining doses. Ordering of the dose-administrations 

was randomized based on a Latin-square experimental design.  

3D and 2D representations of each age/sex/dose group’s average activity on the 

days before, during, and after each injection are show in Figures 3.4, 3.5, and 3.6. In 

Figures 3.4 and 3.5, “Day of Running 1” was the day before drug injection, “Day of 

Running 2” is the day of drug administration, and “Day of Running 3” is the day after 

drug injection. Obvious depressions in locomotor activity can be visually observed with 

these 3D representations when the mice are treated with 0.1mg/kg CP55940. 

Additionally, the middle row of Figure 3.6 clearly depicts the sustained locomotor 
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effects of CP55940 at different doses on the day of injection. Since most behavioral 

assays of cannabinoid-mediated effects do not assess behavioral changes beyond 1-2 

hours following drug administration, we quantified CP55940-induced changes in 

locomotion at three different time scales: 1-hour post injection, 1-6 hours post injection, 

and 6-12 hours post injection (Figure 3.7). 

Figure 3.7A summarizes total voluntary wheel running during the hour 

immediately following drug administration. In this short time-period, we observed 

significant simple main effects of Dose, Age, and Sex (p=0.023, p<0.001, p=0.003, 

respectively). When compared to vehicle-treated control mice, the highest dose of 

CP55940 tested (0.1mg/kg, IP) uniquely suppressed wheel-running in the aged mice 

(Fig. 3.7A). However, when activity throughout the first 6 hours after injection were 

summed, we also observed significant hypolocomotion in YM as well as both sexes of 

older mice (Fig. 3.7B). We also examined wheel running from 6-12 hours post injection 

to determine whether the hypolocomotion experienced early in the animals’ subjective 

day would be compensated for by additional running in the subjective evening. We 

observed significant main effects of Age, Sex, and Dose on wheel counts from this time 

frame (Fig. 3.7C). Post hoc analysis of the 3-way ANOVA indicated that the high dose 

of CP55940 (0.1mg/kg) significantly increased wheel running 6-12 hours post injection 

across both ages and sexes compared to vehicle treated mice, though no significant 

interactions between Age, Sex, and Dose were detected (p=0.009, Fig. 3.7C). This 

suggests that while 0.1mg/kg CP55940 leads to hypolocomotion in the first few hours 

following administration, the animals compensate with increased activity later in the day. 
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Indeed, when the entire 24-hour day was analyzed, no differences in total wheel 

rotations were observed.  

To test whether the short-term reductions in locomotion immediately following 

CP55940 administration were compensated by higher levels of total running during the 

animals’ subjective evening or if this hypolocomotion persisted to the next day, we 

quantified the time of activity offset on the day of injection and the animals’ time of 

activity onset on the following morning (Fig. 3.8). Significant main effects of Age and 

Sex were detected in both the time of activity offset on injection day, revealing that 

young mice are active later than old mice and male mice are active later than female 

mice (p<0.01, p<0.001, Fig. 3.8A). However, when we compared the time of activity 

offset on injection day to the time of offset on the prior day, this significance was not 

dependent on Age, only Sex (p<0.05, Fig. 3.8B). Similarly, overall running duration on 

the day of injection was longer in young mice, and male mice had longer running 

durations than females (p<0.001, p<0.01, Fig. 3.8C) Again, when running duration was 

compared to activity on the day before injection, only a significant effect of Sex was 

detected (p<0.05, Fig. 3.8D).  

Finally, we wanted to know whether the effects of CP55940 administered during 

the animals’ subjective morning had measurable effects on the following morning’s time 

of activity onset. We observed a significant effect of Sex on the time of activity onset the 

day after injection, with female mice becoming active later than male mice (p<0.01, Fig. 

3.8E). When we compared the timing of activity onset to the day before injection, we 

observed significant Age:Sex and Dose:Sex interaction (p=0.003, p=0.042, Fig. 3.8F). 

OM had the largest shift in activity onset compared to the day before injection, 
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becoming active significantly earlier than all other age and sex groups (p<0.001, Fig. 

3.8F). However, the medium dose of CP55940 (0.01mg/kg, IP) significantly delayed 

activity onset in both young and old males. 

DISCUSSION: 

The experiments described here rigorously assessed the age-, sex-, and dose-

dependent effects the synthetic cannabinoid CP55940 on voluntary wheel running in 

mice. While much work has focused on understanding circadian biology and its 

influence on aging pathologies, few studies specifically seek to pharmacologically 

rescue these age- and sex- specific changes using wheel running as a read-out. As 

biological aging is marked by pronounced sex-specific phenotypes, the quantification of 

baseline age- and sex-differences in voluntary wheel running was a critical first step to 

determine the efficacy of our cannabinoid-based interventions. Both aged males and 

females showed similar reductions in total activity under “normal” 12:12 LD lighting 

compared to their younger counterparts. This is consistent with previous studies in 

humans and animal models showing that reduced locomotor activity is a common 

phenotype of advanced age34,221. Mechanistically, the reduction in locomotor output with 

age is primarily attributed to decreased dopamine metabolism - rather than decreased 

levels in total dopamine 222. This is further supported by the finding that levodopa, a 

dopaminergic and adrenergic neurotransmitter precursor, is capable of restoring some 

age-related motor deficits in C57BL6 mice; though the effects of levodopa on VWR in 

the context of circadian locomotion are currently unknown 223.  

Although, under circadian-disrupting housing conditions (constant darkness), 

sex- and age-specific differences were observed. Young male, young female, and (to a 
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lesser extent) old male mice exhibit a truncated running duration (active period, α) when 

housed in constant darkness (Fig. 3.3I). In comparison, the remarkably consistent 

timing of activity onset and offset in young female mice suggests that this group is 

uniquely resilient to the phase-disrupting effects of constant darkness (Figs. 3.2-3). One 

possible explanation for the consistency observed in these young female mice is their 

intact estrous cycle. Female mice undergo estropause by 12 months of age, and the 

loss of these temporally consistant circulating hormones may serve to further disrupt 

central pacemakers in aged females. The extent of activity onset/offset shifting seen in 

the aged females (Table 3.1), coupled with significantly increased total activity in this 

group indicates that aging in female mice is associated with a loss of temporal 

pacemaker regulation, rather than a loss of overall pacemaker amplitude - as has been 

suggested in general models of circadian-aging42,74,224,225.  

Regarding the synthetic cannabinoid CP55940, short-term behavioral assays 

have demonstrated that this drug is capable of eliciting both stimulatory and inhibitory 

effects in a dose- and age-dependent manner. Similarly, both the phytocannabinoid 

THC and the synthetic cannabinoid WIN55212-2 acutely increase DA levels in the 

locomotion-regulating nucleus accumbens 226. It is currently unclear whether 

cannabinoid-induced acute stimulation of dopaminergic neurons is sufficient to 

chronically alter circadian rhythms, since the actions of synthetic cannabinoids on 

neurons of the SCN are sensitive to GABA-A blockade 112. In addition to modulating the 

excitatory/inhibitory balance of neuronal activity in the SCN, cannabinoids may directly 

alter the rates of clock gene transcription via epigenetic modification. Though this 

putative effect has not been directly tested in neurons of the SCN, the chronobiotic 
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effects of cannabinoids might involve the long-term regulation of histone deacetylases 

(HDAC) such as HDAC3 45.  

Here, we confirmed that not only are the effects of CP55940 bidirectional, our 

data also support the notion that high doses produce biphasic actions, such that when a 

high dose is given early during the subjective daytime there is a modest increase in 

activity during the subjective evening (Fig. 3.7C). It is not clear whether the evening 

rebound in locomotion is due to a prolonged increase in locomotor drive, or rather just 

the result of a delayed activity onset due to moderate-high doses of CP55940. To this 

end, it is vital that the duration of exposure be taken into consideration, and that 

extreme care is taken when extrapolating the behavioral effects of this compound 

beyond the initial day of treatment in subjects of different ages/sexes (Fig. 3.8E-F). The 

importance of tempering these extrapolations is perhaps most exemplified by the 

exacerbated effects seen in older, but not younger mice, at the dose of 0.1mg/kg, IP. 

Ultimately, the aforementioned effects of this cannabinoid on activity offset/onset 

following exposure offer additional testable hypotheses that can be explored in the 

context of the currently unexplained paradoxical effects induced by chronic low-dose 

cannabinoid treatment in aged animals176,182.  

The establishment of repeatable and rigorously defined thresholds for circadian 

locomotor rhythm quantification, as evidenced in the baseline LD:DD experiments, is a 

prerequisite to evaluating any potential chronotherapeutic. The use of a threshold based 

off of animals’ maximum daily performance has been previously reported42. However, 

thresholding activity without considering the respective age and sex of the observed 

subject can hinder interpretation. Based on this, we set our threshold of 20% of animals’ 
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daily maximum across all days in the running wheels. Daily variations in amounts of 

activity were observed across all animals throughout the experimental observation 

period. Therefore, it is possible that an individual mouse’s activity was simply altered on 

the three-day analysis period independent of the treatment. We tried to control for this 

limitation by presenting the data both as the observed values and normalized to the day 

prior to drug administration. Although computationally intense, this method as well as 

thresholding based on each animal’s daily performance may provide more repeatable, 

stringent quantification. Another potential limitation of this study is that a Latin Square 

design was used for the repeated CP55940 injections. While this approach allows all 

animals to receive all doses, it introduces a potential confound of molecular adaptations 

in response to previous cannabinoid exposure - as repeated exposure to high doses of 

cannabinoids can lead to changes in endocannabinoid machinery. To try and limit this, 

only ‘low’ doses of CP55940 were administered; the high dose of 0.1mg/kg falls well 

below the typical dosing of 0.5mg/kg CP55940 commonly used in the tetrad assay. 

Additionally, treatments were given three days apart to allow for drug wash-out.  

Given that in the present study our measures of activity onset and offset resulting 

from either constant darkness or cannabinoid exposure were highly influenced by both 

age and sex. Future studies of chronotherapeutics must take these factors into 

consideration. Additionally, future studies of chronobiotics or other chronotherapeutics 

should consider employing analyses of both between-group differences as well as 

interindividual variability. Such analyses would not only clarify the immediate studies 

being presented, but also assist in the development of relevant preclinical models for 

personalized therapeutics. Taken together, these data indicate that aged mice are more 
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sensitive to the synthetic cannabinoid CP55940 than young mice, and additional studies 

clarifying these age- and sex-dependent mechanisms are warranted. Furthermore, 

these findings present an experimental framework for testing and evaluating the 

potential of chronobiotic, rhythm-restoring therapeutics. 

METHODS: 

Animals  

All procedures were approved by the University of Mississippi Institutional Animal 

Care and Use Committee (IACUC). Experimental cohorts consisted of two age groups: 

2-4 months (young) and 19-24 months (old). Experiments were performed on male and 

female C57BL/6NHsd mice acquired from Envigo (Cat.#: 044) or C57BL/6 mice from 

the National Institutes of Aging Aged Rodent Colony. All animals were housed in the 

AALAC-accredited University of Mississippi Animal Facility and given access to food 

(Cat.#: 7001, Envigo Teklad 4% Fat Rodent Diet) and tap-water ad libitum for the 

duration of experiments. Cohorts of mice were maintained in climate-controlled rooms 

(30-40% relative humidity, 21-23°C) using a 12:12 ‘reverse’ light cycle (lights OFF at 

8:00am [ZT hour 12, ZT minute 720] and ON at 8pm [ZT hour 0, ZT Minute 0). Upon 

arrival into the facility, animals were immediately group-housed (4 mice/cage) in 75 in2 

clear polycarbonate cages (Cat.#: AN76, Ancare) with 1/8” corn cob bedding and 

environmental enrichment (Cotton Nestlets, Ancare, and Crink’l Nest, The Andersons 

Lab Bedding) then allowed to acclimate to the facility for 7 days before experimentation. 

Following this week of acclimation, animals were weighed, fitted with a metal ear-tag 

(Cat.#: INS1005-1LSZ, Kent Scientific) and randomized into balanced experimental 

treatment groups based on body weight. 
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Recording Spontaneous Wheel Running  

During experimentation, mice were singly-housed in 33x15x13 cm clear 

polycarbonate cages (Cat.# 1144B001, Tecniplast) fitted with electronically monitored 

running wheels (PT2-MCR1, Actimetrics). Photoelectric sensors attached to each cage 

recorded wheel rotations and transmited the data to a nearby desktop computer which 

was remotely monitored to limit unnecessary entries into the room. For the duration of 

each experiment (28 days, maximum) each wheel’s rotations per minute were recorded 

using the ClockLab software (Actimetrics). Prior to beginning the experiment, each 

wheel was lubricated using a food-grade silicone spray (03040, CRC) and calibrated to 

ensure even resistance between wheels. Mice were checked daily, and clean cages 

were replaced every week. All experimental handling and procedures were performed 

under very dim red light (<1lux) during the animals’ active period (lights OFF, ZT hour 

12 through ZT hour 24/0).  

Experimental Timeline 

During baseline quantification of age- and sex- specific behaviors, mice were 

placed into the prepared running wheel cages and allowed to freely run for 7 days. 

Shortly before lights-on at the end of day 7, a custom-fabricated breathable light-proof 

fabric was used to cover the entire cage rack and eliminate light-associated cues. Mice 

were remotely monitored for seven additional days under constant darkness before 

being removed and returned with their original cage mates. Separate cohorts of animals 

were used to assess the chronobiotic potential of CP55940 and were tested only under 

normal lighting conditions (12:12, LD). For the CP55940 experiments, animals were 

allowed to freely run on the wheels for 14 days prior to drug administration. At the start 
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of the 15th day of running, immediately after the onset of animals’ subjective active 

period (30-60 minutes after lights OFF, 8:30-9:00am, ZT hour 12.5-13) animals were 

briefly removed from their cages and administered one of four doses of vehicle or 

CP55940 via intraperitoneal injection before being immediately returned to their running 

wheel cages. Following the initial dose, animals were administered a new unique dose 

of vehicle or CP55940 every 72 hours until each animal had received all 4 doses.  

Drugs, Dosing, and Administration 

The synthetic cannabinoid CP55940 (Cat.#:0949, Tocris) was initially diluted in 

100% ethanol (Cat.#:2701, Decon Labs) to a stock concentration of 10mg/mL and kept 

at -20°C. On the day of each experiment, fresh vehicle solution was prepared by first 

dissolving Kolliphor EL (formerly known as Cremophor EL, Cat.#: C5135-500G, Sigma 

Life Science) in 100% ethanol, then adding sterile 0.9% HSP pH 7.4 saline (Cat.#: 

00409488810, Hospira) in a ratio of (1:1:18, ethanol:Kolliphor:saline). All drug 

concentrations were administered at a volume of 1mL/100g body weight. On the day of 

testing, immediately after the onset of animals’ subjective active period (30-60 minutes 

after lights OFF, 8:30-9:00am, ZT hour 12.5-13) the animals’ weights were recorded, 

then a body weight-adjusted dose of vehicle or CP55940 was administered via 

intraperitoneal (IP) injection. All injections were performed under very dim red light using 

a 1mL syringe (Cat.# 309602, Becton, Dickinson and Company[BD]) and a 25 gauge 

needle (0.5 x 16mm, Cat.# 305122, BD). 

Body Weight 

Body weight was measured at the start of every experimental procedure to 

ensure accurate drug administration and as an endpoint for exclusion in the event that 
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an animal’s mass decreased >10% in a week. Animals were gently removed from their 

cages by lightly gripping the base of their tail and placed into a lidless pipette-tip box on 

top of the balance. Once the animal ceased moving the mass was recorded. In between 

recordings, the pipette-tip box was wiped clean with 70% ethanol, dried with a paper 

towel, and the balance was tared. 

Data Acquisition, Quantification of Rhythms, and Statistical Analysis 

Data were collected, processed, analyzed, and visualized using a combination of 

ClockLab (v3.60, Actimetrics), Microsoft Excel (v2016, Microsoft), RStudio (v.1.1.456, 

RStudio Team) and numerous R-packages227-239, MATLAB (r2019a, MathWorks), and 

Inkscape (v0.92.3). After the completion of all experiments, raw wheel counts were 

exported from ClockLab to comma-delimited files and imported to MATLAB for 

annotation and inspection. All wheel counts were annotated with the animal’s age, sex, 

date and time of acquisition, and experimental treatment. In cases where spurious data 

points were identified due to sensor failures, pre-processing of the data was performed 

prior to analysis. In such cases, pre-processing involved identifying the timepoints of 

clearly spurious values (e.g. sustained wheel RPMs of >300 for several hours) were 

noted, and data values were replaced with 3-minute averages from exactly 24 hours 

before and after the noisy sections. All experiments began with n=12 running wheels, 

and recordings which contained spurious values in excess of 10% of the total recording 

were excluded from further analysis. During baseline (LD/DD) testing, one young male 

and one old males’ recordings were excluded due to sensor failures. During CP55940 

testing, three young male, 6 young female, 4 old male, and 4 old female recordings 

were excluded due to sensor failures.  
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After pre-processing of the data, surface plots of daily locomotion were produced 

in MATLAB for visualization of transitions from normal lighting to constant darkness 

(Fig. 3.2-3.8) as well as responses to CP55940 treatment (Fig. 3.4-3.8). Quantification 

of rhythm properties was accomplished using a combination of MATLAB and R, 

consisting of the following steps. First, a 10-minute moving-average was applied to each 

animal’s raw wheel counts. Next, each animals’ average daily rotations per minute 

(RPMs) were calculated. The minute-by-minute daily averages were then used to 

compute the Activity Onset and Activity Offset, which were defined as the first 10-minute 

period of time whose average values were greater or less than 20% of that animal’s 

average daily maximum. Calculation of running period was accomplished by first 

generating Lomb-Scargle periodograms of each animal’s wheel counts within a given 

lighting condition, then selecting the most prominent peak present in the periodogram. 

The corresponding value of each peak was used for comparative period lengthening 

and shortening in constant darkness.  

Finally, statistical comparisons between treatment groups were performed. The 

independent variables for baseline recordings were: age, sex, and light schedule. In the 

second set of experiments using CP55940, the independent variables were: age, sex, 

and dose of CP55940 with day of injection as a blocking variable. Prior to omnibus 

testing, all data for a given measurement was tested for outliers, which was defined as 

those points that were greater or less than three interquartile ranges above or below the 

3rd and first interquartile ranges within a single treatment group. After exclusion of these 

points, data from each measurement were assessed for a normal distribution (Shapiro-

Wilk test) and equal variance (Levene test). A 3-way ANOVA was used to assess 



 

74 

differences between treatment groups. A priori significance was set at =0.05. 

Significant main-effects and interactions detected in omnibus tests were followed by 

additional planned contrasts. In the preliminary experiments, the ANOVA model used 

was Age:Sex:Lighting_Conditions. In the experiments using CP55940, the ANOVA 

model used was Age:Sex:Dose_CP55940. Additionally, 1-way ANOVA testing was 

performed on total wheel rotations measured in experiment two to assess dose-

dependent changes within a single age/sex group. To determine the proportion of 

animals which were classified as early-, consistent-, or later risers, Fisher’s Exact Test 

followed by pairwise nominal independence post hoc tests were used. The false 

discovery rate was corrected for using the Benjamini, Hochberg, and Yekutieli method.  

Data and Code Availability 

All original data and code used for analysis are available upon reasonable 

request to the corresponding author, Nicole M. Ashpole (nmashpol@olemiss.edu). 
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FIGURES 

 

 

 

 

 

 

 

Figure 3.1: Experimental timeline of baseline wheel running and treatment with 

CP55940.  

Panel A) Cohorts of young and old male and female mice were singly housed in cages 

with remotely monitored running wheels for a total of 14 days. During the first 7 days, 

mice were exposed to normal lighting (12 hours of light and 12 hours of darkness). After 

7 full days, mice were held in constant darkness for an additional 7 days while wheel 

running was recorded.  

Panel B) Separate cohorts of young and old male and female mice were allowed two 

weeks of acclimation running under normal 12:12 lighting. Beginning on day 14, one 

hour after lights off at the beginning of the animal’s active period, mice were 

administered the first of four unique doses (0 [vehicle], 0.001mg/kg, 0.01mg/kg, 

0.1mg/kg) of the synthetic cannabinoid CP55940 via intraperitoneal injection. Mice were 

then left undisturbed for two days. Every 3 days (indicated in green), animals were 

A B 
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administered an additional unique dose, according to a Latin-square experimental 

design. 
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Figure 3.2: Circadian locomotion of C57BL6 mice housed under normal lighting (12:12, 

LD) and constant darkness (00:24, DD).  

Panels A-D) Surface plots of minute-by-minute activity during 7 days of normal (12:12) 

lighting and 7 days of constant darkness (indicated by the black or white squares under 

each surface).  

Panels E-H) Hour-by-hour average daily means, maxima, and periods of C57BL6 Mice 

housed under normal lighting and constant darkness. Lights off was defined as 

Zeitgeber Time (ZT hour 12). 
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Figure 3.3: Quantification of changes in average activity onset, activity offset, duration of 

activity, and total activity during normal lighting and constant darkness.  

Panels A-B) Average time of activity onset during normal lighting (A) and constant 

darkness (B). 

Panel C) The relative change in timing of activity onset between normal lighting and 

constant darkness.  

Panels D-E) Average time of activity offset during normal lighting (D) and constant 

darkness (E), 

Panel F) The relative change in timing of activity offset between normal lighting and 

constant darkness.  

Panels G-H) Average total minutes of activity during normal lighting (G) and constant 

darkness (H), 

Panel I) The relative change in average duration of activity between normal lighting and 

constant darkness. 
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Panels J-K) Average total wheel rotations during normal lighting (J) and constant 

darkness (K), 

Panel L) The relative change in average total wheel rotations during normal lighting and 

constant darkness. Significant differences (p<0.05) between sexes within an age group 

are indicated by (*), while significant differences between ages within a sex are 

indicated by (#).   
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Table 3.1: Proportion of animals whose activity onset and offset shifted greater than 15 

minutes from normal lighting to constant darkness.   

Early (%) Consistent (%) Late  (%) Early (%) Consistent (%) Late  (%)

Young Male 11 8 (72.7) 2 (18.2) 1 (9.1) 8 (72.7) 2 (18.2) 1 (9.1)

Old Male 11 6 (54.5) 2 (18.2) 3 (27.3) 6 (54.5) 2 (18.2) 3 (27.3)

Young Female 12 3 (27.3) 3 (27.3) 6 (54.5) 3 (27.3) 3 (27.3) 6 (54.5)

Old Female 12 11 (100.0) 1 (9.1) 0 (0.0) 11 (100.0) 1 (9.1) 0 (0.0)

Activity Onset Activity Offset

Age Sex n=
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Figure 3.4: Treatment with varying doses of the synthetic cannabinoid CP55940 in 

young and old male mice.  
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Average running wheel activity of young (2-4m) and old (18-22m) male mice was 

quantified the day before (back, day 1), during (middle, day 2), and after injection (front, 

day 3). Data plotted as Day of Running 2 represent the average group activity following 

one of four doses of CP55940 (0 [Vehicle], 0.001, 0.01, or 0.1mg/kg, IP). Lights-on was 

defined as ZT minute 0, and lights-off was defined as ZT minute 720. Each mouse 

received all 4 doses in a pseudo randomized order. All mice had a 72-hour washout 

period between subsequent injections. 
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Figure 3.5: Treatment with varying doses of the synthetic cannabinoid CP55940 in 

young and old female mice.  
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Average running wheel activity of young (2-4m) and old (18-22m) male mice was 

quantified the day before (back, day 1), during (middle, day 2), and after injection (front, 

day 3). Data plotted as Day of Running 2 represent the average group activity following 

one of four doses of CP55940 (0 [Vehicle], 0.001, 0.01, or 0.1mg/kg, IP). Lights-on was 

defined as ZT minute 0, and lights-off was defined as ZT minute 720. Each mouse 

received all 4 doses in a pseudo randomized order. All mice had a 72-hour washout 

period between subsequent injections. 
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Figure 3.6: Voluntary wheel running of young and old male and female C57BL6 mice on 

the day before, during, and after injection with varying doses of CP55940. 

On the day of injection, 30-60m after lights off (~ZT hour 12.5) mice were administered 

an intraperitoneal injection of vehicle or varying doses of CP55940 and returned to their 

running wheels. Doses of CP55940 are (Zero [Vehicle], Low [0.001mg/kg], Med 

[0.01mg/kg], High [0.1mg/kg]). Lines and error bars represent the average group mean 

(n=6-9 per dose). Dashed lines indicate maximum rotations per minute (RPM) for a 

given dose. Dotted lines indicate mean RPM for a given dose. 
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Figure 3.7: Quantification of total wheel running 1, 1-6, and 6-12 hours after injection of 

the synthetic cannabinoid CP55940. 

On the day of injection, 30-60m after lights off (~ZT hour 12.5) mice were administered 

an intraperitoneal injection of vehicle or varying doses of CP55940 and returned to their 

running wheels. Doses of CP55940 are (Zero [Vehicle], Low [0.001mg/kg], Med 

[0.01mg/kg], High [0.1mg/kg]). Total wheel running was quantified by summing the 

rotations per minute for the given durations listed.  

Panel A) Total wheel rotations in the first hour after injection. 

Panel B) Total wheel rotations for the first 6 hours after injection. 

Panel C) Total wheel rotations 6-12 hours after injection.  

Significant differences (p<0.05) between sexes are indicated by (*), while significant 

differences between ages are indicated by (#). Significant differences between a dose 

of CP55940 and the vehicle within a sex/age group are indicated by (@). 
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Figure 3.8: Quantification of changes in average activity onset, activity offset, duration of 

activity following injection of the synthetic cannabinoid CP55940. 

On the day of injection, 30-60m after lights off (~ZT hour 12.5) mice were administered 

an intraperitoneal injection of vehicle or varying doses of CP55940 and returned to their 

running wheels. Doses of CP55940 are (Zero [Vehicle], Low [0.001mg/kg], Med 
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[0.01mg/kg], High [0.1mg/kg]). Activity onset and offset were calculated based on the 

time at which an animal reached 20% of its maximum daily RPM.  

Panel A) Average time of activity offset on the day of injection. 

Panel B) Change in the time of activity offset from the day before injection. 

Panel C) Total minutes spent running at a rate above 20% of each animal’s daily 

maximum RPM on the day of injection.  

Panel D) Change in running duration (day of injection - day before injection). 

Panel E) Average time of activity onset on the day after injection. 

Panel F) Change in the time of activity onset (day after injection - day before injection). 

Significant differences (p<0.05) between sexes are indicated by (*), while significant 

differences between ages are indicated by (#). Significant differences between a dose 

of CP55940 and the vehicle within a sex/age group are indicated by (@). 

 



 

91 

CHAPTER 4:  

CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS 

GRAPHICAL ABSTRACT: 

 

SUMMARY OF FINDINGS: 

Aging Circadian Rhythms and Cannabinoids 

 While exploring the possibility that circadian rhythms and aging are inextricably 

linked, it became clear that this idea is not novel. In fact, preliminary literature searches 

indicated that more publications exist regarding the relationship of aging to circadian 

rhythms than any other components of this work (Figure 4.1). Despite this shared, 

persistent interest, there are still numerous outstanding questions pertaining to the 

relationship between circadian rhythms and biological aging. The most glaringly obvious 

of which is: does the circadian molecular machinery regulate lifespan directly, or is it the 

collective functional output of these internal clocks? Chapter 1 summarized the findings 
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from over 150 articles on biological aging, circadian rhythms, and cannabinoid 

pharmacology and highlighted several theoretical and experimental breakthroughs 

which have led the field thus far. In particular, the works of Colin Pittendrigh, Jürgen 

Aschoff, and Arthur Winfree profoundly shaped Chapter 1 and the hypotheses it 

contains. Collectively, their pioneering work revealed the experimental tractability, 

pervasiveness, and scale-invariance of biological clocks. The fundamental postulate of 

Chapter 1 is that circadian rhythms are not only an observable physiological 

phenomenon throughout the lifespan, but that their manifestation directly influences the 

rate of biological aging. If we accept the present evidence - that deteriorating circadian 

rhythms precede the onset of many age-related pathologies - then it stands to reason 

that the maintenance of the output generated by these molecular clocks may very well 

stave off pathologies of aging (Figure 1.5).  

 Substantial evidence correlates the molecular and cellular mechanisms of 

dysregulated circadian rhythms with constituents of the endocannabinoid system. 

Although much is known about the endocannabinoid system and its regulation of 

neuronal activity and rodent behavior, there are significant gaps in knowledge regarding 

endocannabinoid function in advanced age. Limited knowledge about the effects of 

these compounds in aged subjects coupled with rapidly expanding access to 

exogenous cannabinoids marketed as therapeutics has placed elderly members of our 

society at risk for potentially adverse effects. Specifically, these previous gaps in 

knowledge precluded inferences of cannabinoid-elicited responses in aged animals - 

which were directly tested in Chapter 2.  
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 Overwhelming evidence of cognitive impairment following high-doses of 

exogenous cannabinoids has led many to believe that these pharmacological agents 

lack therapeutic value. Nevertheless, the studies cited in Chapter 1 support the 

hypothesis that extremely regimented application of CB1 agonists at low doses may 

benefit certain age-related physiological dysfunctions. Capitalizing on the bidirectional 

dose-response (hormesis) which was been previously reported in young animals given 

exogenous cannabinoids, we hypothesized that cannabinoids are capable of both 

stimulating and suppressing circadian output in a time-dependent manner (Figure 1.5). 

To date, most studies have focused on melatonin for its ability to exhibit this circadian 

rhythm-modulating chronobiotic effects, though it is highly probable that many other 

pharmacological agents function in this manner59,60. Since cannabinoid receptors are 

present in the SCN, and exogenous cannabinoids modulate neuronal activity 

responsible for thermoregulation and locomotion, the conclusions drawn from this 

chapter warranted further investigation of these substances in aged subjects and 

models circadian rhythm disruption. 

Cannabinoid Hormesis 

The previously hypothesized potential benefits from cannabinoid-based 

chronotherapeutics are directly proportional to the bidirectional (hormetic) dose-

responses they produce. To this end, application of certain cannabinoids at calculated 

doses would theoretically allow for the rescue of both overactive and underactive 

biological processes. Such flexibility in a therapeutic agent, at least in theory, would 

surely be advantageous. Therefore, the work described in Chapter 2 was directly aimed 

at answering the following questions: 
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1) Do young and old animals differ in their physiological or behavioral responses 

to exogenous cannabinoids? 

2) Are exogenous cannabinoids capable of eliciting both stimulation and 

inhibition of body temperature, locomotion, or nociception in mice? 

3) Are the stimulatory effects of exogenous cannabinoids restricted to a single 

time-point in the lifespan? 

After testing over 250 young and old mice from 3 independent cohorts and performing 

15 iterations of the Tetrad Assay, we concluded that the synthetic cannabinoid 

CP55940 is both more potent and efficacious in its ability to induce hypolocomotion, 

hypothermia, and antinociception in aged mice. Additionally, our data indicated that the 

hormesis-like stimulation induced by low doses of this exogenous cannabinoid were 

evident and most pronounced in locomotor readouts from young, male mice. 

Cannabinoids as Chronobiotics 

 The stimulation of locomotion by low-doses of CP55940 observed in experiments 

from Chapter 2 was quite compelling, and supported the hypothesis put forth in Chapter 

1. Synthesizing our work and others’, it has now been demonstrated that cannabinoids 

are able to alter neuronal activity, locomotion, and thermoregulation in a bidirectional 

manner. Therefore, the ability of these compounds to flexibly alter both central and 

peripheral clock function seems plausible. To experimentally test this we first needed to 

quantify baseline measures of circadian wheel running, then compare the ability of 

CP55940 to modulate these measures. The experiments described in Chapter 3 

highlight the importance and technical difficulty of experimentally measuring circadian 

rhythms.  
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 Under baseline normal lighting conditions, female mice produced more wheel 

rotations than age-matched male mice, although the duration of activity was not 

different between the sexes (Fig. 3.3). These findings agree with previous work 

reporting that female C57BL6 mice are more active than males240,241. However, we were 

surprised by the shortening of animals’ active periods following transition to constant 

darkness (Fig. 3.2). Despite increased total number of wheel rotations in constant 

darkness (Fig. 3.3L), young male and female mice actually shortened their durations of 

activity (Fig. 3.3I). Furthermore, the resilience of young female mice to circadian 

disruption in constant darkness, as well as the loss of this resilience with age are 

significant findings from this study.  

 To evaluate the potential of CP55940 to alter circadian locomotor rhythms, we 

chose to administer low to moderate doses of this drug at the beginning of animals’ 

active periods. Although we did not detect significant stimulation of total wheel running 

in response to low doses of CP55940 (Fig. 3.7B), we were intrigued by the temporally 

biphasic suppression and stimulation of locomotion seen at higher doses. This evening 

‘rebound’ in locomotion may partly explain why previous studies have inconsistently 

reported locomotor depression and stimulation with modestly low doses of exogenous 

cannabinoids242. Collectively, the presence of Age:Sex interactions in many of the 

metrics we reported further solidifies the need to include and transparently report these 

factors in future studies. 

LIMITATIONS AND FUTURE DIRECTIONS: 
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Existing Data and Tools 

 It may seem obvious that some aspects of these experiments have been tested 

previously, however, the lack of freely available well-annotated data have prevented 

scientists’ ability to conduct these vital comparisons post hoc. As modern technology 

and data repositories seek to remedy these issues, a major benefit of the work 

described here is the production of a curated, highly annotated, shareable data set. The 

wealth and density of information present in these data are immeasurable, and it would 

be foolish to consider the current analysis as ‘complete’. Accordingly, future studies 

utilizing the data produced during vehicle-acclimation described in Chapter 2 or the 

baseline wheel recordings discussed in Chapter 3 may yield additional insights.  

 The evaluation of CP55940 as a chronobiotic was technically challenging for 

numerous reasons, partly because there are no commercial tools currently available to 

rigorously and efficiently conduct this analysis. Therefore, the success of this entire 

project directly relied on the ability to generate effective and efficient methods for data 

collection, curation, and analysis. The primary code and programs written to perform 

these tasks have been compiled in the Appendix. Additionally, the present success of 

these analytical tools now permits high-throughput testing of the chronobiotic effects of 

not only cannabinoids but also drugs of abuse and other potential therapeutics.  

Mice as a Model for Circadian Rhythm Disruption 

 The translation of experimental findings from rodents to humans is contentious, 

to say the least243. However the value of preclinical rodent models in biological aging 

research is undeniable244,245. Despite the immense knowledge gained from research on 

rodent circadian rhythms, the usefulness of these nocturnal animals as a model for 
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potential chronotherapies in humans remains to be evaluated. From a chronobiology 

standpoint, rodents (like most other mammals studied thus far) possess homologous 

core clock molecules22. Nevertheless, mice are nocturnal and exhibit distinct melatonin 

rhythms compared to diurnal humans. The release of melatonin from the human pineal 

gland exhibits a robust circadian rhythm whose peak onset corresponds to evening 

reductions in light. In contrast, mice exhibit a mid-subjective-day spike in melatonin 

secretion that occurs ~8 hours after the onset of darkness246. This surge in melatonin 

may be partly responsible for the mid-day ‘siesta’ observed in the baseline recordings 

presented in Chapter 3 (Fig. 3.2). Considering that melatonin is the most well-studied 

chronobiotic in humans, future studies should compare the temporal release of 

melatonin in mice treated with novel chronobiotics247. 

Mitigation of Circadian Confounds 

 Another major benefit of the present work over previous studies is that all 

experimental procedures were performed in the dark, during the animals’ active cycle. 

The time of day at which a drug is administered profoundly affects its metabolism and 

efficacy, and the study of these collective time-of-day-effects is known as 

chronopharmacology. Early work with cannabinoids clearly demonstrated that the 

effects of these compounds are significantly lowered when administered during the 

animals’ inactive period189. Therefore, testing animals in the dark while they are active, 

although technically challenging, is a vital factor to consider when translating these 

findings to humans. 

 In addition to these chronopharmacological effects, behavioral endpoints such as 

locomotion are clearly variable throughout the day (Fig. 3.2). Indeed, meta-analysis of 
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the thermoregulatory responses to vehicle injection were shown to vary depending on 

the time of injection (Fig. 4.2). In the tetrad-based experiments described in Chapter 2, 

the number of animals which needed to be tested in a single day coupled with a limited 

number of testing apparatuses necessitated testing animals at varying times during their 

active period. Although all doses were represented at all time points, we were unable to 

completely alleviate the potential confound of circadian effects on these physiological 

and behavioral readouts. Given that the exact time and order of all experiments was 

included in the annotated data set, it may be possible with future analysis to determine 

the extent that time-of-administration, and even time of year (Fig. 4.3), may have 

influenced the present findings.   

Vehicle, Drug, and Route of Administration 

 Throughout these studies, great care was taken to mitigate the effects of the 

injection procedure and vehicle administration. Although the relative concentrations of 

ethanol and detergent (Kolliphor EL) in the vehicle far exceed the concentration of 

cannabinoid, the profound effects of CP55940 are observable even at the lowest dose 

tested (0.001mg/kg, IP). The 1:1:18 (ethanol:Kolliphor:saline) ratio used as a vehicle 

here was based off of numerous previous reports using this vehicle in studies of THC 

and CP55940139,248,249. Still, we observed modest but consistent changes in body 

temperature responses to vehicle injection (Fig. 4.3). Evaluation of vehicle specific 

effects per se was not the intent of these studies, however, future well controlled studies 

evaluating the continued use of this mixture as a vehicle should be performed. 

 The intraperitoneal injection of CP55940 is a potential limitation of these studies, 

as this route of administration does not translate well to human cannabinoid usage. 
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While the availability of purified phytocannabinoids increases in the United States, many 

additional studies of the age-, sex-, and dose-dependent effects of isolated 

phytocannabinoids and cannabis-derived terpenes are now warranted126,127,158,160. 

Accurately modeling human routes of administration in rodents has traditionally been 

difficult, though recent advances in electronic vaporization devices may revolutionize 

models of inhalation160. In addition to models of cannabinoid inhalation, oral ingestion of 

cannabinoid-containing products is increasing specifically among elderly patients and 

should be further investigated. 

Experimental Design of Hormesis Study 

In order to facilitate the rapid acquisition of multiple behavioral endpoints while 

mitigating the effects of repeated dosing, it was necessary to perform the behavioral 

tests in Chapter 2 as a 1.5 hour-long battery. In this experimental design, we first took 

baseline rectal and IR temperature recordings, weighed the animals, then injected the 

drug. Thirty minutes later, animals were placed in the open field and allowed to explore 

for 30 minutes. At the conclusion of open field testing, animals’ temperatures were then 

taken again prior to nociception testing using the hot-plate and tail-withdrawal assays. A 

major limitation of this approach was discovered when comparing the thermoregulatory 

responses of vehicle-treatment during acclimation to vehicle-treated animals during the 

behavioral battery. The most likely explanation for these discrepancies is the stress and 

increased locomotion resulting from animals being tested in the open field between 

temperature recordings. Considering that low-dose hyperthermia was intended to be a 

primary readout of this study, the hyperthermia (likely) induced by open field testing 

potentially occluded true differences.  
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 The previously mentioned hyperthermia observed following open field testing 

highlights the importance of choosing, whenever possible, assays with large dynamic 

range. Since the average body temperature of mice in our study was ~37.5°C, and the 

maximum rectal temperature recorded was 39°C, it is also conceivable that a ‘ceiling 

effect’ occluded potential hyperthermia induced by low-doses of CP55940. Similarly, 

during hot-water tail withdrawal experiments, vehicle-treated animals withdrew their tails 

from 48°C water in less than 2 seconds. Such rapid responses by these vehicle-treated 

mice left little room to detect potentially hyperalgesic effects elicited by low doses of 

CP55940.  

Voluntary Wheel Running 

 The use of voluntary wheel running to assess circadian locomotion is widespread 

in rodent research. Yet recent evidence indicates that access to a running wheel and 

the requisite social isolation both profoundly alter physiology and behavior241,250-252. 

Furthermore, limitations imposed by the design of currently available commercially-

produced running wheels hinders their use in longitudinal studies of aging. Future 

studies utilizing telemetric systems may greatly improve the quality of this research, as 

modern technology now permits simultaneous long-term recording from group-housed 

mice. Additionally, the use of telemetry for chronobiotic studies also presents the 

additional advantage of simultaneously monitoring body temperature with far greater 

temporal resolution than is capable with a rectal probe. 

BIOLOGICAL AGING AND CIRCADIAN RHYTHMS AS DYNAMICAL SYSTEMS 
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Though the process biological aging has previously been referred to as a 

stochastic (random), several lines of research suggest that aging systems are not 

random - but rather chaotic253,254. In support of this, adaptation of the “two-hit 

hypothesis” from cancer research to the biology of aging has left open the possibility 

that the aging systems may actually exhibit features of dynamical systems - that is to 

say that they are calculable, if the starting conditions are known255-257 258. The biological 

importance of these high-dimension mathematical properties remains unknown, though 

the presence or absence of these fractal patterns may correspond to the onset of age-

related neuropathology37.  Future studies employing these advanced computational 

analyses are likely to yield valuable insight regarding the onset, progression, and 

treatment efficacy of age-related diseases. 

CONCLUSION 

The work contained in this dissertation proposes and tests the novel hypothesis 

that cannabinoid hormesis can be used to bidirectionally modulate age-related changes 

in circadian locomotion. Throughout these studies, pronounced age-, sex-, dose-, and 

time-dependent effects were observed in the physiological and behavioral responses to 

treatment with exogenous cannabinoids. Testing of this hypothesis required the creation 

and validation of novel behavioral paradigms, analytical tools, unique technical 

approaches, and established a framework for evaluating chronobiotic compounds in 

aging mice. Furthermore, the data collected in these studies has been compiled in a 

manner that facilitates future analysis and continued usefulness. Collectively, these 

findings indicate that the exogenous cannabinoid CP55940 possesses hormetic and 

chronobiotic characteristics in young mice, but the increased sensitivity to this 
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compound in aged mice suggests that therapeutic applications of cannabinoids in 

elderly patients must be approached with caution. 
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FIGURES 

Figure 4.1:  Frequency of word-cluster combinations present in a systematic literature 

search. 

Complex clusters of related strings were created to systematically search online 

databases for relevant literature when writing Chapter 1. The relative number of hits for 

each combination of word clusters is listed below and coded in a heat map. Search 

conducted via One Search in November 2018. 
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Figure 4.2:  Time-of-day effect on thermoregulatory response to vehicle injection during 

acclimation trials.   



 

105 

 

Figure 4.3:  Time-of-year effect on housing room humidity. 
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MATLAB CODE 

Step 1 - Import Merged CSV Counts 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

%%%%%   Running_Wheel_Analysis_MASTER (February 2020) - Erik Hodges   

%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

% This program takes in exported ClockLab Counts (.csv) which have been 

% consolidated using Excel macros stored in the 

% "Format_Counts_Master_May.xlsm" file. The goal of this script is to 

% reformat the DateTime for Zeitgeber Time (ZT) and save the formatted 

file 

% as a .mat for future analysis. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

 

% Clear All Current Variables and Console 

% 

clear all; 

close all; 

clc 

%} 

 

format long; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

Importing 

Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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File_Folder = 'C:\Users\erikh\Desktop\Lab Notebook\DATA\Running 

Wheels\Data_Analysis\Data\Input\Merged_Raw_In_Excel\**\*.csv'; 

CSV_Directory = dir(File_Folder); 

 

for i = 1:numel(CSV_Directory) 

    CSV_Files(i) = string(CSV_Directory(i).name); 

end 

 

CSV_Files = CSV_Files(1:end)'; 

 

for q = 1:numel(CSV_Files) 

    % This was added in to specifically remake the 

    % CP_YF_3.mat file after realizing that the original recordings 

hadn't 

    % adjusted for DST and therefore were out of sync with the lights, 

since 

    % the animals were becoming active at 9:00 and 21:00. If working with 

    % this data set in the future, please confirm that CP_YF_3 is 

adjusted 

    % by -1 hours and that ZT is calculated correctly. This is done by 

    % looking through this code and adding back the "if" statements that 

    % target file == "CP_YF_3.csv" 

 

    %  if file == "CP_YF_3.csv"; 

 

    % file = 'CP_YF_3.csv'; 

 

    file = CSV_Files(q); 

    opts = detectImportOptions(file); 

    opts = detectImportOptions(file,'DatetimeType','text'); 

 

    ImportedData = readtable(file,opts); 

 

    % For some reason when the data is imported there is a large chunk of 
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empty cells added to the end of the recording 

    ImportedData(ImportedData.Date=="",:) = []; 

This formats the DateTime as it comes out from ClockLab 

    ImportedData.NewDateTime = strcat(ImportedData.Date,{' 

'},ImportedData.Time); 

    ImportedData = movevars(ImportedData, 'NewDateTime', 'Before', 

'Day'); 

    ImportedData.NewDateTime = 

datetime(ImportedData.NewDateTime,'InputFormat','dd-MMM-yy HH:mm'); 

 

 

    NewDateTime = ImportedData.NewDateTime; 

    NewDateTime.Format = 'MMM-dd-yyyy HH:mm:ss'; 

    ImportedData.Date = NewDateTime; 

    ImportedData.Properties.VariableNames(1) = {'DateTime'}; 

 

    ImportedData_Columns = ImportedData.Properties.VariableNames'; %save 

the header text as a variable 

 

    ImportedData.Time = []; 

    ImportedData.NewDateTime = []; 

    ImportedData.Day = []; 

    ImportedData.Hr = []; 

 

    if any(ImportedData_Columns() == "Min") > 0 

        ImportedData.Min = []; 

    end 

 

    clear('NewDateTime','opts'); 

 

    ImportedData_Columns = ImportedData.Properties.VariableNames'; %save 

the header text as a variable 

 

    ExpNames = {'Base_YM_1';'Base_OM_1';'Base_YF_1';'Base_OF_1';... 

        

'CP_YM_1';'CP_YM_2';'CP_YM_3';'CP_YF_1';'CP_YF_2';'CP_YF_3';'CP_OM_1';'CP

_OF_1';... 

        'Pilot_Cipro_1';'Pilot_OM_1'}; 

 

    % This if statement is to adjust for the fact that the computer 
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didn't recognize DST during CP_YF_3 

     

    % 

    if file == "CP_YF_3.csv" 

        ImportedData.DateTime = ImportedData.DateTime - hours(1); 

    end 

    %} 

 

    %} 

 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

Define Experimental Variables 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

 

    fs = 1/60; % Sample rate, which is set in ClockLab (1 minute = 

1/60sec) 

 

    MinutesInDay = 1440; 

 

    LightsOffHr = 8; % Input the time that lights turn off 

    LightsOnHr = 20; % Input the time that lights turn on 

    LightsOffMinute = LightsOffHr * 60; % This corresponds to 8:00am 

    LightsOnMinute = LightsOnHr * 60; % This corresponds to 8:00pm 

 

    %} 

ZT Data Padding to BEGINNING of Record 

    % AFTER RUNNING INTO THE PROBLEM WHERE I NEEDED TO PAD THE END OF THE 

    % RECORDINGS I DISCOVERED A BETTER WAY TO "ROUND" THE RECORDINGS AND 

    % EMPLOYED THIS METHOD TO ROUND THE END OF THE RECORDINGS UP TO 

    % 20:00:00, HOWEVER I DID NOT GO BACK AND EMPLOY THIS METHOD TO THE 

    % PADDING AT THE BEGINNING OF THE RECORDINGS, BUT I SHOULD DO THIS IN 

    % THE FUTURE. 
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    % New NaN padding to the front of a time series so that ZT can be 

    % calculated from the moment of LIGHTS ON (20:00:00) 

 

 

    FirstTime = min(ImportedData.DateTime); 

    NewStart = FirstTime-hours(4); % By doing it this way it does not 

adjust for the case when I have to -1 hour for DST 

 

 

    % This if statement is to adjust for the fact that the computer 

didn't recognize DST during CP_YF_3 

    %  

 

    if file == "CP_YF_3.csv" 

        NewStart = FirstTime-hours(3); 

    end 

    %} 

 

    TimeDiff = NewStart - FirstTime; 

 

    PadTable = ImportedData(1,:); 

    PadTable(2,:) = PadTable(1,:); 

    PadTable{2,2:end} = NaN; 

    Time2Add = FirstTime+TimeDiff; %-'00:01:00'; %might need to add this 

extra minute back at some point 

    PadTable{2,1} = Time2Add; 

 

    TTpad = table2timetable(PadTable); 

    TTadd = 

retime(TTpad,'regular','fillwithmissing','TimeStep','00:01:00'); 

    TTadd(end,:) = []; 

    TTadd = timetable2table(TTadd); 

    PaddedData = [ImportedData;TTadd]; 

 

    ImportedData = PaddedData; 

    ImportedData = sortrows(ImportedData,'DateTime','ascend'); 

ZT Data Padding to END of Record 

    % In this case it is not always clear that it is optimal to 'trim' 

the 

    % final day to end on 20:00:00, therefore I will write a block of 
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code 

    % to pad (round up) the last day to 20:00:00 

 

    LastTime = max(ImportedData.DateTime); % Jan-18-2019 15:59:00 

    NewEnd = LastTime; 

    NewEnd.Hour = 20 * ceil(NewEnd.Hour/20); % Jan-18-2019 20:59:00 

    NewEnd.Minute = floor(NewEnd.Minute/60); % Jan-18-2019 20:00:00 

 

 

 

    EndDiff = NewEnd - LastTime; 

 

    PadTable = ImportedData(end,:); 

    PadTable(2,:) = PadTable(end,:); 

    PadTable{2,2:end} = NaN; 

    Time2Add = LastTime+EndDiff; %-'00:01:00'; %might need to add this 

extra minute back at some point 

    PadTable{2,1} = Time2Add; 

 

    TTpad = table2timetable(PadTable); 

    TTadd = 

retime(TTpad,'regular','fillwithmissing','TimeStep','00:01:00'); 

%    TTadd(end,:) = []; % I believe I want to keep this last row, so the 

recording ends at an even 20:00:00 

    TTadd = timetable2table(TTadd); 

    TTadd(1,:) = []; % I introduced a duplicated row and need to get rid 

of it before merging with the ImportedData 

 

    PaddedData = [ImportedData;TTadd]; 

 

    ImportedData = PaddedData; 

    ImportedData = sortrows(ImportedData,'DateTime','ascend'); 

    % This if statement is to adjust for the fact that the computer 

didn't recognize DST during CP_YF_3 

    % This is a terrible way of doing this, but I don't have time to fix 

this more elegantly 

    % 

%    if file == "CP_YF_3.csv" 

%        NewEnd = LastTime-hours(3); 

%    end 

    %} 
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    ImportedData = ImportedData(ImportedData.DateTime<=NewEnd,:); 

 

 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

Data Organization and Orientation 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

Create Timeline Variables for ZT, such as minutes/hours/etc. 

    DataLength = height(ImportedData); 

 

    ZTDur = ImportedData.DateTime; 

    ZTDur = ZTDur - ZTDur(1); 

 

    ImportedData.ZTDuration = ZTDur; 

    ImportedData.ZTDay = days(ImportedData.ZTDuration); 

    ImportedData.ZTHour = hours(ImportedData.ZTDuration); 

    ImportedData.ZTMinute = minutes(ImportedData.ZTDuration); 

    ImportedData.ZTDayBin = fix(ImportedData.ZTDay); 

    ImportedData.ZTHourBin = fix(ImportedData.ZTHour); 

    ImportedData.ZTMinuteBin = fix(ImportedData.ZTMinute); 

 

    for i=1:DataLength 

        if ImportedData.ZTDayBin(i) >= 1 

            ImportedData.ZTHourBin(i) = ImportedData.ZTHourBin(i)-

(24*ImportedData.ZTDayBin(i)); 

            ImportedData.ZTMinuteBin(i) = ImportedData.ZTMinuteBin(i)-

(1440*ImportedData.ZTDayBin(i)); 

        end 

    end 

 

    ImportedData.ClockHourBin = hour(ImportedData.DateTime); 

    ImportedData.ClockMinuteOfDay = 

(ImportedData.ClockHourBin*60)+(minute(ImportedData.DateTime)); 
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    ImportedData = movevars(ImportedData, 

{'ZTDuration';'ZTDay';'ZTHour';'ZTMinute';'ZTDayBin';'ZTHourBin';'ZTMinut

eBin';'ClockHourBin';'ClockMinuteOfDay'}, 'After',1); 

    %clearvars -except ImportedData Base_YM_1 ExpNames Files 

 

    ImportedData_Columns = ImportedData.Properties.VariableNames'; %save 

the header text as a variable 

 

    New_File_Name = strrep(file,'.csv','.mat'); 

 

    assignin('base',strrep(file,'.csv',''),ImportedData) 

 

    save(New_File_Name,strrep(file,'.csv','')) 

end 

 

Step 2 - Add Metadata 

% Clear All Current Variables and Console 

% 

clear all; 

close all; 

clc 

%} 

 

format long; 

Load Files 

Files = {... 

    'Base_YM_1.mat';'Base_YF_1.mat';'Base_OM_1.mat';'Base_OF_1.mat';... 

    

'CP_YM_1.mat';'CP_YM_2.mat';'CP_YM_3.mat';'CP_YF_1.mat';'CP_YF_2.mat';'CP

_YF_3.mat';'CP_OM_1.mat';'CP_OF_1.mat';... 

    'Pilot_Cipro_1.mat';'Pilot_OM_1.mat'}; 

 

 

ExpNames = {... 
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    'Base_YM_1';'Base_YF_1';'Base_OM_1';'Base_OF_1';... 

    

'CP_YM_1';'CP_YM_2';'CP_YM_3';'CP_YF_1';'CP_YF_2';'CP_YF_3';'CP_OM_1';'CP

_OF_1';... 

    'Pilot_Cipro_1';'Pilot_OM_1'}; 

 

WheelNums = 

{'01';'02';'03';'04';'05';'06';'07';'08';'09';'10';'11';'12';'13';'14'}; 

 

WheelNames = 

{'Wheel_01';'Wheel_02';'Wheel_03';'Wheel_04';'Wheel_05';'Wheel_06';'Wheel

_07';... 

    

'Wheel_08';'Wheel_09';'Wheel_10';'Wheel_11';'Wheel_12';'Wheel_13';'Wheel_

14'}; 

 

for i = 1:numel(Files) 

    load(Files{i}); 

end 

Add the MetaData to the 'wide' data files 

DataStruct = struct(... 

    'Base_YM_1',{Base_YM_1,'Base_YM_1_Metadata.csv','Base_YM_1.csv'},... 

    'Base_YF_1',{Base_YF_1,'Base_YF_1_Metadata.csv','Base_YF_1.csv'},... 

    'Base_OM_1',{Base_OM_1,'Base_OM_1_Metadata.csv','Base_OM_1.csv'},... 

    'Base_OF_1',{Base_OF_1,'Base_OF_1_Metadata.csv','Base_OF_1.csv'},... 

    'CP_YM_1',{CP_YM_1,'CP_YM_1_Metadata.csv','CP_YM_1.csv'},... 

    'CP_YM_2',{CP_YM_2,'CP_YM_2_Metadata.csv','CP_YM_2.csv'},... 

    'CP_YM_3',{CP_YM_3,'CP_YM_3_Metadata.csv','CP_YM_3.csv'},... 

    'CP_YF_1',{CP_YF_1,'CP_YF_1_Metadata.csv','CP_YF_1.csv'},... 

    'CP_YF_2',{CP_YF_2,'CP_YF_2_Metadata.csv','CP_YF_2.csv'},... 

    'CP_YF_3',{CP_YF_3,'CP_YF_3_Metadata.csv','CP_YF_3.csv'},... 

    'CP_OM_1',{CP_OM_1,'CP_OM_1_Metadata.csv','CP_OM_1.csv'},... 

    'CP_OF_1',{CP_OF_1,'CP_OF_1_Metadata.csv','CP_OF_1.csv'},... 

    

'Pilot_Cipro_1',{Pilot_Cipro_1,'Pilot_Cipro_1_Metadata.csv','Pilot_Cipro_

1.csv'},... 

    

'Pilot_OM_1',{Pilot_OM_1,'Pilot_OM_1_Metadata.csv','Pilot_OM_1.csv'}); 

 

NewStruct = DataStruct; 
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for i = 1:length(ExpNames) 

 

 

CurExp = DataStruct(1).(ExpNames{i}); 

 

Columns = CurExp.Properties.VariableNames'; 

 

opts = detectImportOptions(DataStruct(2).(ExpNames{i})); 

 

opts = 

setvartype(opts,{'Experiment';'Cage';'Animal';'DOB';'Age';'Sex';'Cohort';

'Supplier';'Wheel';'Lights'},'categorical'); 

 

%opts = setvartype(opts,{'DOB'},'datetime'); 

%opts = setvartype(opts,'DatetimeType','text'); 

 

CurMeta = readtable(DataStruct(2).(ExpNames{i}),opts); 

CurMeta.DOB = 

datetime(string(CurMeta.DOB),'InputFormat','MM/dd/yyyy','Format','MMM-dd-

yyyy'); 

 

 

 

MetaVars = CurMeta.Properties.VariableNames'; 

 

Columns(11:24) = {'Wheel_1';'Wheel_2';'Wheel_3';'Wheel_4';... 

    'Wheel_5';'Wheel_6';'Wheel_7';'Wheel_8';'Wheel_9';'Wheel_10';... 

    'Wheel_11';'Wheel_12';'Wheel_13';'Wheel_14'}; 

 

CurExp.Properties.VariableNames = Columns; 

 

Timeline = CurExp(:,1:10); 

 

W01 =  [Timeline CurExp(:,11)]; 

W02 =  [Timeline CurExp(:,12)]; 

W03 =  [Timeline CurExp(:,13)]; 

W04 =  [Timeline CurExp(:,14)]; 

W05 =  [Timeline CurExp(:,15)]; 

W06 =  [Timeline CurExp(:,16)]; 

W07 =  [Timeline CurExp(:,17)]; 

W08 =  [Timeline CurExp(:,18)]; 

W09 =  [Timeline CurExp(:,19)]; 



 

148 

W10 =  [Timeline CurExp(:,20)]; 

W11 =  [Timeline CurExp(:,21)]; 

W12 =  [Timeline CurExp(:,22)]; 

W13 =  [Timeline CurExp(:,23)]; 

W14 =  [Timeline CurExp(:,24)]; 

 

Wheels = {W01,W02,W03,W04,W05,W06,W07,W08,W09,W10,W11,W12,W13,W14}'; 

 

for k = 1:14 

CurWheel = Wheels{k}; 

 

CurWheel.Experiment(:) = CurMeta{k,1}; 

CurWheel.Cage(:) = CurMeta{k,2}; 

CurWheel.Animal(:) = CurMeta{k,3}; 

CurWheel.Age(:) = CurMeta{k,4}; 

CurWheel.DOB(:) = CurMeta{k,5}; 

CurWheel.Sex(:) = CurMeta{k,6}; 

CurWheel.Cohort(:) = CurMeta{k,7}; 

CurWheel.Supplier(:) = CurMeta{k,8}; 

CurWheel.Wheel(:) = CurMeta{k,9}; 

CurWheel.Lights(:) = CurMeta{k,10}; 

 

VarNames = CurWheel.Properties.VariableNames'; 

 

CurWheel = movevars(CurWheel,[12:21],'Before','DateTime'); 

 

CurWheel.Properties.VariableNames(21)={'Counts'}; 

 

Wheels{k,2} = CurWheel; 

 

end 

 

FullTable = Wheels{1,2}; 

 

for m = 2:14 

    FullTable = [FullTable;Wheels{m,2}]; 

end 

 

 

 

NewStruct(1).(ExpNames{i}) = FullTable; 

 

clear('FullTable','Wheels','CurWheel','Timeline','CurExp','CurMeta',... 
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'W01','W02','W03','W04','W05','W06','W07','W08','W09','W10','W11','W12','

W13','W14'); 

end 

 

clearvars -except ExpNames NewStruct MetaVars WheelNames WheelNums 

Stack all individual tables and save as create 'All_Wheel_Data_With_Meta.mat' 

All_Data = [... 

    NewStruct(1).Base_YM_1;... 

    NewStruct(1).Base_YF_1;... 

    NewStruct(1).Base_OM_1;... 

    NewStruct(1).Base_OF_1;... 

    NewStruct(1).CP_YM_1;... 

    NewStruct(1).CP_YM_2;... 

    NewStruct(1).CP_YM_3;... 

    NewStruct(1).CP_YF_1;... 

    NewStruct(1).CP_YF_2;... 

    NewStruct(1).CP_YF_3;... 

    NewStruct(1).CP_OM_1;... 

    NewStruct(1).CP_OF_1;... 

    NewStruct(1).Pilot_Cipro_1;... 

    NewStruct(1).Pilot_OM_1]; 

 

 

% save('All_Wheel_Data_With_Meta.mat','All_Data'); 

 

clearvars NewStruct 

Build The Data Structure from the MegaTable 

%Files = {'All_Wheel_Data_With_Meta.mat'}; 

 

%{ 

for i = 1:numel(Files) 

    load(Files{i}); 

end 

%} 
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%load('All_Wheel_Data_With_Meta.mat'); 

 

 

Noise = table(); 

Noise.Start = 'Sep-10-2018 12:00:00'; 

Noise.End = 'Sep-10-2018 12:00:00'; 

Noise.Type = {''}; 

 

Lights = table(); 

Lights.Regular = 'Sep-10-2018 12:00:00'; 

Lights.Darkness = 'Sep-10-2018 12:00:00'; 

 

All_Wheels = table(); 

 

WheelInfo = struct(... 

    'Has_Data',{''},... 

    'Phase',{''}, ... 

    'Experiment',{''}, ... 

    'Animal',{''},... 

    'Cage',{''},... 

    'DOB',{''},... 

    'Age',{''},... 

    'Sex',{''},... 

    'Cohort',{''},... 

    'Supplier',{''},... 

    'LightSchedule',{''},... 

    'Lights',{Lights},... 

    'RawData',{table()},... 

    'Noise',{Noise},... 

    'CleanData',{table()},... 

    'Notes',{''}); 

 

WheelStructure = struct(... 

    'Wheel_01',WheelInfo,... 

    'Wheel_02',WheelInfo,... 

    'Wheel_03',WheelInfo,... 

    'Wheel_04',WheelInfo,... 

    'Wheel_05',WheelInfo,... 

    'Wheel_06',WheelInfo,... 

    'Wheel_07',WheelInfo,... 

    'Wheel_08',WheelInfo,... 

    'Wheel_09',WheelInfo,... 

    'Wheel_10',WheelInfo,... 
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    'Wheel_11',WheelInfo,... 

    'Wheel_12',WheelInfo,... 

    'Wheel_13',WheelInfo,... 

    'Wheel_14',WheelInfo,... 

    'All_Wheels',All_Wheels); 

 

Pilot = struct(... 

    'Cipro',WheelStructure,... 

    'Old_Male',WheelStructure); 

 

Baseline = struct(... 

    'Young_Male',WheelStructure,... 

    'Old_Male',WheelStructure,... 

    'Young_Female',WheelStructure,... 

    'Old_Female',WheelStructure); 

 

CP = struct(... 

    'YM_1',WheelStructure,... 

    'YM_2',WheelStructure,... 

    'YM_3',WheelStructure,... 

    'YF_1',WheelStructure,... 

    'YF_2',WheelStructure,... 

    'YF_3',WheelStructure,... 

    'OM_1',WheelStructure,... 

    'OF_1',WheelStructure); 

 

Circadian_Study = 

struct('Pilot',Pilot,'Baseline',Baseline,'CP',CP,'All_Data',All_Data); 

Load each experiment from All_Data into the structure 

Columns = All_Data.Properties.VariableNames'; 

 

ExpTitles = unique(All_Data.Experiment); 

 

for i = 1:numel(ExpNames) 

 

    CurTable = All_Data(All_Data.Experiment==ExpNames(i),:); 

 

    if contains(ExpNames(i),"Base_YM_1")==1 

        Circadian_Study.Baseline.Young_Male.All_Wheels = CurTable; 

    else 
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    end 

 

    if  contains(ExpNames(i),"Base_OM_1")==1 

        Circadian_Study.Baseline.Old_Male.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"Base_YF_1")==1 

        Circadian_Study.Baseline.Young_Female.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"Base_OF_1")==1 

        Circadian_Study.Baseline.Old_Female.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YM_1")==1 

        Circadian_Study.CP.YM_1.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YM_2")==1 

        Circadian_Study.CP.YM_2.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YM_3")==1 

        Circadian_Study.CP.YM_3.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YF_1")==1 

        Circadian_Study.CP.YF_1.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YF_2")==1 

        Circadian_Study.CP.YF_2.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_YF_3")==1 
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        Circadian_Study.CP.YF_3.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_OM_1")==1 

        Circadian_Study.CP.OM_1.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"CP_OF_1")==1 

        Circadian_Study.CP.OF_1.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"Pilot_Cipro_1")==1 

        Circadian_Study.Pilot.Cipro.All_Wheels = CurTable; 

    else 

    end 

 

    if contains(ExpNames(i),"Pilot_OM_1")==1 

        Circadian_Study.Pilot.Old_Male.All_Wheels = CurTable; 

    else 

    end 

 

 

end 

%} 

Load each Wheel's RawData into the structure 

for i = 1:numel(WheelNames) 

 

    Circadian_Study.Baseline.Young_Male.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Baseline.Young_Male.All_Wheels(Circadian_Study.Baseline.Y

oung_Male.All_Wheels.Wheel==WheelNums(i),:); 

 

    Circadian_Study.Baseline.Old_Male.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Baseline.Old_Male.All_Wheels(Circadian_Study.Baseline.Old

_Male.All_Wheels.Wheel==WheelNums(i),:); 
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    Circadian_Study.Baseline.Young_Female.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Baseline.Young_Female.All_Wheels(Circadian_Study.Baseline

.Young_Female.All_Wheels.Wheel==WheelNums(i),:); 

 

    Circadian_Study.Baseline.Old_Female.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Baseline.Old_Female.All_Wheels(Circadian_Study.Baseline.O

ld_Female.All_Wheels.Wheel==WheelNums(i),:); 

 

 

    Circadian_Study.CP.YM_1.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YM_1.All_Wheels(Circadian_Study.CP.YM_1.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.YM_2.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YM_2.All_Wheels(Circadian_Study.CP.YM_2.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.YM_3.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YM_3.All_Wheels(Circadian_Study.CP.YM_3.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.YF_1.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YF_1.All_Wheels(Circadian_Study.CP.YF_1.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.YF_2.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YF_2.All_Wheels(Circadian_Study.CP.YF_2.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.YF_3.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.YF_3.All_Wheels(Circadian_Study.CP.YF_3.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.OM_1.(WheelNames{i}).RawData = ... 
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Circadian_Study.CP.OM_1.All_Wheels(Circadian_Study.CP.OM_1.All_Wheels.Whe

el==WheelNums(i),:); 

 

    Circadian_Study.CP.OF_1.(WheelNames{i}).RawData = ... 

    

Circadian_Study.CP.OF_1.All_Wheels(Circadian_Study.CP.OF_1.All_Wheels.Whe

el==WheelNums(i),:); 

 

 

    Circadian_Study.Pilot.Cipro.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Pilot.Cipro.All_Wheels(Circadian_Study.Pilot.Cipro.All_Wh

eels.Wheel==WheelNums(i),:); 

 

    Circadian_Study.Pilot.Old_Male.(WheelNames{i}).RawData = ... 

    

Circadian_Study.Pilot.Old_Male.All_Wheels(Circadian_Study.Pilot.Old_Male.

All_Wheels.Wheel==WheelNums(i),:); 

end 

 

%} 

Load the MetaData from each Wheel's RawData into the structure 

Phases = {'Baseline';'CP';'Pilot'}; 

 

FieldOrder = { ... 

    'Phase'; ... 

    'Experiment'; ... 

    'Wheel_Number'; ... 

    'Has_Data'; ... 

    'Animal'; ... 

    'DOB'; ... 

    'Age'; ... 

    'Sex'; ... 

    'Cage'; ... 

    'Cohort'; ... 

    'Supplier'; ... 

    'LightSchedule';... 

    'Lights'; ... 

    'RawData'; ... 
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    'Noise'; ... 

    'CleanData'; ... 

    'Notes'}; 

 

for g = 1:numel(Phases) 

 

    if g==1 

        MetaDataLocs = 

{'Young_Male';'Old_Male';'Young_Female';'Old_Female'}; 

    elseif g==2 

        MetaDataLocs = 

{'YM_1';'YM_2';'YM_3';'YF_1';'YF_2';'YF_3';'OM_1';'OF_1'}; 

    elseif g==3 

        MetaDataLocs = {'Cipro';'Old_Male'}; 

    end 

 

    for h = 1:numel(MetaDataLocs) 

 

        for i = 1:numel(WheelNames) 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Wheel_Numbe

r = ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Wheel(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Phase = ... 

                Phases{g}; 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Experiment 

= ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Experiment(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Animal = 

... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat
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a.Animal(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Has_Data = 

... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Animal(1)); 

 

            if 

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Has_Data=="

NaN" 

                 

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Has_Data=fa

lse; 

            else 

                 

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Has_Data=tr

ue; 

            end 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Cage = ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Cage(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).DOB = ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.DOB(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Age = ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Age(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Sex = ... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat
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a.Sex(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Cohort = 

... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Cohort(1)); 

 

            

Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).Supplier = 

... 

                

char(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}).RawDat

a.Supplier(1)); 

 

            Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i}) 

= ... 

                

orderfields(Circadian_Study.(Phases{g}).(MetaDataLocs{h}).(WheelNames{i})

,FieldOrder); 

 

 

 

        end 

    end 

 

end 

 

clearvars -except All_Data Circadian_Study ExpNames; 

 

Step 3 - Add Light Schedule 

% Clear All Current Variables and Console 

% 

clear all; 

close all; 

clc 

%} 
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format long; 

Load Files (VERY LARGE - TAKES TIME) 

Files = {... 

    'All_Data_After_Step_2.mat';... 

    'Circadian_Study_Database_After_Step_2.mat'}; 

 

 

ExpNames = string({... 

    'Base_YM_1';'Base_YF_1';'Base_OM_1';'Base_OF_1';... 

    

'CP_YM_1';'CP_YM_2';'CP_YM_3';'CP_YF_1';'CP_YF_2';'CP_YF_3';'CP_OM_1';'CP

_OF_1';... 

    'Pilot_Cipro_1';'Pilot_OM_1'}); 

 

ExpNames = sortrows(ExpNames); 

 

WheelNums = 

{'01';'02';'03';'04';'05';'06';'07';'08';'09';'10';'11';'12';'13';'14'}; 

 

WheelNames = 

{'Wheel_01';'Wheel_02';'Wheel_03';'Wheel_04';'Wheel_05';'Wheel_06';'Wheel

_07';... 

    

'Wheel_08';'Wheel_09';'Wheel_10';'Wheel_11';'Wheel_12';'Wheel_13';'Wheel_

14'}; 

 

for i = 1:numel(Files) 

    load(Files{i}); 

end 

Work on One Table At A Time 

CurData = All_Data; 

%CurData = Circadian_Study.Baseline.Young_Male.All_Wheels; 

%CurData = Circadian_Study.Baseline.Old_Male.All_Wheels; 

 

clearvars Circadian_Study All_Data 
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CurData_ColumnProperties(:,1) = CurData.Properties.VariableNames; 

CurData_ColumnProperties(:,2) = 

varfun(@class,CurData,'OutputFormat','cell'); 

 

 

%SideBySide = {}; 

Change the Column Varible Types to Strings from Categorical 

%{ 

for i = 1:10 

    CurData.(i) = string(table2array(CurData(:,i))); 

end 

 

CurData_ColumnProperties(:,2) = 

varfun(@class,CurData,'OutputFormat','cell'); 

 

%{ 

for i = 1:13 

    CurData.(i) = categorical(table2array(CurData(:,i))); 

end 

%} 

%} 

Experimental Constants 

fs = 1/60; % Sample rate, which is set in ClockLab (1 minute = 1/60sec) 

MinutesInDay = 1440; 

LightsOffHr = 8; % Input the time that lights turn off 

LightsOnHr = 20; % Input the time that lights turn on 

LightsOffMinute = LightsOffHr * 60; % This corresponds to 8:00am 

LightsOnMinute = LightsOnHr * 60; % This corresponds to 8:00pm 

Add HasData,Lights,LightSchedule Columns 

% Determine if a Wheel Record Contains Data 

 

%RowHasData = categorical(1:height(CurData),1)'; 

 

CurData.HasData(:) = "1"; 
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CurData = movevars(CurData,'HasData','Before',1); 

CurData.HasData(CurData.Cage=="NaN") = "0"; 

CurData.HasData(CurData.Animal=="0000") = "0"; % OM Wheel 13 - Didn't run 

/ no signal 

CurData.HasData(CurData.Animal=="0040") = "0"; % YM Wheel 06 - SUPER 

noisy 

 

 

ExpLightSchedule = {}; 

 

for i = 1:length(ExpNames) 

    ExpLightSchedule{i,1} = string(ExpNames{i}); 

    ExpLightSchedule{i,2} = 

string(min(table2array(CurData(CurData.Experiment==ExpNames(i),'DateTime'

)))); 

    ExpLightSchedule{i,3} = 

string(max(table2array(CurData(CurData.Experiment==ExpNames(i),'DateTime'

)))); 

 

end 

 

% This looks very good now that every experiment begins and ends at 

20:00:00 

 

% Converts the ExpLightSchedule to a table, and renames the variables 

 

ExpLightSchedule = 

table(ExpLightSchedule(:,1),ExpLightSchedule(:,2),ExpLightSchedule(:,3)); 

 

ExpLightSchedule.Properties.VariableNames = 

{'Experiment';'Time_Start_Exp';'Time_End_Exp'}; 

 

 

load('ExpDarkness3.mat'); 

 

 

% have to make sure that the ExpLightSchedule experiment names are in the 

% same order as the ExpDarkness experiment names ***************** 

% ADDITIONALLY, I NEEDED TO MAKE SURE THAT THE ExpNames LIST WAS ALSO 

% SORTED SO THAT A LATER PIECE OF CODE WHICH APPLIES THE 00:24 12:12 

VALUES 

% WORKS PROPERLY 
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ExpLightSchedule.Experiment = string(ExpLightSchedule.Experiment); 

ExpLightSchedule = sortrows(ExpLightSchedule,1); 

 

ExpDarkness = sortrows(ExpDarkness,1); 

 

% Not really sure why that was necessary, but I ensured everything was 

% sorted correctly before proceeding on 2/6/2020 

 

 

ExpLightSchedule.Time_Start_Darkness = ExpDarkness(:,2); 

ExpLightSchedule.Time_End_Darkness = ExpDarkness(:,3); 

% save('ExpLightSchedule_New.mat','ExpLightSchedule'); % This was created 

on 2/6/2020 

% This initially sets ALL experiments to the default reverse light cycle 

 

CurData.LightSchedule = CurData.Lights; 

CurData.LightSchedule(:) = '12:12'; 

CurData = 

movevars(CurData,{'LightSchedule';'Lights'},'Before','DateTime'); 

 

% Extract Light and Dark Rows 

RowsDark = CurData.ClockHourBin>=LightsOffHr & 

CurData.ClockHourBin<LightsOnHr; 

RowsLight = CurData.ClockHourBin<LightsOffHr | 

CurData.ClockHourBin>=LightsOnHr; 

 

% Set .Lights value to binary: 0 = off , 1 = on 

CurData.Lights(RowsDark) = 'Off'; 

CurData.Lights(RowsLight) = 'On'; 

 

 

 

 

%ExpDarkness(1:6,2:3) = datetime(ExpDarkness(1:6,2:3),'InputFormat','MMM-

dd-yyyy HH:mm:ss'); 

 

for i = 1:length(ExpNames) 

    if ~strcmp(ExpDarkness(i,2),"NaN") 

        

CurData.LightSchedule((CurData.Experiment==ExpNames(i))&(CurData.DateTime

>=ExpDarkness(i,2))&(CurData.DateTime<=ExpDarkness(i,3))) = "00:24"; 
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    end 

end 

 

CurData.Lights_Normal = CurData.Lights; 

CurData = movevars(CurData,{'Lights_Normal'},'After','LightSchedule'); 

 

CurData.Lights(CurData.LightSchedule=="00:24")="Off"; 

 

% ConstantDarkness = CurData(CurData.LightSchedule=="00:24",:); 

All_Data = CurData; 

 

%clearvars -except All_Data ExpNames Circadian_Study 

 

All_Data_ColumnProperties(:,1) = All_Data.Properties.VariableNames; 

All_Data_ColumnProperties(:,2) = 

varfun(@class,All_Data,'OutputFormat','cell'); 

 

 

 

Phases = ["Baseline","CP","Pilot"]; 

 

All_Data.Phase(:) = "Filler"; 

All_Data = movevars(All_Data,'Phase','After','HasData'); 

 

 

for g = 1:length(Phases) 

 

    if g==1 

        NewPhase = {'Base_YM_1';'Base_OM_1';'Base_YF_1';'Base_OF_1'}; 

 

    elseif g==2 

        NewPhase = 

{'CP_YM_1';'CP_YM_2';'CP_YM_3';'CP_YF_1';'CP_YF_2';'CP_YF_3';'CP_OM_1';'C

P_OF_1'}; 

 

    elseif g==3 

        NewPhase = {'Pilot_Cipro_1';'Pilot_OM_1'}; 

    end 

 

    for i = 1:length(NewPhase) 

        All_Data.Phase(All_Data.Experiment==NewPhase(i)) = Phases{g}; 

    end 
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end 

Change Values for Lights On and Off 

%All_Data.LightSchedule(All_Data.LightSchedule=="Reverse")= "12:12"; 

%All_Data.LightSchedule(All_Data.LightSchedule=="Darkness")= "00:24"; 

 

%All_Data.Lights_Normal(All_Data.Lights_Normal=="0")= "Off"; 

%All_Data.Lights_Normal(All_Data.Lights_Normal=="1")= "On"; 

 

%All_Data.Lights(All_Data.Lights=="0")= "Off"; 

%All_Data.Lights(All_Data.Lights=="1")= "On"; 

Save Output 

% save('All_Data_After_Step_3.mat','All_Data'); % This was created on 

2/6/2020 

 

Step 4 - Mark Noise and Cleanup Data 

  

% Clear All Current Variables and Console 

% 

clear all; 

close all; 

clc 

%} 

 

format long; 

Load Files (VERY LARGE - TAKES TIME) 

Files = {... 

    'All_Data_After_Step_3.mat'}; 
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ExpNames = string({... 

    'Base_YM_1';'Base_YF_1';'Base_OM_1';'Base_OF_1';... 

    

'CP_YM_1';'CP_YM_2';'CP_YM_3';'CP_YF_1';'CP_YF_2';'CP_YF_3';'CP_OM_1';'CP

_OF_1';... 

    'Pilot_Cipro_1';'Pilot_OM_1'}); 

 

ExpNames = sortrows(ExpNames); 

 

WheelNums = 

{'01';'02';'03';'04';'05';'06';'07';'08';'09';'10';'11';'12';'13';'14'}; 

 

WheelNames = 

{'Wheel_01';'Wheel_02';'Wheel_03';'Wheel_04';'Wheel_05';'Wheel_06';'Wheel

_07';... 

    

'Wheel_08';'Wheel_09';'Wheel_10';'Wheel_11';'Wheel_12';'Wheel_13';'Wheel_

14'}; 

 

for i = 1:numel(Files) 

    load(Files{i}); 

end 

 

All_Data_Columns(:,1) = All_Data.Properties.VariableNames; 

All_Data_Columns(:,2) = varfun(@class,All_Data,'OutputFormat','cell'); 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

Data Cleanup (Spurrious Data) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

 

% Moving Average** Filter for Spurrious Data 

% Sets noise = average of DAY BEFORE activity (3 point moving average) 

% 

 

 

% CURRENTLY, THIS FILTER IS SET UP TO PASS THROUGH THE DATA TWICE, 
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% ACCORDING TO THE LOOP COUNTER 'N', A SECOND PASS WAS NEEDED TO CORRECT 

% RESIDUAL BACKGROUND NOISE IN WHEEL 6 OF THE OLD FEMALES. THE UNFILTERED 

% FILE USED FOR THIS WAS 'Baseline_Data_Cleaned_9_23_19.mat', AND WAS 

SAVED 

% AS 'Baseline_Data_Twice_Filtered_9_26 

 

%load('Baseline_Data_Cleaned_9_23_19.mat'); 

 

%load('All_Data_BEFORE_NOISE_CLEANUP.mat'); 

 

% load('All_Data_Before_Clean_Oct_3.mat') % This was originally 

uncommented when I began working on 2-6-2020 

 

%{ 

load('Noise_Notes4.mat'); % Noise_Notes 4 includes a filter for the one 

minute of missing OM data on 10-17-2018 

 

% Create a blank template with unique Experiment and Wheel combinations 

so 

% that I can go record by record in ClockLab and determine which chunks 

of 

% time need to be filtered... 

 

Noise_Notes_5 = unique(All_Data(:,{'Experiment';'Wheel'})); 

Noise_Notes_5.Experiment = string(Noise_Notes_5.Experiment); 

Noise_Notes_5.Wheel = string(Noise_Notes_5.Wheel); 

Noise_Notes_5.Noise_Start(:) = ""; 

Noise_Notes_5.Noise_End(:) = ""; 

Noise_Notes_5.Noise_Type(:) = ""; 

 

% Create a new blank template to manually look at each recording and list 

% the times that need to be cleaned 

 

Noise_Notes_6 = vertcat(Noise_Notes,Noise_Notes_5); 

Injection_Times = Noise_Notes_6; 

Noise_Notes_5 = Noise_Notes_6; 

 

%{ 

TableToWrite = Injection_Times; 

FileName = 'Injection_Times_New.csv'; 

writetable(TableToWrite,FileName); 

%} 

%} 
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file = 'Noise_Notes_5.csv'; 

 

 

opts = delimitedTextImportOptions('NumVariables',6,... 

    

'VariableNames',{'Experiment','Wheel','Noise_Start','Noise_End','Noise_Ty

pe','Discard_After'},... 

    

'VariableTypes',{'categorical','double','string','string','string','strin

g'},... 

    'DataLines',[2 inf]); 

 

Noise_Notes_5 = readtable(file,opts); 

 

Noise_Notes_5.Wheel = arrayfun(@(x) 

sprintf('%02d',x),Noise_Notes_5.Wheel,'un',0); 

Noise_Notes_5.Wheel = categorical(Noise_Notes_5.Wheel); 

 

 

Noise_Notes_5.Noise_Start = 

datetime(Noise_Notes_5.Noise_Start,'InputFormat','MMM-dd-yyyy HH:mm:ss'); 

Noise_Notes_5.Noise_Start.Format = 'MMM-dd-yyyy HH:mm:ss'; 

 

Noise_Notes_5.Noise_End = 

datetime(Noise_Notes_5.Noise_End,'InputFormat','MMM-dd-yyyy HH:mm:ss'); 

Noise_Notes_5.Noise_End.Format = 'MMM-dd-yyyy HH:mm:ss'; 

 

Noise_Notes_5.Discard_After = 

datetime(Noise_Notes_5.Discard_After,'InputFormat','MMM-dd-yyyy 

HH:mm:ss'); 

Noise_Notes_5.Discard_After.Format = 'MMM-dd-yyyy HH:mm:ss'; 

 

% THIS LINE ADJUSTS THE NOISE_NOTES TO MATCH THE CORRECTED TIMES FOR 

CP_YF_3 

Noise_Notes_5{Noise_Notes_5.Experiment=="CP_YF_3",{'Noise_Start','Noise_E

nd'}} = ... 

    

Noise_Notes_5{Noise_Notes_5.Experiment=="CP_YF_3",{'Noise_Start','Noise_E

nd'}}-hours(1); 

 

 

 

Noise_Notes_ColumnProperties(:,1) = 
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Noise_Notes_5.Properties.VariableNames; 

Noise_Notes_ColumnProperties(:,2) = 

varfun(@class,Noise_Notes_5,'OutputFormat','cell'); 

 

 

 

%Noise_Notes_5 = fillmissing(Noise_Notes_5,'constant',""); 

 

 

Discard = 

unique(Noise_Notes_5(:,{'Experiment';'Wheel';'Discard_After'})); 

 

Discard = Discard(~isnat(Discard.Discard_After),:); 

 

 

Noise_Notes_5 = Noise_Notes_5(:,1:5); 

Noise_Notes_5 = Noise_Notes_5(~isnat(Noise_Notes_5.Noise_Start),:); 

 

%Injection_Times = 

unique(Noise_Notes_5(:,{'Experiment';'Discard_After'})); 

%Injection_Times = unique(All_Data(:,{'Experiment','Wheel'})); 

Add Injection_Times 

All_Data.Dose(:) = "NaN"; 

All_Data.Injection_Number(:) = NaN; 

All_Data.Injection_Day(:) = NaN; 

 

All_Data = movevars(All_Data, 'Dose', 'Before', 'DateTime'); 

All_Data = movevars(All_Data, 'Injection_Number', 'Before', 'DateTime'); 

All_Data = movevars(All_Data, 'Injection_Day', 'Before', 'DateTime'); 

 

 

file = 'Injection_Times_1.csv'; 

 

opts = delimitedTextImportOptions('NumVariables',6,... 

    

'VariableNames',{'Experiment','Wheel','Injection_Number','Injection_DateT

ime','Dose'},... 

    

'VariableTypes',{'categorical','double','double','string','categorical'},

... 
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    'DataLines',[2 inf]); 

 

Injection_Times = readtable(file,opts); 

 

Injection_Times.Wheel = arrayfun(@(x) 

sprintf('%02d',x),Injection_Times.Wheel,'un',0); 

Injection_Times.Wheel = categorical(Injection_Times.Wheel); 

 

Injection_Times.Injection_DateTime = 

datetime(Injection_Times.Injection_DateTime,'InputFormat','MMM-dd-yyyy 

HH:mm:ss'); 

Injection_Times.Injection_DateTime.Format = 'MMM-dd-yyyy HH:mm:ss'; 

Injection_Times.Injection_DateTime.Format = 'MMM-dd-yyyy'; 

 

 

Injection_Columns(:,1) = Injection_Times.Properties.VariableNames; 

Injection_Columns(:,2) = 

varfun(@class,Injection_Times,'OutputFormat','cell'); 

 

[All_YMD(:,1) All_YMD(:,2) All_YMD(:,3)] = ymd(All_Data.DateTime); 

 

 for i = 1:height(Injection_Times) 

 

 

     % Set the injection day 

     [Cur_YMD(:,1) Cur_YMD(:,2) Cur_YMD(:,3)] = 

ymd(Injection_Times{i,'Injection_DateTime'}); 

     Cur_Locations = All_YMD(:,:) == Cur_YMD(1,:); 

     Cur_Index = double(Cur_Locations); 

     Cur_Index(:,4) = Cur_Index(:,1)+Cur_Index(:,2)+Cur_Index(:,3); 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Cur_Index(:,4)==3),'Injection_Day'} = 0; 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Cur_Index(:,4)==3),'Dose'} = Injection_Times{i,'Dose'}; 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 
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         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Cur_Index(:,4)==3),'Injection_Number'} = ... 

         Injection_Times{i,'Injection_Number'}; 

 

     if Injection_Times{i,'Experiment'}=="CP_YM_3" ||... 

             Injection_Times{i,'Experiment'}=="CP_YF_3" ||... 

             Injection_Times{i,'Experiment'}=="CP_OM_1" ||... 

             Injection_Times{i,'Experiment'}=="CP_OF_1" 

 

     % Set the PRE-injection day **** NOTE THIS WILL NOT WORK IF 

INJECTIONS 

     % WERE MADE ON SEQUENTIAL DAYS 

     [Pre_YMD(:,1) Pre_YMD(:,2) Pre_YMD(:,3)] = 

ymd((Injection_Times{i,'Injection_DateTime'})-days(1)); 

     Pre_Locations = All_YMD(:,:) == Pre_YMD(1,:); 

     Pre_Index = double(Pre_Locations); 

     Pre_Index(:,4) = Pre_Index(:,1)+Pre_Index(:,2)+Pre_Index(:,3); 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Pre_Index(:,4)==3),'Injection_Day'} = -1; % This signifies one 

day BEFORE injection 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Pre_Index(:,4)==3),'Dose'} = Injection_Times{i,'Dose'}; 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Pre_Index(:,4)==3),'Injection_Number'} = ... 

         Injection_Times{i,'Injection_Number'}; 

 

 

     % Set the POST-injection day **** NOTE THIS WILL NOT WORK IF 

INJECTIONS 

     % WERE MADE ON SEQUENTIAL DAYS 

     [Post_YMD(:,1) Post_YMD(:,2) Post_YMD(:,3)] = 

ymd((Injection_Times{i,'Injection_DateTime'})+days(1)); 

     Post_Locations = All_YMD(:,:) == Post_YMD(1,:); 

     Post_Index = double(Post_Locations); 
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     Post_Index(:,4) = Post_Index(:,1)+Post_Index(:,2)+Post_Index(:,3); 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Post_Index(:,4)==3),'Injection_Day'} = 1; % This signifies one 

day AFTER injection 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Post_Index(:,4)==3),'Dose'} = Injection_Times{i,'Dose'}; 

 

     All_Data{((All_Data.Experiment == Injection_Times{i,'Experiment'} 

&... 

         All_Data.Wheel == Injection_Times{i,'Wheel'}) &... 

         Post_Index(:,4)==3),'Injection_Number'} = ... 

         Injection_Times{i,'Injection_Number'}; 

     else 

     end 

 

 end 

 

 

 

%Low_Dose = All_Data(All_Data.Dose=="0.001",:); 

%Low_Dose = sortrows(Low_Dose,'DateTime'); 

 

%unique(Low_Dose(:,{'Experiment','Wheel'})); 

Discard Data 

Only_Data = All_Data(All_Data.HasData=="1",:); 

No_Data = All_Data(All_Data.HasData=="0",:); 

 

for i = 1:height(Discard) 

    All_Data{(All_Data.Experiment == Discard{i,'Experiment'} &... 

        All_Data.Wheel == Discard{i,'Wheel'}) &... 

        All_Data.DateTime >= Discard{i,'Discard_After'},'HasData'} = "0"; 

end 

 

No_Data_After = All_Data(All_Data.HasData=="0",:); 



 

172 

 

All_Data = All_Data(All_Data.HasData=="1",:); 

Try with the whole data set... 

WorkingData = All_Data; 

%WorkingData = All_Data(All_Data.Experiment=="CP_YM_3",:); 

 

%WorkingData = All_Data(All_Data.HasData=="1",:); 

 

Noise_Notes = Noise_Notes_5; 

 

 

WorkingData.Counts_Cleaned = WorkingData.Counts; 

 

DataHeight = length(WorkingData.Counts); 

Noise_Height = height(Noise_Notes); 

 

%TemporaryData = [WorkingData.Counts_Cleaned,double(WorkingData.Wheel)]; 

NoisyFiles = unique(Noise_Notes(:,{'Experiment';'Wheel'})); 

 

Errors=table(); 

Errors2=table(); 

Errors3=table(); 

 

 

for i = 1:height(NoisyFiles) 

    FilterSet = 

WorkingData((WorkingData.Experiment==NoisyFiles{i,'Experiment'} & 

WorkingData.Wheel==NoisyFiles{i,'Wheel'}),{'Experiment';'Wheel';'DateTime

';'Counts'}); 

    FilterSet.Counts_Cleaned(:) = NaN; 

    FilterSet.Has_Noise(:) = logical(false); 

    FilterSet.Plus_2(:) = NaN; 

    FilterSet.Minus_2(:) = NaN; 

    FilterSet.Plus_1(:) = NaN; 

    FilterSet.Minus_1(:) = NaN; 

    FilterHeight = height(FilterSet); 

 

    CurNoise = 

Noise_Notes(Noise_Notes.Experiment==NoisyFiles{i,'Experiment'}& 

Noise_Notes.Wheel==NoisyFiles{i,'Wheel'},:); 
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    if height(FilterSet)>0 

        for j = 1:height(CurNoise) 

 

            

FilterSet.Has_Noise(FilterSet.DateTime>=CurNoise.Noise_Start(j) & 

FilterSet.DateTime<=CurNoise.Noise_End(j)) = 1; 

 

        end 

 

        N = 1; 

 

 

        while N <= 2 

 

 

 

            for k = 1:height(FilterSet) 

                if FilterSet.Has_Noise(k)>0 

 

                    % Check +2 days 

                    if ((k+2880<=FilterHeight) && 

FilterSet.Has_Noise(k+2880)==0 && isnan(FilterSet.Counts(k+2880))==0)==1 

                        FilterSet.Plus_2(k) = FilterSet.Counts(k+2880); 

                    end 

 

                    % Check -2 days 

                    if ((k-2880>0) && FilterSet.Has_Noise(k-2880)==0 && 

isnan(FilterSet.Counts(k-2880))==0)==1 

                        FilterSet.Minus_2(k) = FilterSet.Counts(k-2880); 

                    end 

 

                    % Check +1 days 

                    if ((k+1440<=FilterHeight) && 

FilterSet.Has_Noise(k+1440)==0 && isnan(FilterSet.Counts(k+1440))==0)==1 

                        FilterSet.Plus_1(k) = FilterSet.Counts(k+1440); 

                    end 

 

                    % Check -1 days 

                    if ((k-1440>0) && FilterSet.Has_Noise(k-1440)==0 && 

isnan(FilterSet.Counts(k-1440))==0)==1 

                        FilterSet.Minus_1(k) = FilterSet.Counts(k-1440); 

                    end 
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                    FilterValues = table2array(FilterSet(k,[7 8 9 10])); 

                    FilterLocs = find(~isnan(FilterValues)); 

                    FilterSize = length(FilterLocs); 

 

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    % Weighting factors to favor the day before or after 

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    % NOTE - THIS MAY NEED TO BE MODIFIED IF TWO DAY 2 

VALUES ARE 

                    % COMBINED WITH A SINGLE DAY 1 VALUE 

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    if (any(~isnan(FilterValues([1 2])))==1 & 

any(isnan(FilterValues([3 4])))==1)==1 

                        FilterValues([1 2]) = FilterValues([1 2])*0.5; 

                        FilterValues([3 4]) = FilterValues([3 4])*1.5; 

                    end 

 

                    if FilterSize>0 

                        FilterSet.Counts_Cleaned(k) = 

(sum(FilterValues(FilterLocs)))/FilterSize; 

 

                        % What is this shit???? 

                        %{ 

                    if (CurNoise.Experiment(1)=="Base_OF_1" & 

CurNoise.Wheel(1)=="06")==1 

                        FilterSet.Has_Noise(FilterSet.Has_Noise==1) = 1; 

                    else 

                        FilterSet.Has_Noise(k) = FilterSet.Has_Noise(k)-

1; 

                    end 

                        %} 

                    else 

                        if N==1 

                            Errors = [Errors;FilterSet(k,:)]; 

                        else 

                        end 

                        if N==2 

                            Errors2 = [Errors2;FilterSet(k,:)]; 

                        else 
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                        end 

 

                        if N==3 

                            Errors3 = [Errors3;FilterSet(k,:)]; 

                        else 

                        end 

 

                    end 

 

                else 

                    %FilterSet.Counts_Cleaned(k) = FilterSet.Counts(k); 

 

                end 

 

            end 

 

            N=N+1; 

 

        end 

 

    FilterSet.Counts_Cleaned(isnan(FilterSet.Counts_Cleaned)) = 

FilterSet.Counts(isnan(FilterSet.Counts_Cleaned)); 

    

WorkingData.Counts_Cleaned((WorkingData.Experiment==NoisyFiles{i,'Experim

ent'} & WorkingData.Wheel==NoisyFiles{i,'Wheel'})) = 

FilterSet.Counts_Cleaned; 

    else 

    end 

end 

 

%All_Data = WorkingData; 

 

 

%{ 

%{ 

 

 

%{ 

figure(12) 

hold on; 

Sub1 = subplot(3,1,1); 

P1 = plot(WorkingData.Counts); 

P1(1).Color = [0 0 0 1]; 
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Sub2 = subplot(3,1,2) 

P2 = plot(WorkingData.Counts_Cleaned); 

P2(1).Color = [0 1 0 1]; 

 

Sub3 = subplot(3,1,3) 

P3 = plot([WorkingData.Counts, WorkingData.Counts_Cleaned]); 

P3(1).Color = [0 0 0 1]; 

P3(2).Color = [0 1 0 1]; 

 

hold off; 

linkaxes([Sub1,Sub2,Sub3],'xy'); 

 

 

 

plot(WorkingData.DateTime,[WorkingData.Counts 

WorkingData.Counts_Cleaned]); 

plot(WorkingData.DateTime,[WorkingData.Counts_Cleaned]); 

 

 

 

 

Baseline_Data = WorkingData; 

 

 

%} 

 

%} 

LessTen = WorkingData(WorkingData.ZTDayBin<=10,:); 

 

WorkingData = All_Data; 

 

%} 

 

Step 5 - Select and Splice Data 

clear all 

close all 

clc 
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load('All_Data_After_Step_4.mat'); 

 

Baseline_Data = All_Data(All_Data.Phase=="Baseline",:); 

clearvars All_Data 

 

ExpNames = string({... 

    'Base_YM_1';'Base_OM_1';'Base_YF_1';'Base_OF_1'}); 

%ExpNames = sortrows(ExpNames); 

 

TimeScale = 1440; 

 

if TimeScale == 1440 

    TimeVariable = 'ZTMinuteBin'; 

elseif TimeScale == 24 

    TimeVariable = 'ZTHourBin'; 

end 

 

% This section removes the single timepoint at the end of each experiment 

for i = 1:length(ExpNames) 

    LastDay = 

round(max(Baseline_Data.ZTDay(Baseline_Data.Experiment==ExpNames(i)))); 

    

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDay=

=LastDay),:) = []; 

end 

 

%{ 

% This section removes the entire LAST ZTDayBin 

for i = 1:length(ExpNames) 

    LastDay = 

max(Baseline_Data.ZTDayBin(Baseline_Data.Experiment==ExpNames(i))); 

    

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDayB

in==LastDay),:) = []; 

end 

 

% This section removes the entire FIRST ZTDayBin 

for i = 1:length(ExpNames) 

    FirstDay = 

min(Baseline_Data.ZTDayBin(Baseline_Data.Experiment==ExpNames(i))); 

    

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDayB

in==FirstDay),:) = []; 
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end 

%} 

 

Start_12_12 = 1; 

End_12_12 = 8; %this value is used with a '<' sign 

Start_0_24 = 8; %this value is used with a '<=' sign 

 

NumberOfDarkDays = 9; 

 

%Baseline_Data = Baseline_Data(Baseline_Data.ZTDay>=1,:); 

 

Data_LD = Baseline_Data(Baseline_Data.LightSchedule=="12:12",:); 

The sorting issue stems from not including NaN's at the end of the ReverseData 

Data_LD = Data_LD(Data_LD.ZTDay>=Start_12_12,:); 

Data_LD = Data_LD(Data_LD.ZTDay<End_12_12,:); 

 

Data_LD = sortrows(Data_LD,'Animal','ascend'); 

%ReverseData = ReverseData((ReverseData.ZTDay>=Start_12_12) & 

(ReverseData.ZTDay<End_12_12),:); 

Data_DD = Baseline_Data(Baseline_Data.LightSchedule=="00:24",:); 

Data_DD = sortrows(Data_DD,'Animal','ascend'); 

 

 

YM_Dark = Data_DD(Data_DD.Experiment=="Base_YM_1",:); 

YM_Dark_Days = unique(YM_Dark.ZTDayBin); 

YM_Dark_Days(:,2) = 1:1:length(YM_Dark_Days); 

YM_Dark = YM_Dark(YM_Dark.ZTDayBin<=(YM_Dark_Days(NumberOfDarkDays)),:); 

 

for i = 1:length(YM_Dark_Days) 

    

YM_Dark{YM_Dark.ZTDayBin==YM_Dark_Days(i,1),'ZTDayBin'}=YM_Dark_Days(i,2)

; 

end 

 

OM_Dark = Data_DD(Data_DD.Experiment=="Base_OM_1",:); 

OM_Dark_Days = unique(OM_Dark.ZTDayBin); 

OM_Dark_Days(:,2) = 1:1:length(OM_Dark_Days); 

OM_Dark = OM_Dark(OM_Dark.ZTDayBin<=(OM_Dark_Days(NumberOfDarkDays)),:); 
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for i = 1:length(OM_Dark_Days) 

    

OM_Dark{OM_Dark.ZTDayBin==OM_Dark_Days(i),'ZTDayBin'}=OM_Dark_Days(i,2); 

end 

 

YF_Dark = Data_DD(Data_DD.Experiment=="Base_YF_1",:); 

YF_Dark_Days = unique(YF_Dark.ZTDayBin); 

YF_Dark_Days(:,2) = 1:1:length(YF_Dark_Days); 

YF_Dark = YF_Dark(YF_Dark.ZTDayBin<=(YF_Dark_Days(NumberOfDarkDays)),:); 

 

for i = 1:length(YF_Dark_Days) 

    

YF_Dark{YF_Dark.ZTDayBin==YF_Dark_Days(i),'ZTDayBin'}=YF_Dark_Days(i,2); 

end 

 

OF_Dark = Data_DD(Data_DD.Experiment=="Base_OF_1",:); 

OF_Dark_Days = unique(OF_Dark.ZTDayBin); 

OF_Dark_Days(:,2) = 1:1:length(OF_Dark_Days); 

OF_Dark = OF_Dark(OF_Dark.ZTDayBin<=(OF_Dark_Days(NumberOfDarkDays)),:); 

 

for i = 1:length(OF_Dark_Days) 

    

OF_Dark{OF_Dark.ZTDayBin==OF_Dark_Days(i),'ZTDayBin'}=OF_Dark_Days(i,2); 

end 

 

DarknessData_09Days = [YM_Dark;OM_Dark;YF_Dark;OF_Dark]; 

 

DarknessData_09Days.ZTDayBin = DarknessData_09Days.ZTDayBin+(End_12_12-

Start_12_12); 

 

Fused_Light_Dark_Days = [Data_LD;DarknessData_09Days]; 

 

Fused_Light_Dark_Days.ZTDayMinuteBin = 

Fused_Light_Dark_Days.ZTDayBin+(Fused_Light_Dark_Days.ZTMinuteBin/1440); 

Fused_Light_Dark_Days.ZTDayHourBin = 

Fused_Light_Dark_Days.ZTDayBin+(Fused_Light_Dark_Days.ZTHourBin/24); 

 

%Fused_YM = 

Fused_Light_Dark_Days(Fused_Light_Dark_Days.Experiment=="Base_YM_1",:); 

%Fused_YM_0035 = Fused_YM(Fused_YM.Animal=="0035",:); 
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Step 6 - Create Surface Plots 

clear all 

close all 

clc 

 

%load('All_Data_After_Step_4.mat'); 

 

%load('Fused_Light_Dark_Days_Feb_26.mat'); 

 

%load('Fused_Light_Dark_Days_March_25_7LD_7DD.mat'); 

 

% for baseline 

load('Fused_Light_Dark_Days_March_25_7LD_7DD.mat'); 

All_Data = Fused_Light_Dark_Days; 

clearvars Fused_Light_Dark_Days 

 

ExpNames = string({... 

    'Base_YM_1';'Base_OM_1';'Base_YF_1';'Base_OF_1'}); 

 

WheelNums = string({... 

    '01';'02';'03';'04';'05';'06';'08';'09';'10';'11';'12';'13';'14'}); 

 

 

% for the chronobiotic records 

%load('A:\Data_Analysis\Data\Input\MATLAB_Step_4_Mark_Noise_Info_Clean\Al

l_Data_After_Step_4.mat') 

%All_Data = All_Data(All_Data.Phase=="CP",:); 

Moving Mean on each wheel of each experiment 

movmean_window = 10; 

All_Data.Mov_Mean = All_Data.Counts_Cleaned; 

 

i=1; 

k=1; 

 

for i = 1:length(ExpNames) 

    for k = 1:length(WheelNums) 

 

        Cur_Wheel_Name = strcat('Wheel_',WheelNums(k)); 
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        if numel(All_Data((All_Data.Experiment==ExpNames(i) & 

All_Data.Wheel==WheelNums(k)),:)) ~= 0 

 

 

            % Replace the mean_Counts_Cleaned column with a moving mean 

average 

           All_Data.Mov_Mean((All_Data.Experiment==ExpNames(i) & 

All_Data.Wheel==WheelNums(k))) = ... 

               

movmean(All_Data.Mov_Mean((All_Data.Experiment==ExpNames(i) & 

All_Data.Wheel==WheelNums(k))), movmean_window); 

 

 

        end 

    end 

end 

 

All_Data.Counts_Cleaned = All_Data.Mov_Mean; 

All_Data.Mov_Mean = []; 

If using normalized data to show 'percentage of daily activity' 

%load('Baseline_Normalized_Percent_Daily_Counts.mat'); 

%All_Data = Data_Normalized; 

Calculate Average Activity of the Groups 

clearvars Data_Normalized Fused_Light_Dark_Days 

 

Baseline_Data = All_Data(All_Data.Phase=="Baseline",:); 

clearvars All_Data Fused_Light_Dark_Days 

 

ExpNames = string({... 

    'Base_YM_1';'Base_OM_1';'Base_YF_1';'Base_OF_1'}); 

%ExpNames = sortrows(ExpNames); 

 

TimeScale = 1440; 

 

if TimeScale == 1440 
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    TimeVariable = 'ZTMinuteBin'; 

elseif TimeScale == 24 

    TimeVariable = 'ZTHourBin'; 

end 

 

Early_Risers = 0; 

 

%{ 

% This section removes the single timepoint at the end of each experiment 

for i = 1:length(ExpNames) 

    LastDay = 

round(max(Baseline_Data.ZTDay(Baseline_Data.Experiment==ExpNames(i)))); 

    

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDay=

=LastDay),:) = []; 

end 

 

%} 

 

LD_DD = unique(Baseline_Data(:,{'LightSchedule';'ZTDayBin'})); 

 

% This section removes the entire LAST ZTDayBin 

% On 3-25-2020 I ran this section twice using the file 

% 'Fused_Light_Dark_Days_Feb_26.mat' to produce a file containing 7 days 

of 

% LD and 7 days of DD, this new file is saved as both .csv and .mat, 

 

% The csv is 'Fused_Light_Dark_Days_March_25_7LD_7DD.csv' 

% The .mat is 'Fused_Light_Dark_Days_March_25_7LD_7DD.mat' 

 

%{ 

% Fused_Light_Dark_Days = Baseline_Data; 

% LD_DD_Sevens = 

unique(Fused_Light_Dark_Days(:,{'LightSchedule';'ZTDayBin'})); 

% 

writetable(Fused_Light_Dark_Days,'Fused_Light_Dark_Days_March_25.csv','De

limiter',','); 

%} 

 

%{ 

i=1; 

for i = 1:length(ExpNames) 

    LastDay = 
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max(Baseline_Data.ZTDayBin(Baseline_Data.Experiment==ExpNames(i))); 

    

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDayB

in==LastDay),:) = []; 

end 

LD_DD = unique(Baseline_Data(:,{'LightSchedule';'ZTDayBin'})); 

%} 

 

%{ 

k=1; 

while k<=3 %This is a counter to remove the first 3 days 

 

    % This section removes the entire FIRST ZTDayBin 

    for i = 1:length(ExpNames) 

        FirstDay = 

min(Baseline_Data.ZTDayBin(Baseline_Data.Experiment==ExpNames(i))); 

        

Baseline_Data((Baseline_Data.Experiment==ExpNames(i)&Baseline_Data.ZTDayB

in==FirstDay),:) = []; 

    end 

    k = k+1; 

end 

%} 

 

GroupingFactors = 

{'Experiment','ZTDay','ZTDayBin','ZTHourBin','ZTMinuteBin','LightSchedule

','Lights','Lights_Normal'}; 

Measurements = {'Counts_Cleaned'}; 

Stats = {'mean'}; 

Averages = 

grpstats(Baseline_Data,GroupingFactors,Stats,'DataVars',Measurements); 

Averages.Properties.VariableNames(Averages.Properties.VariableNames=="mea

n_Counts_Cleaned") = "Counts_Cleaned"; 

Averages.GroupCount = []; 

 

clearvars Baseline_Data 

Normalization of Daily Activity (SLOW) 

%{ 

GroupingFactors = {'Experiment';'ZTDayBin'}; 
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Measurements = {'Counts_Cleaned'}; 

Stats = {'sum'}; 

 

Table2Norm = Averages; 

 

Norm_StatsTable = 

grpstats(Table2Norm,GroupingFactors,Stats,'DataVars',Measurements); 

 

Norm_StatsTableVariables = Norm_StatsTable.Properties.VariableNames; 

Norm_StatsTableVariables = strrep(Norm_StatsTableVariables,"sum_",""); 

Norm_StatsTable.Properties.VariableNames = Norm_StatsTableVariables; 

 

Exp_Names = unique(Norm_StatsTable.Experiment); 

ZTDayBins = unique(Norm_StatsTable.ZTDayBin); 

 

Data_Normalized = Table2Norm; 

 

ZTMinuteBin = unique(Data_Normalized.ZTMinuteBin); 

 

Columns_Norm_StatsTable = [Norm_StatsTable.Properties.VariableNames' 

varfun(@class,Norm_StatsTable,'OutputFormat','cell')']; 

Columns_NormData = [Data_Normalized.Properties.VariableNames' 

varfun(@class,Data_Normalized,'OutputFormat','cell')']; 

 

h=1; 

i=1; 

j=1; 

k=2; 

 

 

for h = 1:length(Measurements) 

    for i = 1:length(Exp_Names) 

        for k = 1:length(ZTDayBins) 

            for m = 1:length(ZTMinuteBin) 

 

                Data_Normalized{(Data_Normalized.Experiment == 

Exp_Names(i) & ... 

                    Data_Normalized.ZTDayBin == ZTDayBins(k) & ... 

                    Data_Normalized.ZTMinuteBin == ZTMinuteBin(m)), ... 

                    Measurements(h)} = ... 

                    Data_Normalized{(Data_Normalized.Experiment == 

Exp_Names(i) & ... 

                    Data_Normalized.ZTDayBin == ZTDayBins(k) & ... 



 

185 

                    Data_Normalized.ZTMinuteBin == ZTMinuteBin(m)), ... 

                    Measurements(h)} ./ 

(Norm_StatsTable{(Norm_StatsTable.Experiment == Exp_Names(i) & ... 

                    Norm_StatsTable.ZTDayBin == ZTDayBins(k)), 

Measurements(h)})*100;... 

 

            end 

        end 

    end 

end 

 

Averages = Data_Normalized; 

%} 

Creating the Surface Plots 

Plots = struct(); 

for i = 1:length(ExpNames) 

    Plots.(ExpNames(i)).Surf_Off = []; 

    Plots.(ExpNames(i)).Surf_All = []; 

    Plots.(ExpNames(i)).ax1 = []; 

    Plots.(ExpNames(i)).ax2 = []; 

    Plots.(ExpNames(i)).All_Axes = []; 

    Plots.(ExpNames(i)).AxisLink = []; 

end 

 

 

for j = 1:length(ExpNames) 

    Cur_Data = Averages(Averages.Experiment==ExpNames(j),... 

        

{'Experiment','ZTDay','ZTDayBin','ZTHourBin','ZTMinuteBin','LightSchedule

','Lights','Lights_Normal','Counts_Cleaned'}); 

 

    %Cur_Data = Cur_Data(Cur_Data.ZTDay<=5,:); 

 

    Exp_Start = min(Cur_Data.ZTDayBin); 

    Exp_End = max(Cur_Data.ZTDayBin); 

    Exp_Length = length(unique(Cur_Data.ZTDayBin)); 

 

    ZTDay = Cur_Data.ZTDay; 

    ZTDayBin = Cur_Data.ZTDayBin; 
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    ZTHourBin = Cur_Data.ZTHourBin; 

    ZTMinuteBin = Cur_Data.ZTMinuteBin; 

 

    Counts_Cleaned = Cur_Data.Counts_Cleaned; 

 

    LightSchedule = Cur_Data.LightSchedule; 

    Lights = Cur_Data.Lights; 

    Lights_Normal = Cur_Data.Lights_Normal; 

 

    Lights_On = find(Lights=="On"); 

    Lights_Off = find(Lights=="Off"); 

 

    Signal = Counts_Cleaned; 

 

    Signal_Lights_On = Signal-NaN; 

    Signal_Lights_On(Lights_On) = Signal(Lights_On); 

 

    Signal_Lights_Off = Signal-NaN; 

    Signal_Lights_Off(Lights_Off) = Signal(Lights_Off); 

 

    if Exp_Start>0 

        Length_Day(1:Exp_Length) = TimeScale; 

    elseif Exp_Start == 0 

        Length_Day(1:(Exp_Length+1)) = TimeScale; 

    end 

 

    RR(1:max(ZTDayBin)+1) = TimeScale; % this was functional 

 

    %RR = ExpLength; 

 

    % Exp_Length = length(Length_Day); 

 

    Days_Used = unique(Averages.ZTDayBin); 

 

    %Stack=zeros(TimeScale,M)+NaN; %from spiral plot 

    Stack = zeros(TimeScale,Exp_Length)+NaN; 

    Stack_Lights_On = Stack; 

    Stack_Lights_Off = Stack; 

    for i = 1:Exp_Length 

        %Stack(:,i) = Signal((Cur_Data.ZTDay>=i & Cur_Data.ZTDay<i+1)); 

        Stack(:,i) = Signal((Cur_Data.ZTDayBin>=Days_Used(i)) & 

Cur_Data.ZTDayBin<Days_Used(i)+1); % Note that (i,:) is reversed from 

before 
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        Stack_Lights_On(:,i) = 

Signal_Lights_On((Cur_Data.ZTDayBin>=Days_Used(i) & 

Cur_Data.ZTDayBin<Days_Used(i)+1)); % Note that (i,:) is reversed from 

before 

        Stack_Lights_Off(:,i) = 

Signal_Lights_Off((Cur_Data.ZTDayBin>=Days_Used(i) & 

Cur_Data.ZTDayBin<Days_Used(i)+1)); % Note that (i,:) is reversed from 

before 

    end 

 

    % Stack_Lights_On = Stack_Lights_On + 0.01; 

    Stack_Lights_Off = Stack_Lights_Off*0; 

 

    %Stack_Lights_On = Stack_Lights_On(Lights_On); 

    %Stack_Lights_Off = Stack_Lights_Off(Lights_Off); 

 

    %ZTDayBin_Lights_On = ZTDayBin_Lights_On(Lights_On); 

    %ZTDayBin_Lights_Off = ZTDayBin_Lights_Off(Lights_Off); 

 

    GraphTitle = ExpNames(j); 

    GraphTitle = strrep(GraphTitle,"_1",""); 

    GraphTitle = strrep(GraphTitle,"_"," "); 

    GraphTitle = strrep(GraphTitle,"Base","Baseline"); 

    GraphTitle = strrep(GraphTitle,"Y","Young "); 

    GraphTitle = strrep(GraphTitle,"O","Old "); 

    GraphTitle = strrep(GraphTitle,"M","Male"); 

    GraphTitle = strrep(GraphTitle,"F","Female"); 

 

    %figure('NumberTitle','off','Name',GraphTitle,'Tag',GraphTitle) 

    if j==1 

        figure('Position',[0 0 1 1]); 

        set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

        set(gcf,'color','white') 

 

    end 

 

    Plots.(ExpNames(j)).ax1 = subplot(2,2,j); 

    [X1,Y1] = meshgrid(1:Exp_Length,1:TimeScale); 

    Plots.(ExpNames(j)).Surf_Off = surf(X1,Y1,Stack_Lights_Off); 

    hold(Plots.(ExpNames(j)).ax1,'on') 

 

    grid on; 

    Plots.(ExpNames(j)).ax1.ActivePositionProperty = 'position'; 
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    Plots.(ExpNames(j)).Surf_Off.CDataMapping = 'scaled'; %'direct'; 

    Plots.(ExpNames(j)).ax1.Colormap(:) = 0; 

    shading interp 

    lighting gouraud 

    %Plots.(ExpNames(j)).Surf_Off.FaceAlpha = 0.8; 

    Plots.(ExpNames(j)).Surf_Off.FaceAlpha = 1; 

    axis off 

 

    Cur_Sub_Pos = Plots.(ExpNames(j)).ax1.Position; 

    Plots.(ExpNames(j)).ax2 = axes('Position',Cur_Sub_Pos); 

 

    %Plots.(ExpNames(j)).ax2 = axes; 

    Plots.(ExpNames(j)).Surf_All = surf(X1,Y1,Stack); 

    Plots.(ExpNames(j)).Surf_All.CDataMapping = 'scaled'; %'direct'; 

    Plots.(ExpNames(j)).ax2.ActivePositionProperty = 'position'; 

 

    c = jet; 

    %c = parula; 

 

    Plots.(ExpNames(j)).ax2.Colormap = c; 

    shading interp 

    lighting gouraud 

    %Plots.(ExpNames(j)).Surf_All.FaceAlpha = 0.6; 

    Plots.(ExpNames(j)).Surf_All.FaceAlpha = 0.8; 

    %plot3(1:M,qrs(:,1),qrs(:,2)+offset,'go-','MarkerFaceColor','g') % 

need to make this plot the daily peaks or something 

    axis off 

    

title(GraphTitle,'FontName','Gadugi','FontSize',16,'FontWeight','bold'); 

    Plots.(ExpNames(j)).ax1.Visible = 'on'; 

 

    Plots.(ExpNames(j)).ax2.YLim = [0 TimeScale]; 

    Plots.(ExpNames(j)).ax2.YTick = linspace(0,1440,9); 

    Plots.(ExpNames(j)).ax2.XLim = [1 Exp_Length]; 

Plots.(ExpNames(j)).ax2.ZLim = [0 max(Averages.Counts_Cleaned)]; 

    Plots.(ExpNames(j)).ax2.ZLim = [0 100]; 

 

    Plots.(ExpNames(j)).ax1.ZLim = Plots.(ExpNames(j)).ax2.ZLim; 

 

    Plots.(ExpNames(j)).ax1.YLim = Plots.(ExpNames(j)).ax2.YLim; 

    Plots.(ExpNames(j)).ax1.XLim = Plots.(ExpNames(j)).ax2.XLim; 

    %} 
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    Plots.(ExpNames(j)).ax1.View = [80, 45]; 

    Plots.(ExpNames(j)).ax2.View = [80, 45]; 

 

    %{ 

    Axes = findobj(gcf,'type', 'axes'); 

 

    %Plots.(ExpNames(j)).All_Axes = Axes; 

    Plots.(ExpNames(j)).AxisLink = 

linkprop(Axes,{'View','XLim','YLim','ZLim'}); 

    %} 

 

    %Plots.(ExpNames(j)).AxisLink = linkprop(Axes,{'CameraUpVector',... 

    %    'CameraPosition','CameraTarget','CameraViewAngle','View'}); 

    % 'CameraViewAngle' % makes the graph small, but appropriately scaled 

    % 'CameraTarget' % Doesn't do much... 

    % 'CameraPosition' % Doesn't do much... 

    % 'CameraUpVector' % Doesn't do much... 

 

    %Axes = findobj('type', 'axes'); 

    %Plots.AxisLink = linkprop(Axes,{'View','XLim','YLim','ZLim'}); 

    %setappdata(gcf, 'StoreTheLink', Plots.AxisLink); 

 

 

    % 

 

    Plots.(ExpNames(j)).ax1.FontName = 'Arial'; 

    Plots.(ExpNames(j)).ax1.FontWeight = 'bold'; 

    Plots.(ExpNames(j)).ax1.FontSize = 11; 

 

 

    Plots.(ExpNames(j)).ax1.XLabel.String = 'Day of Running'; 

    Plots.(ExpNames(j)).ax1.XLabel.FontName = 'Arial'; 

    Plots.(ExpNames(j)).ax1.XLabel.FontWeight = 'bold'; 

    Plots.(ExpNames(j)).ax1.XLabel.FontSize = 12; 

    Plots.(ExpNames(j)).ax1.XLabel.Rotation = 300; 

    Plots.(ExpNames(j)).ax1.XLabel.Position = 

Plots.(ExpNames(j)).ax1.XLabel.Position + [0 40 0]; 

 

 

    Plots.(ExpNames(j)).ax1.ZLabel.String = ['Average Wheel' newline 

'Rotations per Minute (RPM)']; 

    Plots.(ExpNames(j)).ax1.XLabel.FontName = 'Arial'; 

    Plots.(ExpNames(j)).ax1.XLabel.FontWeight = 'bold'; 
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    Plots.(ExpNames(j)).ax1.XLabel.FontSize = 12; 

    % Plots.(ExpNames(j)).ax1.ZLabel.Rotation = 0; 

 

 

    if TimeVariable=='ZTMinuteBin' 

        Plots.(ExpNames(j)).ax1.YLabel.String = 'Zeitgeber Time(Minute of 

Day)'; 

    elseif TimeVariable=='ZTHourBin' 

        Plots.(ExpNames(j)).ax1.YLabel.String = 'Zeitgeber Time(Hour of 

Day)'; 

    end 

 

    Plots.(ExpNames(j)).ax1.XLabel.FontName = 'Arial'; 

 

    Plots.(ExpNames(j)).ax1.YTick = linspace(0,1440,9); 

    Plots.(ExpNames(j)).ax1.YLabel.FontWeight = 'bold'; 

    Plots.(ExpNames(j)).ax1.YLabel.FontSize = 12; 

    Plots.(ExpNames(j)).ax1.YLabel.Rotation = 2; 

    Plots.(ExpNames(j)).ax1.YLabel.Position = 

Plots.(ExpNames(j)).ax1.YLabel.Position - 2; 

end 

 

 

Axes = findobj('type', 'axes'); 

Plots.AxisLink = linkprop(Axes,{'View','XLim','YLim','ZLim'}); 

setappdata(gcf, 'StoreTheLink', Plots.AxisLink); 
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