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ABSTRACT 

 

Studies have shown the potential risks of neurodegeneration associated with chronic 

consumption of plants of the Annonaceae family, which emphasize the need for further studies to 

identify the neurotoxic compounds in the edible annonaceous plants and compare their risk to their 

benefits in defeating cancer. Our study is focused on the alkaloidal constituents of two plants from 

the Annonaceae family, Asimina triloba and Rollinia mocusa. This study was carried out to explore 

the anticancer and neurotoxic constituents of the plants with the intention that separating 

neurotoxic constituents would help in reducing the undesirable effects of the plants if it is used as 

an alternative therapy. 

Chapter II describes the phytochemical investigation of the alkaloids from Asimina triloba 

twigs that yielded one new aporphine glycoside, (-)-anolobine-9-O-β-D-glucopyranoside 1, along 

with seven known isoquinoline alkaloids, anolobine 2, nornuciferine 3, norushinsunine 4, 

liriodenine 5, lysicamine 6, stepharine 7, and coclaurine 8. Alkaloids 3 and 6-8 are reported for the 

first time from this plant. 

In chapter III, the structural characteristics of eight alkaloids from methanolic extracts of 

dried twigs of Asimina triloba have been studied using UHPLC-QToF-MS in positive ion mode. 

This study described an investigation of the fragmentation pathways leading to the identification 

of key diagnostic fragment ions for the annonaceous alkaloids.  
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Chapter IV demonstrates the anticancer potential and the neurotoxicity of the isolated 

alkaloids from Asimina triloba twigs. Six alkaloids (anolobine-9-O-β-D-glucopyranoside, 

anolobine, norushinsunine, liriodenine, squamolone and coclaurine) were evaluated for their 

anticancer potential in four human solid tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3). 

The potential for neurotoxicity was determined using rat cortical neurons. Three extracts, namely 

crude methanolic extract, alkaloids rich extract, and acetogenins rich extract, were also included 

in the study to explore how the presence and the absence of the alkaloids or acetogenins will affect 

the anticancer activity and neurotoxicity of this plant. This is the first report of anticancer activity 

and the neurotoxic effect of the alkaloidal constituents of Asimina triloba. 

Finally, chapter V describes the total synthesis of (±) anonaine, 3,4-methylenedioxy-1-

phenanthreneethylamine, (±) romucosine, and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate by using direct arylation reactions with 3,4-methylenedioxyphenethylamine 1 

and 2-bromophenylacetic acid 2 in the preparation of aporphine analogues. The presence of the 

synthesized compounds in Rollinia mucosa seeds and fruits was verified through the analytical 

technique using UHPLC-QToF-MS. All synthesized compounds were subjected to the biological 

evaluation to understand how they induce or reduce the cytotoxicity as well as neurotoxicity.  

Improved accuracy and precision of the bioactive marker compounds and natural toxins in 

the edible plants, dietary supplement, and natural health products will be helpful to the regulatory 

agencies. 
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CHAPTER I 

INTRODUCTION 

 

1. Magnoliales 

The order Magnoliales consists of six families (Annonaceae, Eupomatiaceae, 

Degeneriaceae, Himantandraceae, Magnoliaceae, and Myristicaceae) (Soltis et al., 2004) (Figure 

1-1). Among all the six families, the Annonaceae and Magnoliaceae are the most studied families. 

The family of Eupomatiaceae consists of the single genus, Eupomatia, with three species 

(Eupomatia bennettii F. Muell., Eupomatia laurina R. Br., and Eupomatia barbata Jessup) of 

shrubs and trees occurring in tropical to temperate rainforests of Australia and New Guinea (Kim 

et al., 2005). The family of Degeneriaceae has a single genus Degeneria, which is endemic to Fiji 

(Cambie et al., 1992). Himantandraceae family also consists of a single genus, with one species, 

called Galbulimima F.M. Bailey, which is found in Australia, New Guinea, and Indonesia (Brophy 

et al., 2005). The family Myristicaceae is comprised of 20 genera and nearly 500 species, which 

are a medium-sized family of angiosperm trees with a wide pan-tropical distribution (Sauquet 

2003). The family Magnoliaceae consists of 12 genera and about 220 species of woody trees and 

shrubs.  The genera Magnolia (incl. Talauma), Liriodendron, Michelia, and Aromadendron have 

been used in traditional folk medicine in Asia and North America (Schühly et al., 2001). The 

Magnoliaceae contain secondary metabolites such as phenolic compounds, sesquiterpene lactones, 

monoterpenes, and alkaloids, some with considerable in vitro bioactivities (Kelm and Nair 2000; 

Son et al. 2000; Talapatra et al. 1982).  
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2. The family Annonaceae 

The Annonaceae, also called the custard apple family, is the largest family in the Magnoliales 

order. This family comprises of 135 genera and nearly 2500 species. Annonaceae are 

predominantly grown in tropical and subtropical forests, except the Asimina genus that extends 

into temperate regions. (Rabêlo et al. 2014). Some of the Annonaceae species are important in folk 

medicine in treating various tumors and cancers. Also, many of them have valuable economic 

importance as a source of large and pulpy edible fruits, such as pawpaw (Asimina triloba), Annona 

cherimolia, Annona squamosa, Annona muricate, and Rollinia mucosa that are cultivated in many 

countries (Rasai et al., 1995). 

  Furthermore, several Annonaceae plants are marketed as dietary supplements that promote 

overall health. Among the dietary supplements, products that contain twig extracts of pawpaw 

(Asimina triloba L. Dunal), e.g., Pawpaw Cell-Reg, or graviola (Annona muricata) are reported to 

exhibited antitumor efficacy both in animal models and some clinical studies (McLaughlin et al. 

2003).  

Annonaceae plants contain a broad spectrum of biologically active acetogenins that have 

been used for the treatment of different medical conditions. The acetogenins give Annonaceae 

plants unique characteristics as anticancer, antioxidant, and anti-HIV agents at very low 

concentrations with fewer side effects (Bermejo et al., 2005; McLaughlin 2008; Moghadamtousi 

et al., 2015). Also, Annonaceae plants contain different alkaloids that are derived from 

isoquinoline class including, benzyl-tetrahydroisoquinolines, protoberberines, proaporphines, 

aporphines, oxoaporphines, and other miscellaneous alkaloids. Annonaceae alkaloids play critical 

roles in folk treatments, and they possess anticancer, anti-bacterial, anti-inflammatory, and anti-

protozoal activities (Lúcio et al., 2015).   
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Furthermore, other different compounds have been isolated from Annonaceae plants, 

including a number of flavonoids, some with the antioxidant activities (Gonda et al., 2000; 

Ouattara et al., 2011). However, most of the literature are mainly focusing on the annonaceous 

acetogenins and alkaloids, which have displayed a broad array of pharmacological effects and are 

being clinically evaluated for the treatment of different diseases. 

 

3. Annoaceous acetogenins 

Annonaceous acetogenins are long-chain fatty acids (C32 or C34) that have been combined 

with a terminal aliphatic side chain connecting to some hydrophilic functional groups, such as one 

to three THF rings and several hydroxy groups. Biogenetically, they are derived from the 

polyketide pathway. Annonaceous acetogenins were previously classified in terms of two major 

structural factors, the terminal γ-lactone ring and the substituents on the long aliphatic chain into: 

linear ACGs, epoxy ACGs, mono-tetrahydrofuran ACGs, bis-tetrahydrofuran and other 

miscellaneous ACGs (Figure 1-2) (Alali et al., 1999; Zafra-Polo et al., 1998).  

In 1982, the first discovery of the acetogenins, uvaricin, which was isolated from the root 

of Uvaria accuminata by a group of scientists at the University of Arizona. Uvaricin (Figure 1-3) 

demonstrated significant activity toward the P-388 lymphocytic leukemia in mice (Jolad et al., 

1982). Since then, AGGs have attracted significant scientific interest and more than 500 ACGs 

isolated and identified from different Annonaceae plants.   

The Annonaceous acetogenins are potent inhibitors of complex I (NADH: ubiquinone 

oxidoreductase) of the mitochondrial electron transport systems, and they are potent inhibitors of 

NADH oxidase of the plasma membranes of cancer cells. Complex I plays an essential role in the 

maintenance of the bioenergetic function of the cell by driving the adenosine triphosphate (ATP) 
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synthesis from the mitochondrial reducing equivalents produced in the central metabolic oxidative 

pathways, which induces tumor cell apoptosis (programmed cell death) (Degli et al., 1994).  

 

 

Figure 1- 2 Core units for classification of Annonaceous acetogenins (Alali et al., 1999) 
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Figure 1- 3 The chemical structure of uvaricin 

 

Annonaceous acetogenins have been found to display a broad range of biological activities, 

such as antitumor, antimalarial, anthelmintic, pesticidal, antiviral, and antimicrobial effects (Alali 

et al., 1998; Coothankandaswamy et al., 2010; McLaughlin 2008; Pomper et al., 2009). Among 

the broad array of biological activities reported in the biomedical literature for the AGEs, their 

antitumor and cytotoxic effects have received the most attention. 

 

4. Annonaceous alkaloids 

Annonaceae plants contain Approximately 800 alkaloids that derived from isoquinoline 

class, including simple isoquinolines, benzyltetrahydroisoquinolines, bisbenzylisoquinolines, 

protoberberines, proaporphines, aporphinoids, oxoaporphines, phenanthrenes, and other 

miscellaneous isoquinoline-type alkaloids (Lúcio et al., 2015) (Figure 1-4). The isoquinoline 

alkaloids are a large group of important secondary metabolites that have significant 

pharmacological importance. Many have been used extensively in folk medicine.  

Annonaceous alkaloids possess diverse biological activities such as cytotoxicity (Wu et al., 

1995), antiplatelet aggregation activity (Chen et al., 1996), cardiovascular activity (Lin et al., 1994) 

and antimicrobial activity (Ko et al., 1993). 
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Figure 1- 4 A) simple isoquinolines, B) bisbenzylisoquinolines, 

C) benzyltetrahydroisoquinolines, D) protoberberines, E) proaporphines, 

F) aporphinoids, G) oxoaporphines, and H) phenanthrenes 
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  The anticancer effects of isoquinoline alkaloids are mainly related to their effect on cell 

cycle arrest and DNA damage. Anonaine, an aporphine alkaloids, was reported to cause DNA 

damage associated with increased intracellular nitric oxide, ROS, glutathione (GSH) depletion, 

disruptive mitochondrial transmembrane potential, activation caspase 3, 7, 8 & 9 and poly ADP 

ribose polymerase cleavage in human cervical cancer cell (HeLa) (Chen et al., 2008). Furthermore, 

this alkaloid up-regulates the protein expression of p53 and Bax (Chen et al., 2008).  

Also, studies have shown that liriodenine, an oxoaporphines, has induced apoptosis in 

CAOV-3 cells via the mitochondrial signaling pathway by the involvement of caspase-3 and 

caspase-9, inhibiting the proliferation of CAOV-3 cells )Nordin et al., 2015).  Annonamine, 

asimilobine, isolaureline, and (s)-narcorydine are aporphine alkaloids that have isolated from 

Annonaceae plants and have demonstrated anticancer activities as well (Coria-Téllez et al., 2018). 

Therefore, isoquinoline alkaloids, especially the aporphine type, are a promising potential drug 

candidate for the treatment of cancer.  

 

5. Overall aims 

  In spite of the success of some Annonaceae plants in the anticancer activity further 

environmental lipophilic complex I inhibitors have been studied in different Annonaceae plants 

and were found to cause decreased ATP levels in neuronal cell and redistribution of 

phosphorylated tau protein from axons to the cell body, causing neuronal cell death (Paul et al., 

2013). Epidemiological studies have linked the consumption of Annonaceae plants to a high 

prevalence of atypical parkinsonism in Guadeloupe (Stamelou et al., 2010; Escobar-Khondiker et 

al., 2007). The potential risks of neurodegeneration associated with chronic consumption of the 

fruits and tea leaves from Annonaceae plants emphasize the need for further studies to determine 
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and identify the neurotoxic compounds in the edible annonaceous plants and compare their risk to 

their benefits in defeating cancer.  

Among the annonaceous plants, Asimina triloba (pawpaw) is one of the most efficient 

Annonaceae plant species that can specifically interrupt the biochemistry of cancer cells, and its 

extract has been found to be the most potent of more than 3000 species of higher plants screened 

for bioactive compounds (McLaughlin 2008). It is the only species of Annonaceae with edible 

fruits that grow in the temperate region and are native to North America (Brannan et al., 2018). 

Pawpaw and many other Annonaceae plants are mainly consumed either as fresh fruits or 

processed into ice creams, juices, liquors, and many other products. Moreover, its extract has 

shown effective pesticidal and anticancer properties (Callaway et al., 1992). It is also currently 

marketed as a dietary supplement for its potential use in alternative anticancer medicine. 

This study focused on Asimina triloba specifically on its alkaloids constituents due to the 

lack of studies on the isolation and identification of the alkaloids in this plant, only eight alkaloids 

have previously reported from Asimina triloba (Figure 1-5) (Tomita et al. 1965; Zhao et al. 1993).  

Moreover, our study concentrated on the alkaloidal constituents of Rollinia mucosa by 

synthesizing some of its characteristic alkaloids and identify their biological benefits and safety. 

Our central hypothesis is that the alkaloidal extract and pure alkaloids contribute to the cytotoxicity 

of the Asimina triloba and Rollinia mucosa, and their presence would be a reason for the 

neurotoxicity of these plants. 
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Figure 1- 5 Previously reported alkaloids from Asimina triloba 
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The study and identification of the neurotoxic extracts and pure compounds would help in 

the development of dietary supplements by choosing the plant extract that has the minimum 

amount of the neurotoxin to reduce the possibility of undesirable side effects.  

To render the cytotoxic and neurotoxicity effects of Asimina triloba (chapter iv) and 

Rollinia mucosa (chapter v), different plant extracts and pure compounds were screened against 

different cancer cell lines and cortical neurons. The twigs of Asimina triloba, which known to be 

the most active part of this plant and has been used in the preparation of different dietary 

supplements, were subjected to extraction with methanol to get the crude extract (rich with 

alkaloids and acetogenins) followed by acid-base extraction to obtain alkaloidal rich extract and 

alkaloids free extract (mainly contain acetogenins).  

In chapter ii, the alkaloids rich extract was subjected to different column chromatography 

to isolate and purify the alkaloids followed by structural elucidation and characterization by 1D 

and 2D NMR spectroscopic and HRESI-MS spectrometric analysis. The isolated alkaloids from 

Asimina triloba twigs were subjected to targeted analysis study using UHPLC-QToF in positive 

ion mode to get their accurate MS and MS/MS experiments. Then, they were used as standards for 

the analysis of two Asimina species (Asimina triloba and Asimina parviflora) and one dietary 

supplement containing twigs of Asimina triloba, as described in chapter iii. 

Alkaloids from Rollinia mucosa were obtained by the total synthesis of some of their 

previously reported alkaloids (chapter v). Moreover, the presence of the synthesized compounds 

in Rollinia mucosa seeds and fruits were verified through the analytical technique using UHPLC-

QToF-MS. The synthesized alkaloids were screened against different cancer cell lines and cortical 

neurons to evaluate their biological activities.  
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To address our hypothesis, two aims will be executed: aim 1: chemical and biological 

evaluations of Asimina triloba, and aim 2: synthesis of some alkaloids from Rollinia mucosa and 

understanding their structure-activity relationships. The details of each aim are demonstrated in 

chapter ii - v. 
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CHAPTER II 

ISOQUINOLINE ALKALOIDS FROM ASIMINA TRILOBA 

 

1. Introduction  

Pawpaw (Asimina triloba [L.] Dunal) is native to the eastern United States (Galli et al. 

2007). It belongs to the Annonaceae family, which is a large family of tropical and subtropical 

trees and shrubs comprising about 129 genera and more than 2000 species (Rabêlo et al. 2014). 

Pawpaw is mainly distributed in temperate forests of 26 states in the eastern United States, 

extending from northern Florida to southern Ontario and as far west as eastern Nebraska (Galli et 

al. 2007). 

  Previous phytochemical studies of pawpaw have led to the isolation of more than 50 

bioactive compounds called acetogenins (McLaughlin 2008) that displayed antitumor, 

antimalarial, anthelmintic, piscicidal, antiviral, and antimicrobial activities (Alali et al. 1998; 

McLaughlin 2008; Pomper et al. 2009; Coothankandaswamy et al. 2010). Only a few alkaloids 

have been reported from this plant, including coreximine, asimilobine, isocorydine, squamolone, 

anolobine, liriodenine, norushinsunine and squamolone (Tomita et al. 1965; Zhao et al. 1993).  

In the present study, a phytochemical investigation of Asimina triloba twigs was 

undertaken to explore their alkaloidal constituent. Eight aporphine alkaloids including a new 

aporphine glycoside, (-)-anolobine-9-O-β-D-glucopyranoside (1), were isolated, and their 

structures (Figure 2- 1) were determined by 1D and 2D NMR spectroscopic and HRESI-MS 

spectrometric analysis.  
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Figure 2- 1 Structures of isolated alkaloids from Asimina triloba 
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2. Results and discussion 

Compound 1 was obtained as a yellowish-brown amorphous powder. The HRESIMS (m/z 

444.1655 [M+H]+, calcd 444.1658) established the molecular formula as C23H25NO8, indicating 

12 degrees of unsaturation. The UV spectrum of 1 showed absorption (λmax) at 275 nm.  The IR 

spectrum showed band for secondary amine that overlapped with a hydroxyl group at 3358 cm-1. 

The decoupled 13C NMR spectrum of 1 exhibited 23 resonances, which were differentiated by 

DEPT NMR spectrum as five methylenes, ten methines, and eight non-protonated carbons. 

  The 1H and 13C NMR spectra exhibited characteristic resonances for the methylenedioxy 

group [δH/δC 5.96 (brd. s, 1H), 6.09 (brd. s, 1H)/100.8], four aromatic methines [δH/δC 6.60 

(s)/107.7 (CH-3), 6.97 (d, J = 2.3 Hz)/116.3 (CH-8), 6.98 (dd, J = 9.4, 2.3 Hz)/115.6 (CH-10), 

7.90 (d, J = 9.4 Hz)/128.1 (CH-11)], and a glucopyranose [δH/δC 4.90 (d, J = 7.5 Hz)/100.9 (CH-

1'), δC 73.7 (C-2'), 77.1 (C-3'), 70.2 (C-4'), 77.6 (C-5'), and 61.1 (C-6')] (Table 2- 1).  The glucose 

unit was located at C-9 due to the correlation of anomeric proton (H-1') with C-9 (δC 157.1) in the 

HMBC spectrum.  

The HMBC correlations of methylenedioxy protons with C-1 (δC 141.7) and C-2 (δC 146.5) 

confirmed its position at C-1 and C-2 (Figure 2- 2). The absolute configuration at the stereogenic 

center C-6a of compound 1 and its aglycone, anolobine (2), were determined as R from their 

characteristic negative cotton effect (CE) at 237 and 235 nm respectively, (Figure 2- 3) (Ringdahl 

et al. 1981).  
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Figure 2- 2 Key HMBC (→) and COSY (▬) correlations of 1 

 

The NMR data of the aglycone part of 1 was in agreement with those of anolobine (Chen 

et al. 1997; Guo et al. 2011; Costa et al. 2015). Therefore, the structure of 1 was elucidated as (-)-

anolobine-9-O-β-D-glucopyranoside. Aporphine glycosides are rare alkaloids. So far, only seven 

aporphine glycosides have been reported (Dary et al. 2017; Dembitsky VM. 2005), and anolobine-

9-O-β-D-glucopyranoside 1 is the first aporphine glycoside with anolobine 2 as the aglycone. 

Known alkaloids were identified as anolobine (2), nornuciferine (3), norushinsunine (4), 

liriodenine (5), lysicamine (6), stepharine (7) and coclaurine (8) by analyzing their NMR and mass 

data (Figure 1- 1). Compounds 3 and 6-8 are reported for the first time from this plant.  

The assignment of the absolute configurations at C-6a of the proaporphine alkaloid, 

stepharine 7, and the tetrahydrobenzylisoquinoline alkaloid, coclaurine 8, were determined by CD 

experiment. Stepharine (7) showed negative CE at 225 and 295 nm (Figure 2- 4)  in contrast to the 

previously reported (S)-(+)-stepharine, which has positive CE at 266 and 293 nm, suggesting R 

configuration at C-6a (Snatzke et al. 1966).  

The hypsochromic shift at 220 of stepharine indicated that it afforded the conformation of 

type D(b) proaporphine alkaloids in which there is no overlap between the π-system of the dienone 

group and the oxygen p-orbital of 1-OMe group, and the bathochromic shift of the (S)-(+)-
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stepharine at 266 is due to overlapping between the π-system and the oxygen p-orbital (Snatzke et 

al. 1966).  

 

Figure 2- 3 CD spectra of anolobine-9-O-β-D-glucopyranoside 1 and its aglycone (anolobine 2) 

 

Coclaurine (8) demonstrated negative CE at 220 and 293 (Figure 2- 5), resembled to (R)-

(+) isotembetarine perchlorate (negative CE at 236 and 285) (Moriyasu et al. 1997) instead of (S)-

(+)-reticuline (positive CE at 240 and 290) (Nishiyama et al. 2000), supporting R configuration at 

C-6a of coclaurine. The stereochemistry of stepharine and coclaurine at C-6a was further supported 

by comparing their optical rotation values [α]25D −110 (Chen et al. 1997) and [α]25D +16 (Stadler 

et al. 1988), respectively, with the reported optical rotation values.  
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Figure 2- 4 CD spectrum of stepharine (7) 

 

 

 

Figure 2- 5 CD spectrum of coclaurine (8) 
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3.  Experimental 

3.1. Apparatus and reagents 

Circular Dichroism data are obtained from Olis DSM 20 CD digital subtractive method 

circular dichrometer with a desa subtractive double grating monochromator. Rudolph Research 

Analytical Autopol IV automatic polarimeter was used to obtain the specific rotations. IR spectra 

were recorded on an Agilent Technologies Cary 630 FTIR. UV spectrum was acquired on a Varian 

Cary 50 Bio UV-visible spectrophotometer. NMR spectra were obtained on Bruker AU III 400 or 

500 MHz NMR spectrometers using DMSO-d6, CD3OD, or CDCl3 solvents. An Agilent 

Technologies 6200 series mass spectrometer was used to record mass spectra. Column 

chromatography was carried out using flash silica gel (40 μm, 60 Å, J. T. Baker). TLC was 

performed on aluminum-backed plates, pre-coated with silica gel F254 (200 μm, 60 Å, (Merck). 

Spots were detected at UV-254 nm. Visualization was attained by spraying with Dragendorff’s 

reagent or with 1% vanillin solution (prepared with 5% H2SO4 in EtOH) followed by heating. 

Preparative-TLC plates (20 cm × 20 cm, 500 μm) were utilized for the purification. 

 

3.2. Plant material 

Asimina triloba twigs were received from Dr. Jerry McLaughlin (Tippecanoe County, 

Indiana). Voucher specimens (#17328) were deposited at the National Centre for Natural Products 

Research, University of Mississippi, USA. 

 

3.3. Extraction and Isolation 

The plant material was finely powdered (1 kg) and extracted with methanol to obtain 25 g 

of extract. An aliquot of MeOH extract (20 g) was subjected to usual acid-base alkaloidal 
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extraction. The extract was suspended in 2% HCl (500 mL) and extracted with EtOAc (3 × 500 

mL) in a separating funnel. After separating the EtOAc layers, the resulting aqueous acidic layer’s 

pH was adjusted to 9−10 with ammonia solution and subsequently extracted again with EtOAc (3 

× 500 mL). The combined EtOAc layers from basified solution were dried to give an alkaloidal 

extract (1.3 g), which was fractionated by column chromatography (CC) (115 cm × 3 cm) using 

silica gel and eluted with following solvents systems: CHCl3 (1L), CHCl3- CH3OH [9:1 (2 L)], 

and EtOAc-CHCl3- CH3OH-H2O [15:8:2:0.5 (2 L) and 6:4:4:1 (2 L)] to give 5 fractions (Frs. 1-5) 

and one pure compound [anolobine-9-O-β-D-glucopyranoside 1 (16 mg)]. Fr. 1 (66.8 mg) was 

subjected to CC over silica gel [(84 cm × 1.3 cm), EtOAc-CHCl3-CH3OH-H2O (6:4:4:1)], followed 

by preparative thin layer chromatography (PTLC) [EtOAc-CHCl3- CH3OH-H2O (6:4:4:1)] to give 

stepharine (3.5 mg). Fr. 2 (46.6 mg) was subjected to PTLC [silica gel, CHCl3-CH3OH (30:1)], 

which yielded a mixture of liriodenine and nornuciferine (23%:66%, 4.3 mg) and another mixture 

of lysicamine and liriodenine (60%:40%, 1.4 mg).  Fr. 3 (93.2 mg) was chromatographed over 

silica gel [(85 cm × 2 cm), EtOAc-CHCl3-CH3OH-H2O (10:6:4:1)] followed by PTLC [EtOAc-

CHCl3-CH3OH-H2O (10:6:4:1)] to purify norushinsunine (2.4 mg). Fr. 4 (201.0 mg) was subjected 

to CC over silica gel [(98 cm × 2.4 cm), CHCl3-CH3OH (17:3), followed by PTLC [CHCl3- 

CH3OH-H2O (8:2:0.5)] to afford anolobine (2.0 mg). Coclaurine (2.6 mg) was purified from Fr. 5 

(80.1 mg) by CC [silica gel (84 cm × 1.3 cm), CHCl3-CH3OH-H2O (8:2:0.25)], followed by PTLC 

[CHCl3-CH3OH-H2O (8:2:0.25)]. 

 

3.3.1. (R)-(-)-anolobine-9-O-β-D-glucopyranoside (1) 

Yellowish brown amorphous powder; HRESIMS m/z 444.1655 [M+H]+ (calcd. for 

[C23H25NO8  + H], 444.1658); IR (KBr) νmax 3358, 3329, 2920, 2849,1608, 1228, 1045 cm−1; [α]25D 
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: −15 (c = 0.5, CH3OH);  UV/Vis λmax (CH3OH) nm (log ε): 210 (3.8), 275 (3.6); 1H NMR (500 

MHz, DMSO-d6): δ 7.90 (1H, d, J = 9.4 Hz, H-11), 6.98 (1H, dd, J = 9.4, 2.3 Hz, H-10), 6.97 (1H, 

d, J = 2.3 Hz, H-8), 6.60 (1H, s, H-3), 5.96 and 6.09 (each 1H, brd. s, –OCH2O–), 4.90 (1H, d, J = 

7.5 Hz, H-1'), 3.69 (2H, overlapped, H-6a and H-6'), 3.48 (1H, dd, J = 11.9, 5.8 Hz, H-6'), 3.35 

(1H, ddd, J = 9.1, 5.8, 2.1 Hz, H-5'), 3.23 - 3.31 (2H, overlapped, H-2' and H-3'), 3.18 (1H, t, J = 

9.1 Hz, H-4'), 3.15 (1H, m, H-5), 2.83 (1H, dd, J = 14.5, 4.8 Hz, H-7β), 2.79 (1H, m, H-4), 2.77 

(1H, m, H-5), 2.57 (1H, t, J = 14.5, H-7α), and 2.53 (1H, m, H-4). 13C NMR (125 MHz, DMSO-

d6): δ 157.1 (C-9), 146.5 (C-2), 141.7 (C-1), 137.7 (C-7a), 128.5 (C-11c), 128.1 (C-11), 127.6 (C-

3a), 125.0 (C-11a), 116.3 (C-8), 115.6 (C-10), 115.0 (C-11b), 107.7 (C-3), 100.9 (C-1'), 100.8 

(−OCH2O–), 77.6 (C-5'), 77.1 (C-3'), 73.7 (C-2'), 70,2 (C-4'), 61.1 (C-6'), 53.5 (C-6a), 43.3 (C-5), 

37.1 (C-7), and 29.5 (C-4) (Table 2- 1, Figure 2- 6). 

 

 

Figure 2- 6 Anolobine-9-O-β-D-glucopyranoside (1) 
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Table 2- 1 1H and 13C NMR data of anolobine-9-O-β-D-glucopyranoside (1) (DMSO-d6, 500 

MHz/150 MHz) 

 

No. Mult. δ 13C [ppm] δ 1H [ppm] 

1 C 141.72 - 

2 C 146.49 - 

3 CH 107.65 6.597 (s) 

3a C 127.63 
 

4 CH2 29.46 2.532 (m) 

2.790 (m) 

5 CH2 43.29 2.772 (m) 

3.151 (m) 

6a CH 53.53 3.699 (overlapped)  

7 CH2 37.12 2.570 (t, J = 14.5, H-7α), 

2.832 (dd, J = 14.5, 4.8 Hz, H-7β) 

7a C 137.71 - 

8 CH 116.35 6.972 (d, J = 2.3 Hz) 

9 C 157.09 - 

10 CH 115.61 6.981 (dd, J = 9.4, 2.3 Hz) 

11 CH 128.14 7.905 (d, J = 9.4 Hz) 

11a C 125.01 - 

11b C 114.99 - 

11c C 128.53 - 

OCH2O CH2 100.83 5.963, 6.089 (each brd. s) 

1' CH 100.86 4.901 (d, J = 7.5 Hz) 

2' CH 73.72 3.234 - 3.312 (overlapped) 

3' CH 77.12 3.234 - 3.312 (overlapped) 

4' CH 70.19 3.180 (t, J = 9.1 Hz) 

5' CH 77.57 3.353 (ddd, J = 9.1, 5.8, 2.1 Hz) 

6' CH2 61.14 3.699 (overlapped) 

3.487 (dd, J =11.9, 5.8 Hz) 
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3.3.2. (R)-(-)-Anolobine (2) 

Light yellow powder; HRESIMS m/z 282.1133 [M+H]+ (calcd. for [C17H15NO3 + H], 282.1130); 

[α]25D: −22 (c = 0.5, CH3OH); 1H and 13C NMR data matched with the literature (Chen et al. 1997; 

Guo et al. 2011; Costa et al. 2015). 

 

3.3.3. Nornuciferine (3) 

Yellow amorphous powder; HRESIMS m/z (282.1486) [M+H]+ (calcd. for [C18H19NO2 + H], 

282.1494). 1H and 13C NMR data matched with literature (Hasrat et al. 1997; Hsieh et al. 1999). 

 

3.3.4. (-)-Norushinsunine (4) 

Light brown solid mass; HRESIMS m/z 282.1123 [M+H]+ (calcd. for [C17H15NO3 + H], 282.1130); 

[α]25D: −40 (c = 0.1, CH3OH); 1H NMR data matched with the literature (Chen et al. 1997; Hsieh 

et al. 1999). 

 

3.3.5. Liriodenine (5)  

Yellow amorphous powder (in mixture form with nornuciferine); HRESIMS m/z (276.0656) 

[M+H]+ (calcd. for [C17H9NO3 + H], 276.0661). 1H and 13C NMR data matched with literature 

(Chen et al. 1997; Guo et al. 2011). 

 

3.3.6. Lysicamine (6)  

Yellow powder; HRESIMS m/z 292.0968 [M+H]+ (calcd. for [C18H13NO3 + H], 292.0974); 1H and 

13C NMR data matched with literature (Chen et al. 1997; Rabêlo et al. 2015).  
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3.3.7. (R)-(-)-Stepharine (7) 

Dark brown solid mass; HRESIMS m/z 298.1439 [M+H]+ (calcd. for [C18H19NO3 + H], 298.1443); 

[α]25D: −110 (c = 0.1, CHCl3); 1H and 13C NMR data matched with the literature (Chen et al. 1997; 

Costa et al. 2015; Rabêlo et al. 2015).  

 

3.3.8. (R)-(+)-Coclaurine (8) 

Colorless prisms (CH3OH); HRESIMS m/z 286.1437 [M+H]+ (calcd. for [C17H19NO3 + H], 

286.1443); [α]25D +16 (c = 0.25, CH3OH); 1H and 13C NMR data matched with the literature (Costa 

et al. 2015). 

 

4. Conclusion 

The phytochemical investigation of the alkaloids from Asimina triloba twigs yielded one 

new aporphine glycoside, (-)-anolobine-9-O-β-D-glucopyranoside (1), along with seven known 

isoquinoline alkaloids, anolobine (2), nornuciferine (3), norushinsunine (4), liriodenine (5), 

lysicamine (6), stepharine (7) and coclaurine (8). Alkaloids 3 and 6-8 are reported for the first time 

from this plant.  
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Chapter II Copyright 

 

The content of chapter ii has been published in the Natural Product Research. The journal offers 

reuse of the articles by the author for thesis or dissertation free of charge as shown below. 
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CHAPTER III 

TARGETED ANALYSIS OF ANNONACEOUS ALKALOIDS FROM ASIMINA TRILOBA 

USING UHPLC-QTOF-MS 

 

1. Introduction 

Standardization of botanical supplements is an essential tool in the formulation of high-

quality dietary supplements. The development of an analytical method to characterize and quantify 

the biomarkers and chemical markers would be valuable not only for herbal identification and 

quality control but would also enhance understanding of the botanicals’ biological activity and 

their benefits or potential risk to human health.   

Phytochemical and pharmacological investigations on Asimina species revealed the 

presence of several bioactive compounds, including alkaloids, acetogenins, phenolic compounds, 

terpenes, and essential oils (Leboeuf et al., 1980). Chemical studies of the plant (family 

Annonaceae) have increased in the last two decades due to the presence of annonaceous molecules 

(e.g., isoquinoline alkaloids and acetogenins) with pharmacological uses (González-Esquinca et 

al., 2014). Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 

genera. 
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Most of these alkaloids present in Annonaceae possess isoquinoline derived structures 

including benzyltetrahydroisoquinolines (coclaurine, higenamine), protoberberines (coreximine, 

jatrorrhizine, berberine, corydaline, tetrahydropalmatine), proaporphines (pronuciferine, 

stepharine), aporphines (anonaine, asimilobine, glaucine, magnoflorine, isocorydine, 

norisocorydine, norcorydine, lysicamine, nornuciferine), and oxoaporphines (liriodenine, 

anolobine, norushinsunine, lanuginosine) (Leboeuf et al., 1980). The aporphinoids are the largest 

group of compounds occurring in the Annonaceae plants (Leboeuf et al., 1980). 

The presence of acetogenins was investigated in the Asimina triloba fruits using different 

analysis techniques, including HPLC-MS (Pomper et al., 2009) and HPLC-DAD (Donno et al., 

2014). A quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was 

established for the quality control of the acetogenins in the extracts of the pawpaw tree (Asimina 

triloba). The concentrations of the three major compounds (bullatacin, asimicin, and trilobacin) 

were evaluated (Gu et al., 1999). A droplet-liquid microjunction-surface sampling probe coupled 

to UPLC-PDA-HRMS/MS system was used to detect acetogenins in situ from Asimina triloba 

(Sica et al., 2016).   

The alkaloid liriodenine was analyzed by the TLC image analysis and HPLC-DAD method 

from twenty-eight plant materials of Magnoliaceae, Annonaceae and Nelumbonaceae in Thailand 

(Mongkolrat et al., 2013).  The levels of reticuline, norreticuline, and N-methylcoclaurine were 

determined in three Annona species (A. reticulata, A. squamosa, A. muricata) (Kotake et al., 2004). 

Previous studies have evaluated the analysis to a specific type of plant or acetogenins or alkaloids 

from Annona or Asimina species (Donno et al., 2014; Mongkolrat et al., 2013; Pomper et al., 2009; 

Ratnayake et al., 1992; Yang et al., 2009).  
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Most of the previous work was focused on target acetogenins or alkaloids with limited 

information on alkaloids from Asimina triloba samples. In this regard, metabolomics provides an 

efficient tool for investigating the alkaloids in a single analysis, including health promoting 

compounds. 

Utilizing the high chromatographic resolution and separation capabilities of UHPLC with 

QToF-MS provides the structural characterization from accurate mass measurement for both MS 

and MS-MS experiments. This technique offers a significant advantage for the rapid screening of 

compounds in complex matrices. In the present study, the structural characteristics of 8 alkaloids 

from methanolic extracts of dried twigs of Asimina triloba have been studied using UHPLC-QToF-

MS in positive ion mode.  

Herein, this study described an investigation of the fragmentation pathways leading to the 

identification of key diagnostic fragment ions for the annonaceous alkaloids. MS-MS experiments 

lessen the ambiguities in the identification of compounds. Because of the many isomers, even 

accurate mass MS/MS is insufficient for complete identification, requiring chromatographic 

separation and comparison of standards. Alkaloids were characterized and confirmed from their 

retention times obtained from standard compounds. 

 

2. Experimental approach 

The high chromatographic resolution and separation capabilities of the UHPLC with 

QToF-MS have been applied to the identification and characterization of isolated alkaloids 

(anolobine-9-O-β-D-glucopyranoside, anolobine, nornuciferine, norushinsunine, liriodenine, and 

lysicamine, stepharine, and coclaurine) from Asimina triloba (Majrashi et al., 2018).  
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The standard compounds were characterized and detected from methanolic extracts of 

different parts of Asimina triloba, Asimina parviflora, and one dietary supplement claiming to 

contain pawpaw (Asimina triloba) and identified by comparing the retention times and the MS and 

MS/MS data with reference standards. No previous phytochemical work has been reported with 

species of Asimina parviflora except for one paper where five bioactive compounds (asimicilone, 

6-cis-docosenamide, asimicin, (+)-syringaresinol, and β-sitosterol-β-D-glucopyranoside) were 

isolated and identified (Ratnayake et al., 1992). Herein, the standard compounds have been used 

to distinguish between the two Asimina species, triloba and parviflora. 

 

3. Plant materials  

Dried seed (NCNPR code # 17325), twigs (NCNPR code # 17328), bark (NCNPR code # 

17326), and twigs with bark (NCNPR code # 17327) of Asimina triloba were obtained by Dr. Jerry 

McLaughlin at Purdue University’s School of Pharmacy (West Lafayette, IN). Leaf (NCNPR code 

# 19098), stem (NCNPR code # 19099), root (NCNPR code # 19100) of Asimina parviflora, were 

provided by David Ellis (Botanist, PurdueUniversity, West Lafayette, Indiana). Dietary 

supplement (#18447) claiming to contain pawpaw (Asimina triloba twigs extract) was purchased 

online. Specimens of all samples were deposited at the NCNPR’s botanical repository at the 

University of Mississippi. 

 

4. Standards and plant sample preparation 

All standards were prepared at a concentration of 10 µg/mL. Dry plant samples (0.5 g) or 

an adequate amount of capsule contents (average weight of dosage form) or 25 mg of extracts were 

sonicated in 2.5 mL of methanol for 30 min, followed by centrifugation for 15 min at 959 × g.  The 
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supernatant was transferred to a 10 mL volumetric flask. The procedure was repeated three more 

times, and the respective supernatants were combined. The final volume was adjusted to 10 mL 

with methanol and mixed thoroughly. Prior to injection, an adequate volume (ca. 2 mL) was passed 

through a 0.45 µm PTFE membrane filter. The first 1.0 mL was discarded, and the remaining 

volume was collected in an LC sample vial. 

 

5. Instrumentation and analytical conditions 

5.1.  Ultra-High-Performance Liquid Chromatography-Quadrupole Time of 

Flight-Mass Spectrometry (UHPLC/QToF-MS) 

The liquid chromatographic system was an Agilent Series 1290 comprised of the following 

modular components: binary pump, a vacuum solvent microdegasser, an autosampler with a 100-

well tray and a thermostatically controlled column compartment. The separation was achieved on 

an Agilent Poroshell 120 EC-18 (2.1×100 mm, 2.7 µ) column. The mobile phase consisted of water 

with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B) at a flow rate of 0.23 mL/min, 

with the following gradient: 0 min, 2% B in next 20 min to 10% B, for next 30 min 20% B, for 

next 20 min 50% B, for next 20 min 70% B, for next 20 min 90% B and to 100% B in next 10 min. 

Each run was followed by a 5 min wash with 100% B and an equilibration period of 5 min with 

2% B. Two microliters of sample were injected. The column temperature was set at 40 °C, and 

UV spectra were recorded from 190-400 nm.  

The mass spectrometric analysis was performed with a QToF-MS/MS (Model #G6530A, 

Agilent Technologies, Palo Alto, CA, USA) equipped with an ESI source with Jet Stream 

technology using the following parameters: drying gas (N2) flow rate, 11.0 L/min; drying gas 

temperature, 325 °C; nebulizer, 30 psig, sheath gas temperature, 325 °C; sheath gas flow, 11 
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L/min; capillary, 3000V; skimmer, 65V; Oct RF V, 750V; fragmentor voltage, 100V. The sample 

collision energy was set at 55eV. All the operations, acquisition, and analysis of data were 

controlled by Agilent MassHunter Acquisition Software Ver. A.05.00 and processed with 

MassHunter Qualitative Analysis software Ver. B.07.00. Each sample was analyzed in a positive 

mode in the range of m/z = 100-1700.  

Accurate mass measurements were obtained by means of ion correction techniques using 

reference masses at m/z 121.0509 (protonated purine) and 922.0098 [protonated hexakis (1H, 1H, 

3H-tetrafluoropropoxy) phosphazine or HP-921] in positive ion mode. The compounds were 

confirmed in each spectrum. For this purpose, the reference solution was introduced into the ESI 

source via a T-junction using an Agilent Series 1200 isocratic pump (Agilent Technologies, Santa 

Clara, CA, USA) using a 100:1 splitter set at a flow rate of 20 µL/min. For recording ToF-MS 

spectra, the quadrupole was set to pass all ions (Rf only mode), and all ions were transmitted into 

the pusher region of the time-of-flight analyzer where they were mass-analyzed with a 1 s 

integration time up to m/z 1000. For the ESI-MS/MS CID experiments, ions of interest were mass-

selected by the quadrupole mass filter. The selected ions then collided with nitrogen in a high-

pressure collision cell, and the collision energy was optimized to afford good product ion signals 

that were subsequently mass measured with the ToF analyzer.  

Analysis was performed in the reflectron mode with a resolving power of about 10,000 at 

m/z 922. The instrument was set to extended dynamic range (up to 105 with lower resolving power). 

MS/MS spectra were recorded simultaneously at a rate 2.0 spectra s−1. In order to filter selected 

precursor ions and their isotopes for MS/MS, an isolation window of 1.3 m/z was set for the 

quadrupole.  
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5.2.  Data analysis 

MassHunter Workstation software, including Qualitative Analysis (version B.07.00), was 

used for processing both raw MS and MS/MS data, including molecular feature extraction, 

background subtraction, data filtering, and molecular formula estimation (using accurate mass of 

all isotopes, their relative abundances, and all detected adducts with their measured isotopes).  

To perform subtraction of molecular features (MFs) originating from the background, 

analysis of a blank sample (methanol) was carried out under identical instrument settings, and 

background MFs were removed. This method involved the use of the [M+H]+ and [M+Na]+ ions 

in the positive ion mode, found in the extracted ion chromatogram (EIC). 

 

6. Results and discussion 

In order to determine the optimal ionization method for analytes, positive and negative ion 

modes were investigated with the same UHPLC mobile phase at a flow rate of 0.23 mL/min. All 

compounds showed good detection in positive ion mode. Identification or elucidation of these 

compounds using UHPLC-QToF-MS can be performed with the assistance of reference standards 

(Table 3- 1). Some chromatographic peaks contained the same protonated molecules in the MS 

spectra and similar product ions in MS/MS spectra but had different retention behaviors, which 

were helpful for their identification. 
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Table 3- 1 Accurate mass data, fragment ions for the alkaloids of Annonaceae family using 

UHPLC Q-ToF 

Name 

 

Retention 

Time 

(min) 

 

Molecular 

formula 

m/z 
Calculated 

m/z 
Experimental 

[M+H]+/ 

[M+Na]+ 

Error 

(mDa) 

Fragment Ions 

(30V) 

Anolobine-9- 

O-β-D-gluco-

pyranoside 

27.3 C23 H25 NO8 444.1653 

[M+H]+ 
444.1653 0.0 427.1312 [M+H-NH3]+ 

265.0820 [M+H-NH3-

Glu]+ 

247.0759 [M+H-NH3 -

Glu-H2O]+ 

235.0712 [M+H-NH3 -

Glu- CH2O]+ 

217.0656 [M+H-NH3-

Glc-H2O-CH2O]+  

207.0775 [M+H-NH3-

Glc- CH2O-CO]+  

179.0842 [M+H-NH3-

Glc- CH2O-2CO]+ 

Anolobine 39.5 C17 H15 NO3 282.1125 

[M+H]+ 

282.1123 -0.2 265.0839 [M+H-NH3]+ 

247.0731 [M+H-NH3-

H2O]+ 

235.0730 [M+H-NH3-

CH2O]+ 

217.0635 [M+H-NH3-

H2O-CH2O]+ 

207.079 [M+H-NH3-

CH2O-CO]+ 

179.0828 [M+H-NH3-

CH2O-2CO]+ 

189.0694 [M+H-NH3-

CH2O-CO-H2O]+ 

Nornuciferine  36.3 C18 H19 NO2 282.1489 

[M+H]+ 

282.1487 -0.2 251.1048 [M+H-

CH3NH2]+ 

236.0817 [M+H-

CH3NH2-CH3]+ 

219.0791 [M+H-

CH3NH2-CH3OH]+ 

191.0844 [M+H-

CH3NH2-CH3OH-CO]+ 

Norushinsunine  39.0 C17H15NO3 282.1125 

[M+H]+ 

282.1125 0.0 264.1014 [M+H-H2O] + 

234.0902 [M+H-H2O-

CH2O] + 

206.0952 [M+H-H2O-

CH2O-CO] + 

179.0845 [M+H-H2O-

CH2O-CO-NH3] + 

Liriodenine  48.2 C17H9NO3  276.0655 

[M+H]+ 

276.0656 +0.1 248.0694 [M+H-CO]+ 

220.0743 [M+H-2CO]+ 

218.0591 [M+H-CO-

2CH3]+, 

190.0643 [M+H-2CO -

2CH3]+ 
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Table 3- 2 Accurate mass data, fragment ions for the alkaloids of Annonaceae family using 

UHPLC Q-ToF 

 

Name 

 

Retention 

Time 

(min) 

 

Molecular 

formula 

m/z Calculated m/z 
Experimental 

[M+H]+/ 

[M+Na]+ 

Error 

(mDa) 

Fragment Ions 

(30V) 

Lysicamine  59.1 C18H13NO3  292.0968 

[M+H]+  

292.0965 +0.3 277.0719 [M+H-

CH3]+ 

260.0695 [M+H-

CH3-17]+ 

248.0692 [M+H-

CH4-CO]+ 

231.0654 [M+H-

CH4-CO-17]+ 

219.0664 [M+H-

CH4-CO-29]+ 

Stepharine  23.7 C18H19NO3 298.1438 

[M+H]+ 
298.1439 +0.1 281.1122 [M+H-

NH3]+ 

269.1140 [M+H-

CO]+ 

254.0896 [ M+H-

CO-CH3]+ 

238.0946 [M+H-

CO-OCH3]+ 

223.0733 [M+H-

CO-CH3-OCH3]+ 

192.0992 [M+H-

CO-CH3-2OCH3]+ 

161.0811 [M+H-

CO- CH3-

3OCH3]+ 

146.0577 [M-CO-

2CH3-3OCH3] + 
Coclaurine  23.1 C17H19NO3 286.1438 

[M+H]+ 
286.1439 +0.1 269.1155 [M+H-

NH3]+ 

254.0933 [M+H-

CH3OH]+ 

175.0747 [M+H-

C6H8NO]+ 

143.0483 [M+H-

C7H10NO-H2O]+ 

107.0493 [M+H-

C10H12O]+ 
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Alkaloids isolated from Asimina triloba twigs have a secondary amine, and they are 

composed of three-four rings with different skeletons. The ESI mass spectra of these alkaloids 

showed abundant [M+H]+ ions due to the strong basicity of the secondary amine group. The data 

were obtained in positive electrospray ionization mode at collision energies 30eV. Only singly 

charged positive [M+H]+ were used to produce targeted MS-MS spectra. The alkaloids of the 

aporphine, oxoaporphine, and benzylisoquinolines type represent the predominant group in this 

genus. The alkaloidal skeleton was determined from the UV absorption spectra and mass 

spectrometry fragmentation. 

 

6.1. Benzylisoquinoline alkaloids  

The prototype molecule of coclaurine was identified based on exact mass measurement and 

comparison with the standard compound. According to the structural characteristics, elution of 

benzylisoquinolines was achieved before that of the other class of alkaloids. Major characteristics 

ions were formed by inductive cleavage and α-cleavage at the nitrogen of the tyramine moiety 

(Jeong et al., 2012; Schmidt et al., 2005) (Figure 3- 1, 3- 2). Coclaurine (m/z 286.1439 [M+H]+) 

produced product ions at m/z 269.1155 [M+H-NH3]+, 254.0933 [M+H-CH3OH]+, 237.0905 

[M+H-NH3-H2O]+, 209.0951, 194.0717, 143.0483, 115.054 and major fragment ion 107.0493 

(Table 3- 1, Figure 3- 1, 3- 2). The UV absorption maxima of this compound were 200, 227, 283 

nm. 
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Figure 3- 1 ESI-MSn spectrum of coclaurine 

 

 

Figure 3- 2 Tentative fragmentation pathways of the coclaurine 
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6.2. Proaporphine Alkaloids  

Proaporphine Alkaloids, such as stepharine with the p-cyclohexadienone moiety, are the 

precursor of aporphine alkaloids (Dai et al. 2012; Jeong et al., 2012; Tomita et al. 1965). The mass 

spectrum showed the molecular ion peak at m/z 298.1439 [M+H]+, thus indicating a molecular 

formula of C18H19NO3. The fragmentation peaks were observed at m/z 281.1122 [M+H-NH3]+, m/z 

269.1140 [M+H-CO]+ attributed to the loss of amino and carbonyl groups from the dienone type 

fragment. Additional peaks at m/z 254.0896 [M+H-CO-CH3]+, 238.0946 [M+H-CO-OCH3]+, 

223.0733 [M+H-CO-CH3-OCH3]+, 192.0992 [M+H-CO-CH3-2OCH3]+, 161.0811 [M+H-CO-

CH3-3OCH3] + and 146.0577 [M+H-CO-2CH3-3OCH3] + were observed.  

The molecular ion is decomposed by RDA (retro-diels-alder) reaction of the 

tetrahydroisoquinoline ring, and the process is similar to the fragmentation of aporphine alkaloids 

(Table 3- 1, Figure 3- 3, 3- 4). The UV absorption spectrum, measured in methanol showed at 

210, 234, and 285 nm. 

 

 

 

 

 

 

 

 

Figure 3- 3 ESI-MSn spectrum of stepharine 
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Figure 3- 4 Tentative fragmentation pathways of the stepharine. 

 

6.3. Aporphine Alkaloids 

  Aporphine alkaloids are the largest group of isoquinoline alkaloids and due to their rigid 

structures, the mass spectra are characterized by loss of small molecules such as water, CO, or CO2 

with cation radicals fragment ions frequently present. The degree of substitution on the nitrogen 

can be identified on the loss of ammonia (secondary nitrogen), methylamine (tertiary nitrogen) or 

dimethylamine (quaternary nitrogen) (Sangster and Stuart 1965; Shamma et al. 1971; Singh et al., 

2017; Tang et al., 2014; Tian et al. 2014). 

Nornuciferine showed a protonated molecule [M+H]+ at m/z 282.1487 and the 

fragmentation was due successive loss of methylamine group (–CH3NH2 [M+H-31]+ ), methyl 

group (–CH3 group [M+H-15]+), -CH3OH moiety, -CO molecule produced ions at m/z 267.0906, 
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251.1048, 236.0817, 219.0791, major fragment ion m/z 191.0844 (Table 3-1, Figure 3-5, 3-6) and 

UV absorption spectra at 215, 270 and 310 nm. 

 

 

 

 

 

 

 

 

 

Figure 3- 5 ESI-MSn spectrum of nornuciferine. 

 

 

Figure 3- 6 Tentative fragmentation pathways of the nornuciferine 
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Similar the case with lysicamine where it showed a protonated molecule [M+H]+ at m/z 

292.0965 and the fragmentation was due to successive loss of methyl group (-CH3 group [M+H-

15]+), -CH4-CO moiety, CO molecule produced ions at m/z 277.0719 (major), 260.0695, 248.0692 

(major), 191.0705 (Table 3- 1, Figure 3- 7, 3- 8) and UV absorption spectra at 215, 275 and 310 

nm.  

 

 

 

 

 

 

 

 

 

 

Figure 3- 7 ESI-MSn spectrum of lysicamine 
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Figure 3- 8 Tentative fragmentation pathways of the lysicamine 

 

6.4. Oxoaporphine Alkaloids 

  Liriodenine, norushinsinine, anolobine, and anolobine-9-O-β-D-glucopyranoside of this 

group of alkaloids were identified based on comparison with standard compounds. The mass 

spectrum of these compounds revealed molecular ions at 276.0656, 282.1125, 282.1123 and 

444.1653, respectively, corresponding to protonated molecule [M+H]+. The fragmentation of the 

protonated molecular ion of liriodenine led to product ions of m/z 248.0694, 220.0743, 218.0591, 

190.0643. 
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The product ion at m/z 248 and m/z 220 were formed by successive losses of -CO from the 

molecular ion at m/z 276. The more abundant product ion at m/z 190.0649 was formed by the loss 

of a carbonyl and –CH3 groups (Table 3- 1, Figure 3- 9, 3- 10). The UV absorption maximum 

found to be 200, 255, 277, 330, and 399 nm, corresponds with the oxoaporphine skeleton. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 9 ESI-MSn spectrum of liriodenine 
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Figure 3- 10 Tentative fragmentation pathways of the liriodenine 

 

Norushinsinine, the fragmentation of the protonated molecular ion at m/z 282.1125 led to 

successive losses of 18, 30, and 28 Da, which indicate losses of water, -CH2O and -CO 

corresponding to product ions of m/z 264.1014, 234.0902, 206.0952, and 179.0845. The more 

abundant product ion was m/z 206.0952 (Table 3- 1, Figure 3- 11, 3- 12). The UV absorption 

maximum found to be 205, 235, 245, 271, 280, and 318 nm. 

 

 

 

 

 

 

 

 

 

Figure 3- 11 ESI-MSn spectrum of norushinsunine 
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Figure 3- 12 Tentative fragmentation pathways of the norushinsinine 

 

The protonated molecule at m/z 282.1123 (anolobine) presented mass fragment ions at m/z 

265.0839, 247.0731, 235.0730, 219.0778, 217.0635, 207.079, 189.0694, and 179.0828 with losses 

of 17, 18, 28, and 30 Da, corresponding to NH3, H2O, CO, and CH2O (Table 3- 1, Figure 3- 13, 

3- 14). 

 

 

 

 

 

 

 

 

 

Figure 3- 13 ESI-MSn spectrum of anolobine 
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Figure 3- 14 Tentative fragmentation pathways of the anolobine 
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Anolobine-9-O-β-D-glucopyranoside exhibited a protonated molecular ion at m/z 

444.1655 (C23H25NO8). The parent ion showed fragment ions at m/z 427.1312 [M+H-NH3]+ and 

the ion at m/z 265.0820 [M+H- NH3-glucose] indicating a loss of dehydrated hexose (C6H10O5) 

moiety. The UV absorption maximum found to be 213, 230, 276, 285, and 320 nm (Table 3- 1, 

Figure 3- 15, 3- 16). 

 

 

 

 

 

 

 

 

 

Figure 3- 15 ESI-MSn spectrum of anolobine-9-O-β-D-glucopyranoside 
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Figure 3- 16 Tentative fragmentation pathways of the anolobine-9-O-β-D-glucopyranoside 

 

Twigs and bark of Asimina triloba indicated the presence of all eight reference compounds 

(Table 3- 1, 3- 2). Leaf, stem, and root of As. parviflora showed for the presence of six standards. 

However, anolobine and lysicamine were not detected. Liriodenine, coclaurine, norushinsunine, 

and stepharine were common to all samples analyzed. 
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The MS-MS of eight standards were investigated using UV spectra and ESI-MS-MS 

technique to determine diagnostic ions based on the structural characteristics of alkaloids in 

Asimina species. On the basis of the fragmentation patterns of the secondary, tertiary, and 

quaternary alkaloids, the alkaloids extracted from As. triloba were tentatively identified and 

characterized using the UHPLC-QToF technique. These compounds comprising of 

benzylisoquinoline, aporphine, oxoaporphine, and proaporphine were identified by interpreting 

the MS-MS spectra based on different alkaloidal structures. Several pharmacological activities for 

these compounds were previously observed, including anti-acetylcholinesterase, antioxidant, 

antidepressant, antiepileptic, antimicrobial, antileishmanial, antitrypanosomal, antiplasmodial, 

antiproliferative, antibacterial, antifungal, antiulcer, cytotoxic, immune-stimulant, and anxiolytic-

like (Egydio-Brandão et al., 2017). 

 

7. Conclusion 

 UHPLC-QToF-MS has been applied to the identification and characterization of alkaloids 

from Asimina triloba and Asimina parviflora. The standard compounds were characterized and 

detected from methanolic extracts of the two Asimina species. The compounds were identified by 

comparing the retention times and the MS and MS/MS data with reference standards. Finally, 

because of the simple sample preparation and high reproducibility, the developed analytical 

method would be valuable not only for herbal identification and quality control but would also 

enhance understanding of the biological activity and their benefits to human health. 
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CHAPTER IV 

CYTOTOXIC AND NEUROTOXIC POTENTIAL OF ALKALOIDAL CONSTITUENTS OF 

ASIMINA TRILOBA 

 

 

1. Introduction 

Annonaceae is the largest plant family of the magnoliales, which has over 120 genera and 

about 2,100 species (Aminimoghadamfarouj et al., 2011; Brannan et al., 2018). Plants belonging 

to the Annonaceae family are found mainly in the tropics or subtropics (Leboeuf et al., 1980), 

except the Asimina genus that extends into temperate regions (Hormaza, 2014). Some of the 

Annonaceae species are important in folk medicine. They have been used to treat various cancers 

(Quílez et al., 2018), and many of them have valuable economic importance as a source of large 

and pulpy edible fruits, such as pawpaw (Asimina triloba), custard apple (Annona cherimola), 

sugar apple (Annona squamosa), graviola (Annona muricata) and biriba (Rollinia mucosa) (Rasai 

et al., 1995).  

Annonaceae plants contain a broad spectrum of biologically active acetogenins that have 

displayed antitumor, antimalarial, anthelmintic, pesticidal, antiviral, and antimicrobial effects 

(Alali et al., 1998; Coothankandaswamy et al., 2010; McLaughlin, 2008; Pomper et al., 2009) and 

have been used for the treatment of various medical conditions. Also, Annonaceae plants contain 

different sub-classes of alkaloids that are derived from isoquinoline class, including, benzyl-

tetrahydroisoquinolines, protoberberines, proaporphines, aporphines, oxoaporphines, and other 

miscellaneous isoquinolines (Cave, 1985).  



 

 

 

52 

The popularity of the Annonaceae plants and their potential health effects (especially their 

anticancer activities) has grown in recent years, despite studies that have shown the development 

of atypical parkinsonism in people who consume large amounts of annonaceous products 

(McLaughlin, 2008; Stamelou et al., 2010). The underlying neurotoxicity related to chronic 

consumption has been linked to some acetogenins (e.g., annonacin) and alkaloids (e.g., coreximine 

and reticuline) found in different Annonaceae plants such as Annona muricata (Lannuzel et al., 

2002; Potts et al., 2012). Annonacin, the most abundant acetogenin in A. muricata, has been shown 

to cause neuronal loss and accumulation of phosphorylated tau protein in cultured neurons 

(Escobar-Khondiker et al., 2007; Hollerhage et al., 2009).   

 Some isoquinoline alkaloids, obtained from various species of Annonaceae, show 

dopamine receptor antagonistic activity as well as neuronal cell death (Zhang et al., 2007). The 

potential risks of neurodegeneration associated with chronic consumption of the fruits and leaves 

from Annonaceae plants emphasized the need for further studies to determine and identify the 

neurotoxic compounds in these edible plants and compare their risk to their benefits in defeating 

cancer.  

The present investigation is focused on Asimina triloba, commonly known as pawpaw. 

This is one of the Annonaceae plant species that is attributed to treating cancer, and its extract has 

been found to be the most potent of 3,500 species of higher plants screened for bioactive 

compounds (McLaughlin, 2008). It is native to North America, and it is the only species of 

Annonaceae with edible fruits that grows in the temperate regions. Pawpaw and many other plants 

of this species are consumed either as fresh fruits or processed into ice creams, juices, liquors, and 

many other products. It is also currently marketed as a dietary supplement for its potential use in 

alternative cancer treatment (Coothankandaswamy et al., 2010).  
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This study was carried out to explore the cytotoxic and neurotoxic constituents of the plant 

with the intention that separating the neurotoxic constituents would help in reducing the 

adverse/undesirable effects of the plant if it is used as an alternative therapy. Although much effort 

has been directed in the past towards the acetogenins constituents, and it has been well-established 

that cytotoxic potential of this plant is due to the presence of acetogenins. However, the alkaloidal 

constituents of Asimina triloba have not been explored in terms of cytotoxicity and neurotoxicity. 

Therefore, we focused on determining the cytotoxicity and neurotoxicity of three different extracts 

of A. triloba: a crude methanolic extract (MeOH), an acetogenin-rich extract (ACG), and the 

alkaloid-rich extract (ALK). Additionally, we explored six alkaloids isolated from ALK extract to 

understand how the presence and the absence of the alkaloids and acetogenins will affect the 

biological properties of this plant.  

 

2. Materials and methods 

2.1. Plant material 

The three extracts (MeOH extract, ALK extract, and ACG extract) were prepared as 

reported before (Majrashi et al., 2018). Briefly, the plant material was extracted with methanol and 

then subjected to the acid-base alkaloidal extraction. In brief, the MeOH extract was suspended in 

2% HCl and extracted with ethyl acetate (EtOAc). After separating the EtOAc layers, the pH of 

the resulting aqueous acidic layer was basified with ammonia solution and subsequently extracted 

again with EtOAc. The combined EtOAc layers were dried to give an alkaloidal rich extract, which 

was fractionated by column chromatography to obtain the pure alkaloids. The structures of the 

alkaloids (anolobine-9-O-β-D-glucopyranoside, anolobine, norushinsunine, liriodenine, 

squamolone and coclaurine) isolated from alkaloid rich fraction are shown in Figure 4- 1.  
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The identity and purity of these alkaloids were confirmed by chromatographic (TLC, HPLC) 

methods and by the analysis of the spectral data (IR, 1D- and 2D-NMR, ESI-HRMS). A detailed 

description has been reported by us earlier (Majrashi et al., 2018; Avula et al., 2018). 

 

 

 

Figure 4- 1 Chemical structures of alkaloids from Asimina triloba 

 

2.2. Cytotoxicity assay 

The cytotoxic activity of the various extracts and pure compounds was determined towards 

a panel of four human solid tumor cell lines: melanoma (SK-MEL), epidermal carcinoma (KB), 

breast carcinoma (BT-549), and ovarian carcinoma (SK-OV-3). Moreover, non-cancer kidney cell 

lines (LLC-PK1 and VERO) were also employed to determine if the anti-cell proliferative activity 

of these extracts and compounds was selective for the tested tumor cell lines.  
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All cell lines were obtained from the American Type Culture Collection (ATCC, Rockville, 

MD). The cells were seeded in 96-well plates (10,000 cells/well) and incubated for 24 h. The three 

extracts and six pure alkaloids from Asimina triloba were dissolved in DMSO, diluted in media, 

and added to the cells at concentrations of 50, 25, 12.5, 6.25, 3.125 μg/mL. After incubating for 

48 hrs, cell viability was determined by using a tetrazolium dye WST-8, which is converted to a 

water-soluble formazan product in the presence of 1-methoxy PMS by the activity of cellular 

enzymes. The color of the formazan product was measured at 450 nm on a plate reader. 

Doxorubicin was used as a positive control for cytotoxicity assay, and DMSO (0.25%) was used 

as the vehicle control. The IC50 values were obtained from concentration-response curves. The 

values are represented as mean ± standard deviation (n = 3).  

 

2.3. Neurons isolation 

Primary cortical neurons were isolated from embryonic day 18-19 Sprague Dawley male 

and female rats and were cultured as previously described (Ashpole et al., 2011). Briefly, cortical 

cells were dissected and mechanically and enzymatically dissociated with trituration and papain, 

respectively. The cells were suspended in a neurobasal media with serum and plated on poly-lysine 

coated 24-well or 96-well plates. The total number of neurons used was 125,000 per well. After 

24 hours, the media was replaced with neurobasal media supplemented with B27 and penicillin 

and streptomycin. The cultured neurons were maintained in an incubator at 37 °C and were treated 

following 8–10 days in culture. All experiments were overseen and approved by the University of 

Mississippi IACUC (protocol 16-024). 
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2.4. Neurotoxicity assay 

The neurotoxicity evaluation was performed in 8-10 day old rat cortical neurons.  The 

extracts and compounds were added to neuronal growth media (neurobasal, B27, penicillin, and 

streptomycin) in the following range of concentrations (10, 5, 1, and 0.1 μg/mL) and incubated for 

24 hrs. DMSO (0.1%) was used as vehicle control. The MTS assay was used to assess the toxicity 

of the extracts and compounds. MTS Aqueous One Solution Reagent was added after incubating 

the extracts, compounds, and the control for 24 hrs. Once the MTS was administered to the wells, 

the plates were put back into the incubator for 1-2 hrs. The formazan dye produced by viable cells 

was quantified by measuring the absorbance at 490 nm. LIVE/DEAD viability stains (Invitrogen) 

was used to verify living and cytotoxic cells in a controlled study. Stained cells were quantified by 

the Nikon Elements software following image acquisition on the Nikon HCA inverted fluorescent 

microscope (100x) in a single field per well, chosen at random by the software.   

 

2.5. Statistical analysis 

A one-way ANOVA was used to perform statistical analysis followed by Dunnett’s post hoc 

test to examine the significant difference against the control at p<0.05 for each dose of a compound 

or extract.  

 

3. Results 

3.1. Cytotoxicity 

The cytotoxic potential of the three extracts and six alkaloids (Figure 4- 1) was evaluated 

in terms of their anti-cell proliferative activities in a panel of cell lines, as shown in Table 4- 1. 

Among the three extracts, the acetogenin-rich extract (ACG) showed the most potent anti-
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proliferative activity towards melanoma (SK-MEL), epidermal carcinoma (KB), and breast ductal 

carcinoma (BT-549) cells with IC50 values of 0.09, 0.11, and 0.11 µg/mL, respectively. The 

extract was equally potent towards both non-cancer kidney cell lines (LLC-PK1 and VERO) with 

IC50 values of 0.12 and 0.31 µg/mL. The extract rich in alkaloids (ALK) also showed cytotoxic 

activity towards SK-MEL, KB, and BT-549 cells, and the IC50 values were 1.9, 2.6, and 1.7 

µg/mL, respectively. The ALK extract was comparatively less toxic (14 X) to VERO cells (IC50 

4.25 µg/mL) than the ACG extract. This is the first report of the anti-cell proliferative activity of 

the ALK extract from Asimina triloba. Interestingly, the MeOH extract was more potent than ALK 

extract towards KB and BT-549 cells (IC50 = 0.6 and 0.55 µg/mL, respectively), but less potent 

than ALK extract towards SK-MEL cells (IC50 = 7.1 µg/mL). It was worth noting that MeOH 

extract was much less potent than ACG extract towards all the cell lines. Both MeOH and ALK 

extracts were much less toxic to VERO cells in comparison to ACG extract. None of the extracts 

were effective towards ovarian cancer cells (SK-OV-3), indicating selectivity of cytotoxic 

potential among various cancers. 

Among the alkaloids, liriodenine was the most effective towards all cancer cells with IC50 

of 2.15, 6.3, 9.5, and 4.75 µg/mL for SK-MEL, KB, BT-549, and SK-OV-3 cells, respectively. 

Another alkaloid, norushinsunine, also demonstrated activity against all cancer cells with IC50 

values in the range of 9.75 – 23 µg/mL. This is the first report of the cytotoxic activity of this 

compound. This compound was much less toxic to VERO cells in comparison to liriodenine. 

Anolobine-9-O-β-D-glucopyranoside, which is a newly isolated alkaloid from Asimina 

triloba (Majrashi et al., 2018), was also effective against SK-MEL and KB cell lines with IC50 

values of 31.5 and 47.5 µg/mL. However, the activity was weaker than the other two alkaloids. 
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Anolobine, squamolone, and coclaurine were not active to any of the cancer cells at the highest 

tested concentration of 50 µg/mL.  

 

 

Table 4- 1 Anti-cell proliferative activity of extracts and compounds against a panel of cell 

lines. 

   
IC50 µg/mL 

Sample Name Cancer Cell Lines Non-cancer Kidney Cell 

Lines 

SK-MEL KB BT-549 SK-OV-3 LLC-PK1 Vero 

MeOH extract 7.1± 1.25 0.6 ± 0.0 0.55 ± 

0.05 

NA 0.2 ± 0.06 19.0 ± 1.0 

ACG extract 0.09 ± 0.01 0.11 ± 

0.01 

0.11 ± 

0.02 

NA 0.12 ± 0.04 0.31± 0.01 

ALK extract 1.9 ± 0.1 2.6 ± 0.1 1.7 ± 0.3 NA 1.5 ± 0.3 4.25 ± 0.25 

Norushinsunine 16.0 ± 1.0 9.75 ± 

2.25 

19.5 ± 

0.5 

23.0 ± 2.0 7.75 ± 0.25 >25 

Squamolone NA NA NA NA NA NA 

Coclaurine NA NA NA NA NA NA 

Anolobine- 

9-O-β-D-

glucopyranoside  

31.5 ± 6.5 47.5 ± 

2.5 

>50 >50 NA NA 

Anolobine NA NA >50 NA NA NA 

Liriodenine  2.15 ± 0.15 6.3 ± 0.4 9.5 ± 0.5 4.75 ± 

1.05 

6.0 ± 1.0 8.1 ± 0.1 

Doxorubicin  1.3 ± 0.5 1.7 ± 

0.42 

1.4 ± 

0.40 

1.7 ± 0.47 0.4 ± 0.56 >5 

NA= no activity at the highest test concentration (50 µg/mL). 
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3.2. Neurotoxicity 

Among the three extracts of A. triloba, the MeOH extract and ACG extract showed toxicity 

to neuronal cells at 10 µg/mL causing a 40% and a 20% decrease in cell viability, respectively 

(Figure 4- 2A-B, and 4- 5).  The alkaloidal extract was not toxic at the highest tested concentration 

of 10 µg/mL but showed a 20% decrease in viability at lower concentrations (Figure 4- 2C). Four 

alkaloids, namely norushinsunine, liriodenine, anolobine, and anolobine-9-O-β-D-

glucopyranoside, decreased cell viability significantly at 10 µg/mL, as shown in Figure 4- 5.  

Anolobine-9-O-β-D-glucopyranoside demonstrated a strong effect at 1 μg/mL, and no further 

reduction in cell viability was noticed with higher concentrations of 5 and 10 μg/mL, as shown in 

Figure 4- 3A.  

However, Anolobine (the aglycone) was less effective in reducing cell viability of neuronal 

cells (Figure 4- 3B). Norushinsunine exhibited significant toxicity at 10 μg/mL (Figure 4- 4A). 

On the other hand, Liriodenine demonstrated a dose-dependent reduction in the cell viability in 

the concentration range of 1 – 10 µg/mL, as shown in Figure 4- 4B. Coclaurine and squamolone 

did not show a significant decrease in cell viability (Figure 4- 3C and 4C). To summarize the 

data, all of the extracts and alkaloids were combined in a bar graph to display their effects at the 

highest tested concentration of 10 μg/mL (Figure 4- 5). 
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Figure 4- 2 Effect of the MeOH extract, ACG extract and ALK extract on neuronal cell viability. 

MeOH extract (A) and ACG extract (B) showed a significant concentration-dependent decrease in 

cell viability. ALK (C) extract did not show a significant reduction in cell viability with the 

increasing concentrations. 
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Figure 4- 3 Effect of anolobine-9-O-β-D-glucopyranoside, anolobine and coclaurine on neuronal 

cell viability. 

Anolobine-9-O-β-D-glucopyranoside (A) and Anolobine (B) demonstrated a significant 

concentration-dependent reduction in cell viability. Coclaurine (C) did not show a significant 

concentration-dependent decrease in cell viability. 
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Figure 4- 4 Effect of norushinsunine, liriodenine and squamolone on neuronal cell viability.  

Norushinsunine (A) and Liriodenine (B) displayed a significant reduction in cell viability with 

increasing concentration. However, Squamolone (C) did not show a significant concentration-

dependent decrease in cell viability. 
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Figure 4- 5 Effect of Extracts and pure compounds on cell viability at 10 µg/mL. Asterisks 

designate statistically significant decreases in cell viability compared to vehicle control. 
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4. Discussion 

Among all tested extracts, the ACG extract was the most potent in inhibiting cell 

proliferation of all cell lines, except SK-OV-3. However, the same extract was found to be 

significantly toxic to the neurons as well, which might affect its benefit in treating cancer. 

Interestingly, the ALK extract showed cytotoxicity that has not been reported before towards SK-

MEL, KB, and BT-549 cells with IC50 values in a lower concentration range (1.7-2.6 µg/mL).  

Regardless, the toxic effects of some of the pure alkaloids on the neurons, our study showed 

that ALK extract did not show a significant decrease in cell viability at 10 µg/mL, which might be 

a result of an antagonistic effect of combined alkaloids in which the combination of the alkaloids 

shows less effect than the individual compound. Almost all of the previous studies in A. 

triloba have focused on the acetogenins and their potential effects in cancer treatment. 

Acetogenins from A. triloba have shown different biological activities, including antibacterial, 

antifungal, anticancer, and insecticidal effects (Cuendet et al., 2008).  

The acetogenins are known for their potent inhibitory effect of mitochondrial (complex I) 

and cytoplasmic (anaerobic) production of adenosine triphosphate (ATP), induces tumor cell 

apoptosis, programmed cell death (McLaughlin, 2008). Annonacin, an acetogenin with a mono-

tetrahydrofuran ring, has been reported to inhibit the growth estrogen receptor-α (ERα)-positive 

breast cancer cell line (MCF-7) (Ko et al., 2011; Yuan et al., 2003). Moreover, many studies have 

illustrated the anti-tumor effect of other acetogenins as well such as bullatacin, asimicin, and 

trilobacin against various cancers including gastric cancer (Liet al., 2017), colon cancer (Zhao et 

al., 1994), prostate cancer and pancreatic cancer (Zhao et al., 1996).  

The biological evaluation of the alkaloidal constituents of A. triloba has not been taken into 

consideration before. Nonetheless, the alkaloids are one of the most important secondary 
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metabolites that are known to possess therapeutic properties that one cannot ignore. Some of the 

isoquinoline alkaloids from other Annonaceae plants have been reported for significant anticancer 

activities. For example, the oxoaporphine alkaloid liriodenine has manifested cytotoxic effects in 

several cancer cell lines, including the adenocarcinoma of the liver (Hsieh et al., 2005), colon 

cancer (Chen et al., 2012), and human lung adenocarcinoma (Chang et al., 2004). In our study, 

liriodenine illustrated interesting cytotoxicity towards all of the tested cancer cell lines (including 

SK-OV-3), with greater activity towards the human melanoma (SK-MEL) cell line with an IC50 

of 2.15 μg/mL.  

A previous study has reported that squamolone showed significant cytotoxicity towards 

hepatocarcinoma cell lines (Hsieh et al., 2001). However, this alkaloid did not display any activity 

towards any of the cancer cell lines in our study, indicating specificity for a particular cell line. To 

the best of our knowledge, the cytotoxicity and neurotoxicity evaluations of the alkaloidal extract 

of A. triloba twigs and the pure alkaloids (anolobine-9-O-β-D-glucopyranoside, anolobine, 

norushinsunine, and coclaurine) have not been reported before.  

The previous neurotoxicity studies of A. triloba have focused on the neurotoxic acetogenin 

(annonacin), which has been found to induce nigral neuron death (Escobar-Khondiker et al., 2007; 

Lannuzel et al., 2002; Lannuzel et al., 2003). Furthermore, one study has reported that annonacin 

(30.07 μg/mL) and crude EtOAc extract of Asimina triloba fruit pulp (47.96 μg/mL) induced 50% 

death of cortical neurons (Potts et al., 2012).  

 

5. Conclusion 

Our study highlighted the contribution of the alkaloidal constituents in the neurotoxicity of 

A. trilboa. However, our results are not conclusive on the neurotoxicity of A. triloba alkaloids. 
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Further studies are warranted, such as addressing the bioavailability of neurotoxic compounds in 

vivo. Moreover, the effects of these extracts and compounds on neuronal tumors of the central 

nervous system have not been reported. This estimation would be insightful for future studies, 

which suggests that the neurotoxic compounds and extracts from A. triloba might be beneficial in 

the fight against neuronal-based cancer. 
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CHAPTER V 

 

SYNTHESIS OF SOME ALKALOIDS REPORTED FROM ROLLINIA MUCOSA AND 

EVALUATION OF THEIR BIOLOGICAL ACTIVITIES 

 

1. Introduction 

Rollinia mucosa is a tropical fruit tree belonging to the Annonaceae family and known as 

biriba. Rollinia fruit has been used traditionally in the West Indies and Indonesia for the treatment 

of tumors (Hartwell 1982) as well as for nutritious purposes (Shi et al. 1997). In Brazil, the 

alkaloidal extract of Rollinia mucosa exhibited antimicrobial and antifungal activities (Caetano 

and Dabun, 1987). In Brazil and Peru, the lignans isolated from this species were reported to be 

effective in enhancing the toxicity of a wide variety of insecticides (Paulo et al., 1991). 

  Rollinia mucosa is native to the western Amazon region of Peru and Brazil in South 

America. Rollinia mucosa’s seeds from Brazil were sent to the United States and the Philippines 

in the early 1900s., and now they are mostly found in Indonesia (Love and Paull 2011). Its chemical 

composition and pharmacological activities have been described previously (Caetano and Dabun, 

1987; Chen et al. 1996; Liaw et al., 1999; Paulo et al. 1991). This species contains a wide range 

of compounds including, acetogenins, aporphine alkaloids, steroids, lignans, tryptamine and fatty 

acid derivatives, which have been isolated and identified from different parts of this plant (Chen 

et al. 1996; Liaw et al., 1999; Paulo et al. 1991). 
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The phytochemical investigations of the alkaloidal constituents of Rollinia mucosa have 

revealed several aporphine alkaloids, including N-methoxycarbonyl aporphines that exhibited 

significant inhibition of collagen, arachidonic acid, and platelet activating factor-induced platelet 

aggregation (Kuo et al. 2001).  

A previous study indicated that Rollinia mucosa fruit pulp has similar neurotoxicity to 

graviola, although it has a significantly less amount of the neurotoxic acetogenins that are found 

in graviola (Höllerhage et al. 2015). The study highlighted that the neurotoxicity of Rollinia 

mucosa fruit could be linked to other not quantified toxins. We hypothesize that the N-

methoxycarbonyl aporphine alkaloids, which have been isolated from Rollinia mucosa, have 

cytotoxic effects and may also be responsible for the neurotoxicity that has been reported from the 

ethyl acetate extract taking from the fruits and seeds of Rollinia mucosa (Höllerhage et al. 2015).  

The cytotoxicity and the neurotoxicity of these alkaloids have not been reported before. 

Therefore, our study aims to understand how they contribute to the biological activities of this 

plant. (R, S) (±) Romucosine, N-methoxycarbonyl aporphine alkaloid (Chen et al. 1996), and other 

relative compounds will be obtained through the total synthesis in order to get a better yield 

because this type of alkaloid is usually isolated in meager amounts. That will allow us to gain 

enough quantities of the desired compounds that will be subjected to different biological screening, 

including cytotoxicity and neurotoxicity, to identify their biological properties and safety. Herein, 

we describe the total synthesis of (±) anonaine, 3,4-methylenedioxy-1-phenanthreneethylamine, 

(±) romucosine, and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate by using 

direct arylation reactions with 3,4-methylenedioxyphenethylamine 1 and 2-bromophenylacetic 

acid 2 in the preparation of these alkaloids.  
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We also describe the separation of the enantiomers using different resolution reactions. 

Only the resolution with (_)-menthyl chloroformate succeeded in separating the enantiomers, but 

we were not able to remove the menthyl chloroformate moiety using different reactions and 

conditions. Finally, the presence of the synthesized alkaloids in Rollinia mucosa was studied by 

using a targeted analysis of Rollinia mucosa fruits and seeds extracts using UHPLC-QToF-MS. 

Moreover, all synthesized compounds were subjected to the biological evaluation in order to 

understand how different alkaloid derivatives induced or reduced the cytotoxicity, as well as 

neurotoxicity. 

 

2. Result and Discussion 

2.1.  Synthesis 

Total synthesis of 6, 7, 8, and 9 was carried out by Bischler-Napieralski reaction (Huang 

et al. 2004) with 3,4-methylenedioxyphenethylamine 1, 2-bromophenylacetic acid 2, and an excess 

of the reagent POCl3, followed by NaBH4 reduction without further purification due to the air 

sensitivity of the produced amine to give compound 3 in 55% yield (Scheme 1). The resulted 

tetrahydroisoquinolines 3 was protected with Boc (tert-butyl carbamate group) to produce 4 in 

70% yield (Scheme 1), which was subjected to palladium-catalyzed direct intramolecular arylation 

of aryl bromides reported before (Lafrance et al. 2007) to afford compound 5 in 64% yield 

(Scheme 2). The deprotection of the tert-butyl carbamate group was carried out under acidic 

conditions using either TFA or 4M HCL/dioxane (Scheme 2). The deprotection of the amine gives 

two products: air sensitive amine, (R, S) (±) anonaine 6, as a minor product in 10% yield, and an 

aromatic stabilized new compound 3,4-methylenedioxy-1-phenanthreneethylamine 7 as a major 

product in 40% yield.  
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Scheme  1. Bischler-Napieralski reaction, and Boc protection reaction.  

Reaction conditions: (i) Bischler-Napieralski: POCl3, PhMe, r.t. to 120 °C, 3.5 h. (ii) Reduction: 

NaBH4, MeOH, r.t., 2.5 h. (iii) Boc protection: (ROC)2O, DMAP (cat.), iPr2EtN, CH2Cl2. 

Overnight, r.t. 

 

Scheme  2. Direct intramolecular arylation, and Boc deprotection.  

Reaction conditions: (iv) Pd (OAc)2, ligand (2 equiv. to Pd), K2CO3 (2 equiv.), DMA (0.2 M). 

(v) involves two methods: Method A: TFA, DCM, room temp., 1 h. Method B: 4M HCl/dioxane, 

0°C, 1 h.   
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 A mixture of (R, S) (±) anonaine 6 and 3,4-methylenedioxy-1-phenanthreneethylamine 7 

was treated with methyl chloroformate (Kohnen et al. 2007) to afford (R, S) (±) romucosine 8 in 

70 % yield and another new compound [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate 9 in 17% yield (Scheme 3). In order to get (R)-anonaine, (S)-anonaine, (R)-

romucosine, and (S)-romucosine, the racemic mixture of (±) tetrahydroisoquinolines 3 (more 

stable than anonaine) was underwent two different resolution reactions to separate the R and S 

enantiomers, which are the recycle process of resolution using  (+)-dibenzoyl tartaric acid (Shi et 

al. 2006), and the resolution with (_)-menthyl chloroformate.  

 

 

 

Scheme  3. Preparation of romucosine and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate.  

Reaction conditions: (vi) ClCO2Me, CH2Cl2, 0 °C. 
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The resolution with (+)-dibenzoyl tartaric acid has been reported to be efficient in the 

preparation of (R)-(_)-apomorphine and (R)-(_)-aporphine analogs from their racemic mixtures 

(Shi et al. 2006). However, we were not able to resolve the racemic compound (±) 

tetrahydroisoquinolines 3 using the (+)-dibenzoyl tartaric acid; no salt precipitated was noticed in 

several solvents tried.  On the other hand, the resolution with (_)-menthyl chloroformate succeeded 

in separating the enantiomers (Scheme 4). The treatment of (±) tetrahydroisoquinolines 3 with (_)-

menthyl chloroformate selectively gives diastereomeric carbamates that are resolvable on the 

normal phase column chromatography. The optical rotation analysis revealed [α]25D _ 47 (c = 0.3, 

CHCl3) for (_) tetrahydroisoquinolines 10, and [α]25D + 42 (c = 0.28, CHCl3) for (+) 

tetrahydroisoquinolines 11, which prove the successful separation of the enantiomers.  However, 

the cleavage of the carbamates in compounds 10 and 11 was challenging. 

 

 

 

Scheme  4. The enantiomers resolution of 3 with (-) (1R)-menthyl chloroformate. 
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Different reactions and conditions were performed to remove the menthyl moiety after the 

enantiomeric separation, and none of them have worked. Treatment of 10 and 11 with 4M 

HCl/dioxane at 0 °C for 3 hrs, then at r.t for overnight afforded unreacted starting martial with 

many other spots on the TLC. The use of different concentrations of TFA in dichloromethane at 

r.t. for 48 hrs afforded unreacted starting martial as well with other impurities. Also, the attempted 

hydrolysis of menthyl carbamates in a pressure glass container at 110 °C in TFA for 6 hrs and 

basify with 10 M sodium hydroxide solution led to the disappearance of starting martial, but the 

desired product was not detected. The hydrolysis with 5M lithium hydroxide or 5M sodium 

hydroxide in THF at r.t. for 2 hrs, then by heating (60 °C) under reflux for overnight afforded 

unreacted starting martial with other impurities. Finally, the treatment of 10 and 11 with LiAlH4 

in dry THF at r.t. for 24 hrs afforded only recovered starting material. 

 

2.2. ESI-QToF-MS of reference standards 

Compounds 6-9 were analyzed using LC-ESI-QToF-MS to find the specificity of MS-MS 

spectral patterns based on their structures (Table 5- 1). Compounds 6 and 7 chromatographic peaks 

contained the same protonated molecules in the MS spectra ([M+H]+ 266.1176) and similar 

product ions in MS/MS spectra (191.0850) but had different retention behaviors (6.03 min and 

6.6min for compounds 6 and 7; respectively). Similarly, compounds 8 and 9 showed the same 

protonated molecules in the MS spectra (([M+H]+ 324.123) and similar product ions in MS/MS 

spectra (249.0926) with different retention behaviors (10.85 min and 10.25 for compounds 8 and 

9; respectively). 
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Table 5- 1 Accurate mass data, fragment ions for compounds 6-9 using UHPLC Q-ToF. 

Sample name Rt (min) Molecular Formula [M+H]+ Fragments 

Compound 6 6.03 C17H15NO2 266.1176 191.0850 

Compound 7 6.6 C17H13NO2 266.1176 249.0876, 191.0866 

Compound 8 10.85 C19H17NO4 324.123 249.0898, 191.0840 

Compound 9 10.25 C19H15NO4 324.123 249.0926 

 

2.3. Targeted analysis of Rollinia mucosa using UHPLC-QToF-MS 

The high chromatographic resolution and separation capabilities of the UHPLC with 

QToF-MS have been applied to the identification and characterization of synthesized alkaloids 

(compound 6-9) (Table 5- 2). Three of the standard compounds (compound 7-9) were not detected 

from methanolic extracts (RMFM and RMSM) or the alkaloidal extracts of the fruits and seeds of 

Rollinia mucosa. Anonaine (compound 6) is the only compound that was detected from methanolic 

extract (RMSM) and alkaloidal extract (ALK-S) of the seeds, and a tiny amount was also detected 

in the fruits methanolic extract (RMFM) (Table 5- 2).  

The presence of anonaine in Rollinia mucosa extracts was identified by comparing the 

retention time and the MS and MS/MS data with a reference standard (compound 6). Anonaine 

and romucosine (compound 9) have been reported previously from the fruits of Rollinia mucosa 

(Chen et al., 1996).  Herein, we confirm the presence of anonaine in the Rollinia mucosa fruits and 

seeds (Table 5- 2).  

However, we were not able to detect the presence of romucosine (compound 9) in Rollinia 

mucosa fruits or seeds, which indicate that romucosine would be an artifact formed during the 
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acid-base extraction of alkaloids. Therefore, it is not clear whether the N-(methoxycarbonyl) 

alkaloids isolated from Rollinia mucosa earlier (Chen et al., 1996; Kuo et al., 2001; Kuo et al., 

2004) are “natural products” or artifacts formed during the alkaloidal extraction process. The use 

of conventional acid-base extraction to isolate the N-(methoxycarbonyl) alkaloids from Rollinia 

mucosa should be revised because it can lead to the formation of artifacts (Maltese et al., 2009). It 

is also possible that Rollinia mucosa species have several subspecies or chemotypes, which might 

produce different types of compounds, including the N-(methoxycarbonyl) alkaloids.  

 

Table 5- 2 Targeted analysis of R. mucosa fruits and seeds extracts using UHPLC-QToF-MS 

# Sample Compound 6 Compound 7 Compound 8 Compound 9 

Rt 6.03 6.6 10.85 10.25 

m/z 266.1176 266.1176 324.123 324.123 

1 RMFM Tiny (t) ND ND ND 

2 RMSM + ND ND ND 

3 ALK-F ND ND ND ND 

4 ALK-S + ND ND ND 
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2.4. Anticancer 

The anticancer potential of the synthesized alkaloids (Figure 5-1) and extracts was 

evaluated in terms of their anti-cell proliferative activities in a panel of cancer cell lines, as shown 

in Table 5- 3 and Table 5- 4. 

 

 

Figure 5- 1 Synthesized alkaloids from Rollinia mucosa 

 

 Anonaine (compound 6) was effective towards all cancer cells with IC50 of 5.9, 18.5, 16.0, 

and 10.5 µg/mL for SK-MEL, KB, BT-549, and SK-OV-3 cells, respectively. 3, 4-

Methylenedioxy-1-phenanthreneethylamine (compound 7) was also effective towards all cancer 

cells and was more effective than anonaine towards KB, and SK-OV-3 cells with IC50 of 11.5 and 

8.9 µg/mL, and it has almost similar activities to anonaine towards BT-549 with IC50 of 17.5 

µg/mL. 
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 3, 4-Methylenedioxy-1-phenanthreneethylamine was less active than anonaine towards 

SK-MEL with IC50 of 11.5 µg/mL. Moreover, 3, 4-methylenedioxy-1-phenanthreneethylamine 

was less toxic to LLC-PK1 and VERO cells in comparison to anonaine. Romucosine (compound 

8) demonstrated selective anticancer activities towards SK-MEL with IC50 of 15.2 µg/mL. [2-(3,

4-methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate (compound 9)  also has selective 

activities towards SK-MEL and SK-OV-3 with IC50 of 18.5 and 17.5 µg/mL. Romucosine and [2-

(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate were not toxic towards LLC-PK1 

and VERO cells comparing to anonaine and 3, 4-Methylenedioxy-1-phenanthreneethylamine, as 

shown in Table 5- 3.  

 

Table 5- 3 Anti-cell proliferative effects of compounds 6-9. 

Sample Code  

SK-MEL KB BT-549 SK-OV-3 LLC-PK1 Vero 

IC50 

µg/mL 

IC50 

µg/mL 

IC50 

µg/mL 

IC50 

µg/mL 

IC50 

µg/mL 

IC50 

µg/mL 

Compound (6) 

 

5.9 ± 0.4 18.5 ± 1.5 16.0 ± 1.0 10.5 ± 0.5 9.2 ± 0.7 9.0 ± 1.0 

Compound (7) 11.5 ± 0.5 

 

11.5 ± 0.5 

 

17.5 ± 0.5 

 

8.9 ± 0.2 

 

11.5 ± 0.5 

 

16.5 ± 0.5 

 
Compound (8) 15.2 ± 2.7 43.0 ± 7.0 29.0 ± 1.0 32.5 ± 2.5 46.5 ± 1.5 50.0 ± 0.0 

Compound (9) 18.5 ± 0.5 

 

28.0 ± 4.0 

 

37.0 ± 2.0 

 

17.5 ± 0.5 

 

32.5 ± 7.5 

 

29.5 ± 0.5 

 
Doxorubicin 

 

0.7 ± 0.0 1.1 ± 0.1 1.3 ± 0.1 0.9 ± 0.2 0.8 ±0.02  >5 
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Several studies have been conducted on the anticancer activities of (-) anonaine on different 

cancer cell lines including a study reported that (-) anonaine showed a significant cytotoxic effect 

against three cell cultures (rat hepatocytes, HepG2 and HeLa) with IC50 values of 70.3, 33.5, and 

24.8 μg/mL, respectively (Correché et al., 2008). Another study has indicated that (-) anonaine 

displayed significant cytotoxicity against AGS (human gastric cancer cell), DLD1 (human colon 

cancer cell), HA59T (human hepatoma cell), and HepG2 (human hepatoma cell) cancer cell lines 

with AGS cells being the most susceptible (Chen et al., 2000). Also, it was reported to cause DNA 

damage associated with increased intracellular nitric oxide, ROS, glutathione (GSH) depletion, 

disruptive mitochondrial transmembrane potential, activation caspase 3, 7, 8 & 9 and poly ADP 

ribose polymerase cleavage in human cervical cancer cell (HeLa) (Chen et al., 2008).  

Herein, we reported that anonaine showed a significant effect in all cancer cell lines tested 

in this study with IC50 range 5.9-18.5 µg/mL. Romucosine has been tested before on three cancer 

cell lines, Human MCF-7 cells (breast cancer), NCI-H460 cells (lung cancer), and SF-268 cells 

(central nervous cancer), and it showed no cytotoxic activities (Liu et al., 2008). In our study, 

romucosine displayed selective anticancer activities toward SK-MEL 15.2 µg/mL. 3, 4-

Methylenedioxy-1-phenanthreneethylamine and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate are new compounds that have not synthesized or isolated previously. The 

anticancer activities of 3, 4-methylenedioxy-1-phenanthreneethylamine and [2-(3,4-

methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate have not been reported before, and our 

study indicated interesting anticancer activities of these compounds.  

Rollinia mucosa fruits extracts (RMFM, Non-ALK-F, and ALK-F) and seeds extracts 

(RMSM, Non-ALK-S, and ALK-S) anti-cell proliferative results are shown in Table 5- 4. 

Surprisingly, all extracts are toxic to all cancer cell lines with very low concentrations. The extent 
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of toxicity to KB cells is very similar to LLCPK1 cells for all the extracts. Furthermore, the extracts 

are more toxic to SKMEL, BT-549, and SK-OV3 cells compared to KB and LLCPK1 cells. The 

toxicity to Vero cells is lower compared to the other cell lines included in the assay. This pattern 

is similar to Doxorubicin. In general, seed extracts are more toxic than the fruit extracts toward all 

cell lines. These findings are conflicting with neurotoxicity results, which showed that all extracts 

(except ALK-S) are not toxic to the neurons up to 20 µg/mL. However, we would suggest that 

these extracts cause extreme toxicities to the cancer cell lines and the non-cancer kidney cell lines 

due to their ability to penetrate those cells but not able to penetrate the neuron cells. Therefore, 

further future studies are needed to understand these results.  

 

Table 5- 4 Anti-cell proliferative activity of Rollinia mucosa extracts against a panel of cell lines. 

Sample Code  

  

Cancer Cell Lines 

Non-cancer Kidney 

Cell Lines 

SK-MEL KB BT-549 SK-OV-3 LLC-PK1 Vero 

IC50 

µg/mL  

IC50 

µg/mL  

IC50 

µg/mL  

IC50 

µg/mL  

IC50  

µg/mL  

IC50 

 µg/mL  

RMFM 0.027 0.092 0.03 0.034 0.09 0.35 

RMSM <0.016 <0.016 <0.016 <0.016 <0.016 0.038 

Non-ALK-F 0.026 0.088 0.037 0.038 0.096 0.37 

Non-ALK-S <0.016 <0.016 <0.016 <0.016 <0.016 0.033 

ALK-F 0.075 0.2 0.092 0.088 0.2 >0.5 

ALK-S <0.016 <0.016 <0.016 <0.016 <0.016 0.16 

Doxorubicin 0.5 0.6 0.72 0.34 0.3 >5 
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2.5.  Neurotoxicity  

Among the six extracts (RMSM, non-ALK-S, ALK-S, RMFM, non-ALK-F, and ALK-F), 

the alkaloidal extract from the seeds of Rollinia mucosa (ALK-S) showed a significant dose-

dependent decrease in cell viability at 10 and 20 μg/mL (Fig. 5- 2C). All other extracts (RMSM, 

non-ALK-S, RMFM, non-ALK-F, and ALK-F) were not toxic at the highest tested concentration 

of 20 µg/mL (Fig. 5- 2A-B and Fig. 5- 3A-C). The alkaloid anonaine (compound 6) exhibited 

significant toxicity at 5 μg/mL, and no further reduction in cell viability was noticed with higher 

concentrations of 10 and 20 μg/mL, as shown in Fig 5- 4A.  

 The rest of the alkaloids [3, 4-methylenedioxy-1-phenanthreneethylamine (compound 7), 

romucosine (compound 8), and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate 

(compound 9)] did not show a significant decrease in cell viability (Fig. 5- 4B-D). To summarize 

the data, all of the extracts and alkaloids were combined in a bar graph to display their effects at 

the highest tested concentration of 20 μg/mL (Fig. 5- 5). 
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Figure 5- 2 Effect of RMSM, Non-ALK-S, and ALK-S extracts on neuronal cell viability. 

A) MeOH extract (RMSM) and B) non-alkaloid seeds extract (Non-ALK-S) from the seeds of 

Rollinia mucosa did not show a significant reduction in cell viability with the increasing 

concentrations. C) The alkaloid extract (ALK-S) showed a significant concentration-dependent 

decrease in cell viability. 
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Figure 5- 3 Effect of RMFM, Non-ALK-F, and ALK-F extracts on neuronal cell viability. 

All of the three extracts [MeOH extract (RMFM), non-alkaloid extract (Non-ALK-F) and 

alkaloid extract (ALK-F)] of Rollinia mucosa’s fruits did not show a significant concentration-

dependent decrease in cell viability. 
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Figure 5- 4 Effect of compounds 6-9 on neuronal cell viability. 

A) Anonaine (Compound 6) demonstrated a significant reduction in cell viability at 5 μg/mL. B), 

C), and D) Compounds 7-9 did not show a significant concentration-dependent decrease in cell 

viability. 
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Figure 5- 5 Effect of extracts and synthesized compounds 6-9 on cell viability at 20 µg/mL. 

Asterisks designate statistically significant decreases in cell viability compared to vehicle 

control. 
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3. Materials and methods  

3.1. General experimental procedures of the synthesis 

 Reactions were performed under argon atmosphere in oven-dried glassware with magnetic 

stirring. Solvents were distilled under an argon atmosphere before use. All reagents obtained 

commercially were used without further purification. The reaction progress was monitored on 

aluminum-backed plates, pre-coated with silica gel F254 (200 μm, 60 Å, (Merck) thin-layer 

chromatography (TLC) plates. Spots were detected at UV-254 nm. Visualization was attained by 

dipping the TLC plate into a solution of phosphomolybdic acid (PMA), 10 g of phosphomolybdic 

acid in 100 mL of absolute ethanol, followed by heating with a heat gun. Column chromatography 

was carried out using flash silica gel (40 μm, 60 Å, J. T. Baker). NMR spectra were obtained on 

Bruker AU III 400 or 500 MHz NMR spectrometers using, CD3OD or CDCl3 solvents. IR spectra 

were recorded on an Agilent Technologies Cary 630 FTIR. Rudolph Research Analytical Autopol 

IV automatic polarimeter was used to obtain the specific rotations. High-resolution mass spectra 

were recorded on an Agilent electrospray ionization quadrupole time-of-flight (ESI-QTOF) 

instrument. 

 

3.2. Ultra-High-Performance Liquid Chromatography-Quadrupole Time of Flight-Mass 

Spectrometry (UHPLC/QToF-MS) 

The liquid chromatographic system was an Agilent Series 1290 comprised of the following 

modular components: binary pump, a vacuum solvent microdegasser, an autosampler with a 100-

well tray, and a thermostatically controlled column compartment. The separation was achieved on 

an Agilent Poroshell 120 EC-18 (2.1×100 mm, 2.7 µ) column.  
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The mobile phase consisted of water with 0.1% formic acid (A) and acetonitrile with 0.1% 

formic acid (B) at a flow rate of 0.23 mL/min, with the following gradient: 0 min, 2% B in next 

20 min to 10% B, for next 30 min 20% B, for next 20 min 50% B, for next 20 min 70% B, for next 

20 min 90% B and to 100% B in next 10 min. Each run was followed by a 5 min wash with 100% 

B and an equilibration period of 5 min with 2% B. Two microliters of sample were injected.  

The column temperature was set at 40 °C, and UV spectra were recorded from 190-400 

nm. The mass spectrometric analysis was performed with a QToF-MS/MS (Model #G6530A, 

Agilent Technologies, Palo Alto, CA, USA) equipped with an ESI source with Jet Stream 

technology using the following parameters: drying gas (N2) flow rate, 8.0 L/min; drying gas 

temperature, 300 °C; nebulizer, 27 psig, sheath gas temperature, 300 °C; sheath gas flow, 8.0 

L/min; capillary, 3500V; skimmer, 65V; Oct RF V, 750V; fragmentor voltage, 100V. The sample 

collision energy was set at 55eV. All the operations' acquisition and analysis of data were 

controlled by Agilent MassHunter Acquisition Software Ver. A.05.00 and processed with 

MassHunter Qualitative Analysis software Ver. B.07.00. Each sample was analyzed in a positive 

mode in the range of m/z = 100-1700.  

Accurate mass measurements were obtained using ion correction techniques using 

reference masses at m/z 121.0509 (protonated purine) and 922.0098 [protonated hexakis (1H, 1H, 

3H-tetrafluoropropoxy) phosphazine or HP-921] in positive ion mode. The compounds were 

confirmed in each spectrum. For this purpose, the reference solution was introduced into the ESI 

source via a T-junction using an Agilent Series 1200 isocratic pump (Agilent Technologies, Santa 

Clara, CA, USA) using a 100:1 splitter set at a flow rate of 20 µL/min.  

For recording ToF-MS spectra, the quadrupole was set to pass all ions (Rf only mode), and 

all ions were transmitted into the pusher region of the time-of-flight analyzer where they were 
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mass-analyzed with a 1 s integration time up to m/z 1000. For the ESI-MS/MS CID experiments, 

ions of interest were mass-selected by the quadrupole mass filter. The selected ions then collided 

with nitrogen in a high-pressure collision cell, and the collision energy was optimized to afford 

good product ion signals that were subsequently mass measured with the ToF analyzer.  

The analysis was performed in the reflectron mode with a resolving power of about 10,000 

at m/z 922. The instrument was set to an extended dynamic range (up to 105 with lower resolving 

power). MS/MS spectra were recorded simultaneously at a rate of 2.0 spectra s−1. In order to filter 

selected precursor ions and their isotopes for MS/MS, an isolation window of 1.3 m/z was set for 

the quadrupole.  

 

3.3.  Mass Data analysis 

MassHunter Workstation software, including Qualitative Analysis (version B.07.00), was 

used for processing both raw MS and MS/MS data, including molecular feature extraction, 

background subtraction, data filtering, and molecular formula estimation (using accurate mass of 

all isotopes, their relative abundances, and all detected adducts with their measured isotopes). To 

perform subtraction of molecular features (MFs) originating from the background, analysis of a 

blank sample (methanol) was carried out under identical instrument settings, and background MFs 

were removed. This method involved the use of the [M+H]+ and [M+Na]+ ions in the positive ion 

mode, found in the extracted ion chromatogram (EIC). 
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3.4.  Plant Material  

Rollinia mucosa fruits and seeds methanol extract were received from Dr. Yang-Chang 

Wu, Chair Professor Graduate Institute of Integrated Medicine Director (Chinese Medicine R&D 

Center (CMUH), China Medical University). 

 

3.5. Alkaloids extraction  

Dried Rollinia mucosa fruits (212.128 g) and seeds (67.374 g) were finely powdered and 

extracted separately with methanol to obtain (6.603 g) of fruit extract (RMFM) and (5.776 g) of 

seeds extract (RMSM). An aliquot of MeOH extract (1.250 g of fruits and 1.380 of seeds) was 

subjected separately to the acid-base alkaloidal extraction. The extract was suspended in 3% HCl 

(75 mL) and extracted with CHCl3 (3 × 75 mL) in a separating funnel. After separating the CHCl3 

layers, the resulting aqueous acidic layer’s pH was adjusted to 9−10 with ammonia solution and 

subsequently extracted again with CHCl3 (3 × 75 mL). The combined CHCl3 layers from the 

basified solution were dried to give an alkaloidal extract (19 mg) from fruit extract (ALK-F) and 

(7 mg) from seeds extract (ALK-S). 

 

3.6. Anticancer assay 

The anticancer activity of the various extracts and pure compounds was determined 

towards a panel of four human solid tumor cell lines: melanoma (SK-MEL), epidermal carcinoma 

(KB), breast carcinoma (BT-549), and ovarian carcinoma (SK-OV-3). Moreover, non-cancer 

kidney cell lines (LLC-PK1 and VERO) were also employed to determine if the anti-cell 

proliferative activity of these extracts and compounds was selective for the tested tumor cell lines. 

All cell lines were obtained from the American Type Culture Collection (ATCC, Rockville, MD). 
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The cells were seeded in 96-well plates (10,000 cells/well) and incubated for 24 h. The 

extracts and pure alkaloids were dissolved in DMSO, diluted in media, and added to the cells at 

concentrations of 50, 25, 12.5, 6.25, 3.125 μg/mL. After incubating for 48 hrs, cell viability was 

determined by using a tetrazolium dye WST-8, which is converted to a water-soluble formazan 

product in the presence of 1-methoxy PMS by the activity of cellular enzymes. The color of the 

formazan product was measured at 450 nm on a plate reader. Doxorubicin was used as a positive 

control for anticancer assay, and DMSO (0.25%) was used as the vehicle control. The IC50 values 

were obtained from concentration-response curves. The values are represented as mean ± average 

deviation (n = 2).  

 

3.7.  Neurotoxicity assay 

The neurotoxicity evaluation was performed in 8-10 day old rat cortical neurons.  The 

extracts and compounds were added to neuronal growth media (neurobasal, B27, penicillin, and 

streptomycin) in the following range of concentrations (10, 5, 1, and 0.1 μg/mL) and incubated for 

24 hrs. DMSO (0.1%) was used as vehicle control. The MTS assay was used to assess the toxicity 

of the extracts and compounds. MTS Aqueous One Solution Reagent was added after incubating 

the extracts, compounds, and the control for 24 hrs. Once the MTS was administered to the wells, 

the plates were put back into the incubator for 1-2 hrs. The formazan dye produced by viable cells 

was quantified by measuring the absorbance at 490 nm. LIVE/DEAD viability stains (Invitrogen) 

were used to verify living and cytotoxic cells in a controlled study. Stained cells were quantified 

by the Nikon Elements software following image acquisition on the Nikon HCA inverted 

fluorescent microscope (100x) in a single field per well, chosen at random by the software.   
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3.8. Statistical analysis 

A one-way ANOVA was used to perform statistical analysis followed by Dunnett’s post 

hoc test to examine the significant difference against the control at p<0.05 for each dose of a 

compound or extract.  

 

4. Experimental 

4.1.  Synthesis of compounds 3-9 

5-(2-Bromobenzyl)-5,6,7,8-tetrahydro[1,3dioxolo[4,5-g]isoquinoline (3): 

To a mixture of 2-bromophenylacetic acid (10.00 mmol) and 3,4-

methylenedioxyphenethylamine (1.81 g, 10.00 mmol), POCl3 (4 ml, 43.92 mmol) was added 

dropwise. After 1 h stirring at r.t., toluene (10 ml) was added and the mixture heated under reflux 

for 3.5 h. Then the mixture was evaporated, the residue dissolved in MeOH (5 ml), and the soln. 

poured into ice. The aq. phase was basified with 25% NH4OH soln. and extracted with CH2Cl2 (3x 

50 ml), the combined org. phase washed with H2O (100 ml), dried (Na2SO4), and evaporated, and 

the residue dissolved in MeOH (30 ml). To this soln., NaBH4 (946 mg, 25.00 mmol) was added 

portion-wise for 30 min while stirring. After 24 h, the soln. was evaporated, the residue suspended 

in CH2Cl2 (50 ml) and washed with H2O (50 ml), the org. phase dried (Na2SO4), evaporated (2.00 

g), and (1.00 g) of the residue purified by CC (Al2O3) using [hexane: EtOAc (9:1), hexane: EtOAc 

(8:2), hexane: EtOAc (7:3), hexane: EtOAc (6:4), and EtOAc. The product didn’t come out with 

all of the solvent systems mentioned above; therefore, we used acetone: H2O (9:1) to afford 500 

mg white crystal of compound 3. 
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1H (400 MHz, DMSO-d6): δ = 2.90 (dt, J =16.8, 6.01 Hz, 1 H), 3.12 (dt, J = 16.5, 6.04 Hz, 

1 H), 3.16–3.25 (m, 1 H), 3.38–3.5 (m, 3 H), 4.65 (t, J = 7.25 Hz, 1 H), 5.97 (d, J = 1.32 Hz, 1 H), 

5.99 (d, J = 1.2 Hz, 1 H),  6.45 (d, J =1.38 Hz, 1 H), 6.83 (d, J =1.38 Hz, 1 H), 7.28 (tt, J = 7.58, 

1.66 Hz, 1 H), 7.39 (tt, J = 7.47, 1.45 Hz, 1 H), 7.58 (dt, J = 7.62, 1.65 Hz, 1 H), 7.68 (dt, J = 7.94, 

1.43 Hz, 1 H) ppm.  

13C NMR (100 MHz, DMSO-d6): δ = 25.3, 39.06, 39.9, 54.1, 101.5, 106.6, 108.9, 125.14, 

125.16, 126.5, 128.5, 129.9, 133.1, 133.3, 135.6, 146.3, 147.3 ppm. HRESI-MS calcd. for 

[C17H16BrNO2 +H] (M++H): 346.044; found: 346.051. 

 

tert-Butyl 5-(2-Bromobenzyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]isoquinoline-6(5H)-carboxylate 

(4): 

To a solution of the bromo-tetrahydrobenzylisoquinoline (3) (1.0 equiv.), 

diisopropylethylamine (3.0 equiv.) and 1–3 mg of 4-(dimethylamino) pyridine in DCM (0.2 M) 

was added slowly di-tert-butyl dicarbonate (2.0 equiv.) and the resulting mixture was stirred 

overnight at 23 °C. The reaction was then quenched by adding a solution of NH4Cl and was 

extracted with DCM. The crude reaction mixture was then purified by column chromatography on 

silica gel using hexane/ EtOAc mixtures to afford 0.7 g of (4). 

1H NMR and 13C NMR analysis revealed the presence of two amide rotamers present in a 

4:1 ratio.1H NMR (400 MHz, CDCl3, major rotamer): δ = 1.10 (s, 9 H), 2.66 (ddd, J = 16.16, 4.28, 

2.14 Hz, 1 H), 2.86–2.94 (m, 1 H), 2.98 (dd, J = 13.83, 11.13 Hz, 1 H), 3.29 (ddd, J = 13.85, 9.64, 

3.65 Hz, 2 H),  4.32–4.42 (m, 1 H), 5.38 (dd, J = 11.11, 3.13 Hz, 1 H), 5.94 (d, J = 1.45 Hz, 1H), 

5.95 (d, J = 1.40 Hz, 1H), 6.62 (s, 1 H), 6.90 (s, 1 H), 7.10 (dd, J =7.46, 1.81 Hz, 1 H), 7.15 (td, J 

= 7.66, 1.8 Hz, 1 H), 7.24 (m, 1 H), 7.59 (dd, J = 7.95, 1.28 Hz, 1 H). 
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13C NMR (100 MHz, CDCl3, major rotamer): δ = 27.8, 28.6, 36.1, 42.7, 53.9, 79.4, 100.9, 

106.8, 108.6, 125.3, 127.4, 127.6, 128.2, 130.2, 131.8, 132.5, 138.1, 146.1, 146.4, 154.1 ppm. 

HRESI-MS calcd. for [C17H16BrNO2+CH3OH+H] (M++CH3OH+H): 478.1229; found 478.1085. 

 

tert-Butyl 5,6,7a,8-Tetrahydrobenzo[g][1,3]dioxolo[4’,5’:4,5]-benzo[1,2,3-de]quinoline-7-

carboxylate (5):  

General Procedure for the intramolecular direct arylation. 

To (0.3g, 1 equiv.) of the aryl halide (4) in a round-bottomed flask with a magnetic stir bar, 

K2CO3 (2 equiv.), ligand (Di-tert-butyl(methyl)phosphonium tetrafluoroborate) (0.1 equiv.), and 

Pd(OAc)2 (0.05 equiv.) were added. The flask is purged with argon. Anhydrous DMA (N,N-

dimethylacetamide) is then added (0.2 M), and the resulting mixture is heated to 130 °C overnight. 

The reaction mixture is then concentrated and loaded onto a silica gel column for chromatography 

using hexane/EtOAc mixtures to afford 0.193g of (5). 

1H NMR (400 MHz, CDCl3): δ = 1.53 (s, 9 H), 2.63 (dt, J = 15.4, 2.25 Hz, 1 H), 2.79 – 

2.98 (m, 3 H), 3.06 (dd, J = 13.8, 4.3 Hz, 1 H), 4.42 (d, J = 12.4 Hz, 1 H), 4.83 (d, J = 12.8 Hz, 1 

H), 5.98 (d, J = 1.41 Hz, 1 H), 6.11 (d, J = 1.4 Hz, 1 H), 6.62 (s, 1 H), 7.24–7.36 (m, 3 H), 8.13 (d, 

J = 7.66 Hz, 1 H) ppm.  

13C NMR (100 MHz, CDCl3): δ = 28.5, 29.7, 30.4, 34.9, 51.6, 79.9, 100.8, 107.5, 117.2, 

126.0, 126.9, 126.9, 127.0, 127.7, 127.9, 128.4, 130.7, 136.0, 142.9, 146.7, 154.5 ppm. HRESI-

MS calcd. for [C17H15NO2] (M+): 365.1627; found: 365.2474. 
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6,7,7a,8-tetrahydro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2,3-de]benzo[g]quinoline [(±)Anonaine 

(6)], and 6,7-dihydro-5H-[1,3]dioxolo[4',5':4,5]benzo[1,2,3-de]benzo[g]quinoline [3,4-

methylenedioxy-1-phenanthreneethylamine (7)]: 

Method A: 

Trifluoroacetic acid (0.34 mL, 13.0 equiv.) was added dropwise to a solution of (5) (0.122 

g, 1.0 equiv.) in dichloromethane (3 mL) and the resulting mixture was stirred at room temperature 

for 1 h. The solution was removed under reduced pressure, and saturated NaHCO3 was added to 

the residue. The mixture was extracted with EtOAc, dried with MgSO4, filtered, evaporated and 

then purified by chromatography on column using hexane/EtOAc mixture as the eluent to afford 

10 mg of (±) anonaine 6 and 40 mg of 3, 4-methylenedioxy-1-phenanthreneethylamine 7.  

Method B: 

A solution of 4M HCl/dioxane was added to the carbamate (5) in a round-bottom flask with a 

magnetic stir-bar at 0 °C. The reaction was completed within 45 mins. TLC indicated the formation 

of (±) anonaine 6 and 3,4-methylenedioxy-1-phenanthreneethylamine 7.  Then, the solvent was 

removed by rotary evaporation under high vacuum at room temperature to afford a mixture of 6 

and 7 in a salt form that was stored without further purification for the preparation of compounds 

8 and 9. 

1H NMR for (±)Anonaine 6  (400 MHz, CD3OD): δ = 2.66–2.74 (m, 1 H), 2.79 (t, J = 14.16 

Hz, 1 H), 2.95–3.11 (m, 3 H), 3.35–3.49 (m, 1 H), 3.96 (dd, J = 14.05, 4.91 Hz, 1 H), 5.91 (d, J = 

1.14 Hz, 1 H), 6.06 (d, J = 1.17 Hz, 1 H), 6.59 (s, 1 H), 7.20–7.32 (m, 3 H), 8.13 (d, J = 7.64 Hz, 

1 H) ppm. 
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 13C NMR (100 MHz, CD3OD): δ = 27.1, 34.9, 42.1, 52.9, 100.8, 107.3, 109.9, 115.7, 

125.0, 125.6, 126.8, 127.4, 127.7, 130.6, 133.8, 142.7, 147.5 ppm. HRESI-MS calcd. for 

[C17H15NO2 +H] (M++H) 266.118; found: 266.122. 

1H NMR for 3,4-methylenedioxy-1-phenanthreneethylamine 7  (500 MHz, CD3OD): δ = 

3.24 (dd, J = 9.33, 6.51 Hz, 2 H), 3.41 (dd, J = 9.14, 6.72 Hz, 2 H), 6.25 (s, 2H), 7.22 (s, 1 H), 7.60 

(dt, J = 6.22, 3.52 Hz, 2 H), 7.66 (d, J = 9.27 Hz, 1H), 7.80–7.92 (m, 2 H), 9.06 (dd, J = 6.09, 3.45 

Hz, 1 H) ppm.  

13C NMR (125 MHz, CD3OD): δ = 30.8, 40.2, 101.3, 110.5, 116.8, 121.6, 125.4, 125.8, 

126.0, 126.6, 126.9, 127.0, 127.4, 128.4, 131.9, 142.9, 145.1 ppm. HRESI-MS calcd. For 

[C17H15NO2 +H] (M++H) 266.118; found: 266.123. 

 

Methyl 5,6,7a,8-tetrahydro-7H-[1,3]dioxolo[4',5':4,5]benzo[1,2,3-de]benzo[g]quinoline-7-

carboxylate, (±) romucosine (8), and methyl 5,6-dihydro-7H-[1,3]dioxolo[4',5':4,5] benzo[1,2,3-

de]benzo[g]quinoline-7-carboxylate, [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate (9): 

The salt mixture of 6 and 7 (89 mg) in dry CH2Cl2 (40 mL) was treated with triethylamine 

(6.00 equiv.) in a round-bottom flask with a magnetic stir-bar at 0 °C for 10 min, then methyl 

chlorocarbonate (8.08 mL) was slowly added. The reaction mixture was stirred for 1 hr, and H2O 

was added to quench excess reagent. The mixture was partitioned with CHCl3 and dried with 

MgSO4, filtered, evaporated and then purified by chromatography on column using hexane/EtOAc 

mixtures as the eluent to afford 64 mg of (±) romucosine 8 and 16 mg of [2-(3,4-methylenedioxy-

1-phenanthrenyl)ethyl]-methylcarbamate 9.  
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1H NMR of (±) romucosine 8 (500 MHz, CDCl3): δ = 2.64 (dt, J = 15.48, 2.37 Hz, 1 H), 

2.77–3.13 (m, 4 H), , 3.79 (s, 3 H), 4.45 (brs, 1 H), 4.88 (d, J = 13.54 Hz, 1 H), 5.99 (d, J = 1.49 

Hz, 1 H), 6.12 (d, J = 1.5 Hz, 1 H), 6.632 (s, 1 H), 7.27–7.31 (m, 2 H), 7.35 (td, J = 7.55, 2.04 Hz, 

1 H), 8.13 (dd, J = 7.71, 1.16 Hz, 1 H) ppm.  

13C NMR (125 MHz, CDCl3): δ = 29.7, 30.3, 39.1, 51.6, 52.6, 100.9, 107.6, 117.4, 125.5, 

127.0, 127.1, 127.8, 127.8, 128.6, 130.7, 135.7, 143.0, 146.8, 155.4 ppm. HRESI-MS calcd. For 

[C19H17NO4 +H+] (M+H+) 324.124 found: 324.128. 

1H NMR of [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate 9  (500 

MHz, CDCl3): δ = 3.26 (t, J = 7.28 Hz, 2 H), 3.52 (q, J = 6.95 Hz, 2 H), 3.71 (s, 3 H), 6.23 (s, 2 

H), 7.11 (s, 1 H), 7.54–7.67 (m, 3 H), 7.77–7.96 (m, 2 H), 9.10 (dd, J = 7.41, 1.9 Hz, 1 H) ppm. 

13C NMR (125 MHz, CDCl3): δ = 33.9, 42.2, 52.1, 101.1, 110.7, 117.1, 122.5, 125.3, 126.1, 

126.3, 126.8, 127.3, 127.6, 128.6, 129.4, 131.9, 142.4, 144.9, 157.1 ppm. HRESI-MS calcd. For 

[C19H17NO4 +H] (M++H) 324.123 found: 324.128. 

 

4.2.  Enantiomers resolution 

4.2.1. The recycling process of resolution using dibenzoyl tartaric acid. 

At 0 °C, 10 mg of (±) bromo-tetrahydrobenzylisoquinoline 3 was dissolved in 1 mL of 

ethyl acetate in a two-necked flask. Then, 10.35 mg of dibenzoyl tartaric acid was dissolved with 

1 ml of ethyl acetate and was added to the alkaloid mixture and stirred for 10 min at room temp. 

After that isopropanol (1.4 mL) was added and the mixture was heated at reflux (85 °C) Refluxing 

was continued for 5 hrs, and the mixture was allowed to cool to room temperature and then to 0 

°C in an ice bath, no precipitate was notice, and a lot of TLC spots have shown. We were not able 

to separate the enantiomers using this reaction. 
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4.2.2. The enantiomers resolution with (-)(1R)-menthyl chloroformate. 

(5R)-2-isopropyl-5-methylcyclohexyl (5S)-5-(2-bromobenzyl)-7,8-dihydro-[1,3]dioxolo[4,5-

g]isoquinoline-6(5H)-carboxylate (10), and (5R)-2-isopropyl-5-methylcyclohexyl (5R)-5-(2-

bromobenzyl)-7,8-dihydro-[1,3]dioxolo[4,5-g]isoquinoline-6(5H)-carboxylate (11): 

(±) Bromo-tetrahydrobenzylisoquinoline 3 was dissolved in acetonitrile (10 mL), and (1.2 

mL) of triethylamine was added, followed by (0.76 mL) of (-)(1R)-menthyl chloroformate 

dropwise. The mixture was reacted for 30 minutes at room temperature. Then, the mixture was 

concentrated and then purified by chromatography on column using hexane/EtOAc mixtures as 

the eluent to afford 94 mg of 10 and 40 mg of 11.  

1H NMR and 13C NMR analysis of compound 10 revealed the presence of two amide 

rotamers present in a 1:1 ratio. 1H NMR of compound 10 (500 MHz, CDCl3): δ = 0.5 (d, J = 6.8 

Hz, 1 H), 0.71 (d, J = 6.9 Hz, 1 H), 0.79 (d, J = 7.02 Hz, 2 H), 0.82–1.93 (m, 14 H), 2.63–2.69 (m, 

1H), 2.72–2.99 (m, 1 H), 3.06 (ddd, J = 13.22, 9.83, 2.88 Hz, 1 H), 3.29 (dd, J = 13.62, 4.71 Hz, 1 

H), 3.35–3.51 (m, 1 H),  4.27 (ddd, J = 13.34, 6.07, 2.90 Hz, 1 H), 4.41 (qd, J = 11.03, 4.29 Hz, 1 

H), 5.37 (dd, J = 10.0, 4.46 Hz, 1 H), 5.92 (s, 1H), 5.94 (s, 1H), 6.60 (d, J = 9.33 Hz, 1 H), 6.68 

(d, J = 3.08 Hz, 1 H),  7.04–7.14 (m, 2 H), 7.20 (t, J = 7.3 Hz, 1 H), 7.55 (dd, J = 7.96, 1.17 Hz, 1 

H) ppm.  

13C NMR (125 MHz, CDCl3): δ = 16.7, 20.6, 21.4, 22.6, 24.8, 26.5, 29.0, 31.3, 34.3, 38.2, 

42.6, 47.0, 54.4, 75.2, 100.8, 107.0, 108.6, 125.4, 127.3, 127.5, 128.2, 130.0, 131.4, 132.6, 137.7, 

146.0, 146.4, 155.4 ppm. . HRESI-MS calcd. For [C28H34BrNO4 +H+] (M+H+): 528.175 found: 

528.181. 
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1H NMR and 13C NMR analysis of compound 11 as well revealed the presence of two 

amide rotamers present in a 2:1 ratio. 1H NMR of compound 11 (500 MHz, CDCl3): δ = 0.66 (d, 

J = 6.9 Hz, 1 H), 0.79 (d, J = 6.4 Hz, 1 H), 0.84 (d, J = 7.52 Hz, 2 H), 0.84–1.45 (m, 14 H), 2.65–

2.71 (m, 1H), 2.87–2.97 (m, 1 H), 3.01 (dd, J = 13.8, 10.7 Hz, 1 H), 3.25 (dd, J = 13.8, 3.6 Hz, 1 

H), 3.36 (ddd, J = 13.3, 10.3, 4.3 Hz, 1 H),  4.24 (td, J = 10.8, 4.3 Hz, 1 H), 4.31–4.34 (m, 1 H), 

5.47 (dd, J = 10.7, 3.5 Hz, 1 H), 5.94 (d, J = 1.6 Hz, 1H), 5.95 (d, J = 1.4 Hz, 1H), 6.62 (s, 1 H), 

6.68 (s, 1 H), 7.05–7.12 (m, 2 H), 7.21 (td, J = 7.4, 1.2 Hz, 1 H), 7.57 (dd, J = 7.56, 1.18 Hz, 1 H) 

ppm.  

13C NMR (125 MHz, CDCl3): δ = 16.6, 20.7, 23.5, 26.5, 28.5, 29.7, 31.0, 34.2, 36.9, 40.0, 

42.9, 46.9, 53.5, 74.9, 100.9, 106.9, 108.6 125.3, 127.08, 127.5, 128.4, 130.0, 131.3, 132.6, 137.8, 

146.0, 146.4, 155.9 ppm. HRESI-MS calcd. For [C28H34BrNO4 +H] (M++H): 528.175 found: 

528.181. 

 

5. Conclusion 

This study described the total synthesis of (±) anonaine, 3, 4-methylenedioxy-1-

phenanthreneethylamine, (±) romucosine, and [2-(3,4-methylenedioxy-1-phenanthrenyl)ethyl]-

methylcarbamate by using of direct arylation reactions with 3,4-methylenedioxyphenethylamine 1 

and 2-bromophenylacetic acid 2 in the preparation of aporphine analogs.  

We also described the separation of the enantiomers using different resolution reactions. 

The resolution with (_)-menthyl chloroformate succeeded in separating the enantiomers. However, 

the cleavage of menthyl chloroformate moiety proves difficulties. 

Anonaine, 3, 4-methylenedioxy-1-phenanthreneethylamine, romucosine, and [2-(3,4-

methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate have subjected to the biological 
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evaluation to understand how they would induce or reduce the cytotoxicity as well as the 

neurotoxicity. Several studies have indicated the anticancer activities of anonaine, and it showed 

an interesting anticancer effective towards all cancer cell lines in our study. The anticancer 

activities of 3, 4-methylenedioxy-1-phenanthreneethylamine, romucosine, and [2-(3,4-

methylenedioxy-1-phenanthrenyl)ethyl]-methylcarbamate were reported here for the first time.  

Anonaine (compound 6) was significantly toxic to the neurons at 5 µg/mL. Also, the 

alkaloidal extract significantly decreased the viability of the neurons with increasing 

concentration.  All other extracts and synthesized compounds did not have a significant decrease 

in neuron cells viability according to statistical analysis. However, all extracts were extremely 

toxic to all tested cancer and normal cell lines, so further studies are needed to understand these 

conflicting results.  

Lastly, the presence of the synthesized alkaloids in Rollinia mucosa was studied by using 

a targeted analysis of Rollinia mucosa fruits and seeds extracts using UHPLC-QToF-MS. Only 

anonaine was detected from Rollinia mucosa fruits and seeds methanolic extracts and Rollinia 

mucosa seeds alkaloidal extract. 

 We were not able to detect the presence of romucosine, which has been reported to be 

isolated from Rollinia mucosa fruits. Our study suggested that romucosine and other N-

methoxycarbonyl alkaloids reported previously from Rollinia mucosa could be artifacts formed 

during the acid-base extraction, or they might be found in different sub-species of Rollinia mucosa. 
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1H NMR (500 MHz, DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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13C NMR (125 MHz, DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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DEPT 135 (DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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HSQC (DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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H-H COSY (DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 

 

 

 

 

 

 

 



 

 

 

121 

 

 

 

HMBC (DMSO-d6) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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IR (KBr) for (-)-Anolobine-9-O-β-D-glucopyranoside (1) 
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1H NMR (500 MHz, CD3OD) for (-)-Anolobine (2) 
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13C NMR (125 MHz, CD3OD) for (-)-Anolobine (2) 
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HSQC (CD3OD) for (-)-Anolobine (2) 
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COSY (CD3OD) for (-)-Anolobine (2) 
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HMBC (CD3OD) for (-)-Anolobine (2) 
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1H NMR (400 MHz, CDCl3) for (-)-Norushinsunine (4) 
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13C NMR (100 MHz, CDCl3) for (-)-Norushinsunine (4) 
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1H NMR (400 MHz, CD3OD) for (+)-Coclaurine (8) 
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13C NMR (100 MHz, CD3OD) for (+)-Coclaurine (8) 
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HSQC (CD3OD) for (+)-Coclaurine (8) 
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COSY (CD3OD) for (+)-Coclaurine (8) 
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HMBC (CD3OD) for (+)-Coclaurine (8) 

 

 

 

 

 

 

 

 

 



 

 

 

135 

 

 

 

NOESY (CD3OD) for (+)-Coclaurine (8) 
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Compound (3) (400 MHz, DMSO-d6) 1H NMR: 
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Compound (3) (DMSO-d6) DeptQ135 NMR: 
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Compound (3) HRESI-MS: 
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Compound (4) (400 MHz, CDCl3) 1H NMR: 
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Compound (4) (100 MHz, CDCl3) 13C NMR: 
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Compound (4) HRESI-MS: 
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Compound (5) (400 MHz, CDCl3) 1H NMR: 
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Compound (5) (100 MHz, CDCl3) 13C NMR: 
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Compound (5) HRESI-MS: 
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Compound (6) (400 MHz, CD3OD) 1H NMR: 
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Compound (6) (100 MHz, CD3OD) 13C NMR: 
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Compound (6) (CD3OD) COSY NMR: 
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Compound (6) (CD3OD) HSQC NMR: 
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Compound (6) (CD3OD) HMBC NMR: 
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Compound (6) HRESI-MS: 
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Compound (7) (500 MHz, CD3OD)  1H NMR: 

 

 

 

 

 

 

 

 

 

Compound 7 CD3OD 



 

 

 

153 

 

 

 

Compound (7) (125 MHz, CD3OD) 13C NMR: 

 

 

 

 

 

 

 

 

 

Compound 7 CD3OD 
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Compound (7) (CD3OD) HSQC NMR: 

 

 

 

 

 

 

 

 

 

 

Compound 7 CD3OD 
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Compound (7) (CD3OD) COSY NMR: 

 

 

 

 

 

 

 

 

 

Compound 7 CD3OD 
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Compound (7) (CD3OD) HMBC NMR: 

 

 

 

 

 

 

 

 

 

Compound 7 CD3OD 
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Compound (7) HRESI-MS: 
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IR (KBr) for compound 7: 
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Compound (8) (400 MHz, CDCl3) 1H NMR: 
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Compound (8) (500 MHz, CDCl3) 13C NMR: 
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Compound (8) (CDCl3) COSY NMR: 
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Compound (8) (CDCl3) HSQC NMR: 
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Compound (8) (CDCl3) HMBC NMR: 
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Compound (8) HRESI-MS: 
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IR (KBr) for compound 8: 
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Compound (9) (500 MHz, CDCl3)  1H NMR:  

 

 

 

 

 

 

 

 

 

 

Compound 9 CD3OD 
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Compound (9) (100 MHz, CDCl3) 13C NMR: 

 

 

 

 

 

 

 

 

Compound 9 CD3OD 
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Compound (9) (CDCl3) COSY NMR: 

 

 

 

 

 

 

 

 

 

Compound 9 CD3OD 
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Compound (9) (CDCl3) HSQC NMR: 

 

 

 

 

 

 

 

 

 

Compound 9 CD3OD 
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Compound (9) (CDCl3)  HMBC NMR: 

 

 

 

 

 

 

 

 

 

Compound 9 CD3OD 
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Compound (9) HRESI-MS: 
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IR (KBr) for compound 9: 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

173 

 

 

 

Compound (10) (500 MHz, CDCl3)  1H NMR: 
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Compound (10) (125 MHz, CDCl3)  13C NMR: 
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Compound (10) (CDCl3) COSY NMR: 
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Compound (10) (CDCl3) HSQC NMR: 
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Compound (10) (CDCl3) HMBC NMR: 
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Compound (10) HRESI-MS: 
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Compound (11) (500 MHz, CDCl3) 1H NMR: 
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Compound (11) (125 MHz, CDCl3) 13C NMR: 
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Compound (11) (CDCl3) HSQC NMR: 
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Compound (11) (CDCl3) COSY NMR: 

 

 

 

 

 

 

 

 



 

 

 

183 

 

 

 

Compound (11) (CDCl3) HMBC NMR: 
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Compound (11) HRESI-MS: 
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