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ABSTRACT

We develop and present a simulation program to investigate the failure probability

of a scanning job conducted by a Bluetooth Low-Energy scanner on a group of items. Each

item is outfitted with a BLE device and are sorted into large, batch sizes to be moved

into the scanning area. The BLE device broadcasts packets, known as advertisements, to

the scanning system. The rate at which the advertisements broadcast is determined by its

interadvertisement time, which is the sum between a fixed advertising interval and a pseudo-

random advertising delay. The objective is to determine the optimal interadvertisement time

that minimizes the scanning time while achieving a prescribed minimal probability of failure

to successfully scan every advertiser. Using our analytical model to set the parameters for

our simulations, we notice that the simulation results had an order of magnitude difference

from the analytical results. Additionally, the simulation results failed to meet our objective.

Thus, we retraced our steps and hypothesized that the events of collisions were correlated.

We adjusted both the analytical and simulation model by implementing a discrete-Markov

chain. This allowed us to explore successive collision events between the target advertiser

and the collection of other advertisers. We found that the probability of successive collisions

increases as the number of successive collisions increases. Thus, correlated collisions have

a profound impact on the failure probability and the probability of collision between the

target advertiser and any other advertiser on successive advertisements is independent of

the interadvertisement time. Additionally, we show that longer scanning times are needed

but failure probability of a scanning job is not excessively sensitive to interadvertisement

time.

ii



ACKNOWLEDGEMENTS

First, I would like to thank the faculty and staff of the University of Mississippi’s

Department of Electrical Engineering for their guidance and teaching throughout my student

career. Next, I would like to express my humble gratitude to my advisor, Dr. John N.

Daigle. Along with my colleagues, family and friends, he has provided me with tremendous

encouragement throughout this process and the tools needed to continue my life-long journey

of learning. I gratefully acknowledge all of my friends and colleagues who has been there

to support me throughout my student career. Last but not the least, I am grateful to my

family for their undying love, support, and encouragement.

University, Mississippi George A. Humphrey II

May 2020

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

BLUETOOTH LOW-ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

INDEPENDENCE OF SUCCESSIVE COLLISIONS . . . . . . . . . . . . . . . . . . 11

DEPENDENCE OF SUCCESSIVE COLLISIONS . . . . . . . . . . . . . . . . . . . . 31

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



LIST OF FIGURES

2.1 BLE Link layer state machine . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Illustrations of scanning windows and scanning intervals . . . . . . . . . . . . 9
2.3 Illustration of the advertising process . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Link layer packet format for the LE Uncoded PHYs[1, adapted from pg. 2562] 10
3.1 Illustrations of packet collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Frame class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Global variables class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Illustration of forward recurrence time . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Initial advertisement arrival generator . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Advertisement arrival generator . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Transmit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Scan routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Reset method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Check collisions method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 Add and remove frame from transmit queue methods . . . . . . . . . . . . . 25
3.12 PMF of a number of successes from simulation run for batch size of 100 ad-

vertisers with a scanning period of 1.91 s and an average advertisement cycle
of 0.107 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.13 PMF of a number of successes from simulation run for batch size of 200 ad-
vertisers with a scanning period of 3.80 s and an average advertisement cycle
of 0.216 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.14 PMF of a number of successes from simulation run for batch size of 400 ad-
vertisers with a scanning period of 7.5 s and an average advertisement cycle of
0.433 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.15 PMF of a number of successes from simulation run for batch size of 800 ad-
vertisers with a scanning period of 14.9 s and an average advertisement cycle
of 0.867 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.16 PMF of a number of successes from simulation run for batch size of 1600
advertisers with a scanning period of 29.6 s and an average advertisement
cycle of 1.74 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Initialization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Modified Transmit method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Chain class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Convert 2 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Correlate failure method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Compute transition method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4.7 PMF of a number of successes from simulation run for batch size of 100 ad-
vertisers with a scanning period of 2.59 s and an average advertisement cycle
of 0.1245 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 PMF of a number of successes from simulation run for batch size of 200 ad-
vertisers with a scanning period of 5.11 s and an average advertisement cycle
of 0.2503 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 PMF of a number of successes from simulation run for batch size of 400 ad-
vertisers with a scanning period of 10.14 s and an average advertisement cycle
of 0.5019 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 PMF of a number of successes from simulation run for batch size of 800 ad-
vertisers with a scanning period of 20.2 s and an average advertisement cycle
of 1.005 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 PMF of a number of successes from simulation run for batch size of 1600
advertisers with a scanning period of 40.32 s and an average advertisement
cycle of 2.011 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



LIST OF TABLES

3.1 Simulation parameters given number of advertisers . . . . . . . . . . . . . . . 26

3.2 Comparison of failure probability of scanning job between the simulation and

analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Simulation parameters given number of advertisers for transition probability

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Conditional probabilities of collision for a range of group sizes and memory

lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Simulation parameters given the number of advertisers, with modified inter-

advertisement and scan times . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Comparison of failure probability of scanning job via simulations between the

Independent and Dependent collisions . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Simulation parameters given the number of advertisers, with scanning time

under correlated collision scenario and interadvertisement time under inde-

pendent collision assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Comparison of failure probability of scanning job via simulations between the

Independent and Dependent interadvertisement times with the same scanning

time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Comparison of failure probability of scanning job via simulations between the

Independent and Dependent interadvertisement times with the same scanning

time and 4000x the number of original replicas . . . . . . . . . . . . . . . . . 45

vii



CHAPTER 1

INTRODUCTION

We develop and present a simulation program to investigate the failure probability of

a scanning job conducted by a Bluetooth Low-Energy (BLE) scanner on a group of items.

These items are sorted into large batch sizes and moved to a scanning area. Each member of

a group is outfitted with a BLE device that broadcasts packets, known as advertisements, to

the system. The rate at which the advertisements broadcast is determined by its interadver-

tisement time, which is the the sum between a fixed advertising interval and a pseudo-random

advertising delay as described in [1] and discussed here. If the system fails to successfully

scan any item in a group, that operation is marked as a failure. For this thesis, we ask

how to set the interadvertisement time that minimizes the scanning time while achieving a

prescribed minimal probability of failure to successfully scan every advertiser.

The rest of the thesis is organized as follows. The remainder of this chapter describes

work related to this thesis. In Chapter 2, we present a general introduction to BLE as

well as insight into the advertising and scanning operations. Chapter 3 gives a description

of the simulation program along with the methodology for finding the interadvertisement

time and scanning time given the assumption of independent collisions from our analytical

model. Additionally, the simulation results are discussed and analyzed in this chapter. In

chapter 4, we explore correlation in the collision process given the results from the previ-

ous chapters. Finally, chapter 5 gives the conclusions based on our results. We summarize

the content of the thesis, and discuss the accomplishments and contributions of our work.

Recommendations for further research in this topic are also included in this chapter.
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1.1 Related Work

Though most state-of-the-art BLE research focuses on the neighbor discovery process

(NDP) and the discovery latency, the systems under study all involve numerous BLE devices

in a crowded environment. Shan et al. [2] developed a Java simulation program to analyze

the relationship between the number of advertisers and the total scan time to discover all

advertisers. To compare their simulation results for accuracy, they build an experimental

testbed of 40 iBeacons as advertisers and one Raspberry pi as a scanner. Aside from their

main objective, they also tested for average waiting time for a successful scan with different

number of advertisers and the relationship between a number of advertisers and the number

of received complete signal until all advertisers discovered. With the simulation and exper-

imental results only showed minor differences, they concluded the simulation program was

accurate enough to simulate in advertisement collision in a crowded environment.

In [3], Shan et al. extended their previous work with an analytical model that mini-

mizes the discovery time for all BLE advertisers in a given size by optimizing the advertising

interval. To find the optimal advertising interval, they utilized a differential coefficient pro-

cess. In their results, they found that for a given advertising interval as the number of

advertisers increase so does the expected discovery time to scan for all surrounding adver-

tisers. However, there is an optimal advertising interval that minimizes the discovery time

for each number of advertises that varies. They also show how energy consumption and

the scan interval effect the discovery time as well. In both works, their system consisted

of one scanner and numerous advertisers, similar to our system. However, we provide a

specific formula to compute the optimal interadvertisement time, which is shown in a later

chapter of this work. Unlike [2] and [3], we take an in-depth approach to understanding

when a scanner fails to scan all advertisers and analytically expressed it as the probability

of a scanning job failure (P {SJF}). Additionally, we investigate the reason the assumption

of independent collisions fails to produce a reasonable approximation of the probability of

scanning job failure. Furthermore, we explain the simulation program in detail, including

2



how we obtain and set our parameters.

A performance model was derived in [4] to analyze the average discovery time by ad-

justing scanning and advertisement intervals. The model assumed scanning in discontinuous

mode, which will be discussed in the next chapter. In their analysis, they revealed a coupling

procedure that could lower the efficiency of the device discovery if the advertising interval

is close to or equal the initiating interval. The advertising delay can play a decoupling role.

However, they found that it is not sufficiently large enough to decouple advertisers with

colliding advertisements. Thus, their solution was to modify the advertisement interval to

mitigate long discovery latency from the scanners. They created three strategies Fast Shrink,

Threshold-based Shrink, and Periodic-based Shrink. In their results, the Fast Shrink strat-

egy attained the lowest latency. The other two strategies were able to obtain slightly higher

latencies than the Fast shrink. However, unlike Fast shrink, users are able to adjust the

other strategies to accommodate variances in attributes such as node density.

In [5], the same authors from [4] developed an analytical BLE model derived from a

pure ALOHA system model. This model investigates device discovery and connection setup

latency in wireless body area networks with the scanner in both continuous and discontin-

uous mode. They showed that as the number of advertisers increases so does the average

discovery latency for an advertiser in the network. As a solution, they created a connec-

tion setup report that piggybacks on the connection response packet from the advertiser

to the nearest scanner. From there, the scanner can use the report to adaptively adjust

its parameters mitigating the interference and reducing latency. By validating their model

with extensive simulations, they were able to see reductions in latency as low as 68% in the

discontinuous scanning scenario.

In [6], Ghamari et al. developed an analytical model that investigates the probability

of packet collisions amongst BLE advertisers. Assuming each advertiser’s advertisements

arrive according to a Poisson process, they demonstrate that that the probability of col-

lisions is dependent on the number of advertisers and the advertising interval. However,

3



advertisements in a real system do not occur according to a Poisson process as stated above.

Kim et al. develops a backoff scheme in [7] to reduce collisions among scanners responding

to an advertisement. Unlike the previous proposals, this paper focuses on one advertiser

and numerous scanners. In their system under study, they have an advertiser broadcast an

advertisement to multiple scanners within the vicinity. As multiple scanners send their indi-

vidual responses to the advertiser, collisions between the response packets can ensue. Their

solution is to develop a backoff window for the scanners in responding to an advertisement.

They discover that a longer backoff window does reduce the collision probability. However,

there is no significant improvement in its reduction when the window exceeds a certain value.

Instead of focusing on the 3 advertising channels in BLE, Kalaa et al. chose to focus on the

remaining 37 data channels in [8]. They derived the probability of selecting a data channel

once a BLE pair of devices connects. Then they used a channel selection algorithm to find

the probability of collision among multiple BLE connections and the maximum achievable

aggregate throughput.

For a more practical solution, Julien et al. [9] developed a protocol that takes into

account the real effects of packet collisions and adjust BLE parameters to minimize discovery

latency. Their protocol is able to do uni-directional and bi-directional neighbor device dis-

covery. They also implemented a way for the advertisers to determine which advertiser has

been discovered through stored information in the advertisements. In their real-world results,

they find their discovery latency curves match closely with their simulations. Furthermore,

they demonstrate the protocol’s adaptiveness in adjusting the amount of advertisements sent

as the density of advertisers increase.

On the topic of BLE, these are the very few studies that relates to our own but none

of them directly addressed the specific question in this thesis. Though every article pre-

sented computes the probability of collisions, they do not address the probability of failing

to detecting all advertisers. Additionally, their simulation results lack in-depth analysis and

confidence intervals to show the strength of their findings.
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1.2 Thesis Summary

Here we investigate a BLE scanning system where a large number of items are sorted

into groups to be scanned. The objective is to determine the optimal interadvertisement time

that minimizes the scanning time while achieving a prescribed minimal probability of failure

to successfully scan every advertiser. Using the BLE Core Specification 5.0, we developed

a Python simulation program that replicates the functionality of the BLE advertising and

scanning process. Using our analytical model to set the parameters for our simulations,

we notice inconsistencies between the their results. Thus, we retraced our steps to see if

the events of collisions were correlated. More methods were added to the simulation to

investigate the nature of dependence. We discovered that the correlated collisions impact

the failure probability and that the probability of collision between the target advertiser and

any other advertiser on successive advertisements is independent of the interadvertisement

time. Additionally, we show that longer scanning times are needed but failure probability of

a scanning job is not excessively sensitive to interadvertisement time.
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CHAPTER 2

BLUETOOTH LOW-ENERGY

In this chapter, we will delve into the BLE protocol, specifically from the Bluetooth

5.0 core specification. We will not fully explore the protocol, as most of it does not pertain

to this body of work. The primary focus is the introduction of the scanning and advertising

process as well as a bit about the packet format. The chapter will explain these two processes

as it applies to this particular study.

2.1 Overview of BLE

Designed by the Bluetooth Special Interest Group, the BLE protocol debuted in June

2010 with version 4.0 of the Bluetooth core specification. The objective of BLE was to pro-

vide the communication range of classic Bluetooth to power-constrained devices. Like classic

Bluetooth, BLE utilizes the 2.4 GHz ISM band for wireless communication. Yet, modifica-

tions were made in the PHY and Link layers of the Bluetooth core to differentiate between

the two. At the time of this thesis, the current adoption is Bluetooth 5.1. However, we will

be using Bluetooth 5.0 as a reference.

For the PHY layer, the BLE protocol uses Gaussian frequency-shift keying modula-

tion, which shifts the carrier frequency to carry the modulation and filters it through a filter

with a Gaussian response curve, similar to classic Bluetooth. The modulation scheme has

options between coded and uncoded data. The coded data is only available at the default

symbol rate of 1 Msym/s. However, the uncoded data has an additional option of 2 Msym/s.

The type of packet from the link layer will determine which symbol rate is used. Starting

from 2402 MHz to 2480 MHz, the spectrum is allocated into 40 channels with 2 MHz spacing,

instead of 79 channels with 1 MHz spacing. Using these channels, the PHY layer is separated
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into 3 distinct channel operations: advertising, data, and periodic.

In advertising mode, all channels are used for broadcasting data, device discovery,

and connection initiation [1]. Out of the 40 channels, channels 2402, 2426, and 2480 MHz,

indexed as 37, 38, 39 respectively, are known as primary advertising channels [10]. These

channels are use to initiate broadcasting of data. The other 37 channels are secondary ad-

vertising channels, which are used in maintaining communications after initial advertising.

Furthermore, these same channels are used in periodic and data modes of the PHY layer.

The PHY layer in data mode establishes and maintains connections between BLE

devices. The periodic mode is similar to the advertising mode in the PHY layer. However

unlike the advertising mode, where the packet data are fixed, the periodic mode has packet

data vary from time to time [1]. To avoid interference in the crowded 2.4 spectrum, BLE

uses a Time division duplex scheme to enable a frequency hopping mechanism akin to classic

Bluetooth. However, the timing between hops is more relaxed [4], allowing for lower power

consumption. For the purposes of our research, we only focused on the advertising chan-

nel operation. Furthermore, our main objective concerns the primary advertising channels,

which were mentioned above.

For the link layer (MAC sub-layer), the system operates in terms of a state machine

with the following states shown in Fig 2.1. While there can be multiple instances of the state

machine, only one state can be active at any time. BLE devices always start in the standby

state, where packets are neither received or transmitted. If a device goes to the advertising

state, the BLE device is denoted as an advertiser and broadcasts packets on advertising

channels. The scanning and initiating states are similar, except the device in the initiating

state tries to establish a connection with the advertising device. As seen from Fig 2.1, the

connection state is when two devices are connected, notably one device in the advertising

and another in the initiating state, and cannot be entered from the standby state.

There are a variety of packets for the different states, excluding the standby state.

Given which symbol rate is used on the PHY layer, packets can be transmitted between 44

7



Standby

Scanning

InitiatingAdvertising

Connection

Figure 2.1: BLE Link layer state machine

to 2140 µs. Given our problem description, we are not concerned with connecting devices.

Thus, our state machines will not be relying on the connection and initiating state. More-

over, we are using a particular packet format for our advertisements, which will be defined

later in this chapter [1].

2.2 Scanning Process

In the scanning state, the BLE device, known as a scanner, listens on each advertis-

ing channel for BLE packets or advertisements in a round-robin fashion. The scanner will

perform this operation for the duration of its scanning window, Ts. The period between

two consecutive scanning windows is called the scan interval, T . Since we are referencing

Bluetooth 5.0 for this thesis, both the scanning window and scanning interval can be set by

a user in the range of 0 s to 40.96 s. However, the scanning window has to be less than or

equal to the scanning interval.

Figure 2.2 illustrates this process. Part (a) demonstrates the case of Ts ≤ T or

discontinuous scanning. Generally, this case is found in most real-world applications, as it

allows a sleep/wake-up cycle for low-energy consumption. For this thesis, we are trying to

find the minimal scan time. Therefore, a sleep/wake-up cycle is not useful to our study.

We need the scanner to listen continuously, which is when Ts = T , as shown in Part (b).

8



time

scanWindow scanWindow scanWindow scanWindow

index 37 index 38 index 39 index 37
T = scanInterval scanInterval scanInterval scanInterval

Ts

(a) Discontinuous scanning mode

time

scanWindow scanWindow scanWindow scanWindow

index 37 index 38 index 39 index 37
T = scanInterval scanInterval scanInterval scanInterval

Ts

(b) Continuous scanning mode

Figure 2.2: Illustrations of scanning windows and scanning intervals

Given that there will be no response from the scanner, we will be passively scanning for

advertisements.

2.3 Advertising Process

In the advertising state, the BLE device, known as an advertiser, broadcasts ad-

vertisements on each advertising channel during its advertising event, which occurs every

interadvertisement time, t̃IA. The interadvertisement time is the sum between an advertis-

ing interval (t̃AI) and the advertising delay (t̃AD). Figure 2.3 shows the advertising process,

but not to scale. The advertising event starts at the beginning of the advertising interval,

which is a large fixed period set by the user. The time used in t̃AI can be between 20 ms

and 10,485.759375 s, but has to be a multiple of 0.625 ms [1]. During that time, one ad-

vertisement is transmitted on each of the advertising channels. The first advertisement is

sent on channel index 37, while the last one sent on channel index 39. The transmission

time of an advertisement is denoted as TA. The time between two consecutive advertisement

transmissions is the dead time, which can be between 0 to 10 ms.
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Advertising

Event

Advertising

Event

Advertising

Event

TAI =advInterval t̃AD=advDelay advInterval advDelay
t̃IA = advEvent advEvent

Figure 2.3: Illustration of the advertising process

After the last transmission, there is a long radio silence of the time left in t̃AI, followed

by the advertising delay. The advertising delay has a uniform distribution over 0 to 10 ms.

While there are many types of advertising events, we are only focusing on advertising events

where the scanner’s response is unnecessary.

The packet format can be seen in Fig. 2.4. Using the default symbol rate of the PHY

layer, the preamble is one octet. Along with the PDU of 37 octets, the overall length of

the advertisement is 47 octets or 376 bits. One symbol is translated as one bit. Therefore,

the transmission rate of the PHY layer is 1 Mb/s, which results in a packet transmission

time of TA = 376 µs. While the present interest is focused on reception of these particular

advertisements, any and all analysis can be modified to address other cases.

Preamble

(1 or 2 octets)

Access Address

(4 octets)

PDU

(2 to 257 octets)

CRC

(3 octets)

LSB MSB

Figure 2.4: Link layer packet format for the LE Uncoded PHYs[1, adapted from pg. 2562]
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CHAPTER 3

INDEPENDENCE OF SUCCESSIVE COLLISIONS

In this chapter, we will explore a particular system under study. In this system, a

number of items need to be scanned by a BLE scanner. These items are sorted into large,

fixed-sized clusters and move to a scanning area. Each member of the group is outfitted with

a BLE device that broadcasts packets, known as advertisements, to the system. The rate at

which the advertisements broadcast is determined by its interadvertisement time, which is

the time between two consecutive advertising events within the same data set as described

in [1] and discussed in Chapter 2.

We denote a scanning job (SJ) to be the operation in which a batch of advertisers

is scanned. If the system fails to successfully scan any item in a group, that operation is

marked as a failure (SJF). For this thesis, we ask how to set the interadvertisement time

that minimizes the scanning time while achieving a prescribed minimal probability of failure

to successfully scan every advertiser. This question was investigated in a recent working

paper. However, for this body of work, we examine the simulation program and analysis in

more detail within this chapter. First, we define how to minimize the probability of failure.

Next, we look at the key parts of the simulation program, as well as the results from multiple

runs.

3.1 Minimizing Probability of Scanning Job Failure

Recalling from Chapter 2, advertisers transmit advertisements sequentially on the

primary advertising channels (indexed at 37, 38, and 39). During an arbitrary advertiser’s

transmission, the scanner will only be listening to one of those channels at that time. Thus,

11



the load placed on a channel is the advertisement transmitted at the current scanning fre-

quency at an arbitrary point in time. We denote the load on a channel due to a single

advertiser as

ρA = TA/E
[
t̃IA
]
,

where TA is the packet transmission time and E
[
t̃IA
]

is the expectation of the interadver-

tisement time.

time time

Tagged
Advertiser

t0 t0 + TA t0 t0 + TA

TA

Arbitrary
Advertiser

time timet1 t1 + TAt1 t1 + TA

Figure 3.1: Illustrations of packet collisions

Fig 3.1 illustrates an advertisement collision between a tagged advertiser and an arbi-

trary advertiser. Shown are two cases of collision with the tagged advertiser’s transmission.

The left side shows a late arrival of an arbitrary advertisement, while the right side shows

the early arrival case. In chapter 2, we saw that TA represents the packet transmission time,

as noted in the figure. Suppose the tagged advertiser sends an advertisement at t0. If the

arbitrary advertiser’s advertisement overlaps with the tagged advertiser’s advertisement, we

say that the packets collided. In both instances, the arbitrary advertiser’s advertisement is

within the shaded area of the tagged advertiser’s advertisement, indicating a collision. Thus,

the vulnerable period is t1 ∈ (t0 − TA, t0 + TA) so that the length of the vulnerable period is

2TA.

Given the vulnerable period results in a failed scanned advertisement for the tagged

and arbitrary advertisers, the probability of failure due to overlap is 2ρA. Hence, the proba-

bility that an arbitrary advertiser does not interfere with a tagged advertiser’s advertisement
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is (1− 2ρA).

Define NA to be the batch size. Given a batch size of size NA, all transmitting in-

dependently, the probability that a given arbitrary advertisement is successfully scanned

is

SAA = P {SAA} = (1− 2ρA)NA−1 ≈ e−2ρA(NA−1),

where the approximation is based on the definition of the mathematical constant e and is

very good for large NA and a small ρA [10].

We have defined a scanning job (SJ) to be the scanning of a batch of advertisers

for a given period of time, TS. If all advertisers are successfully scanned at least once

during the scanning period, that SJ is considered a success. Otherwise, it is considered a

SJ failure, which is denoted by SJF. Assuming the event of independent, successful scans

by all advertisers with each advertiser having TS/E
[
t̃IA
]

advertising events per scan period,

the failure probability of a scanning job is given by

P {SJF} =

(
1− e−2

TA(NA−1)
E[t̃IA]

) TS
E[t̃IA]

. (3.1)

From the previous equation, we can rewrite the equation in the following form

P {SJF} = f(x) =
(
1− e−ax

)xTS = [
(
1− e−ax

)x
]TS , (3.2)

where x = 1/E
[
t̃IA
]

and a = 2TA (NA − 1). From (3.2), we see that f(x) is by minimized

for a particular value of x that is independent of TS [10]. Thus, we can remove TS from the

minimization process. In further analysis, we see that minimizing P {SJF} with the value

of x is equivalent to the same value that minimizes lnP {SJF}. Therefore, we can minimize

13



lnP {SJF} to find x. Thus,

x = argmin lnP {SJF} = argmin ln f(x) = argmin[x ln
(
1− e−ax

)
]. (3.3)

In order to find the argmin[x ln (1− e−ax)], we define that

y = 1− e−ax ⇒ x = − ln (1− y)

a
, (3.4)

Substituting 3.4 into 3.3, we want to find the following:

argmin ln f(x) = argmin g(y) = argmin

[
−1

a
ln (1− y) ln y

]
. (3.5)

From [10], proof of convexity of g(y) was obtained. Therefore we can obtain argmin g(y) by

solving g′(y) = 0 for y. Upon taking the derivative, we obtain the following:

d

dy
g(y) = −1

a

[
ln (1− y)

y
− ln y

1− y

]
. (3.6)

By setting g′(y) = 0, we removed − 1
a

and obtained the following result:

ln (1− y∗)
y∗

− ln y∗

1− y∗
= 0.⇒ (1− y∗) ln (1− y∗) = y∗ ln y∗

From here, it can be clearly seen that y∗ = 1− y∗, which results in y∗ = 0.5. With a =

2TA (NA − 1) and x = 1/E
[
t̃IA
]
, we solved for the expected value of the interadvertisement

time, which results in the following equation

E
[
t̃IA
]

= −2TA(NA − 1)

ln 0.5
=

2TA (NA − 1)

ln 2
. (3.7)
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By solving (3.1) for TS, we found

TS ≥ E
[
t̃IA
] ln(P {SJF})

ln 0.5
, (3.8)

3.2 Simulation Analysis

In this section, we will review the structure of the BLE simulation, which was written

in using SimPy, an open-source, object-oriented framework for discrete-event simulations in

Python. The simulations are performed in discrete steps in the form of an event queue,

where each event has a simulation time at which the event occurs.

In order to understand the system under study, we carefully modeled the BLE adver-

tisers and their advertisements along with their interactions with a BLE scan routine and

each other. The following section will go over three classes necessary to simulate these adver-

tisers and their advertisements as well as track the scanner’s frequency. Afterwards, we will

observe how the simulator behaves in the key methods section. Analysis of the simulation

results is next, followed by conclusion of the results.

3.2.1 Classes

Based on gathered insight from [1] and [10], the Advertiser class carefully models

identical, independent BLE advertisers. When creating an advertiser, the very first method

called is Initialization. Along with an ID number, the initialization method sets several

attributes, allowing us to keep track of the individual advertiser, their advertisements, and

their transmission status. At the end of the method, initialization calls the Arrive method.

In this method, arrival times for each advertisers’ advertising event, as described earlier, are

generated and placed in the event queue.

In the Arrival method, the Transmit method is called to process the transmission

of the advertisements within the advertising event. The Transmit method provides several

boolean and integer variables that aid in tracking and counting advertisements and their
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interactions. Within the Transmit method, an object of type Frame is created using the

Create Frame method and marked with an advertising frequency to broadcast. In this

method, three advertisements are created and placed in a transmit queue. Once ready to

transmit, the first three advertisements in the queue are sent out serially with the appropriate

advertising frequency. Additionally, the Transmit method calls the Check Collision method.

The Check Collision method takes the individual advertisement in transmission and

checks for overlap with other advertisements sent. Lastly, there are the Add Frame and

Remove Frame methods. With these methods, advertisements, given their ID number are

added or removed from the transmit queue at the beginning and end of their transmissions.

The Frame class is used to create advertisements for the individual advertisers. Fig

3.2 displays the executable code. As seen from this figure, the class only has an initialization

method, where it takes in parameters from the Advertiser class’s Create Frame method.

The frame time variable is packet transmission time, which is 376 µs. The start and end

variables set a timestamp for the advertisement in the event queue. boolean variables are

created in the case of advertisement collisions and unmatched frequencies with the scanner.

Additionally, there is a counter for cases where the scanner switches frequency in the midst

of a transmission.

class Frame:
def init (self, start, end, frame time, frequency):

self.start = start
self.end = end
self.frame time = frame time
self.frequency = frequency
self.collision = False
self.wrong freq = False
self.change frequency= 0

Figure 3.2: Frame class

The Global variables class serves to keep variables that are used and updated in

multiple parts of the program. We can see from Fig. 3.3 that there’s only one variable
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under the class. For the current frequency variable, it is first initialized to zero, which

represents the primary advertising channel index 37. From here, the variable is called during

the scan routine, which cycles through the three primary advertising channels in a round-

robin fashion. As the global variable consistently updates through the scan routine, it can

be called in the Transmit method of the Advertiser class without issues.

class G:
current frequency = 0

Figure 3.3: Global variables class

3.2.2 Key Methods

3.2.2.1 Generation of Advertisements

For our model, we assumed that all advertisers advertise independently of each other

and will start broadcasting at a random time relative to each other. As such, their first

advertisements will occur after a random period of time within their advertising interval to

the end of their advertising interval. This period of time is known as the forward recurrence

time of the interadvertisement time, which is illustrated in Fig. 3.4. If the density of the

interadvertisement time is given by fx̃(x), then the density of the forward recurrence time

of the interadvertisement time is given by 1−Fx̃(x)
E[x̃]

[10]. In this particular case, x̃ consists of

two parts, a deterministic part and a random part, with the result

x̃ = TAI + t̃AD,

x̃

x̃fx̃b

time

Figure 3.4: Illustration of forward recurrence time
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where t̃AD is uniformly distributed over (0, 10). Thus, x̃ is uniformly distributed over

(TAI, TAI + 10).

Through a series of mathematical manipulations, it can be shown that for the gen-

eral case of a uniformly distributed random period, the density function for the forward

recurrence time would be

fx̃f (x) =



1

(TAI+E[t̃AD])
, x ∈ (0, TAI)

2E[t̃AD]+TAI−x
2E[t̃AD](TAI+E[t̃AD])

, x ∈ (TAI, TAI + 2E
[
t̃AD

]
)

0, else.

. (3.9)

and after integration, the cumulative distribution is found to be

Fx̃f (x) =



x

(TAI+E[t̃AD])
, x ∈ (0, TAI)

1

(TAI+E[t̃AD])

[
−x2+2(TAI+2E[t̃AD])x−T 2

AI

4E[t̃AD]

]
, x ∈ (TAI, TAI + 2E

[
t̃AD

]
)

1, x > TAI + 2E
[
t̃AD

]
.

. (3.10)

Given the distribution of the forward recurrence times as in (3.10), the inversion

process for choosing variates from the distribution is to solve (3.10) for x in terms of Fx̃f (x),

which yields the following:

x =


(
TAI + E

[
t̃AD

])
Fx̃f (x), Fx̃f (x) ≤ TAI

TAI+E[t̃AD]

TAI + 2E
[
t̃AD

]
− 2
√[

1− Fx̃f (x)
]

E
[
t̃AD

] (
TAI + E

[
t̃AD

])
, Fx̃f (x) ∈

(
TAI

TAI+E[t̃AD]
, 1

)
,

(3.11)

which is used to generate arrival times of the initial advertisements. With the aforementioned

equations, we created a method within our simulator, as shown in Fig 3.5. As clearly seen, we

use an if-else statement that determines the value of x. The method is called during the Arrive

method of the Advertise class which is shown in Fig 3.6. The T AI and the Et AD variables
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def exceptional first arrival():
Fx = random.uniform(0,1)
if Fx ≤ (T AI/(T AI + Et AD)):

x = (T AI + Et AD) ∗ Fx
else:

x = T AI + (2 ∗ Et AD)−m.sqrt((1− Fx) ∗ (4 ∗ Et AD) ∗ (T AI + Et AD))
return x

Figure 3.5: Initial advertisement arrival generator

represent the advertising interval and the expectation of the advertising delay, respectively.

As mentioned earlier in Chapter 2, the advertising delay uses a uniform distribution from

0 to 10 ms. Thus, the expectation, or average, of the delay is 5ms. Obtaining the E
[
t̃IA
]

value from (3.7), we subtract E
[
t̃AD

]
from it to get tAI.

As noted earlier, Arrive is defined in the Advertiser class. From the code provided

in Fig 3.6, there is a counter that initializes to zero, indicating the very first advertising

event. The following two lines calls the first arrival method and uses the return value as a

delay in the event queue. Afterwards, the initial set of advertisements is sent to the Transmit

method, along with the counter as a frame ID. After the first advertising event, all subsequent

advertising events use the arrival formula indicated in the while loop. Though the while loop

is infinite, control is passed back to the simulation environment at the simulation termination

time.

def arrive(self):
i = 0
inter t = exceptional first arrival()
yield env.timeout(inter t)
env.process(self.transmit('Frame %d' % i))
i += 1
while True:

inter t = T AI + random.uniform(0, RAN INTER LENGTH)
yield env.timeout(inter t)
env.process(self.transmit('Frame %d' % i))
i += 1

Figure 3.6: Advertisement arrival generator
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In continuing our journey of generating advertisements, we turn to the Transmit

method, shown in Fig 3.7. With the advertising events created from the Arrive method, the

Transmit method calls the Frame class to create the individual advertisements and broadcasts

them sequentially through the primary advertising channels. To begin the process, we initial-

ize the variable, freq, to zero. The freq counter is used to denote which frequency is used to

broadcast an advertisement. This allows us to consistently stay with the G.current frequency

variable, which is utilized the same way.

The three advertisements are created in a while loop for the advertising event. The

code in the while loop is executed 3 times, representing the transmission of an advertisement

on each advertising channel. For each loop through the while statement, the Create Frame

method is called, generating an advertisement with a name and ID for tracking purposes.

Then the Add Frame method is called to add the advertisements to a transmit list for that

advertiser. We compare the frequency on the advertisement to the current frequency of the

scanner. If they match, then the Check Collision method is called. Otherwise, we marked

the boolean variable, frame.wrong freq, as True. This is to denote the unsuccessful scan of

the advertisement by the scanner.

From chapter 2, we saw that the advertisement’s transmission duration is 376 µs.

Additionally, there is a period of time between the start times of two consecutive advertise-

ment. In the Transmit method, these two variables are referred to as the FRAME TIME

and DEAD TIME variable in the Transmit method. These two variables are used to simu-

late the transmission of advertisements once they have been removed from the transmit list,

using the Remove Frame method. To accommodate for the other reasons advertisements fail

to be successfully scanned besides a collision, a couple of if statements are used. The first if

statement accounts for unmatched frequencies between the scanner’s current frequency and

advertisement. The second if statement accounts for the scanner changing frequencies during

the transmission of the advertisement. After those statements, an if/else statement is used

to update advertiser attributes for tracking and statistical purposes. At the end of the loop,
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def transmit(self, name):
freq = 0
while freq < 3 :

frame name = 3 * self.num initial transmits + freq
frame = self.create frame(FRAME TIME, freq)
frame id = (self.name, frame name)
self.add frame in transmit(frame, frame id)
if freq != G.current frequency:

frame.wrong freq = True
else:

self.num transmit += 1
self.check collision(frame, frame id, freq)

yield env.timeout(FRAME TIME)
self.remove frame in transmit(frame id)
if freq != G.current frequency and frame.wrong freq != True:

frame.change freq = True
self.num change freq += 1

yield env.timeout(DEAD TIME)
self.sum transmit = self.sum transmit + FRAME TIME
self.busy time = self.busy time + FRAME TIME
if frame.wrong freq = True:

self.num wrong freq += 1
elif frame.collision == True:

self.num collision += 1
else:

self.num success += 1
freq += 1

Figure 3.7: Transmit method

the freq is updated and returns back to the beginning of the while loop, until freq = 3.

3.2.2.2 Scan Routine

Recalling Fig. 2.2, the scanner listens for advertisements on an advertising channel

for the duration of its scan window. For our system, the scanner does not sleep. Therefore,

we will be utilizing part (b) of Fig. 2.2. In the scan routine, we model the scan frequency

as a variable that holds a value of 0, 1, or 2. These values represent the primary advertising

channels. From Fig 3.8, the scanner starts at 0, representing advertising channel 37. This

was initialized using the current frequency variable from the Global variables class. Once an

event occurs that calls the routine, the scanner scans for a certain duration. Then it updates
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the current frequency variable to 1, which represents advertising channel 38. Similar to the

Arrive method, it will continue moving through these 3 states in a while loop until the

simulation terminates.

def scan():
while True:

yield env.timeout(SCAN DURATION)
G.current frequency = (G.current frequency + 1) % 3

Figure 3.8: Scan routine

3.2.2.3 Reset Statistical Counters

In our simulation, each advertiser goes through a warm-up period. We denote this

as the variable, TRANSIENT TIME. Due to the various counter and boolean variables used

to gain precise statistical data , the Reset method ensures that the artifacts of the warm-up

period are eliminated from the steady state simulation results. Fig 3.9 displays the lines of

code for the Reset method. The method is called after each advertiser is made. During that

time, the simulation environment holds that state for the duration of the warm-up period.

Then it resets the appropriate values for each advertiser in the current scanning group.
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def reset statistical counters(advertisers):
print ”transient time is %s” %str(TRANSIENT TIME)
yield env.timeout(TRANSIENT TIME)
print”the statistics are reset at %s” %str(env.now)
for advertiser in advertisers:

advertiser.num transmit = 0
advertiser.sum transmit = 0
advertiser.num initial transmits = 0
advertiser.num transmit = 0
advertiser.busy time = 0
advertiser.num collision = 0
advertiser.num wrong freq = 0
advertiser.num change freq = 0
advertiser.num success = 0
advertiser.steady state time = 0
advertiser.Util = 0

Figure 3.9: Reset method

3.2.2.4 Detecting Collisions

There are three ways in which a specific BLE advertisement fails to be scanned

successfully. First, if the channel on which the advertisement is transmitted fails to match the

scanning frequency at any time during the transmission of the advertisement, the scanning

fails. Second, if the channel on which the advertisement is transmitted matches the scanning

frequency and the scanning frequency changes during the transmission of the advertisement,

the scanning fails. These two types of failures are checked in the Transmit method as shown

in Fig 3.7. The final method of a specific BLE advertisement failing to be scanned successfully

is from colliding with an advertisement from an arbitrary advertiser. Figure 3.10 displays

the code for process a collision between advertisements.
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def check collision (self, frame, frame id, frequency):
if frame.frequency != frequency:

print”something is wrong in check collision”
for key in Advertiser.frames in transmit.keys():

if key != frame id :
if Advertiser.frames in transmit[key].frequency == frame.frequency:

if (Advertiser.frames in transmit[key].end > frame.start) and
(Advertiser.frames in transmit[key].start < frame.end):

frame.collision = True
Advertiser.frames in transmit[key].collision = True

Figure 3.10: Check collisions method

The Check Collision method is called from the Transmit method, which occurs at

the beginning of each transmission of a BLE advertisement. The method takes the adver-

tisement, its unique ID, and the current frequency of its transmission as parameters for

the process. First it checks if the frequency from the parameter accurately matches what

the advertisement is supposed to have. Next, we cycle through every advertisement in the

transmit queue. We only want to check for collisions between the current (tagged) adver-

tiser’s advertisement and an arbitrary advertiser’s advertisement. Therefore, we do not want

the advertisement that matches the tagged advertisement, which is why we give them each

unique frame IDs. If an arbitrary advertisement does not have the same ID as the tagged

advertisement, we check to see if the frequency matches. Assuming at this point the channel

on which the tagged advertisement is transmitted matches the scanning frequency, an arbi-

trary advertisement, transmitted on the same channel, could hinder the successful scanning

of the tagged advertisement. Finally, recalling Fig. 3.1, the advertisements collide within

the vulnerable period of the start time of the tagged advertisement. Hence, we only need to

check the tagged advertisement at the beginning of its transmission. If there is an overlap

with the arbitrary advertisement, boolean variables for both is marked True for collisions.

This cycle continues until every advertisement in the transmit queue is checked with the

tagged advertisement.
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3.2.2.5 Transmission List

In the Advertiser class, a list is instantiated to keep track of all the advertisements

that will be transmitted, shown in Fig. 3.11. We denoted this as the frames in transmit

attribute in the program. In order to add or remove advertisements within the list to

simulated advertisements arriving and transmitting, the Add and Remove Frame methods

were created as shown in the figure. These methods are called in the Transmit method and

can be seen from Fig. 3.7. They both require the specific advertisement’s ID as a pointer to

its location within the transmit list.

class Advertiser(object):
frames in transmit = {}
def add frame in transmit(self, frame, frame id):

Advertiser.frames in transmit[frame id] = frame
return

def remove frame in transmit(self, frame id):
del Advertiser.frames in transmit[frame id]
return

Figure 3.11: Add and remove frame from transmit queue methods

3.2.3 Script Automation

We use a bash shell script to automate the process of making runs in the simulation per

batch size . After specifying model parameters, i.e number of advertisers, interadvertisement

time, scan time, number of repetitions per run, and the simulation time, the script is ready

to run. After each simulation run, statistics are gathered and logged into a file that is labeled

by date, time, and system parameters. Afterwards, we use the results to plot graphs to view

the system’s performance in a more elegant perspective.

3.2.4 Simulation Results

For our simulation model, we prescribed the target failure probability of a scanning

job (P {SJF}) to be 10−5 and simulated the scanning process for 1 million advertisements

given some prescribed number of advertisers. In order to obtain a sufficient sample of
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failures, each simulation run is replicated for a number of times such that the total number

of advertisements sums to 1 million, depending on the batch size. With the target failure

probability at 10−5, each batch size should yield about 10 failures per run. Table 3.1 displays

the batch sizes and the number of repetitions to sum to 1 million advertisers per run, as

well as the values for E
[
t̃IA
]

and TS . For example, a simulated run of 100 advertisers is

replicated 10000 times. We ran 30 simulation runs for each batch size to obtain a sufficient

number of samples of the mean number of failures. To achieve the true value of the mean

number of failures, we would have to run each batch size for an infinite amount of time,

which is not feasible.

NA E
[
t̃IA
]

TS Replica Runs

100 0.107 1.91 10000 30
200 0.216 3.80 5000 30
400 0.433 7.50 2500 30
800 0. 867 14.90 1250 30

1600 1.74 29.60 625 30

Table 3.1: Simulation parameters given number of advertisers

With the target P {SJF} = 10−5, we select the values of E
[
t̃IA
]

and TS to be placed

in the automation script. Using (3.7) and (3.8) with TA = 376 µs, we are able to derive

E
[
t̃IA
]

and TS for each batch size of advertisers. In the case of NA = 100 as an example,

E
[
t̃IA
]

= 0.107 and TS = 1.777. This equates to an average of TS/E
[
t̃IA
]

= 16.53 advertising

cycles within a scanning period. Analyzing more closely, we note that in this case only 53%

of the advertisers would generate 17 advertisements, with the remaining 47% only generating

16 advertisements. Ensuring a higher probability of success, we increased the scanning period

to 1.91 s, to ensure that all advertisers have at least 17 advertisements. Now, a little over

76.7% of the advertisers would have 17 advertising cycles and the other 24.3% would have

18. We complete this procedure for every batch size.

The following table displays a comparison between the simulation and analytical

results of the P {SJF} for NA ∈ {100, 200, 400, 800, 1600} with E
[
t̃IA
]
s set optimally and
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required scan periods based on independent collisions with the target P {SJF} set at 10−5

A 95% confidence interval, which is given by ±1.96 standard deviations, for each batch size

of the simulated results is also given in the table below. In comparing the simulated result

of P {SJF} with the analytical result, we see that there is a order of magnitude difference

between them, even with the confidence interval. Moreover, the simulated results fail to meet

the target P {SJF} of 10−5. This could suggest that the collisions may not be as independent

as we hypothesize.

NA TS (s) Simulation Analytical
P {SJF} CI [95%] P {SJF}

100 1.91 4.04e-05 ± 1.377e-06 4.43e-06
200 3.80 5.55e-05 ± 9.119e-07 5.03e-06
400 7.50 6.52e-05 ± 9.485e-07 6.09e-06
800 14.90 7.45e-05 ± 6.555e-07 6.69e-06

1600 29.60 7.74e-05 ± 4.542e-07 7.30e-06

Table 3.2: Comparison of failure probability of scanning job between the simulation and
analytical results

Let us define ñAA as the number of successful scans of an arbitrary advertiser over a

scanning period. Fig. 3.12 depicts the PMF of ñAA for NA = 100, E
[
t̃IA
]

= 0.107, TS = 1.91.

Observing when ñAA < 5 in the figure, it can be clearly seen that the simulation rests higher

than the analytical. For example, when ñAA = 1 signifying one successful scan for an

arbitrary advertiser, the simulation yields 4.45×10−4 while the analytical yields 1.21×10−4,

which is about 4 times less than the simulation. This signifies that the simulation presents

a higher probability of fewer successes than the analytical results, which attributes to the

higher probability of SJF in Table 3.2. Figures 3.13-3.16 show the same observation as the

previous figure, which shows consistency regardless of the size of NA. It can be reasoned from

the table and associated figures that the simulation presents a larger P {SJF} than would

be expected if collisions were independent. Therefore, it would be of interest to examine if

there is a dependence among collisions.

27



0 5 10 15 20
0

5 · 10−2

0.1

0.15

0.2

Number of successes over realization, n

P
{ñ
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Figure 3.12: PMF of a number of successes from simulation run for batch size of 100 adver-
tisers with a scanning period of 1.91 s and an average advertisement cycle of 0.107 s
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Figure 3.13: PMF of a number of successes from simulation run for batch size of 200 adver-
tisers with a scanning period of 3.80 s and an average advertisement cycle of 0.216 s
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Figure 3.14: PMF of a number of successes from simulation run for batch size of 400 adver-
tisers with a scanning period of 7.5 s and an average advertisement cycle of 0.433 s
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Figure 3.15: PMF of a number of successes from simulation run for batch size of 800 adver-
tisers with a scanning period of 14.9 s and an average advertisement cycle of 0.867 s
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Figure 3.16: PMF of a number of successes from simulation run for batch size of 1600
advertisers with a scanning period of 29.6 s and an average advertisement cycle of 1.74 s

3.2.4.1 Chapter Summary

In this chapter, the simulation program is presented with the relevant classes, meth-

ods, and key function to model the BLE scanning and advertising process for our particular

system. Parameters for each run were discussed as well as the reasoning behind them. Re-

sults were shown from the simulations and compared with our analytical findings. Analysis

of the simulated results present the presence of not only a higher probability of SJF, but the

failure to meet the prescribed P {SJF} target of 10−5. Thus, we will examine the nature of

dependence of collisions in the following chapter.
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CHAPTER 4

DEPENDENCE OF SUCCESSIVE COLLISIONS

In this chapter, we will examine the nature of dependence among advertisement col-

lisions. We will derive the probability of successive collisions, P {SC}, using mathematical

tools. Afterwards, analysis of successive collisions via simulations will be conducted. Fol-

lowing analysis, we will revisit finding the interadvertisement and scan times per batch size

and analyze the simulation results. Lastly, we will test the modified interadvertisement

time to determine its optimality compared to the interadvertisement time found under the

assumption of independent collisions.

4.1 Mathematical Analysis of Probability of Successive Collisions

The following analysis has been presented in [10]. However for continuity purposes,

it shall be discussed here as well. Though noted that while initial advertisement collision

between two arbitrary advertisers are independent, we are unsure whether the events of

the subsequent collisions are correlated to the first collision between those advertisers [10].

Therefore, using mathematical tools, we re-evaluate collision probabilities with respect to

that correlation. For the rest of this section, we denote the tagged advertiser as advertiser

A, while an arbitrary advertiser is denoted as advertiser B.

As seen in Fig. 3.1, suppose advertiser A starts transmitting an advertisement at

time t0 and overlaps with an advertisement from advertisement B. We know that advertiser

B started at some arbitrary time, t̃B,0, that is ±TA from the start time of advertiser A’s

advertisement transmission, which is noted as the interval (t0 − TA, t0 + TA). From [10], we

discovered analytically that the conditional probability of a repeated collision (RB,1) from
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advertiser B given the initial collision (C0) with said advertiser is

P {RB,1|C0} =
2TA
TD
− 4

3

TA
TD

= 0.0733,

which is entirely independent of E
[
t̃IA
]
. To put this value into perspective, suppose a group

of 100 items are going to be scanned, NA = 100. The E
[
t̃IA
]

for that batch size is 0.107 s.

Observing advertiser A, the probability that it collides with advertiser B is 2TA
E[t̃IA]

= 0.007.

Thus, the event of a repeated collision with the same advertiser is over 10 times more likely

to occur than colliding with a completely different advertiser. Furthermore, it was discovered

that the conditional probability of a second repeated collision (RB,2) given the first repeated

collision (RB,1) is P {RB,2|RB,1} = 0.0736 [10], which has slightly increased compared to

the P {RB,1|C0}. Though more analysis is needed, it can be seen that repeated collisions

have a more profound effect on the P {SJF} compared to independent collision events. The

following section will discuss analysis of successive collisions via simulations.

4.2 Simulation Analysis of Successive Collisions

Due to the findings on repeated collisions, we used a discrete Markov chain in our

simulations in order to observe the transition matrix of collisions. The objective is to see

the conditional probability of a future collision given a string of repeating collisions, starting

with the first advertisement’s transmission. In order to complete this task, we needed two

things: 1). additional methods in the simulation program and 2). a large sample size per

batch size.

To begin, we go back to the Advertiser class. From Fig. 4.1, we see the initializa-

tion method for when the object of type Advertiser is created, as mentioned in Chapter 3.

However, for observing correlated collisions, we added the ad record attribute. This variable

is utilized in the later part of the while loop in the Transmit method, as seen in Fig. 4.2.

After transmitting an advertisement in one instance in the loop, we check certain boolean

variables and update the appropriate counters. It is there that we see if the frame.collision
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variable was set to True. Should that be the case, then we append the ad record variable

with a boolean statement False, signifying that an advertisement collision for that adver-

tiser’s current transmission. Otherwise, a boolean statement True is appended to the list,

classifying that a collision did not occur for that advertiser’s current transmission. This is

done for every advertiser’s transmissions per batch size per repetition. In order to prevent

artifacts of the warm-up period from compromising the list, the ad record variable was also

in the Reset method.

def init (self, name):
self.name = name
self.num initial transmits = 0
self.x = 0
self.num transmit = 0
self.num collision = 0
self.num wrong freq = 0
self.num change freq = 0
self.num success = 0
self.ad record =[]
self.viableFrames=[]
self.initial reset completed = False
self.sum transmit = 0
self.mean transmit = 0
self.busy time = 0
self.steady state time = 0
self.Util = 0
env.process(self.arrive())

Figure 4.1: Initialization method
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def transmit(self, name):
freq = 0
while freq < 3 :

frame name = 3 * self.num initial transmits + freq
frame = self.create frame(FRAME TIME, freq)
frame id = (self.name, frame name)
self.add frame in transmit(frame, frame id)
if freq != G.current frequency:

frame.wrong freq = True
else:

self.num transmit += 1
self.check collision(frame, frame id, freq)

yield env.timeout(FRAME TIME)
self.remove frame in transmit(frame id)
if freq != G.current frequency and frame.wrong freq != True:

frame.change freq = True
self.num change freq += 1

yield env.timeout(DEAD TIME)
self.sum transmit = self.sum transmit + FRAME TIME
self.busy time = self.busy time + FRAME TIME
if frame.wrong freq = True:

self.num wrong freq += 1
elif frame.collision == True:

self.num collision += 1
self.ad record.append(False)

else:
self.ad record.append(True)
self.num success += 1

freq += 1

Figure 4.2: Modified Transmit method

To take advantage of the ad record list in the simulation program, we created the

Chain class. This class takes in the list as a parameter and instantiates attributes for a

discrete Markov chain. In this class, it creates an object of type Chain, as shown in Fig.

4.3. Since each ad record list contains a series of True and False boolean statements, we

need a method to convert them into numerical values suitable for statistical analysis. Shown

in Fig. 4.4 is the Convert 2 method. In computer programming languages, True and False

are equivalent to a binary 1 and a binary 0. Thus, the Convert method transforms binary

values from the ad record list into decimal values. For example, an advertiser had three
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transmissions, where the first one succeeds and the other two failed. This results in a binary

001, which equates to a 1 when using the Convert 2 method.

class Chain:
def init (self, run record):

if False in run record :
self.first collision = run record.index(False)

else:
self.first collision = len(run record)

self.first collision set = True
self.transitions = []

Figure 4.3: Chain class

def convert 2(lst):
n=len(lst)
j=lst[n-1]
for i in range(1,n):

j+ = lst[i− 1] ∗ 2∗∗(n− i)
return j

Figure 4.4: Convert 2 method

Now that we have a way to convert binary numbers and instantiate a Markov chain

object, we need a way to determine a state space by memory length, which represents the

length of successive failures for an advertiser we wish to observe. For example, a memory

length of 3 means the state space is 0, 1, 2, 3, 4, 5, 6, 7. This creates the number of transitions

going into and from each state from which transition probabilities are obtained. Thus, we

created the Correlate Failures method, which is displayed in Fig. 4.5. In this method, the

ad record list for each replica of an advertiser in a batch size per simulation run is used as

a parameter along with the variable memory. Raised to the power of 2, memory is used to

determine the number of states in a state space. For example, if memory equal 3, the number

of states in a state space is 8. Next, the method creates a object of type Chain, using the

ad record as a parameter. Afterwards, the method creates columns and vectors in the Chain

object equal to the number of states in a state space. Using the earlier example, this will
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create a 8x8 matrix. Finally, the method goes through the ad record list and completes the

transition matrix, given the memory length. Going back to the example, we already have a

8x8 matrix. Let ad record have a length of 11, which means there is 211 combinations of True

and False in a list. Taking one instance of the list, it goes through the last for loop 8 times,

which is the difference between the length of the list and the memory. Inside the for loop, the

transition values from one state to another are calculated and added to the transition matrix,

using the Convert 2 method. The end result is an estimate of the conditional probability for

correlated failures given the memory length in the form of transition matrix for a particular

ad record list for a replica of an advertiser in a batch size per simulation run.

def correlate failures nStep(memory,run record):
num states = 2∗∗memory
x = Chain(run record)
x.transitions = [0] ∗ num states
for i in range(num states):

x.transitions[i] = [0] ∗ num states
for i in range(x.length−memory):

j = convert 2(run record[i : i+memory])
k = convert 2(run record[i+ 1 : i+ 1 +memory])
x.transitions[j][k]+ = 1

return x

Figure 4.5: Correlate failure method

Now that there is a transition matrix per replica of an advertisement in a batch size per

simulation run, we can collect the mean value for an entire batch size. This is done through

the Compute Transition method, shown in Figure 4.6. First, we compute the number of

states using the memory parameter, similar to the Correlate Failures method. Then columns

and vectors are created and initialized in the cum transition variable. The cum transition

variable acts as a summation of each transition matrix per replica of an advertisement in

a batch size per simulation run, which were gathered in the parameter all chains. The

summation takes places in a for loop after the initialization of the cum transition variable.

Afterwards, the sum of each row is calculated. Finally, the average transition probability
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from one state to another is computed using the cum transition variable and the row sum.

def compute transition probabilities(memory,all chains):
num states = 2∗∗memory
cum transition = num states ∗ [0]
for i in range(num states):

cum transition[i] = num states ∗ [0]
for run chains in all chains:

for ec in run chains:
if len(ec.transitions) > 0:

for i in range(num states):
for j in range(num states):

cum transition[i][j]+ = ec.transitions[i][j]
trans probs = num states ∗ [0]
for i in range(num states):

trans probs[i] = num states ∗ [0]
row sum = sum(cum transition[i])

if row sum != 0 :
for j in range(num states):

trans probs[i][j] = float(cum transition[i][j])/row sum
s = num states− 1
return

Figure 4.6: Compute transition method

Though we have created the necessary tools in the simulation, a large sample size

must be gathered in order to get a decent sizable string of repeated collisions. We decided

that a memory length of 8 would by acceptable, as 28 = 256, which gives us 256 transition

states. However, the parameters in Fig. 3.1 will not suffice. For example, with the NA = 800,

E
[
t̃IA
]

= 0.86684, and TS = 14.9, each advertiser would advertise TS
E[t̃IA]

= 17 times. Since

only 17 advertisements are broadcast per cycle, only a small fraction of the states will be

visited. Thus to ensure more visits to each state, either longer scan times or more replicas

are required. For the purposes of this study, we chose to increase the scan times for each

batch size to 12,000 sec. To maintain the same number of advertisements per cycle across

all batch sizes, the number of replicas were adjusted to reflect the consistency. Figure 4.1

displays the new simulation parameters for transition probability analysis.
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NA E
[
t̃IA
]

TS Replicas Runs

100 0.107 12000 96 30
200 0.216 12000 48 30
400 0.433 12000 24 30
800 0. 867 12000 12 30

1600 1.74 12000 6 30

Table 4.1: Simulation parameters given number of advertisers for transition probability
analysis

Table 4.2 displays the results from the simulation analysis of the transition probabili-

ties per batch size given the memory length. From the table, we can see that the probability

of repeated collisions, P {Cn|Cn−1, Cn−2, . . . , C0} [10], does increase as the memory length in-

creases as will. Additionally, it is bigger than the 0.5 we found in our independence results

and seems to be converging to a value in the neighborhood of 0.6.

Memory Mean Collision Return Probability
Length Number of Advertisers

100 200 400 800 1600

1 0.521 0.525 0.525 0.526 0.527
2 0.536 0.540 0.541 0.542 0.543
3 0.547 0.552 0.554 0.555 0.556
4 0.556 0.563 0.565 0.566 0.567
5 0.564 0.572 0.574 0.575 0.577
6 0.571 0.580 0.582 0.584 0.586
7 0.578 0.587 0.590 0.592 0.593
8 0.583 0.593 0.597 0.599 0.600

Table 4.2: Conditional probabilities of collision for a range of group sizes and memory lengths

4.3 Revisiting Optimal Interadvertisement and Minimal Scan Times

With the increase in the probability of repeated collisions, we went back to (3.7) and

(3.8). We know that the P {SJF}’s are dependent on the probability of repeated collisions,

due to the fact that the repeated collisions are the reasons for the SJF. Based on Table 4.2,

we arbitrarily chose P {Cn|Cn−1, Cn−2, . . . , C0} = 0.6; however, a more thorough analysis will

be needed to determine if this was the correct value. For now, we assume that the transition
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matrix will converge to this value. As such, we used the difference between 0.6 and 0.5 to

establish a bias value B so that (3.7) and (3.8) becomes

E
[
t̃IA
]

=
2TA(NA − 1)

ln[2/(1 +B)]
, (4.1)

and

TS ≥ E
[
t̃IA
] ln(target P {SJF})

ln[0.5/(1 +B)]
. (4.2)

Similar to chapter 3, we set the target P {SJF} to be 10−5 and simulated the scanning

process for 1 million advertisers. With TA = 376 µs, we derived new values E
[
t̃IA
]

and TS for

each batch size of advertisers using the modified equations to be placed in the automation

script.. Utilizing NA = 100 as an example like in the previous chapter, E
[
t̃IA
]

= 0.1245 and

TS = 2.398 with the modified equations. This equates to an average of TS/E
[
t̃IA
]

= 19.26

advertising cycles within a scanning period. Analyzing more closely, we note that in this

case only 74% of the advertisers would generate 20 advertisements, with the remaining 26%

only generating 19 advertisements. To maximize the number of advertisements per cycle, we

increased the scanning period to 2.59 s, raising the amount of advertisements per cycle for

all advertisers get at least 20 advertisements and ensuring a higher probability of success.

We complete this procedure for every batch size. Table 4.3 displays the batch sizes and the

number of repetitions to sum to 1 million advertisers per run, as well as the modified values

for E
[
t̃IA
]

and TS .

NA E
[
t̃IA
]

TS Replicas Runs

100 0.1245 2.59 10000 30
200 0.2503 5.11 5000 30
400 0.5019 10.14 2500 30
800 1.005 20.2 1250 30

1600 2.011 40.32 625 30

Table 4.3: Simulation parameters given the number of advertisers, with modified interadver-
tisement and scan times
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4.4 Simulation Analysis with Modified Interadvertisement Times

A comparison between the independent and dependent results of the P {SJF} for

NA ∈ {100, 200, 400, 800, 1600} via simulations is presented in Table 4.4. The table displays

the required scan periods based on optimal interadvertisement times derived from (3.7) and

(4.1), with the target P {SJF} set at 10−5. A 95% confidence interval for both independent

and dependent results is also given in the table below. From the table, we can see that the

dependent results successfully meet the target P {SJF}. For instance, at NA = 1600, the

P {SJF} equals 4.87 × 10−6. Even with the upper end of the confidence interval, it comes

out to be 8.351 × 10−6, which is still less than the prescribed target of 10−5. However, the

confidence intervals of all dependent results are looser compared to the confidence intervals

of the independent results. This is caused by a corresponding reduction in the number of

failure events [10].

NA Independent� Dependent
TS (s) P {SJF} CI [95%] TS (s) P {SJF} CI [95%]

100 1.91 4.04e-05 ± 1.377e-06 2.59 1.83e-06 ± 2.064e-06
200 3.80 5.55e-05 ± 9.119e-07 5.11 3.77e-06 ± 4.358e-06
400 7.50 6.52e-05 ± 9.485e-07 10.14 3.50e-06 ± 4.045e-06
800 14.90 7.45e-05 ± 6.555e-07 20.20 4.73e-06 ± 3.951e-06

1600 29.60 7.74e-05 ± 4.542e-07 40.32 4.87e-06 ± 3.481e-06

Table 4.4: Comparison of failure probability of scanning job via simulations between the
Independent and Dependent collisions

With ñAA as the number of successful scans of an arbitrary advertiser over a scanning

period like in the previous chapter, Fig. 4.7 depicts the PMF of ñAA for NA = 100, E
[
t̃IA
]

=

0.1245, TS = 2.59. Concerning only with ñAA < 5 in the figure, the simulation plot seems

to rests on top of the analytical plot, symbolizing that the simulation results are fairly

congruent with the analytical results. Figures 4.8-4.11 display similar observation as the

previous figure, again illustrating consistency regardless of the size of NA.

40



0 5 10 15 20
0

5 · 10−2

0.1

0.15

0.2

Number of successes over realization, n

P
{ñ
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Figure 4.7: PMF of a number of successes from simulation run for batch size of 100 advertisers
with a scanning period of 2.59 s and an average advertisement cycle of 0.1245 s
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Figure 4.8: PMF of a number of successes from simulation run for batch size of 200 advertisers
with a scanning period of 5.11 s and an average advertisement cycle of 0.2503 s
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Figure 4.9: PMF of a number of successes from simulation run for batch size of 400 advertisers
with a scanning period of 10.14 s and an average advertisement cycle of 0.5019 s
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Figure 4.10: PMF of a number of successes from simulation run for batch size of 800 adver-
tisers with a scanning period of 20.2 s and an average advertisement cycle of 1.005 s
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Figure 4.11: PMF of a number of successes from simulation run for batch size of 1600
advertisers with a scanning period of 40.32 s and an average advertisement cycle of 2.011 s

Though it can be clearly seen that correlated collisions effect the P {SJF}, there is

still uncertainty due to the the difference in scanning times from Table 4.4. Therefore, it is

imperative that we clarify if the E
[
t̃IA
]

derive from the modified equation is truly optimal.

4.5 Testing Optimality of Interadvertisement Time

In this section, we test optimality of interadvertisement times derive from the modified

equation for each batch size. In order to accomplish this, we ran the interadvertisement

times, obtained under independent assumption for each batch size, with the scanning times

determined under the correlated collision scenario. The purpose of this exercise is to observe

if there is a lower probability of SJF when the interadvertisement time is based on correlated

collisions. Table 4.5 shows the parameters used in the automation script.
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NA E
[
t̃IA
]

(s) TS (s) Replicas Runs

100 0.107 2.59 10000 30
200 0.216 5.11 5000 30
400 0.433 10.14 2500 30
800 0.867 20.2 1250 30

1600 1.74 40.32 625 30

Table 4.5: Simulation parameters given the number of advertisers, with scanning time un-
der correlated collision scenario and interadvertisement time under independent collision
assumption

Table 4.6 displays a comparison between the independent and dependent E
[
t̃IA
]

times per batch size with 95% confidence interval. Though the dependent P {SJF} exceed

the prescribed target P {SJF}, the independent E
[
t̃IA
]

times give slightly better results

on average. However, the confidence intervals are larger than the mean average for the

results. The reasoning could be the improper amount of runs or replicas. Thus, we reran

the simulation parameters again from Table 4.6, but increased the number of replicas for

each batch size by 4000. This should reduce the standard deviation of the P {SJF} for each

batch size by a power of 2. Table 4.7 shows the new comparison results.

NA TS (s) Independent� Dependent
E
[
t̃IA
]

P {SJF} CI [95%] E
[
t̃IA
]

P {SJF} CI [95%]

100 2.59 0.107 2.13e-06 ± 2.568e-06 0.1245 1.83e-06 ± 2.058e-06
200 5.11 0.216 2.83e-06 ± 2.92e-06 0.2503 3.77e-06 ± 4.351e-06
400 10.14 0.433 3.50e-06 ± 3.802e-06 0.5019 3.50e-06 ± 4.038e-06
800 20.2 0.867 3.40e-06 ± 3.90e-06 1.005 4.73e-06 ± 3.959e-06

1600 40.32 1.74 4.33e-06 ± 4.547e-06 2.011 4.87e-06 ± 3.489e-06

Table 4.6: Comparison of failure probability of scanning job via simulations between the
Independent and Dependent interadvertisement times with the same scanning time
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NA TS (s) Independent� Dependent
E
[
t̃IA
]

P {SJF} CI [95%] E
[
t̃IA
]

P {SJF} CI [95%]

100 2.59 0.107 1.81e-06 ± 1.066e-06 0.1245 1.87e-06 ± 1.298e-06
200 5.11 0.216 2.85e-06 ± 1.448e-06 0.2503 3.23e-06 ± 1.380e-06
400 10.14 0.433 3.63e-06 ± 1.837e-06 0.5019 3.80e-06 ± 1.844e-06
800 20.2 0.867 4.10e-06 ± 2.109e-06 1.005 4.32e-06 ± 2.376e-06

1600 40.32 1.74 4.18e-06 ± 2.106e-06 2.011 4.55e-06 ± 2.296e-06

Table 4.7: Comparison of failure probability of scanning job via simulations between the
Independent and Dependent interadvertisement times with the same scanning time and
4000x the number of original replicas

Shown from Table 4.7, the independent E
[
t̃IA
]

times still fair better than the depen-

dent E
[
t̃IA
]

times. However, the confidence intervals are reduced by a significant degree,

making them tighter than previous table. Thus, large amounts of replicas per batch size are

needed as hypothesized.

4.6 Chapter Summary

In this chapter, the simulation program was modified to investigate the nature of

dependence amongst advertisements. Thus new methods and a class were added to help

simulate a discrete-Markov chain, which were discussed in detail. Additionally, equations for

finding the interadvertisement and scan times were modified and utilized in new parameter

settings. New results were shown and compared to results found in the previous chapter.

Analysis of the comparison display that the independent collision results are slightly better

than correlated collision results when interadvertisement time is based on using the scan time

under assumption of correlated collisions were used for both independent and dependent

interadvertisement times. This shows that longer scanning times are needed but P {SJF} is

not excessively sensitive to interadvertisement time.

45



CHAPTER 5

CONCLUSION

In this thesis, a simulation program was presented in order to examine the probability

of scanning job failure conducted by a BLE scanner on a group of items, where each item was

outfitted with a BLE advertiser. These items were sorted into large batch sizes and moved

to the scanning area. The objective is to determine the optimal interadvertisement time that

minimizes the scanning time while achieving a prescribed minimal probability of failure to

successfully scan every advertiser. We utilized our analytical model, under the assumption

that the advertisement collisions were independent, to set the parameters of our simulation

program. Upon noticing inconsistencies between the analytical and simulation results, we

decided to explore the nature of dependence in collisions between the target advertiser and

the collection of other advertisers.

In order to develop the simulation program, we took great lengths to understand the

inner working of the BLE advertising and scanning process. We understood how the BLE

advertisers send their advertisements, though not according to a Poisson process. We learned

how the scanner operates in either one of two modes: discontinuous and continuous scanning

modes. Furthermore, we learned the importance of the adjustable parameters that can affect

the performance in the simulation program. We have done extensive analytical modeling and

modified and validated our analytical work through the simulation results presented herein.

Though we made some findings concerning the failure probability of a scanning job,

there are additional investigations needed for this experiment. First, more analytical work

is needed on the probability of successive collisions. In the previous chapter, we arbitrar-

ily chose a number from the transition probabilities to calculate the bias in our modified
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equations. We would need to do more extensive simulations into the transition probabilities

in order to get a more precise value. The simulation results indicated that the PSJF is

only slightly sensitive to the interadvertisement time setting over a fairly broad range. For

example, for a system with 800 advertisers, optimal interadvertisement times were found to

be 0.867 and 1.005 respectively when based on independent and correlated collisions. These

interadvertisement times have a percent difference of 14.7%. When the scanning period

is based on correlated collisions, the probabilities of scanning job failure are found to be

4.10 × 10−6 and 4.32 × 10−6 with standard deviations of 2.109 × 10−6 and 2.376 × 10−6,

respectively. Thus, while choosing a suitable interadvertisement time is important, the more

important issue is minimizing scanning period to achieve the target probability of failure.

The minimizing scanning period must be determined on the basis of correlated failures.
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