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ABSTRACT  

This dissertation primarily focuses on use of resonant ultrasound spectroscopic (RUS) 

measurements to investigate temperature- and pressure-dependent elastic properties of select 

materials: porous ceramics, which are used in a wide range of material applications, and 

thermoelectric tin selenide (SnSe), which is widely studied as an efficient thermoelectric material. 

RUS experiments were conducted on: ceramics used in LG fuel cells, alumina, zircona and titania, 

to explore their elastic behavior under the variation of hydrostatic pressure over the low- and high-

pressure regimes (0.02 – 800 psi). All the porous ceramics exhibited a reversible material softening 

mechanism with increasing hydrostatic pressure. The comparison of material stiffening with 

increasing pressure observed from fully dense ceramics validates the poroelastic behavior of 

porous ceramics described by Biot’s theory of poroelasticity. The influence of saturated gas type 

and their physical properties on the above elasticity variation with hydrostatic pressure was 

analyzed qualitatively as well as quantitatively by using the helium, nitrogen, and argon gas 

saturation. The observed porous material stiffness with increasing temperature was explained by 

the partial sintering and microcrack healing mechanisms. Single crystalline SnSe has an 

orthorhombic Pnma phase that undergoes a displacive phase transition transforming into a Cmcm 

phase at ~810 K. Temperature dependence of elastic constants (𝐶𝑖𝑗) of SnSe were measured at 

elevated temperatures in the range of 295 – 773 K. The measured elastic constants were then used 

to explain the elastic anisotropic behavior, structural change, and the thermal transportation 

mechanisms of SnSe at higher temperatures. The occurrence of the phase transition at 803  10 K  
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was analyzed by the temperature-dependent normal mode frequency trends. The validation of the 

measured elastic constants and derived elastic properties are discussed using the previously 

reported theoretical and experimental studies. 
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CHAPTER 1 

INTRODUCTION 

Innovation of new materials is one of the most important roles in the development of 

science and technology. In early stages, engineering inventions had been limited by access to only 

naturally occurring materials, which could not be used for wide variety of engineering applications 

due to their inflexible material properties. Therefore, researchers put their energies into developing 

technologies to synthesize new substances with controlled material properties in order to enhance 

the utility of the material. Currently, nanotechnology and 3D printing techniques are the leading 

technologies in the material fabrication field  [1–3]. Along with the discovery of new materials, 

the development of material characterization techniques is essential to understand and study 

material properties and their behavior in various chemical, thermal, and mechanical environments.   

Elasticity is considered as a fundamental mechanical property of solid materials. It 

measures the material deformation to applied stress. Strain (𝜀𝑖𝑗) and stress (𝜎𝑖𝑗) are the main 

physical measurements that determine the elasticity of a material. In a three-dimensional 

framework, those parameters are expressed as tensors and Hooke’s law is used to link them with 

the parameter called elastic stiffness tensor (𝑐𝑖𝑗𝑘𝑙) as 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 [4–6]. The elements of the 

elastic stiffness tensor are known as elastic constants, and they are a measure of the second 

derivative of the interatomic potential energy with respect to strain [7]. Elastic constants are a 

sensitive probe of the interatomic bonds and their dynamics in response to the variation of physical 

conditions such as temperature and pressure. Therefore, measurements of elastic constants can be 
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used to study the lattice dynamics and phase transformations within the crystal symmetry [8].  

Elastic constants of a given material can be used to calculate its elastic moduli: Young’s modulus, 

bulk modulus, shear modulus, Poisson ratio, and wave velocities [9,10]. Since lattice vibrations 

(phonons) are the main source of heat propagation through the solid materials, elasticity 

measurements can be used to determine many thermodynamic properties such as Debye 

temperature, heat capacity, lattice thermal conductivity, and phonon mean free path  [11,12]. 

Acoustical nondestructive techniques are widely used for measuring elastic constants 

because of their key advantages over the conventional measuring techniques such as static loading, 

inelastic neutron scattering, and X-ray scattering under constants stress. The pulse-echo technique, 

which measures the flight time of an ultrasound pulse through the material to calculate the wave 

velocities, is one of the simplest methods of measuring elastic constants of solids  [13,14]. This 

technique is commonly used to make room temperature elasticity measurements of highly 

symmetric crystal structures for which fewer elastic constants are required. However, use of the 

pulse-echo technique with low symmetric crystals is challenging as it requires multiple velocity 

measurements in each crystallographic direction. Also, this technique is difficult at elevated 

temperatures because of the working temperature limitations of the transducer elements and 

coupling agents.  

A resonance method called Resonant Ultrasound Spectroscopy (RUS) was introduced in 

the 1990s as the most precise and efficient experimental technique for measuring elastic 

constants [15–18]. In RUS, a resonance spectrum of the test specimen is measured to compute the 

elastic tensor. An acoustic transducer is used to excite the specimen in a swept-frequency 

continuous wave (CW) mode over a selected frequency range. At the resonance, where the drive 

frequency matches the natural vibrational frequency of the sample, the sample surface shows a 



 

3 

 

maximum displacement which is read by a second transducer to obtain the resonance spectrum. 

Natural vibrational frequencies of a solid continuum are mainly determined by its geometry, mass 

density, and the elastic constants. The measured frequencies are compared to frequencies 

computed using the Rayleigh Ritz method, and elastic moduli are optimized using non-linear 

regression methods [19]. The enhancement of the computational power of modern computers 

facilitates this technique to compute the elastic tensors of low symmetric crystals with different 

continuum shapes such as spheres, rectangular parallelepiped, and cylinders, from a single 

measurement of the resonance spectrum [20]. Use of millimeter sized test specimens and requiring 

point contact coupling with transducers without any coupling medium provide much flexibility in 

constructing the RUS setup. Compared to other mechanical testing methods, RUS has gained 

interest among the experimental material science fields due to its precision, ability to resolve all 

elastic constants in a single measurement, and ability to take measurements over a range of 

temperatures and hydrostatic pressures [21]. 

This dissertation primarily focuses on use of resonant ultrasound spectroscopic 

measurements to investigate the temperature and pressure effects on the elastic properties of select 

materials: porous ceramics, which are used in wide range of material applications, and 

thermoelectric tin selenide (SnSe), which is widely studied as an efficient thermoelectric material. 

 

1.1   Elasticity of Porous Materials 

 In recent years, use of porous materials in engineering applications has significantly 

increased due to enhanced mechanical, structural and thermal properties over typical fully dense 

materials. Both naturally occurring and engineered porous materials consist of two phases: solid 

skeleton and pores saturated with fluid (Figure 1.1). The porosity, skeleton-pore structure 
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arrangement, and the properties of both solid and fluid are the key factors that characterize the 

overall mechanical, thermal, and chemical properties of porous solids. Geological rocks and 

biological tissues are some examples of naturally occurring porous materials. Use of natural porous 

substances for material applications is limited due to their unreliable material properties and 

instability at different physical conditions such as temperature and pressure. Therefore, 

engineering and material science communities have shown their interest in the investigation and 

use of suitable engineered porous materials with tunable material characteristics  [22–24]. As a 

result, porous ceramics have been introduced as an ideal candidate in a wide range of material 

applications in the fields of aerospace, automotive, biomedical, energy storage devices, filters, and 

many others. 

 

Figure 1.1. (a) Schematic diagram of a porous structure and (b) SEM image of a porous ceramic 

material. 

  

 The use of porous materials is most common in aerospace applications, because of their 

thermal insulation, acoustic damping, and lightweight structural properties. Porous ceramics 

exhibit good thermal insulation quality with low thermal conductivity and high stability at extreme 

temperature conditions  [25,26]. The porosity-dependent thermal conductivity provides the 

freedom to control the insulation quality. This thermal insulation property and the improved 

oxidation resistance of porous ceramics are used to design combustion engines and many other 

structural components of aircrafts, which are operated at high temperatures [27,28]. Acoustic 
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damping, the dissipation of acoustic energy, is another material property of porous solids  [29]. In 

porous materials, the propagation of acoustic waves is influenced by both solid and fluid phases. 

As the vibrations propagate through the porous materials, the vibrational energy transfers from the 

solid medium to fluid medium, which is known as the acoustic radiation. When the vibrations in 

the fluid medium meet the solid medium, only a fraction of the energy is transmitted to the solid, 

leaving most of the energy trapped in the fluid. The trapped energy in the fluid medium vibrates 

the fluid phases creating local resonators inside the porous material; eventually the vibrational 

energy dies due to the viscothermal energy dissipation. This damping property is widely used in 

noise and vibration reduction applications. Aircraft designers conduct research on use of porous 

ceramics in building their structures to suppress the unwanted noise and vibrations [30]. Currently, 

researchers have shown their attention to fabricate porous materials which can be used as acoustic 

metamaterials for the noise reduction applications  [31,32]. 

The fluid dynamic properties through the porous materials are used in filtration 

applications, gas sensors and gas storage devices  [33–35]. These applications are widely studied 

and used in the fields of hydrogeology and petroleum engineering. Apart from that, in most of 

solid oxide fuel cells, porous ceramics are used as anode/cathode and interconnecting 

materials [36,37]. These solid oxide fuel cells operate at high temperatures and different chemical 

reaction environments. Therefore, the materials used in fuel cells should fulfill the thermal, 

mechanical, and chemical stability at extreme physical conditions. 

Since the material applications highlighted above are operated in various chemical, 

temperature, and pressure environments, study of the mechanical behavior of porous materials to 

the applied external physical conditions is important in selection of the most suitable material to 

gain the maximum use of the materials. Elasticity provides a broad description about the 



 

6 

 

mechanical behavior of the solid materials. Unlike fully dense solids, elasticity of porous materials 

is mainly determined by the solid structure as well as the pore structure and their saturation. In 

early 1950s, M. A. Biot, introduced the basis and formulations of the theory of poroelasticity, 

which describes the effects of pore saturated fluid and skeleton arrangement on the elasticity of 

porous materials [38–41]. According to Biot’s poroelasticity theory, the structure of the 

generalized Hooke’s law has been changed in the presence of the fluid phase. This theory suggests 

a modification of stress and strain tensors with additional parameters that depend on the porosity 

and the hydrostatic pressure.  This modification extends the form of the usual elastic stiffness 

tensor, 𝐶𝑖𝑗, from  6 × 6 to 7 × 7. The new tensor elements, poroelastic constants, are used to 

determine the effective elastic moduli and hence to describe the elasticity of porous 

materials [42,43]. Biot’s theory implies that the elasticity of the porous material primarily depends 

on the porosity and the pressure of the pore-saturated fluid.  

 Based on the poroelastic theory, both theoretical and experimental researches have been 

carried out to study the elasticity of porous materials under different material, physical, and 

structural conditions. Most of the theoretical work has focused on the effects of porosity, the shape 

of pores, and pore arrangement on the elasticity of model porous materials [44,45]. Several 

theoretical studies have proposed theoretical models to understand the temperature, pressure, and 

porosity-dependent elasticity [46–49]. To date, a number of experimental studies have validated 

the proposed models [50–55]. 

However, there is a limited literature on experimental studies which characterize the 

influence of the pore-saturated fluid and its pressure on the elasticity of porous specimens. This 

study seeks to use resonant ultrasound spectroscopy (RUS) to experimentally illustrate the effects 

of saturated fluid properties on the elasticity of the porous material. A study of hydrostatic pressure 



 

7 

 

and temperature-dependent elasticity of selected porous ceramics will be addressed in this 

dissertation. 

 

1.2   Elasticity of Thermoelectric Single Crystalline Tin Selenide (SnSe) 

Thermoelectricity is the phenomenon of direct conversion of a temperature gradient across 

a material into an electrical potential difference, created by electron flow and vice versa. In 1821, 

Thomas Seebeck discovered thermoelectricity by demonstrating the growth of potential difference 

across two metal junctions maintained at different temperatures. When one end of the material is 

kept at a higher temperature than the other, the electrons in the hot region gain thermodynamic 

energy and diffuse toward the cold region by creating a potential difference between two ends. 

The measured potential difference ∆𝑉 is propotional to the temperature gradiant ∆𝑇 and the 

proportionality constant is known as the Seebeck coefficient S, which directly relates to the 

efficiency of the thermoelectric action  [56–58]. 

 

Figure 1.2. Schematic of the thermoelectric device made with n- and p-type semiconductors. 
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 The efficiency of converting thermal energy into electricity by thermoelectric materials is 

determined by the dimensionless figure of merit 𝑧𝑇, which is defined as 𝑧𝑇 = 𝑆2𝜎𝑇 𝜅𝑇⁄ , where S, 

𝜎, T and 𝜅𝑇 are Seebeck coefficient, electrical conductivity, operating temperature, and total 

thermal conductivity respectively [59]. The efficiency of the thermoelectric action is proportional 

the electrical conductivity but inversely proportional to the total thermal conductivity. The total 

thermal conductivity is a combination of the electronic thermal conductivity and the lattice thermal 

conductivity. However, most electrical conductors are also good thermal conductors. Therefore, 

over the past two decades, researchers have carried out both experimental and theoretical studies 

to develop thermoelectric materials which show high electrical conductivity and low thermal 

conductivity to maximize the efficiency, 𝑧𝑇 [60–62]. 

 Single crystalline SnSe is a widely studied thermoelectric material due its reported high 

thermoelectric efficiency of 𝑧𝑇 ~ 2.6 at T > 900K, arising from its significantly low thermal 

conductivity compared to other thermoelectric materials such as PbTe, PbSe, and etc [63]. The 

ultralow thermal conductivity of SnSe has been attributed to its strong lattice anharmonicity and 

elastic anisotropy explained by the week bond arrangement in its crystal structure [64,65]. Single 

crystalline SnSe has a layered orthorhombic (Pnma) crystal structure at room temperature and it 

undergoes a structural phase transition from Pnma phase to Cmcm phase at T ~ 810 K  [66–68]. 

These findings motivate the current research fields on SnSe to explore its thermal transport and 

structural properties at higher temperatures in order to get better understanding of their 

contributions on the enhancement of the thermoelectric performance [69,70]. Since elasticity 

measurements are often used to determine the properties of lattice vibrations, thermal 

transportation, and structural arrangements within crystal structures, numerous studies have been 

carried out to measure the elasticity of SnSe. However, these studies have been limited to 
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theoretical findings as the experimental measurements are yet challenging due to the low symmetry 

of the crystal structure, elastic anisotropy and lattice anharmonicity  [71–73]. Orthorhombic SnSe 

has nine independent elastic constants in its elastic stiffness tensor. To date, no work has reported 

the experimental determination of these nine elastic constants and their temperature dependency. 

The lack of information of the elasticity motivated us to make the RUS measurements to evaluate 

the elastic tensor of single crystalline SnSe and its temperature dependency. Experimental 

determination of the elastic tensor of SnSe at elevated temperatures and the derivation of its elastic, 

structural, and thermal properties will be discussed in this study. 

  

1.3   Outline of Dissertation  

 Chapter 2 discusses the theoretical background of the dissertation. This discussion starts 

with the derivation of linear elasticity and the elastic stiffness tensor of the crystal classes. After 

that, an introduction of Biot’s theory of poroelasticity and its formulation will be presented. Since 

this dissertation covers the materials with isotropic polycrystal and anisotropic orthorhombic 

crystal classes, the use of elastic constants to derive the other elastic properties of those crystal 

classes will be addressed lastly.  

 Since resonant ultrasound spectroscopy is the main measurement technique employed in 

this dissertation, Chapter 3 provides the basics of the RUS technique, theoretical background, and 

RUS experimental setup used for the measurements at different temperature and hydrostatic 

pressure conditions. A short description of the material preparation procedure is also discussed 

within this section. 

 Chapter 4 focuses on the porous ceramic structures used in solid oxide fuel cells. The reader 

will be given a basic idea of the use of porous ceramics as interconnecting materials in fuel cells 
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to separate anode and cathode. This chapter discusses the experimental findings of the variation of 

elasticity of porous ceramics with the applied temperature and hydrostatic pressure conditions. The 

observed porous material stiffness with increasing temperature and decreasing hydrostatic pressure 

has been identified using the time evolution of the resonance frequencies. This preliminary study 

has provided a motivation to extend the experiment using different porous materials, which is 

discussed in chapters 5 and 6.  

 Chapter 5 discusses the study of hydrostatic pressure dependent elasticity of selected 

porous ceramics: Alumina, Zirconia, and Titania, and a comparison with that of fully dense 

ceramics. The main goal of this section is to investigate the change of elasticity with the hydrostatic 

pressures in both low and high regime. The observed material softness and increase of acoustic 

attenuation with increasing hydrostatic pressure will be discussed in depth in this chapter. The 

influence of the saturated gas type on the material softening rate will be analyzed based on the 

experimental observations made by using He, N, and Ar gas media.  

 Chapter 6 presents information about the mechanical stability of porous alumina ceramics 

which are placed at moderately high (~ 420 K) temperatures. The mechanical stability is discussed 

in terms of the time evolution of the elastic properties of the material. The porous alumina sample 

is placed at 423 K for about 210 hours and the resonance spectra are measured at 15minute 

intervals. The observed material stiffness with the time will be explained by the porosity reduction 

mechanisms due to the high temperature and high exposing time. Theoretical models of porosity 

dependent Young’s modulus and shear modulus have been used for a quantitative analysis of the 

porosity reduction with the time. These experimental results will convey the reader about the 

ability of RUS technique to make most precise measurements in extreme conditions.  
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 Chapter 7 provides the details on the experimental study of the temperature dependent 

elasticity of thermoelectric SnSe. First, the reader will be given an idea of the importance of 

measuring elastic properties of single crystalline SnSe and the limitations of the existing literature. 

The experimental result section has divided in to two sections: (1) Room temperature elastic 

properties and (2) Temperature reliant elasticity. This chapter will discuss the experimental 

determination of the elastic tensor of low symmetric orthorhombic crystalline material and the use 

of elastic constants to derive the other elastic and some thermal properties. The elastic anisotropy 

will be discussed using a graphical representation of directional elastic moduli and calculated 

anisotropic factors. The temperature-dependent elastic constants have been used to study the 

mechanisms of phonon decay and phonon anharmonicity observed in SnSe at high temperatures 

and their contribution to the enhancement of the thermoelectric efficiency. Lastly, the detection of 

the phase transition from Pnma phase to Cmcm phase at ~810 K will be illustrated by analyzing 

the temperature-dependent frequency trends.  

  Appendix A provides a detailed description of the modification of the python code which 

was used to fit the resonance frequencies with the Lorentzian line shape function.  
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CHAPTER 2 

THEORETICAL FRAMEWORK 

This chapter contains the theoretical background of the dissertation. It starts with the basic 

formulation of the theory of linear elasticity. And then it discusses Biot’s theory of poroelasticity 

as an extension to the linear elasticity. Elastic constants and the derivation of other elastic 

properties of isotropic polycrystal and anisotropic orthorhombic crystal symmetries will be 

discussed in the final section. 

 

2.1   Theory of Linear Elasticity  

The theory of elasticity is the study of the mechanics of the deformation of solid materials 

due to applied forces. Strain and stress are the main physical measurements which characterize the 

elasticity of a material. In the three-dimension framework, those parameters are expressed as 

tensors, and Hooke’s law is used to link them with the parameter called elastic stiffness tensor. All 

the elastic properties of the material can be described in terms of those elastic constants. This 

section will discuss the formulation of Hooke’s law.  

Let us consider a point in the solid body whose position is defined by a vector 𝑟(𝑥1, 𝑥2, 𝑥3) 

in 3D space. An applied force causes a displacement of that point to a new position 𝑟′⃗⃗⃗⃗ (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) 

and the deformation which is known as the displacement vector �⃗⃗� can be written as 

 �⃗⃗� = 𝑟′⃗⃗⃗⃗ − 𝑟. (2.1) 
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According to tensor notation the displacement vector can be expressed as 

 𝑢𝑖 = 𝑥𝑖
′ − 𝑥𝑖, (2.2) 

 

where the index 𝑖 = 1, 2, 3 represents the x, y and z body axes. Since the vector 𝑥𝑖
′ is itself a 

function of the vector 𝑥𝑖
 , the small deformation of the elastic body, 𝑑𝑢𝑖 can be written as 

 𝑑𝑢𝑖 =
𝜕𝑢𝑖

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑢𝑖

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑢𝑖

𝜕𝑥3
𝑑𝑥3. (2.3) 

 

Using Einstein summation notation, 

 

𝑑𝑢𝑖
𝑑𝑥𝑗

=
𝜕𝑢𝑖
𝜕𝑥𝑗

 (2.4) 

 

The deformation 
𝑑𝑢𝑖

𝑑𝑥𝑗
 is a rank-two tensor, which can be expressed as a combination of symmetric 

(𝜀𝑖𝑗) and antisymmetric (𝜃𝑖𝑗) tensor components: 

 

𝑑𝑢𝑖
𝑑𝑥𝑗

=
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) +

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) = 𝜀𝑖𝑗 + 𝜃𝑖𝑗 . (2.5) 

 

The antisymmetric tensor, 𝜃𝑖𝑗 represents the local rigid body rotation, and it is independent of any 

internal elastic deformation. The symmetric tensor, 𝜀𝑖𝑗 is the tensor component that represents the 

internal deformation of the body. Therefore, the elastic strain tensor is defined as 

 
𝜀𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
). (2.6) 

 

Since the strain tensor is symmetric and 𝑖, 𝑗 = 1, 2, 3, there are three diagonal and three non-

diagonal terms. The diagonal terms represent compression or expansion along one of the three 
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axes. The non-diagonal terms correspond to the shear strain due to the deformation of a plane 

perpendicular to one of the three axes. 

In its simplest form, stress is defined as the force acting on a unit area of a body surface. 

When considering a hypothetical cube inside solid material, there are two types of internal forces 

acting on it. Those forces are described as follows, 

(1) Body force: acting on the volume of the cube (e.g. gravity). 

(2) Surface force: acting on the surface of the cube (e.g. surface tension). 

In theory of linear elasticity, body forces are ignored, and surface forces will produce the 

deformation of the cube, which is characterized by the strain tensor. When a force acts on the 

surface, the force component normal to the surface produces compressive or tensile stresses while 

the tangential component produces shear stress. When describing the stress in three dimensions, 

the direction of the surface normal and the direction of the force are considered. Therefore, the 

stress can be defined by a tensor of rank two. In general, the stress tensor component, 𝜎𝑖𝑗 is the 

stress on the plane normal to jth direction, arise due to the force acting in the ith direction. All tensor 

components acting on the cubic faces are visualized in Figure 2.1. 

 
Figure 2.1. Stress tensor components acting on a cubic body.  
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 Since we are not considering the body rotation as mentioned above, the net torque acting 

on the body must be zero. To satisfy this condition, the stress components must be symmetric such 

that 𝜎𝑖𝑗 = 𝜎𝑗𝑖. Now we can expand 𝜎𝑖𝑗 as a Taylor’s series in 𝜀𝑘𝑙 as follows 

 
𝜎𝑖𝑗 = 𝜎𝑖𝑗(0) + (

𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙
)
𝜀𝑘𝑙=0

𝜀𝑘𝑙 +
1

2
(

𝜕2𝜎𝑖𝑗

𝜕𝜀𝑘𝑙𝜕𝜀𝑚𝑛
)
𝜀𝑘𝑙=0,𝜀𝑚𝑛=0

𝜀𝑘𝑙𝜀𝑚𝑛 +⋯. (2.7) 

    

Since the stress vanishes at the zero strain for elastic bodies, the first term is 𝜎𝑖𝑗(0) = 0. The third 

term represents the third order elastic constants and nonlinear acoustics. In linear elasticity, the 

higher order terms after the second term are neglected and the Hooke’s law is given as  

 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (2.8) 

 

where the 𝑐𝑖𝑗𝑘𝑙 entries are elements of the elastic stiffness tensor, and they are called elastic 

constants. Elastic constants are the second derivatives of the free energy with respect to strain, 

which are simply a measure of the curvature of the interatomic potential energy (U) at the 

equilibrium atomic spacing (r0) (Figure 2.2).  

 

Figure 2.2. Inter-atomic potential energy curve. The gradient of potential at r is proportional to the 

restoring force toward the equilibrium spacing. 
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 In general, 𝑐𝑖𝑗𝑘𝑙 is a 4th rank elastic stiffness tensor with 81 elements. The symmetry of the 

stress and strain tensors reduces the indices 𝑖, 𝑗, 𝑘, 𝑙 to a two-index form 𝑖, 𝑗 using the Voight 

convention, such that  𝑐𝑖𝑗𝑘𝑙 simplifies to 𝐶𝑖𝑗, a 2nd rank 6 x 6 matrix with 36 elements. The number 

of independent elements is reduced to 21 (for triclinic symmetry) because of the transposition 

symmetry 𝐶𝑖𝑗 = 𝐶𝑗𝑖. The number of non-zero independent elastic constants is further reduced by 

the crystallographic symmetries of crystalline materials. The simplified version of the elastic 

tensor 𝐶𝑖𝑗 is shown below, and the numbers of independent nonzero elastic constants for each 

crystallographic symmetry are tabulated in Table 2.1. 

 

𝐶𝑖𝑗 =

(

 
 
 
 

𝐶11
𝐶12
𝐶13
𝐶14
𝐶15
𝐶16

   

𝐶12
𝐶22
𝐶23
𝐶24
𝐶25
𝐶26

  

𝐶13
𝐶23
𝐶33
𝐶34
𝐶35
𝐶36

  

𝐶14
𝐶24
𝐶34
𝐶44
𝐶45
𝐶46

  

𝐶15
𝐶25
𝐶35
𝐶45
𝐶55
𝐶56

  

𝐶16
𝐶26
𝐶36
𝐶46
𝐶56
𝐶66

 

)

 
 
 

 (2.9) 

 

 

Table 2.1. Independent elastic constants for given crystal symmetries. 

Crystal Symmetry # of 𝑪𝒊𝒋 List of elastic constants 

Triclinic 21 All possible combinations 

Monoclinic 13 𝐶11, 𝐶12, 𝐶13 , 𝐶16, 𝐶22, 𝐶23, 𝐶26, 𝐶33, 𝐶36, 𝐶44, 𝐶45, 𝐶55, 𝐶66 

Orthorhombic 9 𝐶11, 𝐶12, 𝐶13, 𝐶22, 𝐶23, 𝐶33, 𝐶44, 𝐶55, 𝐶66 

Trigonal  6 or 7 𝐶11, 𝐶12, 𝐶13, 𝐶14, 𝐶25, 𝐶33, 𝐶44 

Tetragonal   6 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44, 𝐶66 

Hexagonal  5 𝐶11, 𝐶12, 𝐶14, 𝐶33, 𝐶44 

Cubic 3 𝐶11, 𝐶12, 𝐶44 

Isotropic 2 𝐶11, 𝐶44 

 

 The measured elastic constants of a given crystal symmetry can be used to compute the 

other elastic parameters such as Young’s modulus (E), bulk modulus (B), shear modulus (G), 

Poisson’s ratio (𝜈), transverse (vt), and longitudinal (vl) wave velocities and elastic anisotropic 
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factors. The derivation of elastic properties of isotropic and orthorhombic crystal symmetries, 

which have been used in this dissertation, will be discussed in detail in sections 2.3 and 2.4. 

 

2.2   Theory of Poroelasticity  

 Unlike the case of fully dense solid materials, the elasticity of porous materials depends on 

the elastic deformation of both solid and fluid phases. Poroelasticity is a study of the mechanics of 

the elastic deformation of fluid-saturated porous materials. There are two basic coupling 

phenomena underlining the poroelastic behavior: 

1. Solid-to-fluid coupling: 

 Change in applied stress produces a change in fluid pressure or fluid mass. 

2. Fluid-to-solid coupling: 

 Change in fluid pressure or fluid mass produces a change in volume of the bulk material. 

 The solid-to-fluid coupling depends on the porosity and the compressibility of the solid 

skeleton, pores, solid grains and pore saturated fluid. For a highly compressible fluid, the 

magnitude of the solid-to-fluid coupling will be negligible. The theory of poroelasticity is based 

on the physical assumptions that the solid skeleton of the porous material is purely elastic, and the 

pore saturated fluid is compressible and viscous. The volume fraction porosity, 𝜙 is defined as the 

ratio of the volume of the pores, 𝑉𝑝 to the bulk volume, 𝑉𝑏 

 𝜙 = 𝑉𝑝 𝑉𝑏⁄ . (2.10) 
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The stress tensor of the porous material can be written as 

 𝜎 = (

𝜎𝑥𝑥 + 𝜎𝑓
 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 + 𝜎𝑓 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧 + 𝜎𝑓

). (2.11) 

 

Here, the usual stress components, 𝜎𝑖𝑗 represent the stress components that arise on the faces of a 

hypothetical cube of solid skeleton as described in Section 2.1. The fluid-to-solid coupling effect 

is represented by the total normal stress, 𝜎𝑓 applied to the fluid component of the faces of the cube. 

This coupling effect 𝜎𝑓 is quantified by the hydrostatic pressure, p and the porosity, 𝜙, 

 𝜎𝑓 = −𝜙𝑝. (2.12) 

 

According to the initial assumptions stated above, the solid skeleton has both compressibility and 

shearing rigidity, which validate the strain tensor given by Eq. 2.6. Since the fluid is considered 

compressible, it exhibits only the compressibility and the corresponding fluid strain is given by 𝜀𝑓, 

so that the total strain becomes 𝜀𝑖𝑗 + 𝜀𝑓 with 

 

 

 

𝜀𝑓 =
𝜕𝑈𝑥
𝜕𝑥 

+
𝜕𝑈𝑦

𝜕𝑦 
+
𝜕𝑈𝑧
𝜕𝑧
. (2.13) 

 

Here, the 𝑈𝑖 are the average displacements of fluid phases along the 𝑖 = 𝑥, 𝑦, 𝑧 axes. By 

considering the stress and strain tensors, the generalized Hooke’s law for a fluid-saturated porous 

material can be written as 
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 (

 
 
 
 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦
𝜎𝑓 )

 
 
 
 

=

(

 
 
 
 

𝐶11
𝐶12
𝐶13
𝐶14
𝐶15
𝐶16
𝐶17

  

𝐶12
𝐶22
𝐶23
𝐶24
𝐶25
𝐶26
𝐶27

  

𝐶13
𝐶23
𝐶33
𝐶34
𝐶35
𝐶36
𝐶37

  

𝐶14
𝐶24
𝐶34
𝐶44
𝐶45
𝐶46
𝐶47

  

𝐶15
𝐶25
𝐶35
𝐶45
𝐶55
𝐶56
𝐶57

  

𝐶16
𝐶26
𝐶36
𝐶46
𝐶56
𝐶66
𝐶67

  

𝐶17
𝐶27
𝐶37
𝐶47
𝐶57
𝐶67
𝐶77)

 
 
 
 

(

 
 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑦𝑧
𝜀𝑧𝑥
𝜀𝑥𝑦
𝜀𝑓 )

 
 
 
 

. (2.14) 

 

 The elastic stiffness tensor of a porous material becomes a 7 × 7 matrix and the tensor 

components hold the symmetric property, 𝐶𝑖𝑗 = 𝐶𝑗𝑖. In general, for i,j=1,…,6, the 𝐶𝑖𝑗 entries are 

the elastic constants of the elastic solid skeleton. The coefficients 𝐶𝑖7 and 𝐶7𝑖 represent the solid-

to-fluid and fluid-to-solid coupling effects.  The number of independent elastic constants are 

determined by the isotropic factor of the porous material. Biot has proposed the generalized elastic 

stiffness tensors for isotropic symmetry as follows 

 

𝐶𝑖𝑗(𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) =

(

 
 
 
 

𝑃
𝐴
𝐴
0
0
0
𝑄

  

𝐴
𝑃
𝐴
0
0
0
𝑄

  

𝐴
𝐴
𝑃
0
0
0
𝑄

  

0
0
0
𝑁
0
0
0

  

0
0
0
0
𝑁
0
0

  

0
0
0
0
0
𝑁
0

  

𝑄
𝑄
𝑄
0
0
0
𝑅)

 
 
 
 

. (2.15) 

 

The independent constants P, A and N relate to the poroelastic moduli: Young’s modulus E, shear 

modulus G, and Poisson’s ratio 𝜈, whereas Q and R represent the poroelastic coefficients that are 

due to the presence of the fluid phase.  The relation between the independent constants and the 

poroelastic moduli and coefficients can be determined using seven linear constitutive equations.  
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2.2.1 Constitutive Relations in Poroelasticity 

 In poroelasticity, there are four basic variables, which are grouped into two conjugate pairs: 

i). stress (𝜎𝑖𝑗) and strain (𝜀𝑖𝑗) and ii). fluid pressure (p) and increment of fluid content (𝜉). The 

increment of fluid content quantifies the removal or inclusion of fluid into the pores. Therefore, it 

can be expressed in terms of fluid and solid strain components as follows, 

 𝜉 = −𝜙(𝜀𝑓 − 𝜀). (2.16) 

 

Negative value of 𝜉 corresponds to the removal of fluid from the pores. Here, the volumetric solid 

strain is given by 𝜀 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧. The constitutive relations provide a mathematical 

formulation to the relationships between the four basic variables stated above. These relations are 

linked through the poroelastic moduli and the poroelastic constants.  

 For an isotropic porous material, the change of volumetric strain and increment of fluid 

content due to the applied stress and pressure can be written as 

 𝜀 =
1

𝐾
𝜎𝑘𝑘 +

1

𝐻
𝑝, (2.17) 

 

 𝜉 =
1

𝐻
𝜎𝑘𝑘 +

1

𝑅
𝑝, (2.18) 

 

where 𝜎𝑘𝑘 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧. 

The constant 
1

𝐾
= (

𝛿𝜀

𝛿𝜎
)
𝑝=0

 is known as the compressibility of the material under a constant pressure 

condition, and hence K is the drained bulk modulus. For the undrained condition, where the change 

in fluid increment is zero, the bulk modulus is renamed the undrained bulk modulus, 𝐾𝑢. The 



 

21 

 

change of bulk volume due to the applied pressure at constant stress is quantified by the poroelastic 

expansion coefficient, 
1

𝐻
= (

𝛿𝜀

𝛿𝑝
)
𝜎𝑘𝑘=0

. The specific storage coefficient at constant stress is defined 

as 
1

𝑅
= (

𝛿𝜉

𝛿𝑝
)
𝜎𝑘𝑘=0

 . This coefficient is also known as the unconstrained specific storage coefficient. 

These three poroelastic constants, K, H and R, characterize the poroelastic deformation of the 

material and the other elastic coefficients can be derived from them. Skempton’s coefficient,  𝐵 =

(
𝛿𝑝

𝛿𝜎
)
𝜉=0

=
𝑅

𝐻
 , is defined as the ratio of induced pressure to the applied stress at undrained 

condition. The specific storage at constant strain is given by 
1

𝑀
= (

𝛿𝜉

𝛿𝑝
)
𝜀=0

. The ratio of  
𝐾

𝐻
  is known 

as the Biot-Willis coefficient, α. Using the above poroelastic constants and the pororelastic moduli, 

the linear constitutive relations for an isotropic material are given by 

 𝜎𝑖𝑗
′ = 2𝐺𝜀𝑖𝑗 + (

2𝐺 𝜈 

1−2𝜈 
+ αB𝐾𝑢) 𝜀𝛿𝑖𝑗 − 𝐵𝐾𝑢𝜉𝛿𝑖𝑗, (2.19) 

 

 𝑝 = −𝐵𝐾𝑢ε +
𝐵𝐾𝑢

𝛼
𝜉, (2.20) 

 

where 𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 + 𝜎𝑓𝛿𝑖𝑗 is defined as the effective stress tensor. Based on the above relations, the 

Hooke’s law can be rearranged as 

 (

 
 
 
 

𝜎𝑥𝑥 + 𝜎𝑓
𝜎𝑦𝑦 + 𝜎𝑓
𝜎𝑧𝑧 + 𝜎𝑓
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦
𝑝 )

 
 
 
 

=

(

 
 
 
 

𝑃

𝐴

𝐴

0

0

0

𝑄

  

𝐴

𝑃

𝐴

0

0

0

𝑄

  

𝐴

𝐴

𝑃

0

0

0

𝑄

  

0

0

0

𝑁

0

0

0

  

0

0

0

0

𝑁

0

0

  

0

0

0

0

0

𝑁

0

  

𝑄

𝑄

𝑄

0

0

0

𝑅)

 
 
 
 

(

 
 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑦𝑧
𝜀𝑧𝑥
𝜀𝑥𝑦
𝜉 )

 
 
 
 

. (2.21) 
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The elastic constants are given by 

 𝑃 = 2𝐺 + (
2𝐺𝜈

1−2𝜈
+ 𝛼𝐵𝐾𝑢), (2.22) 

 

 𝐴 =
2𝐺𝜈

1−2𝜈
+ 𝛼𝐵𝐾𝑢, (2.23) 

 

 𝑁 = 2𝐺, (2.24) 

 

 𝑄 = −𝐵𝐾𝑢, (2.25) 

 

 𝑅 =
𝐵𝐾𝑢

𝛼
. (2.26) 

 

 It is important to note that the above constitutive relations are written in terms of 𝜉 and 𝑝, 

instead of  𝜀𝑓 and 𝜎𝑓, which is quite different from the Biot’s notation as expressed in Eq. 2.14. 

Therefore, Eqs. 2.19 and 2.20 can be rearranged using Eqs. 2.12 and 2.16, so that they obey Biot’s 

notations of stress and strain tensor components: 

 𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 + (
2𝐺 𝜈 

1−2𝜈 
+ B𝐾𝑢

(𝛼−𝜙)2

𝛼
) 𝜀𝛿𝑖𝑗 + 𝐵𝐾𝑢𝜙 (

𝛼−𝜙

𝛼
) 𝜀𝑓𝛿𝑖𝑗, (2.27) 

 

 𝜎𝑓 = 𝐵𝐾𝑢𝜙 (
𝛼−𝜙

𝛼
) 𝜀 +

𝐵𝐾𝑢𝜙
2

𝛼
𝜀𝑓, (2.28) 
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 (

 
 
 
 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦
𝜎𝑓 )

 
 
 
 

=

(

 
 
 
 

𝑃

𝐴

𝐴

0

0

0

𝑄

  

𝐴

𝑃

𝐴

0

0

0

𝑄

  

𝐴

𝐴

𝑃

0

0

0

𝑄

  

0

0

0

𝑁

0

0

0

  

0

0

0

0

𝑁

0

0

  

0

0

0

0

0

𝑁

0

  

𝑄

𝑄

𝑄

0

0

0

𝑅)

 
 
 
 

(

 
 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑦𝑧
𝜀𝑧𝑥
𝜀𝑥𝑦
𝜀𝑓 )

 
 
 
 

. (2.29) 

 

Then, the elastic constants are given by 

 𝑃 = 2𝐺 + 2𝐺 (
𝜈

1−2𝜈
) +  𝐵𝐾𝑢

(𝛼−𝜙)2

𝛼
, (2.30) 

 

 𝐴 = 2𝐺 (
𝜈

1−2𝜈
) + 𝐵𝐾𝑢

(𝛼−𝜙)2

𝛼
 , (2.31) 

 

 𝑁 = 2𝐺, (2.32) 

 

 𝑄 = 𝐵𝐾𝑢𝜙 (
𝛼−𝜙

𝛼
), (2.33) 

 

 𝑅 =
𝐵𝐾𝑢𝜙

2

𝛼
. (2.34) 

 

 This theoretical treatment has explored the physical interpretations to the independent 

constants of elastic stiffness tensor. These independent elastic constants mainly depend on the 

physical parameters, such as solid material, porosity, hydrostatic pressure, and saturated fluid, 

which can be controlled under the experimental conditions. A modified experimental technique is 

required to determine the elastic constants of 7 × 7 tensor and then to investigate the poroelasticity 

of porous materials.  
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 However, as a preliminary study to the poroelasticity, in this dissertation we are using 

conventional 6 × 6  elastic tensor assuming the porous ceramics behave as isotropic polycrystals. 

The measured elastic constants and elastic moduli are then recalled as effective elastic constants 

and moduli which are influenced by the dynamics both solid and fluid phases. Also, the variation 

of resonance frequencies can be examined to understand the elasticity change of the porous 

materials to the applied physical conditions.  In this way a qualitative analysis of the variation of 

the elasticity with hydrostatic pressure, temperature, and saturated fluid environment will be 

presented in this dissertation. 

  

2.3   Elasticity of Isotropic Polycrystals 

 As described in Table 2.1, there are three independent elastic constants, 𝐶11, 𝐶12 and 𝐶44 

for the cubic symmetry. In the isotropic scenario the elastic constant 𝐶12 equals to 𝐶11 − 2𝐶44, so 

that the elastic tensor contains two independent elastic constants. How to use of measured elastic 

constants to derive other elastic properties is summarized in Table 2.2. 

 

𝐶𝑖𝑗 (𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) =

(

 
 
 
 

𝐶11
𝐶12
𝐶12
0
0
0

   

𝐶12
𝐶11
𝐶12
0
0
0

  

𝐶12
𝐶12
𝐶11
0
0
0

  

0
0
0
𝐶44
0
0

  

0
0
0
0
𝐶44
0

  

0
0
0
0
0
𝐶44

 

)

 
 
 

 (2.35) 
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Table 2.2. Elastic parameters of isotropic polycrystalline materials. 

Elastic Parameter Equation Equation # 

Shear Modulus (G) 𝐺 = 𝐶44 (2.36) 

Young’s Modulus (E) 𝐸 =
𝐶44(3𝐶11 − 4𝐶44)

(𝐶11 − 𝐶44)
 (2.37) 

Bulk Modulus (B) 𝐵 =
𝐸𝐺

(9𝐺 − 3𝐸)
 (2.38) 

Poisson Ratio (𝜈) 𝜈 =
𝐶11 − 2𝐶44
2(𝐶11 − 𝐶44)

 (2.39) 

Transverse Velocity (vt) v𝑡 = √𝐶44 𝜌⁄  (2.40) 

Longitudinal Velocity (vl) v𝑙 = √𝐶11 𝜌⁄  (2.41) 

*𝜌 = Density of the material  

 

2.4   Elasticity of Anisotropic Orthorhombic Crystals 

 Orthorhombic crystal symmetry owns nine independent elastic constants in its elastic 

tensor, showing a highly elastic anisotropic behavior. The nine elastic constants can be grouped 

into three major categories as: 

1. Extensional modes - 𝐶11, 𝐶22, 𝐶33 

2. Shear modes - 𝐶44, 𝐶55, 𝐶66 

3. Weekly coupled off diagonal - 𝐶12, 𝐶13, 𝐶23 

 

𝐶𝑖𝑗(𝑂𝑟𝑡ℎ𝑜𝑟ℎ𝑜𝑚𝑏𝑖𝑐) =

(

 
 
 
 

𝐶11
𝐶12
𝐶13
0
0
0

   

𝐶12
𝐶22
𝐶23
0
0
0

  

𝐶13
𝐶23
𝐶33
0
0
0

  

0
0
0
𝐶44
0
0

  

0
0
0
0
𝐶55
0

  

0
0
0
0
0
𝐶66

 

)

 
 
 

 
(2.42) 

 The elastic anisotropy of orthorhombic symmetry can be analyzed by the orientation 

dependence of Young’s modulus, E and the bulk modulus, B as described in the following 

equations. These relations can be used to visualize the elastic anisotropy graphically: 
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1

𝐸
= 𝑆11𝑙1

4 + 𝑆22𝑙2
4 + 𝑆33𝑙3

4 + (2𝑆12 + 𝑆66)𝑙1
2𝑙2
2 + (2𝑆23 + 𝑆44)𝑙3

2𝑙2
2 +

(2𝑆13 + 𝑆55)𝑙1
2𝑙3
2, 

(2.43) 

 

 
1

𝐵
= (𝑆11 + 𝑆12 + 𝑆13)𝑙1

2 + (𝑆22 + 𝑆12 + 𝑆23)𝑙2
2 + (𝑆33 + 𝑆23 + 𝑆13)𝑙3

2. (2.44) 

 

Here, the 𝑆𝑖𝑗 are elements of the elastic compliance tensor, 𝑆𝑖𝑗 = 𝐶𝑖𝑗
−1, and 𝑙𝑖 are the direction 

cosines along the x, y and z crystallographic axes. In addition, the axial bulk moduli, Bx, By, Bz, 

along the x, y and z axes can be expressed as 

 𝐵𝑥 =
𝜒

1+𝛼+𝛽
, 𝐵𝑦 =

𝐵𝑥

𝛼
, 𝐵𝑧 =

𝐵𝑥

𝛽
 , (2.45) 

 

where 

 

𝜒 = 𝐶11 + 2𝐶12𝛼 + 𝐶22𝛼
2 + 2𝐶13𝛽 + 𝐶33𝛽

2 + 2𝐶23𝛼𝛽, 

 

𝛼 =
(𝐶11−𝐶12)(𝐶33−𝐶13)−(𝐶23−𝐶13)(𝐶11−𝐶13)

(𝐶33−𝐶13)(𝐶22−𝐶12)−(𝐶13−𝐶23)(𝐶12−𝐶23)
, 

 

𝛽 =
(𝐶22−𝐶12)(𝐶11−𝐶13)−(𝐶11−𝐶12)(𝐶23−𝐶12)

(𝐶22−𝐶12)(𝐶33−𝐶13)−(𝐶12−𝐶23)(𝐶13−𝐶23)
. 

(2.46) 

 

 The anisotropic factors are the parameters which measure the degree of elastic anisotropy 

of a given crystal symmetry. The given crystal is elastically isotropic when an anisotropy factor 

equals one, and any departure from one corresponds to a degree of elastic anisotropy. The 

anisotropy factors of bulk moduli along x and z axes with respect to y axis are defined by 𝐴𝑥 =

𝐵𝑥 𝐵𝑦⁄  and  𝐴𝑧 = 𝐵𝑧 𝐵𝑦⁄  . The shear anisotropy factors (Ai) provide a measure of the degree of 

anisotropy in the bonding between atoms in different planes and they can be described as follows: 
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The shear anisotropic factor for the 

1. {100} plane between 〈011〉 and 〈010〉  directions, 

 𝐴1 = 4𝐶44/(𝐶11 + 𝐶33 − 2𝐶13); (2.47) 

 

2. {010} plane between 〈101〉  and 〈001〉  directions, 

 𝐴2 = 4𝐶55/(𝐶22 + 𝐶33 − 2𝐶23); (2.48) 

 

3.  {001} plane between 〈110〉  and 〈010〉  directions, 

 𝐴3 = 4𝐶66/(𝐶11 + 𝐶22 − 2𝐶12). (2.49) 

 

 For an anisotropic low-symmetric crystal, the Voight-Ruess-Hill (VRH) approximation is 

used to convert the anisotropic elastic constants to the macroscopic elastic moduli which represent 

the average (effective) elasticity of the crystalline material. According to the Voigt assumption, 

the bulk (BV) and the shear moduli (GV) are expressed as 

 𝐵𝑉 =
1

9
(𝐶11 + 𝐶22 + 𝐶33 + 2𝐶12+2𝐶13 + 2𝐶23), (2.50) 

 

 𝐺𝑉 =
1

15
(𝐶11 + 𝐶22 + 𝐶33 − 𝐶12−𝐶13 − 𝐶23 + 3𝐶44 + 3𝐶55 + 3𝐶66). (2.51) 

 

From the Reuss approximation, these moduli are expressed as 

 𝐵𝑅 =
1

(𝑆11+𝑆22+𝑆33)+2(𝑆12+𝑆13+𝑆23)
 , (2.52) 

 

 𝐺𝑅 =
15

4(𝑆11+𝑆22+𝑆33)−4(𝑆12+𝑆13+𝑆23)+3(𝑆44+𝑆55+𝑆66)
. (2.53) 
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The Voigt equations represent the upper limit of the polycrystalline constants, while the Reuss 

equations represent the lower limit. Therefore, the elastic moduli can be approximated by Hill’s 

average and hence the bulk and shear moduli can be expressed as 

 𝐵 =
(𝐵𝑉 + 𝐵𝑅)

2
,              𝐺 =

(𝐺𝑉 + 𝐺𝑅)

2
. (2.54) 

 

The above calculated shear and bulk modulus is used to calculate the other polycrystalline elastic 

properties, as described in Table 2.2. The calculations of the elastic properties of orthorhombic 

single crystalline SnSe will be presented in Chapter 7.  
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CHAPTER 3 

RESONANT ULTRASOUND SPECTROSCOPY 

3.1   Introduction  

 Resonant Ultrasound Spectroscopy (RUS) is a widely used, efficient, and precise 

experimental technique to determine the elastic tensor of materials with different crystal structures. 

Compared to other conventional mechanical testing methods, RUS has gained interest among the 

experimental material science fields due to its precision, ability to resolve all elastic constants in a 

single measurement and its ability to take measurements over a range of temperatures and 

hydrostatic pressures. In RUS, a polished rectangular parallelepiped shaped crystal specimen is 

placed in between two acoustic transducers, one of which drives the sample in a swept-frequency 

continuous wave (CW) mode over a selected frequency range, while the other detects the sample 

response to the excitation (Figure 3.1). The resonance spectrum is obtained by plotting the sample 

response over the driving frequency. At the resonance, where the drive frequency matches the 

natural vibration frequency of the sample, the sample surface shows a maximum displacement 

which produces a peak in the resonance spectrum. The center frequency and quality factor of each 

peak are extracted by fitting the displacement data to a Lorentzian function. Next, an iterative 

procedure that entails the crystal geometry and density is used to “match” the experimental 

frequencies with the calculated spectrum. This then allows determination of all elastic constants 

of the crystal from a single frequency scan. The instrumentations and computations associated with 

RUS technique will be discussed in the following sections. 
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Figure 3.1. Schematic of the RUS setup. 

 

3.2   RUS Computation 

3.2.1   Analyzing the Resonance Spectrum 

 As described in the introduction, the receiver transducer detects the sample’s surface 

vibration and converts the motion into an alternative current (AC) which is driven into a lock-in 

amplifier. The lock-in amplifier converts that input AC signal into two DC signal components 

called ‘in-phase’ and ‘quadrature’. To illustrate this process, let us consider the input signal to the 

lock-in is 𝑉𝑠𝑖𝑔 = 𝑉𝑠 sin(𝜔𝑠𝑡 + 𝜃𝑠) where 𝑉𝑠 is the signal amplitude, 𝜔𝑠 is the signal frequency, and 

𝜃𝑠 is the signal’s phase. A lock-in amplifier generates an internal reference signal, 

𝑉𝐿 = 𝑉𝑟 sin(𝜔𝑟𝑡 + 𝜃𝑟) and then multiplies it by the input signal using a phase sensitive detector 

(PSD) or multiplier. The multiplied signal,𝑉𝑃𝑆𝐷1 can be written as 

 

𝑉𝑃𝑆𝐷1 = 𝑉𝑠𝑉𝐿 sin(𝜔𝑠𝑡 + 𝜃𝑠) sin(𝜔𝑟𝑡 + 𝜃𝑟) 

𝑉𝑃𝑆𝐷1 =
1

2
𝑉𝑠𝑉𝑟 cos([𝜔𝑠 −𝜔𝑟]𝑡 + 𝜃𝑠 − 𝜃𝑟) +

1

2
𝑉𝑠𝑉𝑟 cos([𝜔𝑠 +𝜔𝑟]𝑡 + 𝜃𝑠 + 𝜃𝑟). 

(3.1) 
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 The multiplied signal is a combination of two AC signals, one with the difference 

frequency (𝜔𝑠 − 𝜔𝑟) and the other with the sum frequency (𝜔𝑠 + 𝜔𝑟). When (𝜔𝑠 = 𝜔𝑟), the 

difference frequency component becomes a DC signal, and hence 𝑉𝑃𝑆𝐷1 now contains both AC 

and DC signal components. The AC component can be easily removed using a low pass filter, and 

the resultant will give a pure DC signal whose amplitude is proportional to the signal amplitude 

measured by the transducer.  

 𝑉𝑃𝑆𝐷1 = 𝑉 cos(𝜃𝑠 − 𝜃𝑟) (3.2) 

 

Where 𝑉 =
1

2
𝑉𝑠𝑉𝑟. Similarly another PSD is used to multiply the input signal by the lock-in 

reference signal shifted by 90° such that 𝑉𝐿 = 𝑉𝑟 sin(𝜔𝑟𝑡 + 𝜃𝑟 + 𝜋/2). Then the output DC signal 

can be written as  

 𝑉𝑃𝑆𝐷2 = 𝑉 sin(𝜃𝑠 − 𝜃𝑟) (3.3) 

 

Here, 𝑉𝑃𝑆𝐷1 is called the ‘in-phase’ component and the 𝑉𝑃𝑆𝐷2 is called the ‘quadrature’ component 

of the input signal. 

 RUS instrumentation has been programmed to record both in-phase and quadrature signal 

amplitudes with corresponding driving frequencies. Figure 3.2 shows a resonance spectrum in 

which both signal components are plotted against the driving frequencies. Each signal peak 

represents a normal mode vibration associated with the center frequency 𝑓0. 
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Figure 3.2. Resonance spectrum as a function of in-phase and quadrature signal. 

  

 The quadrature signal, which contains the phase information, is used to analyze the 

resonance peaks as they can be fitted into the Lorentzian line shape function (Eq. 3.4). The 

Lorentzian curve fit provides the center frequency, the quality factor (Q) and phase information of 

each resonance peak. Figure 3.3 illustrate the curve fit and its outputs. The fitting routine is applied 

for each resonance peaks to obtain the list of normal mode frequencies: 

 

𝑦(𝑓) =
𝐴(

𝑓

𝑓0 cos (𝜙)
+(1−(

𝑓

𝑓0
)
2
)𝑄 sin (𝜙))

(
𝑓

𝑓0
)
2
+(1−(

𝑓

𝑓0
)
2
)
2

𝑄2
+ 𝑦0(𝑓), (3.4) 

 

Where the background function 𝑦0(𝑓) is defined as 

 𝑦0(𝑓) = 𝑎0 + 𝑎1(𝑓 − 𝑓0) + 𝑎2(𝑓 − 𝑓0)
2 + 𝑎3(𝑓 − 𝑓0)

3. (3.5) 



 

33 

 

 

Figure 3.3. Lorentzian line shape curve fit applied to a resonance peak. 

 

3.2.2   Resonance Frequency Determination 

 The Rayleigh-Ritz method is a widely used, classical method for calculating the 

approximate vibrational frequencies of an elastic body. This method is based on the Hamilton’s 

principle of least action that the Lagrangian of a system is stationary with respect to small 

perturbations in the eigenfunctions. The derivation starts with the definition of kinetic and potential 

energies and the Lagrangian of the system. The kinetic energy density for a normal mode of the 

elastic system can be written as 

 𝑇 =
1

2
𝜌𝜔2𝑢𝑖𝑢𝑖 , (3.6) 

 

where 𝜔 is the angular frequency of the normal mode vibration and 𝑢𝑖 is the displacement vector. 

The potential energy density is given by 

 
𝑈 =

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 =

1

2
𝑐𝑖𝑗𝑘𝑙

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
1

2
(
𝜕𝑢𝑘

𝜕𝑥𝑙
+
𝜕𝑢𝑙

𝜕𝑥𝑘
). (3.7) 

 

The symmetry 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑙𝑘 allows us to simplify Eq. 3.7 as 
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𝑈 =

1

2
𝑐𝑖𝑗𝑘𝑙 (

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑙
). (3.8) 

 

By combining kinetic and potential energy densities, the Lagrangian (L) of the system can be 

expressed as a volume integral of 𝑇 − 𝑈, 

 

𝐿 = ∫(𝑇 − 𝑈)
 

𝑉

 𝑑𝑉 

𝐿 =
1

2
∫ (𝜌𝜔2𝑢𝑖𝑢𝑖 − 𝑐𝑖𝑗𝑘𝑙 (

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑙
))

 

𝑉
 𝑑𝑉. 

 

(3.9) 

According to the Hamilton’s variational principle, the time integral of the Lagrangian, which is 

known as the action, is a constant of the motion (Eq. 3.10). This principle leads us to derive an 

expression for the normal mode frequencies as a function of the elastic stiffness tensor and the 

geometrical information of the solid body (Eq. 3.11): 

 
𝛿 ∫  

𝑡2
𝑡1

1

2
∫ (𝜌𝜔2𝑢𝑖𝑢𝑖 − 𝑐𝑖𝑗𝑘𝑙 (

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑙
))

 

𝑉
 𝑑𝑉𝑑𝑡 = 0 , (3.10) 

 

 
𝜔2 =

∫ 𝑐𝑖𝑗𝑘𝑙(
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑘
𝜕𝑥𝑙

) 𝑑𝑉
 

𝑉

∫ 𝜌𝑢𝑖𝑢𝑖 𝑑𝑉
 

𝑉

. (3.11) 

 

 The above equation provides an abstract approach to compute the normal mode frequencies 

using the displacement vectors 𝑢𝑖, elastic tensor 𝑐𝑖𝑗𝑘𝑙 and the density 𝜌, known as the “forward” 

problem of solving resonance frequencies. The Rayleigh-Ritz method is used to solve the 

“forward” problem using free boundary conditions and minimized Lagrangian mentioned in Eq. 

3.10. The boundary value problem provides eigenvalues, 𝜔𝑛 = 2𝜋𝑓𝑛 yielding resonance 

frequencies of a solid body. To apply the Rayleigh- Ritz method, the displacement field is defined 

as an expansion of some of suitable set of basis functions.  
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𝑢𝑖 =∑𝑎𝑖𝑛𝜑𝑛

𝑁

𝑖=1

 (3.12) 

 

Finding a suitable basis function which can apply for any shape of the object was a challenging 

task for the theorist as well as experimentalists. Finally, they ended up with a solution which 

suggested that polynomial functions are good choice for basis functions as there are standard 

solutions for their integrals and derivatives. Also, high order polynomials can be used to represent 

many shapes. In 1991, W. M. Visscher et al. [4] proposed a simple set of basis functions written 

by simple powers of Cartesian coordinates. 

 𝜑𝑛 = 𝑥
𝑝𝑦𝑞𝑧𝑟 (3.13) 

 

Now, the kinetic energy density, 𝐸𝑛𝑖𝑚𝑗 and the potential energy density, 𝛤𝑛𝑖𝑚𝑗 are redefined with 

the new basis function as follows  

 𝐸𝑛𝑖𝑚𝑗 = 𝛿𝑖𝑗 ∫ 𝜌𝜑𝑛𝜑𝑚
 

𝑉
 𝑑𝑉, (3.14) 

 

 𝛤𝑛𝑖𝑚𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∫
𝜕𝜑𝑛

𝜕𝑥𝑘

𝜕𝜑𝑚

𝜕𝑥𝑙

 

𝑉
 𝑑𝑉. (3.15) 

 

The solutions for the free vibration problem can be obtained by considering the requirement that 

the variation of Lagrangian with respect to �⃗� is zero. This yields the following matrix eigenvalue 

equation by simplifying the problem. 

 𝛤�⃗� = 𝜔2𝐸�⃗� (3.16) 
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 The components of the vector  �⃗�  are the expansion coefficients defined in the expansion 

of displacement field 𝑢𝑖 in the Eq. 3.12. In general, the matrix E is not diagonal, but it becomes 

symmetric and positive definite upon the choice of orthonormal basis. By the definition Γ is 

symmetric always and it leads to a quick and easy solutions for the eigenvalues and eigenvectors. 

Here, the eigenvalues correspond to the square of the angular frequencies of normal modes. The 

forward calculation involves solving the above eigenvalue equation 3.16 to find a set of �⃗� 

components which minimize the Lagrangian and then computing the eigenvalues (calculated 

resonance frequencies) using initially provided elastic tensor elements 𝑐𝑖𝑗𝑘𝑙. 

 

3.2.3   Estimation of Elastic Constants  

 The key concept of RUS technique involves with the “inverse” problem which determines 

the elastic tensor of a solid body using a set of experimentally obtained normal mode frequencies. 

However, the above eigenvalue equation cannot be inverted mathematically to perform the inverse 

problem. In RUS, solving for the inverse problem is achieved by performing forward calculation 

to obtain normal mode frequencies from initially guessed elastic constants and then proceeding 

through an iterative minimization algorithm which compares the calculated frequencies to 

experimentally measured resonance frequencies. The parameters, elastic constants are adjusted 

during each iteration to minimize the error function (F), which is defined as the sum of the squares 

of the deference between the calculated, 𝑓𝑖
(𝑐𝑎𝑙𝑐)

 and measured, 𝑓𝑖
(𝑚𝑒𝑎𝑠)

 frequencies. 

 
𝐹 =

1

2
∑𝑤𝑖[𝑓𝑖

(𝑐𝑎𝑙𝑐)
− 𝑓𝑖

(𝑚𝑒𝑎𝑠)
]
2

𝑀

𝑖=1

 (3.17) 
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Levenberg-Marquardt algorithm is used to minimize the above error function, by using the 

assumption of a parabolic error surface near the minimum. The adjusted parameters at the error 

minima are considered as the fitted elastic constants. The structures of the input data and the output 

results of the computational fitting algorithm is shown in Figure 3.4.  In this nonlinear fitting 

routine, a care must be taken to avoid converging the solution to a local minimum rather than the 

global minimum in the error space. Larger deviations of the guessed elastic constants with their 

actual values, missing normal mode frequencies, fewer number of normal mode frequencies, 

imperfection of the sample geometry and the misalignment of crystal axis with the body axis lead 

to a local minimum.  

 

Figure 3.4. The data structures of (a) input parameters and (b) output results of the nonlinear fitting 

algorithm of the elastic constants optimization.   
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3.3   High Temperature RUS Setup 

RUS instrumentation for measurement at high temperatures is another challenging task 

because of the limitation of materials’ abilities to withstand high temperature conditions. For an 

example, plastic, Pb based solders, and rubber materials cannot be utilized in designing the high 

temperature RUS setup. A typical direct contact transducer system made with gold-plated lithium 

niobate (LiNbO3) piezoelectric crystals is shown in Figure 3.5(a). Here, thermo-coaxial cables, 

made with metal conductors separated by a mineral insulator, are used to connect the transducers. 

The rigidity of the coaxial cables provides an additional structural support to the transducer system 

and it will provide enough weight to prevent the loose contact between the sample and transducers. 

Since Pb based solders start to melt at ~ 450 K, silver based conductive epoxy is used as bonding 

agent to connect the transducers with the coaxial cables. The epoxy exhibits good electrical 

conductivity as well as the mechanical stability at high temperatures ~1000 K. For high 

temperature measurements, the transducer cage is placed inside a properly sealed quartz tube 

which runs through a tube furnace (Carbolite Model MTF12/38/250), as in Figure 3.5(b). An n-

type thermocouple with the resolution of 0.01 K is used to measure the temperature near the 

sample. This system is facilitated with an inert gas flow (typically Argon) through the tube to 

reduce the oxygen level and hence to prevent any oxidations at higher temperatures. The oxygen 

level inside the tube is monitored by the oxygen analyzer. The experimental setup is shown in 

Figure 3.5(c).  
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Figure 3.5. (a) Direct contact transducer system, (b) schematic of the high temperature RUS kit 

and (c) the instrument arrangement in the RUS lab. 

  

 The use of direct contact transducer system is limited up to ~800 K due to the upper 

operating temperature limitations of piezo crystals and adhesive epoxy. LiNbO3 transducers lose 

their piezoelectricity after 800 K, and hence they cannot be used at the temperatures greater than 

800K. To overcome this circumstance, a buffer rod transducer system (Figure 3.6) has been 

introduced. Here, thin and long cylindrical rods made out with ceramic alumina or fused quartz, 

whose acoustic attenuation is low, are used as acoustic waveguides. As shown in Figure 3.6(a), 

two buffer rods are used, and the transducers are mounted at the one end of each rod. The sample 

directly contacts with the buffer rods. The lower buffer rod propagates the acoustic signal 

generated by the driving transducer and drives the sample. The upper buffer rod detects the sample 

response and propagates that vibration to the receiver transducer. In this way, the transducers are 

kept away from the extremely hot region while the sample is at extremely high temperatures 

greater than 800 K. This system can be used to make the measurements up to 1200 K. The length 
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of the buffer rods has been optimized with respect to transmission loss and heat gradient inside the 

cell.  

 

Figure 3.6. (a) Schematic and (b) a picture of buffer rod transducer system used in high temperature 

RUS measurements. 

  

3.4   High- and Low-Pressure RUS Setup 

For the RUS measurements at high pressure conditions, a stainless-steel tube is used 

instead of a quartz tube, as shown in the high-temperature setup (Figure 3.7). The upper end of the 

tube is designed to fill the gas from the tanks, while the lower end is connected to a vacuum pump 

for gas removal process. At its maximum operation, the vacuum pump (Cooltech 15400) reduces 

the pressure inside the cell to 0.1 torr.  Both gas filling and removal are controlled by needle valves. 

A digital pressure gauge with the resolution of 0.1 torr and an analogue pressure gauge with the 

resolution of 50 psi are used to measure the hydrostatic pressure in vacuum- and high-pressure 

levels respectively.  
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Figure 3.7. (a) Schematic of the cell arrangement for the RUS measurements at high- and low- 

pressures, and (b) the experimental setup. 

 

3.5   Sample Preparation  

 The material samples received for the RUS measurements are always in different shapes 

according to the application that they have been used for. Therefore, sample preparation to a 

specific geometrical shape, such as spheres, cylinders and cubes, with precise measurement of its 

dimensions, is an important task as the RUS computational techniques have been developed to 

compute the elastic constants of the standard geometries. Parallelepipeds are the most used 

geometry due to the convenience and simplicity in the computational process. The imperfection of 

the sample geometry leads to inaccurate estimate of the elastic constants.  

 The sample preparation procedure is shown in the following flow chart in Figure 3.8. A 

low speed diamond saw is used to cut the rectangular parallelepiped samples from the bulk sample 

and a water based lapping machine is used to polish the sample surfaces. At each cutting and 

polishing process, the sample is mounted to appropriate devices designed for each machine and 

covered with wax to prevent any damages to the edges and corners of the sample. An optical 
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microscope is used to monitor the geometrical angles and the surface quality of the parallelepipeds. 

Prepared samples are then cleaned to remove any surface residue from materials exposed during 

sample preparation and dried well to evaporate any solvent that might absorb into the specimen. 

An acetone and ethanol based ultrasonic cleaning technique: 20-minute cleaning with acetone and 

then another 20-minute cleaning with ethanol, is followed. A micrometer and high precision mass 

scale are used to measure sample dimensions and mass. Care must be taken in handling and 

mounting the samples in the RUS transducer system to avoid any damages and contaminations.  

 For single crystalline materials with lower symmetries, the alignments of crystallographic 

directions with the sample body axes need to be determined during preparation of test specimens. 

X-ray diffraction (XRD) measurements can be used to determine crystallographic directions. Any 

offset with crystallography directions to the sample alignment, measured by Euler angles, should 

be included in the computational routine.  

 

Figure 3.8. Sample preparation procedure. 
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CHAPTER 4 

A PRELIMINARY STUDY ON THE TEMPERATURE AND PRESSURE DEPENDENT 

ELASTICITY OF POROUS CERAMICS DESIGNED FOR SOLID OXIDE FUEL CELLS 

 4.1   Introduction   

Solid oxide fuel cell systems are usually made as a stack of individual cells (Figure 4.1). 

An interconnecting material, which allows gas exchange and mechanical stability, is used to 

separate those individual cells. LG Fuel Cells Systems, Inc. uses a rectangular tube structured 

porous ceramic material as an interconnecting phase. Since fuel cells are operated at high 

temperature environments, it is important to study the temperature dependent mechanical 

properties of the materials used. This experiment was designed and performed to study the 

elasticity of porous ceramics at different temperature and hydrostatic pressure conditions. 

 

Figure 4.1. Schematic of a hydrogen fuel cell and the interconnecting structure made with porous 

ceramics. 
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4.2   Sample Preparation  

The as-received sample was a rectangular-tube-structured porous ceramic sample with wall 

thickness ~ 1 mm (Figure 4.1). A thin sample was prepared by separating a wall of the bulk sample 

as shown in Figure 4.2(a). The thickness of the sample was around 0.8 mm. An experimental setup 

was designed to measure resonance spectra at elevated temperatures under partial vacuum 

conditions (Section 3.4). The resonance spectra were obtained with lower signal-to-noise ratio, 

which caused difficulties when identifying exact sample resonance peaks. Reduction in signals is 

attributed to high damping and small sample size. Therefore, rectangular tubular parallelepipeds 

(Figure 4.2(b)) were sectioned from the bulk sample as described in the sample preparation Section 

3.5. The dimensions and the masses of the samples are tabulated in Table 4.1. The resonance 

spectra measured from the tube sample exhibited higher signal-to-noise ratio when compared to 

that of the thin sample. Therefore, tube samples were used for the preliminary RUS measurements 

at different pressure and temperature conditions. 

 

Figure 4.2. (a) Thin sample and (b) Tube sample prepared from the bulk material. 
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Table 4.1. The dimensions and mass data of tube samples. 

Measurement Sample A Sample B 

Height (cm) 0.9910 0.9932 

Outer length (cm) 0.4851 0.5080 

Outer width (cm) 0.3561 0.3570 

Mass (g) 0.3067 0.3260 

 

4.3   Experimental Procedure  

Although the tube samples offered a reasonable resonance spectrum, we observed further 

signal-to-noise ratio reduction mechanisms, especially the damping due to the moisture and any 

liquid trapped inside the pores during the sample preparation process, which reduced the number 

of resonance peaks visible in the resonance spectrum. The tube sample-A was mounted in the 

transducer system which sat inside the high-pressure cell as described in Section 3.4. To eliminate 

the moisture and residual liquid phases, the pressure inside the cell was reduced to 23 Torr (~0.03 

atm) and the temperature was raised until a significant spectrum was obtained. The drying process 

helps to vaporize any liquid phases trapped inside the pores. Resonance spectra were measured at 

each temperature increment and a growth of the signal strength of the resonance peaks was 

observed as shown in Figure 4.3. A reasonable resonance spectrum was obtained at 498 K (225˚C) 

and resonance spectra were measured at every 30 minutes intervals for a duration of 17 hours while 

the system was allowed to stabilize.  
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Figure 4.3. Growth of the quality of resonance spectrum with increasing temperature.  

 

A similar procedure was repeated for sample-B until a significant spectrum was obtained. 

A significant spectrum was obtained at 511 K (238˚C) and the system was allowed to stabilize. 

Resonance spectra were collected at 20 minutes intervals for an additional 19 hours at 511 K. The 

system was then cooled to room temperature. Resonance spectra were measured at different 

temperature points while the sample was cooling. After that, the system was maintained under 

vacuum at room temperature for about 12 hours. Another temperature cycle was performed from 

295 K to 507 K, and the resonance spectra were measured during the heating and cooling cycles. 

Finally, the resonance spectra were obtained by varying the pressure from 760 Torr (1 atm) to 23 

Torr (0.03 atm) at room temperature. The analyses of the observed results are presented in the 

following section. 
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4.4   Results and Discussion  

The measured resonance spectra have exhibited a peak growth with increasing temperature. 

This peak growth is possibly due to the reduction of damping by the purging of gas and liquid 

from the voids within the material structure. Although, the tube samples provided a reasonable 

resonance spectrum at high temperatures, the elastic constant fitting routine was challenging due 

to the geometry of the sample. However, the elasticity of the material can be studied by analyzing 

squares of the trends of normal mode frequencies (𝑓2) as they are proportional to the elastic 

constants. Therefore, in this study we discuss the elastic behavior of the test specimens by 

analyzing the normal mode frequencies. Figure 4.4 shows the variation of the resonance 

frequencies over time, measured from sample-A and sample-B at 498 K and 511 K respectively. 

     

Figure 4.4. Time variations of squared resonance frequencies measured from (a) sample-A at 498 

K and (b) Sample-B at 511 K, in the partial vacuum of 23 Torr. (the squares of the resonance 

frequencies have been normalized by the measurements at t=0). 

 

 According to Figure 4.4, both sample-A and sample-B have experienced an overall 

material stiffening over time, which is quantified by increase of resonance frequencies. There is a 

sharp stiffening in the first few hours (0-2 hours) that slows afterwards. Since, the samples were 

at vacuum and high temperature conditions, our attention was drawn to two different possible 

mechanisms of stiffening governed by hydrostatic pressure and temperature. Here we used the 
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following two-time constant exponential equation (Eq. 4.1) to fit the squared frequencies with 

time, in order to get a broader understanding of the dynamics of the material stiffening and their 

mechanisms. Figure 4.5 shows the quality of the fitting, and the fitted time constants, 𝜏1 and 𝜏2 for 

selected seven normal mode frequencies of Sample-A and Sample-B are tabulated in Table 4.2. 

 
 𝑓(𝑡)
2 = 𝑓0

2 + 𝐴1 (1 − 𝑒
−
𝑡
𝜏1) + 𝐴2 (1 − 𝑒

−
𝑡
𝜏2) (4.1) 

 

     

Figure 4.5. Curve fits to the frequency squared data of (a) Sample-A and (b) Sample-B. 

 

Table 4.2. The time constants obtained from the exponential fit.  

 

 

Tube Sample A – at 498 K Tube Sample B – at 511 K 

𝜏1 (hr) 𝜏2 (hr) 𝜏1 (hr) 𝜏2 (hr) 

Peak 1 0.277 3.690 0.186 2.525 

Peak 2 0.255 3.323 0.176 2.411 

Peak 3 0.258 2.403 0.181 1.984 

Peak 4 0.241 2.944 0.166 1.776 

Peak 5 0.263 3.318 0.173 2.028 

Peak 6 0.257 3.674 0.153 1.566 

Peak 7 0.279 4.191 0.136 0.621 

Average 0.261 3.363 0.167 1.844 

 

 The curve fits provide two significantly different time constants 𝜏1 and 𝜏2, such that 𝜏2 =

~10𝜏1 for both samples. This time constant data reveals that the overall stiffening is composed of 

a rapid stiffening with lower time constants (0.261 hr, 0.167 hr) and a slow stiffening with larger 
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time constants (3.363 hr, 1.844 hr). The rapid stiffening is possibly due to the purging of gas and 

liquid phases from the voids within the material structure as they are exposed to partial vacuum 

condition. As the sample is exposed to a moderately high temperature for longer time, it is possible 

to observe a partial annealing or microcrack healing processes which reduced the porosity, and 

hence increased the stiffness of the material. Since the microcrack healing is a slow process, we 

can conclude that the slower stiffening with larger time constant was due to the microcrack healing 

process. The material stiffness with increasing temperature and reducing hydrostatic pressure will 

be discussed in the following sections.  

       

Figure 4.6. Frequency trends at the thermal cycles. (a) cooling process from 511 K to 295 K. (b) 

thermal cycle from 295 K to 507 K. 

 

 This porous material exhibits stiffening with increasing temperature. Stiffening during 

heating cycle and softening during cooling cycle was observed during multiple heating-cooling 

cycles. As the temperature increases, the microcrack healing will take place such that it will make 

the material stiffer. The observed microcrack healing is reversible and the healed microcracks are 

grown during the cooling process and make the material soft. This microcrack healing and growing 

has been reported in other experimental studies as well [74]. This observation confirms that the 
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slower stiffening observed above is due to the microcrack healing process at moderately high 

temperatures.  

 Figure 4.7 shows the hydrostatic pressure dependence of the normal mode frequencies and 

acoustic attenuation. The frequency trends exhibit a material stiffening with reducing hydrostatic 

pressure. This confirms that the rapid stiffening at 23 Torr (0.03 atm) with smaller time constant 

is possibly due to the gas removal process. However, this experiment should be developed with 

finer pressure variations so that we can acquire more data points. Chapter 5 will discuss the 

development of the experimental setup and the measurements.  

      

 

 

Figure 4.7. Pressure dependence of (a) resonance frequencies and (b) average 1/Q exhibited by 

sample-B at room temperature.  
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CHAPTER 5 

HYDROSTATIC PRESSURE DEPENDENT ELASTICITY OF POROUS CERAMICS 

The preliminary study discussed in Chapter 4 drew our attention to the observation of 

porous material stiffness at reduced hydrostatic pressure as it is the opposite of the typical fully 

dense solid materials. Therefore, this dissertation was primarily designed for a deep understanding 

of the influence of the pore saturated gas media and their physical properties on the elasticity of 

porous ceramic materials. This chapter will discuss the experimental findings of the hydrostatic 

pressure dependence of the elasticity of porous ceramics saturated with different gas media.  

 

5.1   Materials  

Commercially available porous alumina (Al2O3) (AdValue Technology), yttria partially 

stabilized porous zirconia (ZrO2) /Y-TZP (IPS e.max ZirCAD; Ivoclar Vivadent North America, 

Amherst, NY, USA), and porous titania (TiO2), whose membrane is a mixture of zirconia and 

titania (Sterlitech Corporation) were used in this study. High purity, precise porosities and pore 

sizes, and the material rigidity were considered when selecting these materials. The fully dense 

zirconia samples were prepared at Biomedical Materials Science Laboratory, University of 

Mississippi Medical Center (UMMC) from yttria partially stabilized zirconia/Y-TZP. Porous 

zirconia specimens were sintered to full density according to the following heating schedule in a 

furnace (Sintramat, Ivoclar Vivadent) at ambient pressure:  room temperature to 1100 ºC for 1 h 

12 min, 1100 to 1350 ºC for 1 h 11 min, 1350 to 1500 ºC for 30 min, held at 1500 ºC for 30 min, 
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and 1500 ºC to room temperature for 4 h 29 min. A type of fully dense ceramics used in LG solid 

oxide fuel cells was also used to compare the experimental results with porous ceramics. 

Rectangular parallelepiped shaped samples were cut from the bulk samples using a low speed 

diamond saw and they were polished by a water based lapping machine. The sample specifications 

are listed in Table 5.1. The porosity values of test samples were provided by the manufacturers 

and they were verified by the volumetric calculations. 

Table 5.1. Material specifications. 

Specification 
Porous Ceramics Dense ceramics 

Al2O3 ZrO2 TiO2  ZrO2 LG 

Width (mm) 2.452 2.911 1.928 2.880 3.477 

Length (mm) 3.890 3.213 3.585 3.814 3.822 

Height (mm) 5.785 4.951 5.450 5.571 6.314 

Density (gcm-3) 2.193 3.125 3.221 5.997 4.397 

Porosity (%) ~ 40 ~ 48 N/S - - 

  *N/S = not specified by the manufacturer. 

 

 

Figure 5.1. (a) Porous alumina test specimen and the SEM images of (b) porous alumina, (c) porous 

titania, (d) porous zirconia and (e) sintered zirconia. 
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5.2   RUS Setup 

A direct contact transducer system made of two gold-coated lithium niobite (LiNbO3) 

transducers was used to measure the resonance spectra. The sample-transducer system was placed 

inside a sealed high-pressure cell which is designed to fit inside a tube furnace (Carbolite Model 

MTF12/38/250) (Figure 5.2). The upper end of the tube is designed to fill the gas and the lower 

end is connected to a vacuum pump for gas removal process. At its maximum operation, the 

vacuum pump reduces the pressure inside the cell to 0.1 Torr.  Both gas filling and removal are 

controlled by needle valves. A digital pressure gauge with the resolution of 0.1 Torr and a type N 

thermocouple with the resolution of 0.01 K were used to measure the hydrostatic pressure and the 

temperature inside the cell respectively. 

 

Figure 5.2. Experimental setup designed to perform the experiments in high- and low-pressure 

conditions. 

 

5.3   Methodology of Data Analysis 

Figure 5.3 shows a typical resonance spectrum (quadrature signal amplitude vs frequency) 

of porous alumina test specimen. The phase information of the quadrature signal results in 
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Lorentzian shaped resonance peaks with arbitrary phase. The inset shows a Lorentzian curve fitting 

for the resonance peak at 544 kHz which has an average quality factor of 628. The statistical fitting 

error of the center frequencies are ranged from 1.6 Hz – 8.7 Hz (average of 4.8 Hz, 9.7 ppm), 

implying the high precision of the RUS data acquisition. 

 

Figure 5.3. Resonance spectrum (quadrature signal vs frequency) of porous alumina test specimen. 

The Lorentzian curve fitting for peak at 544 kHz is shown in the inset.   

  

 Although we have discussed the 7 × 7 elastic tensor proposed by Biot’s theory of 

poroelasticity, as a preliminary computation this study still uses the conventional 6 × 6 elastic 

tensor by assuming that porous ceramics behave as isotropic polycrystals. Then we recall the 

measured elastic constants as effective elastic constants and the derived elastic moduli are known 

as the effective elastic moduli. As discussed in Chapter 2, isotropic polycrystalline solids exhibit 

only two independent elastic constants, 𝐶11and 𝐶44 in their elastic stiffness tensor. The acquired 

normal mode frequencies and geometrical data of the test specimens were used to compute the 

elastic constants using Levenberg-Marquardt nonlinear fitting algorithm. The average error 

magnitude of measured and calculated resonance frequencies at the optimization iterations was 

0.5%, indicating a reasonable fit for the elastic constants. Shear modulus, G and Young’s modulus, 
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E were calculated using the measured elastic constants (Eqs. 2.36 and 2.37). In some experimental 

studies, especially in high pressure conditions, the test specimens exhibited acoustic damping 

which results in fewer number of detectable resonance peaks in the spectrum. Therefore, the 

change in elasticity has been qualitatively studied by analyzing the change in resonance 

frequencies instead of calculating elastic constants. the experimental procedures, results and 

discussions of several studies are described in the following Section 5.4.  

 

5.4   Experimental Procedures, Results and Discussions 

5.4.1   Elasticity of Porous Alumina and Zirconia at Low-Pressure Regions 

Alumina sample was placed inside the test cell filled with lab air at ambient pressure 760 

Torr (1 atm) and temperature 295 K. Vacuum pump was used to remove the gas inside the cell, 

and hence to reduce the hydrostatic pressure. A needle valve was used to control the gas vent and 

the pressure inside the cell. Resonance spectra were acquired at several pressure points during the 

pressure cycles from 760 – 0.1 Torr. The above procedure was followed with the porous zirconia 

sample.  

     

Figure 5.4. Frequency change of normal modes during the pressure cycles (a) porous alumina (b) 

porous zirconia. Blue / red symbols indicate decreasing / increasing pressure respectively. 
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According to the resonance frequency trends shown in Figure 5.4, both porous alumina and 

zirconia samples follow an overall material stiffening during the gas removal process. To confirm 

the validation of the above result, multiple tests were performed with the alumina sample, and the 

resultant normal mode frequencies were used to compute the polycrystalline elastic constant 

𝐶11and 𝐶44. Pressure dependent Young’s and shear moduli are shown in Figure 5.5. 

      

Figure 5.5. Variation of elastic moduli: (a) Young’s modulus and (b) Shear modulus, of the porous 

alumina during the pressure cycles. 

 

 Multiple RUS measurements and the corresponding elastic moduli trends have concluded 

the validation of the porous material stiffening during the gas removal process. The 

thermodynamic temperature drop due to the pressure decrease  from 760 Torr to 0.1 Torr was 

measured as 0.6 K and ~0.008 % increase of shear modulus is estimated due to this temperature 

reduction, while a ~0.5 % increase of shear modulus was observed in the experimental results. 

This implies that the observed material stiffening is dominated by the micromechanical structural 

process induced by gas removal.  
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5.4.2.   Comparison of Pressure Dependent Elasticity of Porous and Dense Zirconia 

This experiment was conducted to compare the pressure dependent resonance frequency 

trend of fully dense zirconia with that of porous zirconia. The resonance spectra of both porous 

and fully dense zirconia were measured during multiple trials of pressure cycles from 760 – 0.1 

Torr. The average of selected normal mode frequencies at each trial of each specimen are shown 

in Figure 5.6. The frequency trends provide a clear comparison between the porous and fully dense 

specimens. Here, as expected, the fully dense specimen shows a slight stiffening with increased 

pressure with no hysteresis, whereas the porous specimen follows a rapid softening in the same 

pressure range confirming the previous results in Section 5.4.1 

 

Figure 5.6. Averaged frequency change over the selected normal modes of porous and fully dense 

zirconia at multiple trials of pressure cycles. 

 

5.4.3   Elasticity of Porous Alumina and Dense Zirconia at High-Pressure Region 

Although the above experiments were designed to study the low-pressure dependent elastic 

behavior of porous materials, the operated pressure range was narrow (760 – 0.1 Torr). We 

observed slight changes (~0.5%) of materials elasticity over the limited pressure range. The 
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consistency of the experimental results observed above motivated to conduct experiments in a 

higher and broader pressure regime. In this experiment both porous alumina and dense zirconia 

samples were used to study the high-pressure dependent elasticity. Initially, a porous alumina 

sample was placed inside the cell at room temperature and ambient pressure. Then the pressure 

was decreased to 0.02 psi (1 Torr). Argon gas was supplied to the cell to increase the pressure and 

the resonance spectra were measured at several pressure points from 0.02 - 800 psi. The upper 

pressure point was limited to 800 psi as the signal amplitude and the quality of the resonance peaks 

have been reduced likely due energy loss through acoustic radiation near the resonance. The energy 

dissipation was reversible, and an amplitude rise was observed during the decreasing pressure 

cycle. The reversibility of the change of signal amplitude is shown in Figure 5.7 and the energy 

dissipation mechanisms will be discussed along with the quality factor data acquired from 

resonance spectra. The same procedure was followed with the dense zirconia test specimen and 

measurements were taken up to 500 psi.  

 

Figure 5.7. The signal amplitude changes and their reversibility during the pressure cycles. 
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Figure 5.8. The pressure dependence of (a) averaged frequency change and (b) averaged Q factor 

change of selected normal modes of porous alumina and dense zirconia during the high-pressure 

cycles. (changes were calculated from the values at 0.02 psi). 

  

 The observed frequency trends of porous alumina and dense zirconia emphasize the same 

trends observed in low pressure region. Porous alumina has shown a rapid softening with 

increasing pressure, while dense zirconia is following a slight stiffening. Taken as a whole, these 

results provide strong evidence that porous materials become stiffer with decreasing hydrostatic 

pressure over broad pressure ranges. 

 The quality factor (Q) is a measure of the inverse of the energy dissipation of an elastic 

solid near the resonance and defined as the ratio of the total energy to the energy lost per cycle. 

For a given resonance peak in the resonance spectra, quality factor can be determined as: 𝑄 =

𝑓0 ∆𝑓⁄  , where 𝑓0 is the center frequency of the resonance and ∆𝑓 is the full width at half maximum 

(FWHM). According to the measured Q factor data of both porous and dense specimens, Q factors 

of selected resonance peaks decrease with increasing hydrostatic pressure and the trend is 

reversible with the pressure cycles (Figure 5.8(b)). This reduction of the quality factor is a measure 

of the elastic energy dissipation of both porous and full dense solids. At resonance, a solid body 

vibrates with the maximum amplitude and its surfaces will create vibrations on the gas medium by 

transferring the vibrational energy into the gas medium (acoustic radiation). The energy 
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transmission at the solid - gas interface is enhanced with the increase of gas pressure since it will 

make the gas denser, and hence reduce the impedance mismatch between the media. This energy 

dissipation mechanism reduces the detectable vibrational amplitude of the resonance peaks as 

shown in Figure 5.7. With compared to fully dense zirconia, porous alumina sample shows a rapid 

decrease of Q factor with the increased pressure. This observation is possibly due to the additional 

energy dissipation takes place at the solid-pore interfaces.  

 Computing elastic constants of porous alumina at higher pressures was difficult due to lack 

of measurable normal mode frequencies. However, reasonable number of resonance frequencies 

were able to detect up to 300 psi pressure point, and hence the pressure dependent elastic constants 

were determined in the 0.02 – 300 psi pressure region. Figure 5.9 illustrates the variation of elastic 

constants and the Young’s modulus with the increased hydrostatic pressure. 𝐶11 and Young’s 

modulus which correspond to the extensional modes have shown a rapid decrease with the 

increasing pressure while the shear mode 𝐶44 has followed a slow decrease. This suggests that the 

applied hydrostatic pressure provides a larger impact on the extensional vibrational modes than 

the shear modes indicating that the extensional elastic constants are changed significantly with the 

change of hydrostatic pressure. According to the Biot’s theory, the stress tensor has modified by 

adding the hydrostatic stress term, 𝜎𝑓 = −𝜙𝑝 as described in equations 2.11 and 2.12, and the 

effective stress components  are given by 𝜎𝑖𝑖
′ = 𝜎𝑖𝑖 − 𝜙𝑝 for 𝑖 = 1, 2, 3. The hydrostatic stress acts 

only on the extensional stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧, and the shear stress components are not altered 

by the hydrostatic stress. According to the constitutive relations derived in Section 2.2.1, for an 

isotropic polycrystal class the extensional elastic constant, P and the shear elastic constant, N are 

expressed by the equations 2.30 and 2.32 as follows.  
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 𝑃 = 2𝐺 + 2𝐺 (
𝜈

1−2𝜈
) +  B𝐾𝑢

(𝛼−𝜙)2

𝛼
 (2.30) 

 

 𝑁 = 2𝐺 (2.32) 

 

 The equations clearly demonstrate that the extensional elastic constant involves with both 

solid and fluid elastic moduli while the shear elastic constant contains only the solid elastic moduli. 

This implies that the extensional modes are directly coupled with the fluid phase, and hence they 

are affected significantly by the hydrostatic pressure as illustrated by the experimental results 

discussed above.   

 

Figure 5.9. Pressure dependent elastic constants and Young’s modulus of porous alumina 

pressurized by argon gas. 

 

5.4.4   The Effect of the Saturated Gas Medium  

 After observing the above behavior of the elasticity with hydrostatic pressure saturated by 

argon gas, attention was drawn to repeat the experiment with different gas types to study the effects 

of the fluid properties on the materials elasticity. Both fully dense and porous ceramics samples 

were used in this study, and helium, nitrogen and argon gas were used for the saturation. The 
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frequency changes with hydrostatic pressure of each materials with different gas media are 

illustrated in Figure 5.10. As shown in Figure 5.10(a) and (b), both fully dense ceramics exhibit 

an increase of material stiffness with increasing pressure. The stiffening rate is nearly constant for 

each gas saturation. This implies that the fully dense material stiffening is caused due to the 

increase of the curvature of the interatomic potential energy curve by reducing the lattice constants 

with increasing hydrostatic pressure and it will not be affected by the type of the saturated gas.  

   

     

Figure 5.10. Pressure dependent frequency change of (a) fully dense zirconia (b) fully dense LG 

ceramics (c) porous alumina and (d) porous titania with the helium, nitrogen and argon gas 

saturation. 

  

 However, porous ceramics have shown a clear variation in the rate of change of resonance 

frequencies with the hydrostatic pressure at different gas saturation (Figures 5.10(c) and (d)). 

Helium gas saturation follows a slight variation of the resonance frequencies while nitrogen and 
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argon lead to a significant variation. This implies that the saturated gas type is one of the factors 

which determines the rate of porous materials’ elasticity change with the hydrostatic pressure. 

Density, molecular weight and viscosity are the main physical properties of the gas medium which 

can directly affect to this variation. In order to study the relation between the atomic wight and the 

rate of the frequency variation, the frequency changes data of porous alumina at  both increasing 

and decreasing pressure cycles were fitted to a linear function and the slopes, ∆𝑓 ∆𝑝⁄  were 

determined for each gas type (Figures 5.11(a) and (b)). 

      

Figure 5.11. Linear fits for the frequency variations of porous alumina at (a) increasing and (b) 

decreasing hydrostatic pressure cycles. 

 

 The magnitudes of measured slopes were then analyzed with the molecular weight of the 

gases. The variation of the slope with the molecular weight (M), which is not linear, is shown in 

Figure 5.12(a). In a previous study, Isaak et al. have reported that the pressure derivative of the 

shear modulus measured form fused silica is proportional to the square root of the atomic weight 

such that, |
𝜕𝐺

𝜕𝑝
| ∝ √𝑀  [75]. Since resonance frequency, f  is proportional to the square root of the 

elastic modulus (𝑓 ∝ √𝐺 ), Isaak’s finding suggests that the pressure derivative of the resonance 

frequency is directly proportional to the M to the power of one forth such that, |
∆𝑓

∆𝑝
| ∝ 𝑀1/4. The 
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linear relationship between the measured slopes, |
∆𝑓

∆𝑝
| with 𝑀1/4 has been verified by our 

measurements as shown in Figure 5.12(b), confirming the validation of the Isaak’s findings.  

          

Figure 5.12. The plots of (a) |
∆𝑓

∆𝑝
|  𝑉𝑠 𝑀  and (b) |

∆𝑓

∆𝑝
|  𝑉𝑠 𝑀1/4. 

 

5.5   Conclusions  

 The main objective of this experimental study was to investigate the hydrostatic pressure 

dependnet elasticity of porous cermaics and its behaviour with the properties of saturated gas. A 

series of RUS measuremnts were conducted and the measured pressure dependent resonnace 

frequency trends and calculated elastic moduli have confirmed the reversible porous material 

softning (stiffening) with increased (decreased) hydrostatic pressure over the range of 0.02 – 800 

psi. A clear distinct trend of pressure dependent elasticity exhibited by the the fully dense ceramics 

reveals that the elasticity change of the porous material is possibly due to the pore structure and 

micromachanical effects such as microcrack growth and healing induced by applied hydrostatic 

pressure. This experimental results validates the Biot’s theory of poroelasticity wich describes the 

pressure dependency of the elasticity of porous materials. The effect of saturated gas type on the 
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rate of change of elasticity with the pressure was examined and the behaviour of the pressure 

derivaties with the molecular weight was descussed.  
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CHAPTER 6 

MECHANICAL AND STRUCTURAL STABILITY OF POROUS ALUMINA AT HIGH 

TEMPERATURES 

6.1   Introduction 

 The following experiments were designed and performed to study the stability of the 

elasticity (mechanical equilibrium) of the porous material at moderately high temperatures and 

different pressure points. Initially, the alumina sample was under the argon gas saturation at 760 

Torr and 295 K. Temperature inside the cell was increased to 423 K and pressure raised to 840 

Torr at the steady temperature of 423 K. After the steady state of temperature and pressure reached, 

pressure was reduced to 0.1 Torr, and resonance spectra were measured at every 15 minutes for 70 

hours. After 70 hours, pressure was raised to 420 Torr by filling argon gas, and resonance spectra 

were measured. The same procedure was followed to 840 Torr pressure point. Another time 

evolution experiment was performed by measuring resonance spectra at 840 Torr, 540 Torr and 

260 Torr pressure points through the decreasing pressure process at 423 K. The temperature was 

maintained at 423 +/- 1 K throughout the whole experiment. Argon gas was used in this experiment 

to prevent from any oxidation processes which will take place at high temperatures.  
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6.2   Results and Discussion 

 The time evolution of elastic moduli during both increasing and decreasing pressure cycles 

are represented in following Figures 6.1 and 6.2. 

          

Figure 6.1. Time evolution of (a) Young’s modulus and (b) shear modulus during the increasing 

pressure process at 423 K.  

 

           

Figure 6.2. Time evolution of (a) Young’s modulus and (b) shear modulus during the decreasing 

pressure process at 423 K. 

 

 The elastic moduli exhibit an overall exponential growth with time during both increasing 

and decreasing pressure cycles. Although the changes of elastic moduli are very small (< 0.5 %), 

they show a best fit with the exponential growth function, indicating the precision and sensitivity 

of RUS measurements.  The sudden drop / rise of elastic moduli at changing pressure events are 
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comparable to the material softening / stiffening behavior observed in the experiments described 

in Chapter 5. Despite that, the material has followed an overall stiffening process during both 

pressure cycles at 423 K. This implies that the stiffening was mainly dominated by the temperature 

increment rather than the gas removal. The temperature dependent material stiffening process is 

possibly explained by the porosity reduction at the partial sintering processes such as neck growth, 

grain boundary growth and microcrack healing [74,76]. A direct conclusion to the above stiffening 

nature has been limited due to the practical limitation of porosity measurement or any other 

structural change measurement at the experiment environment. However, RUS is well equipped 

to probe the elasticity change more precisely. Therefore, mathematical models of porosity 

dependent elasticity can be used to explore the porosity changes based on the elastic moduli 

obtained from the RUS measurements. 

 Two mathematical models: model-1 (Eq. 6.1) [77] and model-2 (Eq. 6.2) [78] , of porosity, 

ϕ dependent Young’s modulus, E were considered to compute the porosity change.  

 𝐸 = 𝐸0𝑒
(−𝑏𝐸𝜙) (6.1) 

 

 𝐸 = 𝐸0(1 − 𝜙)
𝑛 (6.2) 

 

Where 𝐸0 is the Young’s modulus of fully dense material (at zero porosity) and 𝑏𝐸, 𝑛 are the 

empirical parameters which are to be determined by experimental studies. Ren et al.  [50] have 

reported 𝑏𝐸 = 3.4 ± 0.1 for alumina based on their experimental studies of porosity dependent 

elasticity and Munro [47] has used several experimentally reported data to derive the value of 𝑛 to 

be 3.06 for alumina. Here we have estimated the porosity change with the time at 0.1 Torr and 423 

K by using the Young’s modulus data in to the above two models.  
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Figure 6.3. Estimated variation of porosity with time at 0.1 torr and 423 K, based on (a) model-1 

and (b) model-2. 

 

 The estimations from both models represent a porosity reduction of the material over time. 

The reduction is well fitted to the exponential decay function with time constant 𝜏 = 27 hr. This 

time constant refers to the rate of the partial sintering process where the surface free energy got 

minimized. Despite the fact that our experimental temperature of 423 K is much lower than the 

sintering temperature of alumina (> 1500 K), there is a possibility to observe some partial sintering 

effects at slower rates. Here, model-1 has estimated 0.09 % reduction of porosity, while it is 0.06 

% from the model-2. This deviation is possibly due to the choice of empirical parameters and 

initial conditions of Young’s modulus at 150 ℃. This estimation of porosity reduction strongly 

suggests the partial sintering process of the material, and hence the overall material stiffening with 

the time.  

 

6.3   Conclusions 

 Overall material stiffening with the time was observed at 423 K during both increasing and 

decreasing pressure cycles from 840 – 0.1 Torr. Although the magnitude of stiffening is low (< 
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0.5 %), it follows a well fitted exponential growth with the time. This material stiffening at elevated 

temperature is possibly due to the partial sintering process followed by a porosity reduction. The 

porosity reduction was estimated by applying the measured Youngs’ modulus data in to two well-

known models of porosity dependent Young’s modulus. This study demonstrates the capability of 

RUS in measuring more sensitively changes of elasticity with higher precision. 
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CHAPTER 7 

TEMPERATURE DEPENDENT ELASTICITY OF SINGLE CRYSTALLINE TIN SELENIDE  

7.1   Introduction  

In recent years, single crystalline tin selenide (SnSe) has attracted enormous attention due 

to its record high thermoelectric (TE) figure-of-merit or ZT ~2.6 at T > 900 K arising from its 

significantly low thermal conductivity . Pristine SnSe exhibits a low thermal conductivity despite 

its simple layered crystal structure, orthorhombic Pnma phase that undergoes a displacive phase 

transition (Tc ~ 810 K) to the Cmcm phase with increasing temperature (Figure 7.1). Recent 

experimental and theoretical works on SnSe have revealed that this intrinsically low thermal 

conductivity is driven by strong lattice anharmonicity of its crystal structure, which is tied to a 

lattice instability arising from the structural phase transition. The elastic energy density 

corresponding to the potential energy, U is a quadratic function of the elastic strains 𝜀𝑘𝑙, and hence 

probing temperature-dependent elastic moduli is important to fully understand the phonon 

anharmonicity of materials. Furthermore, although the TE properties of SnSe have been widely 

investigated, the implementation of a TE device requires materials with high mechanical strength 

that can withstand thermal cycling at high temperatures. These findings motivate the current 

researchers to explore the elastic properties of SnSe at higher temperatures (300-1000 K), for a 

deeper understanding of the contribution due to phonon anharmonicity on its thermal transport and 

mechanical properties.  
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Figure 7.1. Crystal structures of the Pnma and Cmcm phases of SnSe below and above the phase 

transition at 810 K. The Pnma and Cmcm phases of the different crystallographic planes are also 

shown on the left and right sides of the arrow indicating the phase transition. Here, a, b, and c are 

the primary crystallographic directions of SnSe in the Pnma and Cmcm phases. 

 

In contrast to an isotropic polycrystal which has only two elastic constants, the 

orthorhombic crystal structure of SnSe owns nine independent anisotropic elastic constants in its 

elastic stiffness tensor Cij that has been estimated using ab initio density functional theory (DFT). 

However, it is well known in the RUS community that an experimental investigation of the nine 

independent elastic constants is challenging, especially in high temperatures. This chapter 

discusses the use novel resonant ultrasound spectroscopic (RUS) measurements to measure the 

temperature dependence of the complete elastic tensor of single crystalline SnSe, and to detect the 

phase transition by the mean of elastic parameters. This study provides a broad description of the 

use of elastic tensor to compute anisotropic elastic and thermal properties of low symmetric 

crystalline materials.  
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7.2   Materials and Methods 

7.2.1   Sample Preparation 

High quality single crystalline SnSe samples (packing density > 99% of the theoretical 

density) were synthesized by the Bridgman method at the Institute of Physics, Academia Sinica in 

Taiwan, and the details of the procedure are described elsewhere [69]. Typical dimensions of SnSe 

crystals used in this study were 2.024 x 3.531 x 4.775 mm3 (± 0.001 mm) and their average density 

was 6.031 g cm-3 (~100% of the theoretical density).  

 

7.2.2   RUS Measurements and Computation 

Resonance spectra of the sample at elevated temperatures from 295 K – 773 K were 

measured using a direct contact transducer system made with LiNbO3 piezoelectric transducers, 

(Figure 7.2(a)) placed inside a sealed glass tube which is housed in a tube furnace. The resonance 

frequencies acquired from measured RUS spectra, geometrical data and theoretically reported 

elastic constants from DFT  [71] were used to optimally determine the nine elastic constants of the 

crystal. The fitting routine is inherently non-linear and uses a classic Levenberg-Marquardt 

algorithm.  In any non-linear optimization problem, care must be taken that the algorithm settles 

on the global, rather than the local, minimum. The change of a natural frequency with respect to a 

change in each of the elastic constants (
𝜕𝑓𝑘

𝜕𝐶𝑖𝑗
⁄ ) varies significantly. Thus, the nine elastic 

constants were set into groups of three to vary (or “float”) in each fitting routine.  The most 

significant (largest derivatives) elastic constants 𝐶44,𝐶55,𝐶66 were varied first, followed with 

varying the next group of 𝐶11,𝐶22,𝐶33,  until the final group of 𝐶12,𝐶13,𝐶23   was varied.  In this 

way, we “guide” the fitting algorithm to prevent weakly coupled elastic constants from varying 
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dramatically.  The elastic constants from DFT were used as initial parameters in the fitting routine, 

however in order to guard against the local minimum problem, these initial parameters were 

randomly varied such that their standard deviations were within ±5% for 10 different fitting 

routines. 

For an anisotropic crystal, the elastic moduli are different along each crystal axis. The 

Voigt-Reuss-Hill (VRH) approximation is often used to convert the anisotropic single crystalline 

elastic constants into isotropic polycrystalline elastic moduli, bulk modulus (B) and shear modulus 

(G) as discussed in Section 2.4. Furthermore, the VRH derived polycrystalline elastic moduli were 

used to compute the wave velocities, shear anisotropic factors, Grüneisen parameter and Debye 

temperature.  

 

Figure 7.2. (a) RUS experimental setup with direct contact transducer system with LiNbO3 

piezoelectric transducers for measurements up to ~800 K and (b) buffer rod transducer system for 

measurements up to 1200 K. 

 

Due to the limitation of maximum operating temperature of the direct contact transducer 

system, typically ~800 K for LiNbO3, a buffer rod transducer system ( Figure 7.2(b)) was used to 

measure resonance spectra up to 953 K in order to detect the change in elastic constants across Tc. 

Due to the acoustical losses through the long buffer rods, all resonance peaks were not observed 
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in measured spectra. Therefore, instead of computing elastic constants, trends in the temperature 

dependent resonance frequencies were used as indicators for Tc. It should be mentioned that all 

high temperature data were collected under flowing argon gas (low oxygen environment) to 

prevent the samples from oxidation. 

 

7.3   Results and Discussions 

7.3.1   Room Temperature Elastic Constants and Derived Elastic Properties  

 Resonance spectrum measured at room temperature (295 K) (quadrature signal amplitude 

vs. frequency) for SnSe is shown in Figure 7.3. Note phase information is included in this signal 

which results in Lorentzian peaks with arbitrary phase. The insert shows an example of a 

Lorentzian fit for the 321.8 kHz peak which exhibits an average quality factor of 400. Extending 

similar fits to other peaks in the resonance spectrum, the nine elastic constants (Cij) were 

determined and they are listed in Table 7.1.  

 

Figure 7.3. RUS resonance spectrum (quadrature signal amplitude vs. frequency) of SnSe sample 

at room temperature between 230 kHz and 410 kHz. The insert shows the Lorentzian line shape 

curve fit of a selected peak at 321.8 kHz. 
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Table 7.1. The elastic constants (𝐶𝑖𝑗) obtained from RUS measurements compared with DFT 

values  [71], and their statistical deviations. 

Elastic Constants 
RUS Results DFT Results 

(GPa) 

% Difference  

(RUS & DFT) Mean (GPa) % St. Dev. 

C11 41.8 1 41.1 2 

C22 59.7 3 65.7 10 

C33 32.4 5 29.6 9 

C44 13.2 19 12.0 10 

C55 24.5 27 29.6 19 

C66 20.5 9 14.7 33 

C12 3.15 35 7.33 80 

C13 10.7 11 12.1 12 

C23 26.8 4 26.9 0 

C11 + C22 - 2C12 95.1 3 92.1 3 

C11 + C33 - 2C13 52.8 6 46.5 13 

C22 + C33 - 2C23 38.6 2 41.5 7 

 

 The experimentally obtained elastic constants (𝐶𝑖𝑗) are found to be in good agreement 

(within ~33%) with the theoretical values reported from DFT except for 𝐶12. With the limitations 

and constraints of DFT, it is not feasible to calculate 𝐶12, 𝐶13, 𝐶23 directly from a single distortion. 

Instead, they can be extrapolated from other elastic constants. It is therefore more reasonable to 

compare the superposition of elastic constants rather than individual ones. The elastic constants 

obtained using the superposition method are in better agreement (within ~13%) with the calculated 

values. Thus, it may be safe to conclude that the elastic constants obtained from RUS 

measurements agree well with the computed values. Standard sources of uncertainty in RUS are 

imperfections in geometry, and, errors in alignment of crystal axes and sample body axes.  The 

uncertainty in the extensional (longitudinal) moduli (𝐶11, 𝐶22, 𝐶33) derived from our RUS 

measurements were found to be ~0.5-1.0% and that in the shear moduli (𝐶44, 𝐶55, 𝐶66) were found 

to be ~0.02-0.5%. The estimation of these uncertainties are discussed elsewhere [17]. The 
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uncertainties in the off-diagonal elements (𝐶12, 𝐶13, 𝐶23) are more difficult to determine as they are 

weakly coupled to the natural frequencies. 

 A complete description of the elastic anisotropy of SnSe can be viewed by graphical 

surface representation of the directional dependent Young’s modulus (Eq. 2.43) and bulk modulus 

(Eq. 2.44) as shown in Figure 7.4. The subplots represent the elastic anisotropy in the ab, ac and 

bc crystallographic planes of SnSe as a measure of the anisotropy in the bulk and Young’s moduli. 

A quantitative measure of elastic anisotropy is given by the calculated axial bulk moduli, axial 

anisotropy factors and shear anisotropic factors listed in Table 7.2. 

    

Figure 7.4. (a) The orientation dependent bulk modulus (B) and (b) Young’s modulus (E) of 

single crystalline SnSe across (i) ab, (ii) ac, and (iii) bc crystallographic planes. 

 

Table 7.2. Axial bulk moduli and elastic anisotropy factors calculated using the elastic constants 

from RUS and DFT. 

Method 
Axial Bulk Modulus (GPa) Axial Anisotropy Shear Anisotropy Factor 

Ba Bb Bc Aa Ac A1 A2 A3 

RUS 53.7 135 53.8 0.40 0.40 1.00 2.55 0.86 

DFT  59.8 270 42.4 0.22 0.16 1.03 2.85 0.64 
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 Based on the axial bulk moduli values in Table 7.2, specifically from the higher value of 

Bb compared to Ba and Bc we can conclude that the compressibility along the b- axis is much less 

than that of along the a- and c- directions, which are of similar magnitudes. In recent studies of 

Liu et al. [73], the highest strain stiffness was reported to be along the b- direction and the lowest 

strain stiffness along the c- direction, which confirms our highest value of Bb obtained from RUS 

measurements and subsequent DFT  [71].  In addition, the lower compressibility of SnSe along its 

b- axis was reported in a previous study by Loa et al.  [79]. under high pressure conditions. Not 

surprisingly, SnSe was reported to be most compressible along its c- direction under low pressure 

conditions, in agreement with the lowest Bc value ~42.4 GPa [71]. This pressure dependent 

compressibility behavior along the c- direction is similar to the reported negative thermal 

expansion behavior of SnSe or the decrease of its lattice parameter along the c- axis, with 

increasing temperature [68,80].  The observed discrepancy in the values of elastic anisotropy 

factors between the RUS measurements and DFT  [71] are attributed to the difference in their C12 

values.  

 For an anisotropic low symmetric crystal, Voight-Ruess-Hill (VRH) approximation is used 

to convert the anisotropic elastic constants to the macroscopic elastic moduli which represent the 

average (effective) elasticity of the crystalline material. the calculated elastic properties using VRH 

is tabulated in Table 7.3. The calculated values are then compared with the values deduced from 

DFT and pulse-echo techniques [71,72].  
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Table 7.3. Elastic properties of the orthorhombic SnSe derived from the Voigt-Reuss-Hill 

approximations, compared with the values obtained from DFT and Pulse-echo techniques. 

Elastic Parameter 
Method 

RUS DFT % Diff: Pulse-echo 

Bulk Modulus B 23.2 24.1 4 - 

Shear modulus G (GPa) 16.0 15.2 5 9.6 

Young’s modulus E (GPa) 39.0 37.6 4 27.7 

Poisson’s ratio ν 0.22 0.24 9 0.44 

B/G ratio 1.45 1.59 9 - 

Longitudinal velocity 𝒗𝒍 (m/s) 2717 2711 0.2 2730 

Shear velocity 𝒗𝒔 (m/s) 1629 1587 3 1250 

Average velocity 𝒗𝒎 (m/s) 1803 1759 2 1420 

Debye Temperature Ɵ𝑫 (K) 178 174 2 142 

 

 The calculated elastic properties of SnSe using the measured elastic constants are in 

reasonable agreement with the DFT values to within 9%.  The deviations in the elastic constants 

deduced from the RUS and the pulse-echo method, are attributed to differences in the experimental 

conditions such as the temperature and the density of the crystal. The data reported by pulse-echo 

technique are derived from the velocity measurements along b- axis, whereas the elastic constants 

of the anisotropic single crystalline SnSe were obtained from the RUS measurements are not 

specified by any particular direction. The ratio B/G for a polycrystalline phase is a measure of its 

fracture/toughness, where a high (low) B/G value is associated with ductility (brittleness). In 

general, if B/G > 1.75 the material is ductile, otherwise it is brittle (B/G <1.75) [81]. From the B/G 

values listed in Table 7.3, it can be inferred that the SnSe crystals used in this study are brittle. 

Furthermore, the Debye temperature, 𝜃𝐷 an important thermodynamic parameter (defined 

according to the Debye model as the maximum temperature acquired from a single mode of 

vibration) can be estimated from the average elastic wave velocity 𝑣𝑚 obtained from our shear and 

bulk moduli using the relation 𝜃𝐷 =
ℎ

𝑘𝐵
[
3𝑞𝑁𝜌

4𝜋𝑀
]
1 3⁄

𝑣𝑚  [11], which is in good agreement with the 
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value of 𝜃𝐷 obtained from DFT [71]. The comparatively low 𝜃𝐷 is a clear reflection of the low 𝜅 

in SnSe. 

 

7.3.2   Temperature Dependent Elasticity of SnSe  

     

Figure 7.5. Temperature dependent (a) elastic constants and (b) axial bulk moduli in the 

temperature region of 295 – 797 K. Axial bulk moduli data were fitted with the empirical Varshni 

function [82] to elicit their temperature dependence. The outlier data points are shown by unfilled 

circles.  

 

 The variations of measured elastic constants with increasing temperature from 295 K to 

797 K are illustrated in Figure 7.5(a). All the elastic constants except 𝐶33 show overall reduction 

with the increasing temperature, especially near the phase transition point. The elastic constants 

𝐶44, 𝐶55, 𝐶66, which represent the shear modes, exhibit a dramatic reduction down to ~30-55 % of 

their room temperature values. In Figure 7.5(b), the outlier axial bulk moduli (Ba, Bb, Bc) data are 

possibly due to the higher uncertainty in measuring weakly coupled off-diagonal elastic constants, 

e.g., 𝐶12. The other off-diagonal elastic constants 𝐶23 and 𝐶13 exhibit a slight reduction by ~3% 

with increasing temperature. The extensional mode constants 𝐶11 and 𝐶22 except 𝐶33 have been 

reduced by 7-20 % of their room temperature values, indicating the softening of extensional modes 
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along a- and b- crystallographic directions. When compared to the variations of other elastic 

constants, 𝐶33 exhibits ~4% raise near the phase transition temperature, indicating the stiffening 

of the extensional mode along the c-direction. The observed deviation 𝐶33 from the other elastic 

constants is reflected by the calculated temperature-dependent axial bulk modulus data Ba, Bb, Bc 

along a-, b-, and c-direction respectively (Figure 7.5(b)) [83]. 

 It is clear that the calculated bulk modulus along the c- direction, Bc increases near Tc, while 

Ba and Bb decrease with temperature. This variation of the axial bulk moduli illustrates the 

softening of the extensional modes along the a- and b- directions and stiffening along the c-

direction as the temperature increases towards Tc. The above observations can be related to the 

change of the crystal structure and lattice constants between the room temperature Pnma phase to 

the high temperature Cmcm phase. At Tc, the weak Sn-Se bond along the c-direction in the Pnma 

phase (Figure 7.1) becomes stronger due to a reduction of the lattice constant from 4.439 Å to 

4.293 Å. The bond reinforcement, which is observed as an increase of both 𝐶33 and Bc with 

increasing temperature, is indicative of a negative thermal expansion [68,73,80]. The decrease in 

both Ba and Bb are possibly due to the bond weakening governed by the thermal expansion and 

repulsive forces between Sn atoms, which are aligned in the Cmcm phase [69]. 

 Figure 7.6(a) shows the change of the shear anisotropic factors 𝐴1, 𝐴2 and 𝐴3 with 

increasing temperature. The anisotropic factor 𝐴2, which corresponds to the ac plane reaches to 1 

from 2.3 at 797 K, indicating an increasing elastic isotropy in the ac plane up to Tc. The observed 

change in isotropy is possibly due to the more symmetric bond arrangement in the ac plane of the 

Cmcm phase compared to that of Pnma phase. VRH calculated elastic moduli decrease with 

increasing temperature showing an overall material softening with increasing temperature before 

the phase transition point (Figure 7.6(b)).   
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Figure 7.6. Temperature-dependent (a) shear anisotropic factors, (b) bulk modulus, Young’s 

modulus and shear modulus. Dotted line in (a) indicates the shear isotropy factor =1. 

 

 It is well known that the average elastic moduli derived from the Voight Ruess Hill 

approximation, can be used to calculate the mean isotropic sound velocities in a sample as this 

method does not provide any information about the anisotropy of the wave velocities through 

single crystalline SnSe. Therefore, we use Christoffel equations for plane waves to calculate the 

longitudinal (𝑣𝑙) and transverse (𝑣𝑡) sound velocities using the measured temperature dependent 

elastic constants along the three major crystallographic directions [10]. The mean sound velocities 

(𝑣𝑚)  along each axis were calculated using the relation [
1

𝑣𝑚
3 =

1

3
(
1

𝑣𝑙
3 +

2

𝑣𝑡
3)]  (Figure 7.7(a)), and 

we estimate the phonon mean free path ℓ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (Figure 7.7(b)) using our previously reported 

temperature-dependent thermal transport measurements including heat capacity and thermal 

conductivity [69]. Based on the kinetic theory of gases ℓ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 3𝜅𝐿/𝐶𝑝𝑣𝑚, where 𝜅𝐿 is the 

lattice thermal conductivity and 𝐶𝑝 is the measured specific heat per unit volume, and 𝑣𝑚 is the 

mean velocity of sound through the SnSe crystal [7]. Figure 7.7(b) shows the ℓ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 as a 

function of temperature, where the value of ℓ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 along the a-direction is the lowest compared 
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to those along the b- and c-directions, consistent with the lowest 𝜅𝐿 along the a-direction [69]. 

Previously, we also reported temperature dependent Raman study of single crystalline SnSe. Bulk 

SnSe in the Pnma phase is known to exhibit twelve signature Raman-active optical phonon 

modes  [70,84,85], among which four B2g modes are difficult to detect due to their weak Raman 

tensors. Furthermore, two B1g modes (~57 cm-1 and ~133 cm-1) are only observable under the 

c(ab)𝑐̅ polarization configuration. Of the remaining six Raman-active phonons, the two lowest 

frequency phonons namely, Ag
0 ~33 cm-1 and B3g ~37 cm-1 are difficult to resolve, owing to the 

increasing spectral background below 40 cm-1 at high temperatures. We focused on the four 

Raman-active phonons [86,87] between 70-150 cm-1 (Figure 7.7(c)), and using their measured 

linewidths, we calculate phonon lifetimes (𝜏𝑅𝑎𝑚𝑎𝑛) for each Raman mode [70].  The eigen vectors 

for individual Raman modes are shown in Figure 7.7(c), wherein the arrows point to the direction 

of vibration.  

             

  

Figure 7.7. (a) the temperature dependence of the mean sound velocity along each a-, b- and c- 

crystallographic axis, (b) axial phonon mean free path calculated from thermal transport 

measurements and Raman studies and (c) schematics of the Raman modes. 
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 Next, we calculated the phonon mean free path from Raman spectroscopic measurement 

in the temperature range (300-800K)  where ℓ𝑅𝑎𝑚𝑎𝑛 = 𝑣𝑚 × 𝜏𝑅𝑎𝑚𝑎𝑛, was found to be the lowest 

for the 𝐵3𝑔 and 𝐴𝑔
2  modes vibrating along the b- and c-directions respectively, indicating high 

phonon scattering along these directions. Depending on the direction in which the atoms vibrate 

for a given eigen mode (e.g., along a direction for 𝐴𝑔
1), the corresponding value of 𝑣𝑚 along a 

direction was used to calculate ℓ𝑅𝑎𝑚𝑎𝑛. In the temperature range examined in this study, we find 

that ℓ𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 > ℓ𝑅𝑎𝑚𝑎𝑛 along the b- and c-directions, which is not the case along the a-direction. 

This discrepancy is attributed to the fact that the linewidths used in our calculations correspond to 

a specific Raman mode in which the motion of the atoms are directional, and phonon mean free 

path derived from thermal transport stems from a contribution from all phonon modes. 

 The Grüneisen parameter, γ provides a quantitative link between the thermal and 

mechanical parameters of solids [88]. When considering the thermodynamics and crystal structural 

change of SnSe, the Grüneisen parameter is often used to estimate the strength of the lattice 

anharmonicity as it is a direct measure of the relationship between the phonon frequency and 

crystal volume change [63,72]. Since the lattice thermal conductivity, 𝜅𝐿 is reduced by strong 

lattice anharmonicity, the Grüneisen parameter, γ is inversely proportional to 𝜅𝐿 according to the 

relation 𝜅𝐿 ∝ 𝛾
−2. In this study we used the relation 𝛾 =

9

2
(
𝑣𝑙
2−4𝑣𝑡

2/3

𝑣𝑙
2+2𝑣𝑡

2 ) to calculate the axial 

Grüneisen parameters 𝛾𝑎, 𝛾𝑏, 𝛾𝑐 along the-a-, b- and c- axes using the above measured axial wave 

velocities and their temperature dependence shown in Figure 7.8(a) [89]. The increase of all three 

Grüneisen parameters with increasing temperature suggests increasing lattice anharmonicity of 

SnSe up to Tc.   
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 Furthermore, the temperature dependence of linear thermal expansion coefficients, 𝛼𝑖 

(TEC) along the major crystallographic directions were calculated using the  relation, 𝛼𝑖 =

𝐶𝑣

𝑉0
∑ 𝑆𝑖𝑘𝛾𝑘𝑘  with 𝑖, 𝑘 = 1,2,3, where we assume that 𝐶𝑣~𝐶𝑝 except at Tc is the temperature 

dependent heat capacity and 𝑉0 is the unit cell volume [73,90]. The linear and volumetric TECs 

are shown in Figure 7.8(b), where volumetric TEC, 𝛼𝑉 can be obtained by 𝛼𝑉 = 𝛼𝑎 + 𝛼𝑏 + 𝛼𝑐. 

The TECs along a- and b- directions are positive and increased with increasing temperature while 

the TEC along c- is negative in that temperature range, confirming the negative thermal expansion 

(NTE) along the c- direction. The calculated TEC and Grüneisen parameter along c- direction has 

confirmed the fact that the negative thermal expansion can be achieved even with positive 

Grüneisen parameters, which has been reported in previous theoretical studies [73,90].  Here the 

negativity of  𝛼𝑐 is determined by the negative values of elastic compliance constants, 𝑆13 and 𝑆23, 

indicating the crucial impact of the elasticity on the material’s thermal expansion.  

       

Figure 7.8. Temperature dependencies of the axial Grüneisen parameters 𝛾𝑎, 𝛾𝑏, 𝛾𝑐 and (b) thermal 

expansion coefficients. 
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 Figure 7.9 shows the normalized squares of mode frequencies,𝑓2  as a function of 

temperature. Although it is not feasible to compute the elastic constants with fewer number of 

resonance frequencies, the elasticity of material can be estimated by analyzing 𝑓2 as they are 

proportional to the elastic constants [19,91]. The data in Figure 7 suggests a material softening up 

to 793 K, a rapid stiffening in 793 – 813 K region, and a slow softening after 813 K. The 

discontinuity of 𝑓2 in the 793 – 813 K temperature range suggests a change of elasticity, which 

corresponds to the well-known structural phase transition of SnSe from disordered Pnma to 

ordered Cmcm phase. 

 

Figure 7.9. Variation of the normalized squares of selected natural frequencies of the sample (listed 

as Peak 1-5) as a function of temperature. (The mode numbers of peak 1-5 are estimated by 

matching the individual resonance peaks with the calculated resonance spectrum and they lie 

between the mode 3 and mode 70 in the frequency range of 215 – 685 kHz at room temperature).  

 

 

 

7. 4   Conclusions 

 The nine independent elastic moduli of SnSe was measured using resonant ultrasound 

spectroscopy in the temperature range ~300-800 K. A complete description of computing 

anisotropic elastic moduli and polycrystalline elastic properties of low symmetric orthorhombic 
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crystal structure was presented using the room temperature elastic constants. The measured elastic 

moduli show a good agreement with theoretically reported values.  The observed increase of the 

axial bulk modulus along c axis, Bc and the movement  of shear anisotropic factor of ac plane, A2 

towards 1 with the increasing temperature, qualitatively demonstrated the bond reinforcement 

along the c- direction during the phase transition from the Pnma to Cmcm phases. using the 

measured elastic moduli, the temperature dependent velocity of sound and Grüneisen parameter 

were deduced along the major crystallographic directions. In addition, the phonon mean free paths 

as a function of temperature were derived from the temperature dependent thermal transport and 

Raman spectroscopy using the deduced velocity of sound that provided insight into the thermal 

transport mechanism and phonon anharmonicity of SnSe. Finally, the occurrence of the displacive 

phase transition of SnSe was detected at Tc ~803 +/- 10 K by the mean of the discontinuity of the 

temperature-dependent resonance frequency trend. 
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CHAPTER 8 

CONCLUSIONS 

 The main goal of this dissertation was to explore the theory of poroelasticity by using the 

experimental studies of hydrostatic pressure and temperature dependent elasticity of selected 

porous ceramic materials. Lack of experimental studies to support the theory of poroelasticity and 

its behavior at different physical conditions was the key motivation to conduct this experimental 

work. Porous ceramics used in the solid oxide fuel cells, commercially available porous alumina, 

zircona, titania, and sintered fully dense zirconia were used in this study. 

 LG porous ceramics exhibited a high degree of vibrational damping due to the energy loss 

mechanisms introduced by the liquids trapped in pores during the sample preparation procedure. 

A heat-vacuum treatment was used to eliminate the trapped fluid phases and it caused to a 

significant enhancement of the signal strength of the resonance peaks in the resonance spectrum. 

This observation implies that acoustic attenuation can be achieved by the presence of fluid phases 

inside the pores. Acoustic metamaterials which are studied as sound insulation materials, use this 

phenomenon to enhance their sound insulation quality. The observed overall material stiffness 

over time at the equilibrium of high temperature (~ 500 K) and low hydrostatic pressure (~ 23 

Torr) has been analyzed as a two-step process induced by gas removal and microcrack healing. 

The fitted time constants provide a quantitative measure of the rates of the stiffening mechanisms. 

The material stiffening due to gas removal was a quick process with lower time constant whereas 

microcrack healing process has taken longer time to make the material stiffer. The thermal cycling 
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study has shown a hysteretic behavior of material stiffening with heating and softening with 

cooling. As the temperature of the material rises, the microcracks in the material can be healed 

together reducing the porosity while the microcrack growth is occurred at cooling process leading 

to an increase of the porosity. The change in porosity determines the elasticity change of the porous 

materials. The hydrostatic pressure dependent elasticity data exhibited a material stiffening with 

reducing pressure confirming the above observation of quick material stiffening with lower time 

constant. 

 As described in Chapter 5, a series of experiments were conducted to investigate the 

hydrostatic pressure dependent elasticity of selected porous ceramic materials: alumina, zircona 

and titania. Pressure dependent normal mode frequencies and corresponding elastic moduli 

obtained at both low- and high- hydrostatic pressure regimes have confirmed that the porous 

ceramics exhibited a reversible material softening behavior with increasing hydrostatic pressure. 

The results were confirmed with the comparison of frequency trends of fully dense ceramics: 

zirconia and LG, who showed a slight stiffening with increasing pressure, as expected for typical 

solid materials. The comparison of the pressure dependent elasticity of porous and fully dense 

ceramics suggests that the porous material softening (stiffening) with increased (reduced) 

hydrostatic pressure is possibly due to the pore structure saturated with fluid and the reversible 

micromechanical movement of the structure (microcrack healing and growing) induced by applied 

pressure change. The computed elastic constant 𝐶11 and Young’s modulus which correspond to 

the extensional modes have shown a rapid decrease with the increasing pressure while the shear 

mode 𝐶44 has followed a slow decrease. This suggests that the applied hydrostatic pressure 

provides a large impact on the extensional vibrational modes than the shear modes indicating that 

the extensional elastic constants are changed significantly with the change of hydrostatic pressure. 
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This observation has been explained by the Biot’s theory of poroelasticity. The rate of material 

softening (/stiffening) with pressure (slope of frequency Vs pressure plot) was then analyzed with 

the saturation gas types. An increase of the softening slopes was observed with the gas saturation 

in the order of helium, nitrogen and argon such that helium saturation led to a slow softening while 

argon saturation exhibited a rapid softening. The softening rates were analyzed with the molecular 

weights of the gases and it was confirmed a linear relationship between slope and molecular weight 

to the power of one fourth such that |
∆𝑓

∆𝑝
| ∝ 𝑀1/4.  

 The experimental finding of partial sintering process exhibited by porous alumina at 

moderately high temperatures was discussed in Chapter 6. The rate of sintering process is mainly 

determined by the temperature and the exposed time to the temperature. In this study a slight 

change of porosity reduction (~0.08 %) was observed after 70 hours of exposer to 423 K.  This 

suggests that the sintering process occurs even at the temperatures less than the standard sintering 

temperatures, but it requires a long exposer time. 

 This dissertation has successfully achieved its main goal of experimental studies on 

hydrostatic pressure and temperature dependent elasticity of porous ceramics. These experimental 

findings will lead to future research works in poroelasticity. Possible future studies are listed 

below.  

1. Modify the RUS computation to determine the 7 × 7 elastic tensor to evaluate the 

poroelastic constants proposed in Biot’s theory. In this way future research can be 

conducted to study the dependency of those poroelastic constants on hydrostatic pressure, 

temperature and porosity. 

 

2. Repeat the experiments with a series of porous materials of varying porosity to investigate 

the porosity dependence of the elasticity variation with hydrostatic pressure.  

 

3. Use the pressure dependent acoustic attenuation results to model and fabricate acoustic 

metamaterials which can be used as sound and vibration insulating materials.  
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 The secondary goal of this dissertation was to explore the temperature dependent elastic 

properties of thermoelectric SnSe. Experimental determination of the elastic tensor for a low 

symmetric crystal was achieved successfully by RUS measurements. The measured nine elastic 

constants show a good agreement with the values obtained from the theoretical studies. A complete 

description of computing anisotropic elastic moduli and polycrystalline elastic properties of low 

symmetric orthorhombic crystal structure was presented using the room temperature elastic 

constants. The elastic constants measured in the temperature range of 295 – 797 K were then used 

to study the crystal structural change associated with the phase transition. In addition, the phonon 

mean free paths as a function of temperature were derived from the temperature dependent thermal 

transport and Raman spectroscopy using the deduced velocity of sound that provided insight into 

the thermal transport mechanism and phonon anharmonicity of SnSe. 
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PYTHON PROGRAM FOR LORENTZIAN LINE SHAPE CURVE FITTING 

 

 This python script was created to analyze the center frequency and the quality factor of 

each resonance peaks by using the Lorentzian line shape curve fitting. The Lorentzian function is 

given by,  

𝑦 =

𝐴(
𝑓

𝑓0 cos (𝜙)
+ (1 − (

𝑓
𝑓0
)
2

)𝑄 sin (𝜙))

(
𝑓
𝑓0
)
2

+ (1 − (
𝑓
𝑓0
)
2

)

2

𝑄2

+ 𝑦0 

Where, the background function 𝑦0 is defined as, 

𝑦0 = 𝑎0 + 𝑎1(𝑓 − 𝑓0) + 𝑎2(𝑓 − 𝑓0)
2 + 𝑎3(𝑓 − 𝑓0)

3 

Where, the fit parameters are defined as follows, 

 𝑓0 = Center or resonance frequency    

 Q = Quality factor 

 𝜙 = Phase shift 

 𝑎𝑖 = Coefficients of polynomial background function 

  

 RUS instruments are designed to record the material response for the corresponding driving 

frequencies. These material responses are measured as in-phase and quadrature voltage amplitudes 

and they are saved in a data file. The first step of this program is to import the data file and plot 

the quadrature signal with the driving frequency. The next step is to select a resonance peak to 

perform the curve fitting. This program use mouse click operations to select the resonance peak. 

User is asked to make the first right click on the left edge of the peak to acquire fmin and the second 



 

100 

 

right click on the right edge of the peak to acquire fmax. Here only right click options are used to 

avoid the misguidance with the zoom-in and zoom-out options as python plots use left clicks for 

the zoom process. Selected peak is then plotted by slicing the original data from fmin to fmax. After 

that, the program asks user to mark the center position of the resonance peak by using a left click 

and then press enter to perform the curve fitting. In this process program acquires the marked 

center frequency and use it to calculate the initial conditions for the fit parameter 

 

The initial conditions of fit parameters will be determined as follows. 

 𝑓0𝑖  = Center frequency marked by the left click operation 

 𝐴𝑖 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 

 𝑄𝑖 = 5 × (
𝑓0𝑖

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
) 

 𝜙 = 0.1  

 When user press ‘enter’ key, the program performs the curve fitting and plot the fitted data 

with the original data. The flowchart of the fitting routine is shown in Figure A.1. At the same 

time, program creates a text file named as ‘fit data.txt’, inside the same directory and append the 

fit parameters of center frequency (in MHz) and Q factor. This text file will be updated at each 

fitting process. In some reason user may select peaks randomly which leads to update the ‘fit 

data.txt’ text file with disordered frequency list. In RUS, the order of the normal modes is very 

important to fit the elastic constants. Therefore, this program then sorts the frequency data saved 

in ‘fit data.txt’ text and save inside a newly created text file called ‘sorted data.txt’. 
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Figure A.1. The flowchart of the Lorentzian line shape curve fitting 

 

 

Python script starts from here. 

 

Lorentzian line shape curve fitting 
############################################################################## 
import numpy as np 
import matplotlib.pyplot as pl 
from scipy.optimize import curve_fit 
import os 
 
## Change the directory where the input data file stored 
os.chdir('file name') 
 
## Load the data file 
data=np.loadtxt('snse.dat')  ## put the name of the file 
x=data[:,0]  ## Driving frequency list 
y=data[:,2]  ## Quadrature signal amplitude 
pl.close('all') 
pl.plot(x,y,'b',linewidth=1) 
pl.title('Lorentzian line shape curve fitting',fontsize=15) 
pl.title('Use right clicks to select peak' 
'\nRight click 1: left side of the peak\n' 
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'Right click 2: right side of the peak',loc='left') 
pl.xlabel('frequency (Hz)',fontsize=12) 
pl.ylabel('Amplitude (V)',fontsize=12) 
pl.show() 
figManager = pl.get_current_fig_manager()  
figManager.window.showMaximized() 
 
def lorentzian(x,x0,A,Q,phi): 
    ''' lorentzian line shape function''' 
    y1=A*(x/x0*np.cos(phi)+(1.0-(x/x0)**2)*Q*np.sin (phi)) /((x/x0)**2+ 
    (1.0-(x/x0)**2)**2*Q**2) 
    return y1 
     
def background(x,x0,a0,a1,a2,a3): 
    '''background function''' 
    y2=a0+a1*(x-x0)+a2*(x-x0)**2+a3*(x-x0)**3 
    return y2 
     
def f(x,x0,A,Q,phi,a0,a1,a2,a3): 
    '''fit function: lorentzian+background''' 
    Y=lorentzian(x,x0,A,Q,phi)+background(x,x0,a0,a1,a2,a3) 
    return Y 
 
xlim=[] 
 
## Peak selection 
## use two right clicks to select the peak 
def click(event): 
    if event.button == 3:  
        x1=event.xdata 
        pl.axvline(x=x1,linestyle='--',color='k') 
        pl.draw()        
        xlim.append(x1) 
        xmin=len(x[x<xlim[0]]) 
        xmax=len(x[x<xlim[1]]) 
        x1=x[xmin:xmax] 
        y1=y[xmin:xmax] 
         
        ## plot the selected peak 
        pl.close('all') 
        pl.plot(x1,y1,'b') 
        pl.xlabel('frequency (Hz)',fontsize=12) 
        pl.ylabel('Amplitude (V)',fontsize=12) 
        pl.title('Use left click to select the cenetr position of peak\n' 
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        'Then press "enter"') 
        pl.show() 
        figManager = pl.get_current_fig_manager()  
        figManager.window.showMaximized() 
         
        ## use the left click to mark the center of the peak 
        def click1(event1):  
            if event1.button ==1: 
                x0,y0=event1.xdata,event1.ydata 
                pl.axvline(x=x0,linestyle='--',color='k') 
                pl.draw() 
                 
            ## to start the curve fitting process     
            def keypress(event2): 
                if event2.key == 'enter': 
                    ## Initial parameters 
                    par0=[x0,(max(y1)-min(y1)),(5*x0/(max(x1)-min(x1))),0.1, 
                    y1[0],-1e-7,1e-14,1e-16] 
                 
                    ## Curve fitting 
                    fit=curve_fit(f,x1,y1,p0=par0) 
                 
                    ## Fit parameters 
                    fx0=fit[0][0] 
                    fA=fit[0][1] 
                    fQ=fit[0][2] 
                    fphi=fit[0][3] 
                    fa0=fit[0][4] 
                    fa1=fit[0][5] 
                    fa2=fit[0][6] 
                    fa3=fit[0][7]   
               
                    pl.close('all') 
                    xfit=np.linspace(min(x1),max(x1),10000) 
                    yfit=f(xfit,fx0,fA,fQ,fphi,fa0,fa1,fa2,fa3) 
                    pl.plot(x1,y1,'b',label='data') 
                    pl.plot(xfit,yfit,'r',label='fit') 
                    pl.xlabel('frequency (Hz)',fontsize=12) 
                    pl.ylabel('Amplitude (V)',fontsize=12) 
                    pl.title('Lorentzian line shape curve fit',fontsize=16) 
                    pl.title('Fit parameters:\n' 
                    '$F_{0}$= %1.6f MHz\nQ=%3.1f'%(fx0/1e6,fQ), loc='left') 
                    pl.legend() 
                    pl.show() 
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                    figManager = pl.get_current_fig_manager()  
                    figManager.window.showMaximized() 
                     
                    ## save the data in a text file 
                    F=open('fitdata.txt','a+') 
                    F.write('%1.6f\t%3.1f\n'%(fx0/1e6,fQ)) 
                     
                    ## To sort the frequency data according to ascending order 
                    F = open('fitdata.txt', "r") 
                    lines = F.readlines() 
                    F.close() 
                    lines.sort() 
                    f1 = open('sorted data.txt' , "w") 
                    for line in lines: 
                        f1.write(line) 
                    f1.flush() 
                    f1.close() 
                              
            pl.connect('key_press_event',keypress)  
    pl.connect('button_press_event',click1) 
pl.connect('button_press_event',click) 
 

############################################################################## 
 

End of the script.
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