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ABSTRACT 

Unmanned Aerial System (UAS) usage has continually increased in recent years for both 

recreational and military applications. One particular military application being researched is 

utilizing a UAS as a host platform for Hostile Fire Detection Systems (HFDS), with particular 

interest being focused on multi-rotor drone platforms. The type of HFDS considered in this 

work is based upon acoustic sensors. An acoustic based HFDS utilizes an array of microphones 

to measure acoustic data and then applies signal processing algorithms to determine if a 

transient signal is present and if present then estimates the direction from which the sound 

arrived. 

The main issue with employing an acoustic based HFDS on a multi-rotor drone is the 

high level of background noise due to motors, propellers, and flow noise. In this thesis a study 

of the acoustic near field, particularly relevant to microphones located on the drone, was 

performed to understand the noise produced by the UAS.  More specifically, the causes and 

characteristics of the sources of noise were identified. The noise characteristics were then used 

to model the noise sources for multiple motor assemblies based upon position of the 

microphone and revolutions per minute (RPM) of the motors. Lastly, signal processing 

techniques were implemented to identify if transient signals are present and if present 

estimate the direction from which the sound arrives. 
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Chapter 1 

INTRODUCTION AND LITERATURE SURVEY 

1.1 Hostile Fire Detection Systems 

Hostile Fire Detection Systems (HFDS) are used to detect small arms fire, rocket propelled 

grenades (RPG), mortars, and artillery on the battlefield. One common type of HFDS utilizes 

acoustic sensors to detect the acoustic waves emitted by various munitions. These acoustic 

waves generally come from two main sources. One source is the muzzle blast exiting the end of 

the weapon barrel and the other is the ballistic shock wave emitted from the projectile if it is 

supersonic. The acoustic wave from the muzzle blasts has most of its energy at frequencies 

below 500 Hz and the acoustic wave from the supersonic projectile moving through the air past 

the sensor array has most of its energy at frequencies above 10 kHz.

The performance of an acoustic based HFDS is strongly correlated to the signal-to-noise 

ratio (SNR) between the measured signal of interest and the combination of background noise 

sources. The ideal way to maximize performance is to improve the SNR by minimizing the 

background noise. In numerous cases this is not an acceptable solution due to the limiting 

conditions imposed for obtaining a low background environment, such as requiring the HFDS 

platform to remain stationary. As an example, the Raytheon Boomerang is a currently fielded 

HFDS system used by the US Army which works satisfactorily when stationary but which suffers 
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from significant performance degradation when its platform (usually a High Mobility 

Multipurpose Wheeled Vehicle) is in on-the-move conditions. Therefore, there is a need for the 

development of techniques for enabling the effective operation of HFDS’s in very noisy or low 

SNR conditions. 

There is also interest from the military for employing a HFDS on a multi-rotor drone. This 

allows for a mobile platform which is able to maneuver around an environment, such as a 

battlefield, and detect any possible hostile fire events. The main issue with employing a HFDS 

system on a multi-rotor drone is the high level of background noise due to motors, propellers, 

and flow noise. The design of most multi-rotor drones is such that each of the propellers is 

driven by a brushless DC electric motor inside of which there are permanent magnets on the 

rotor and coils of wire on the stator. The coils of wire on the stator constitute electromagnets 

which are controlled by an electrical signal generated by an Electronic Speed Controller (ESC). 

The current flowing through the stator coils create a magnetic field which interacts with the 

permanent magnets on the rotor resulting in a torque on the rotor causing the motor to spin. 

The various mechanical and electrical components of the rotating motors cause high-frequency 

background noise directly correlated to the revolutions per minute (RPM). Additionally, there is 

significant noise caused by the turbulent flow created by the spinning propellers. This high level 

of noise has a detrimental effect on the ability of an acoustic array mounted on the drone to 

detect the acoustic signals of interest. 

In order to have good performance from a HFDS, the microphone array must be able to 

distinguish between the signal of interest and background noise. The background noise 
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component of the signal measured by the acoustic array will include both noise from near field 

sources on the drone, flow noise, as well as far-field noise due to the environment in which the 

system is operating. One method for combating this is in an acoustic HFDS is to run a band pass 

filter to focus only on the frequencies of interest which eliminates all of the noise at 

frequencies not within this band. An adaptive filter algorithm can also be applied to learn the 

background noise level of the environment and lower the false alarm rate by predicting the 

background noise and adjusting the filter to the current noise level. 

1.2 Literature Survey 

The primary subject of most acoustic rotorcraft research to date has focused on modeling 

the sound generated from helicopter rotors. These efforts were focused on the main rotor, but 

the models are considered generally valid for a range of rotor configurations. The majority of 

the modeling is based on by the Ffowcs Williams-Hawkings (FW-H) equation. The loading noise 

and thickness noise of the rotorcraft rotor is accounted for by the monopole and dipole source 

terms of the equation respectively. The loading noise is due to the accelerating force on the 

fluid by the rotating propellers, also described as the lift and drag produced on the rotor blades 

as they accelerate through the air. The thickness noise is caused by a sound pulse created by 

the rotating rotor blades displacing the air around them. [Brentner,Farassat,2003] The studies 

show accurate modeling of the acoustics of rotorcraft and the techniques are often used as a 

framework for modeling UAS that contain rotors. 

A majority of previous studies on the background noise produced by UAS have focused on 

the far field, thus neglecting the intricate details of the noise such as the characteristics 
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produced by each individual motor. It has been shown that the far field acoustic signature of 

small multi-rotor drones can be predicted and that a majority of the noise arises from the 

propellers [Kloet,Watkins,Clothier,2017].The further the microphone array is from the drone 

the lower the noise contribution from the motors; thus most previous work has considered the 

motor noise as negligible. This is due to the noise level being dominated by the turbulence 

generated by the propellers and the blade pass frequency noise. One cause of this is that for 

field distances the high frequency motor noise is attenuated by the atmosphere more than the 

lower frequency noise of the turbulence generated by the propellers and thus its contribution is 

diminished. 

A basic study performed in the acoustic near field showed that in addition to the main rotor 

harmonic noise there was also non-rotor harmonic noise. This non-rotor noise was primarily 

due to the motor with some additional noise being caused by the electronic speed controller. 

[Tinney,Sirohi,2018] It should be pointed out that this research was directed at understanding 

how the change in propeller dimensions and number of propellers affected the sound profile, 

and not the identification of noises in the near field. 

Sound localization using a microphone array on a UAS has also been utilized in search and 

rescue applications. The open source software developed by the Honda Research Institute 

Japan Audition for Robotics with Kyoto University (HARK) utilizes a 16 channel microphone 

array on a UAS to detect whistle blasts in search and rescue attempts. It utilizes either a 

standard eigenvalue decomposition based MUSIC (SEVD-MUSIC) algorithm, or an incremental 

generalized singular value decomposition based MUSIC (iGSVD-MUSIC) algorithm. The MUSIC 
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algorithm is a Multiple Signal Classification used for frequency estimation. The UAS operator 

can choose which decomposition to use based on the situation and what information is 

needed. [Nakadai, et al,2017] The microphone array was designed such that a spherical array 

on poles extended out from the end of the UAS arms and the motor-propeller assemblies were 

treated as far-field noise allowing for more precise sound localization. Extending the 

microphone array arms away from the propellers decreases the noise level recorded by the 

microphones. 

The MUSIC algorithm is also utilized in a time-frequency processing method for acoustic 

sensing and location. A study performed by Lin Wang and Andrea Cavallaro shows that a time-

frequency processing method is able to locate a direction of arrival (DoA) of a traniseint that is 

captured by the acoustic array mounted on a multi-rotor drone. The proposed method also 

utilizes techniques for enhancing the measured signal for better DOA localization and is shown 

to work optimally when the array is pointed towards the sound source. [Wang,Cavallaro,2018] 

Acoustic HFDS have been shown to work in shot detection and shooter localization. The 

accuracy of the DoA is dependent on number of microphones, their locations, and distance to 

the shooter. [Fernandes, Apolinário Jr., Ramos, 2017] This investigation showed that a higher 

number of microphones were needed to localize the DoA of a target more accurately. 

A majority of previous studies have attempted to solve the problem of the drone noise 

through application of various data processing techniques (i.e., signal processing research). This 

thesis aims to explain the main components of the background noise of a multi-rotor UAS and 

their origins and accurately model them to aid the design of a HFDS mounted on a UAS. 
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1.3 Overview 

Chapter 2 explains the experimental setup and methods used for UAS analysis. Chapter 3 

shows the results of the UAS noise analysis. The measurements obtained were analyzed using 

power spectral density (PSD) plots to determine the presence and characteristics of the noise of 

the UAS. It is shown that various sound sources can be identified based upon the changes in the 

PSD due to changes in the motor speed and microphone position. 

In Chapter 4, the Least Mean Square adaptive filter and the Normalized Least Mean Square 

adaptive filter are studied for their transient detection analysis capabilities. Chapter 5 discusses 

the main results and conclusions. 
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Chapter 2 

MEASUREMENT AND EXPERIMENTAL METHOD 

2.1: Experimental Setup 

 Measurements of the background noise environment of a multi-rotor UAS platform 

were first performed by employing a single arm of a Tarot 680 Hexacopter consisting of a single 

motor and propeller combination. An example of the Tarot 680 Hexacopter is shown in Figure 

2.1 and the experimental setup in Figure 2.2. For the measurements the Tarot 680 carbon fiber 

tube arm was replaced with an aluminum tube of the same diameter but longer length to aid in 

mounting. The aluminum arm was fastened, to minimize vibrational effects, by securing it to 

the motor-propeller assembly similar to the standard setup for the hexacopter. Tightly 

mounting the arm with a three jaw chuck reduces the amount of vibrational effects when the 

motor is spun at high speeds, and more closely resembles the Tarot 680 build. The motor 

utilized was a Tarot 6S 680KV brushless electric motor that was controlled by a HobbyWing 40A 

electronic speed controller (ESC). The attached propeller was a Tarot 1355 carbon fiber 

propeller with a 13-inch diameter and 5.5-inch blade pitch.
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Figure 2.1. Tarot 680 Pro Hexacopter 

 

 

 

 

 

 

 

Figure 2.2. Example setup of single motor/propeller assembly. 

Measurements were first conducted in a lab at the National Center for Physical 

Acoustics (NCPA), University of Mississippi. All measurements were conducted indoors under 

normal temperature and pressure conditions. After initial laboratory measurements, testing 

was also done in an anechoic chamber located at the NCPA with an internal measurement 

space volume of 36 m3, shown in Figure 2.3.  
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Figure 2.3. One experimental setup in the anechoic chamber at the National Center for Physical 

Acoustics (NCPA), University of Mississippi 

For measurements in the lab, the UAS arm was mounted 104 cm above the ground, 

hanging over the edge of a lab table. A 1/2" Brüel & Kjær, type-4190 microphone connected to 

a Brüel & Kjær Nexus Type 2691 conditioning amplifier was positioned underneath the motor-

propeller housing assembly. The data collection software used was a custom program written in 

LabView running on a Panasonic Toughbook to record the acoustic pressure signal from the 

B&K microphone at a sampling rate of 50,000 samples per second (sps). 

A similar method was used with a single arm motor-propeller assembly from a Tarot 690 

quadcopter. The motor-propeller assembly utilized on the Tarot 690 quadcopter consists of a 

Tarot MT4006 320KV motor controlled by a HobbyWing 40A ESC with a 15-inch Tarot TL100D03 

folding propeller. The 320KV motor has 18 coils in the center, as compared to the 24 coils in the 
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680KV motor used with the hexacopter. This testing was performed to determine if there was 

any noise phenomena unique to each motor assembly. Testing was also performed with a 

Lumenier 36A BLHeli_32 ESC in order to access its ability to measure the rotational speed of the 

motor for both the Tarot 680 and Tarot 690. 

2.2: Measurements Method 

 Measurements were conducted by first attaching the B & K microphone directly to the 

bottom of the motor-propeller housing assembly and secondly mounting the microphone on a 

stand underneath, but not attached to the UAS arm.  The motor was operated at various 

rotational rates ranging from 3000-6000 RPM, all measured with an optical tachometer. The 

stand mounted microphone was positioned at various locations along the length of the arm 

horizontally, as well as vertical positions below the arm. These various positions were achieved 

by altering the stand position and configuration both horizontally and vertically. The 

microphone was secured to the stand using electrical tape as seen in Figures 2.4-2.7. Due to 

laboratory space constraints the microphone was secured to the arm mount directly as seen in 

Figure 2.7 for measurements far from the propeller blade. 
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Figures 2.4 – 2.7. Varying microphone positions for testing in the lab. 
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The Nexus conditioning box was initially set for an output of 316mV/Pa amplification 

but adjusted as necessary for testing in various conditions to maximize measurement accuracy. 

Based on the location of the microphone the amplification from the Nexus box was adjusted to 

avoid clipping of the measured signal. The frequency range of interest for all of the 

measurements was from 40 Hz to 18 kHz.  

2.3 Data Analysis Method 

 The raw data collected from the microphone was converted to a text file and analyzed 

using Octave Forge’s signal processing package function “pwelch”. This package uses Welch’s 

method for spectral density estimation under the assumption the signal is a stationary process. 

A stationary process is a stochastic process whose unconditional joint probability distribution 

does not change when shifted in time (Gagniuc, Paul A. (2017). Markov Chains: From Theory to 

Implementation and Experimentation. USA, NJ: John Wiley & Sons. pp. 1–256). The Welch 

method is defined by letting the length of the segments be L, the 𝑖௧௛ segment be {xi[n]}0
L-1, and 

the offset of successive sequences by D samples. 

N = L + D(K-1) 

Where N is the number of observed samples and K the number of sequences. The 𝑖௧௛ sequence 

is defined by: 

𝑥௜[𝑛] = 𝑥[𝑛 + (𝑖 − 1)𝐷] 

𝑛 ∈ {0,1, … , 𝐿 − 1} 
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With the periodogram: 
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The Welch spectrum estimate is given by: 
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௄
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[Hayes, 1996] 

 The results from the pwelch method in Octave Forge is presented graphically in a PSD 

plot that can be analyzed in the frequency domain. An example PSD of the frequency domain 

using the pwelch method is shown in Figure 2.8. An initial analysis of the data is presented here 

with further analysis and results of the PSD addressed in Chapter 3 with identification of noise 

sources. 
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Figure 2.8. PSD generated using the pwelch method for frequency analysis 

Initial analysis of the PSDs considers background noise levels of both the anechoic 

chamber and lab. The background noise level of the lab had a PSD between 10-6 and 10-8 Pa2/Hz 

for frequencies of 10-100Hz and 10-8 to 10-12 Pa2/Hz for frequencies of 100-12000Hz. A 

comparison of the room noise to a typical measurement level of motor-propeller noise relevant 

to this effort is shown in Figure 2.9. As can be seen the background noise of the lab is well 

below the noise level of the motor-propeller and therefore is not expected to be an issue in the 

data. 
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Figure 2.9. Background noise comparison vs. noise produced by the motor/propeller assembly 

rotating at 4250RPM in the lab 

The background noise level of the anechoic chamber is lower that the lab as expected with a 

PSD between 10-11 and 10-12 Pa2/Hz for frequencies above 100Hz and 10-6 to 10-11 Pa2/Hz for 

frequencies between 10 and 100Hz. A comparison of the anechoic chamber noise to a typical 

measurement level of motor-propeller noise relevant to this effort is shown in Figure 2.10. As 

with the lab background noise, the anechoic chamber background noise is well below the noise 

of the motor-propeller and is not expected to cause an issue in the data. 
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Figure 2.10. Noise comparison between the motor-propeller assembly rotating at 4250RPM in 

the anechoic chamber. 
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Chapter 3 

RESULTS OF POWER SPECTRAL DENSITY ANALYSIS 

3.1 Laboratory Experiments 

 Using the experimental setup described in Chapter 2.1, analysis was performed of the 

single Tarot 680 Pro hexacopter motor-propeller assembly. Initial measurements were 

performed with the B&K microphone attached directly below the assembly, as shown in Figure 

3.1. The rotational rate of the motor was varied between 1300RPM and 6250RPM as measured 

with an optical tachometer. Figure 3.2 displays the changing PSD as the motor is rotated at 

various rates. The general trend of the response is for the entire curve to shift towards the 

higher frequencies as the rotational rate is increased.
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Figure 3.1. Microphone attached to the motor housing 

 

 

 

 

 

 

 

 

Figure 3.2. Speed comparison for a microphone placed underneath the motor housing. 
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Following this initial experiment, the microphone was then detached from the arm and 

mounted on a microphone stand underneath the assembly, approximately 0.5cm below the 

motor housing approximating the previous directly coupled mounting position. Mounting the 

microphone in this position allowed for the study of possible vibrational effects resulting from 

having the microphone rigidly mounted to the motor mount structure. The experimental setup 

is shown in Figure 3.3. A comparison of the measured response for the microphone mounted in 

each of these two locations is shown in Figure 3.4. It can be seen in the PSD that the B&K 

microphone measured a higher sound level when not attached to the motor housing. This is an 

unexpected result but may be due to the additional wind shielding resulting from the closer 

proximity to the housing for the rigidly attached microphone. 

 

 

 

 

 

 

 

Figure 3.3. Experimental setup for non-rigidly attached microphone. 
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Figure 3.4. Comparison of microphone rigidly attached and non-rigidly attached. 

Further experimentation allowed for identification of various noise sources. This was 

achieved by analyzing the PSD for constant microphone location while varying rotor speed, as 

well as varying microphone locations while keeping the rotor speed constant. The location of 

the microphone was adjusted by moving it along the shaft of the arm as measured from the 

end of the motor housing as well as adjusting the vertical distance between the shaft and the 

microphone. Examples of some of the setup locations are shown in Figures 3.5 and 3.6. 

 

 

 



22 
 

 

 

 

 

 

 

 

Figure 3.5. Microphone placed 11cm from the far end of the housing and 6cm below the arm. 

 

 

 

 

 

 

 

Figure 3.6. Microphone placed 30cm from the far end of the housing and 18cm below the arm. 
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In general, the analysis of the PSD graphs can be broken up into two main groups, the 

lower frequency content (< 103 Hz) and the higher frequency content (> 103). These two groups 

are also separated into subgroups of the broadband acoustic noise and the narrowband 

harmonics within the broadband curves.  

3.2 Anechoic Chamber Experiments 

 The experiments performed in the lab were recreated in the anechoic chamber for 

comparison. This was to investigate potential background noise interference from noise 

reflections in the lab.  Identical motor speeds and microphone placements were used to be able 

to directly investigate the differences between the laboratory and the anechoic chamber. An 

example is shown in Figure 3.7. In this figure the microphone was placed 30.5cm from the end 

of the assembly along the arm and mounted 6 cm below the arm as compared to an equivalent 

lab setup shown in Figure 3.6.  

 

 

 

 

 

 

Figure 3.7. Experimental setup in the anechoic chamber 
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The overall amplitude and structure of the noise levels measured by the microphone in the 

anechoic chamber and the laboratory were comparable across the frequencies measured. The 

main difference between the two being that the lab experiment had a higher noise level in 

frequencies above 6 kHz. This comparison is shown in Figure 3.8. 

 

 

 

 

 

 

 

 

Figure 3.8. Noise comparison between lab and anechoic chamber for identical microphone 

position and rotor speed. 

3.3 Low Frequency Range Analysis 

  The main hump in the lower frequencies centered around approximately 20Hz is 

predominately broadband noise, defined as noise whose energy is distributed over a wide 

section of the frequency range of interest and lacking minute structure. This noise source is 
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primarily turbulence noise from air flow generated by the spinning propeller that is directed 

downwards. One of the main dependencies of the turbulent noise is the speed at which the 

propeller is spinning. As the motor speed is increased, the general trend of the PSD curve is to 

shift towards the higher frequencies as shown in Figure 3.2. The maximum RPM does not follow 

this trend due to the max RPM of this setup being 5100 RPM. This speed is not significantly 

different enough to cause a further shift in the curve. A similar trend is shown in the data from 

the quadcopter assembly as shown in Figure 3.9. 

 

 

 

 

 

 

 

Figure 3.9. Speed comparison for single Tarot 690 quadcopter motor 

The narrowband peaks are single point noise sources, followed by their harmonics. In 

this case single point refers to the sound being generated by a single characteristic. The sources 

of the initial peak are the noise and harmonics of the motor while it is spinning. The secondary 

peak, which has a greater magnitude, is due to the blade pass frequency of the propeller. This is 
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commonly referred to as “blade slap” and this noise source is generated when the rotating 

propeller passes over the arm and interferes with the flow produced by the rotor. The 

quadcopter single motor assembly shows similar results, with the main difference being the 

blade pass frequency is an order of magnitude larger. This significant difference in magnitude is 

due to the larger propellers of the quadcopter assembly. A comparison is shown in Figure 3.10. 

 

 

 

 

 

 

 

Figure 3.10. Comparison of hexacopter vs quadcopter assembly at identical speeds and 

microphone locations 

3.4 High Frequency Range Analysis 

 In the high frequency range (above 5000Hz), there is another broadband noise curve 

along with groups of high frequency spikes. In the hexacopter motor-propeller assembly, the 

spikes appear at 2 kHz, 8 kHz, 10.5 kHz, and 11 kHz. Upon focusing in on these spikes they are 
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not single spikes, but tight groupings of spikes around certain frequencies. A close-up view of 

one of these groupings around 10.5kHz is shown in Figure 3.11. 

 

        Figure 3.11. High frequency spikes 

 

 

 

 

 

As the motor speed is increased these spikes grow in magnitude at first, and then 

quickly diminish after 4250 RPM. The spikes in the lower end of the frequency band (closer to 2 

kHz) vary more than the spikes in the higher frequency. The higher frequency spikes do not 

display a frequency dependence on the speed of the motor, indicating that this is noise 

generated mechanically from within the motor. Audibly, the motors emit a high pitch noise that 

is most evident at 4250 PRM, and not heard at higher motor speeds. The propeller was 

removed to investigate if it was in fact motor generated noise. As shown in Figure 3.12 the only 

noise present with no propeller was the high frequency peaks indicating that they are caused 

by the motor.  
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Figure 3.12. Motor spun at 4250RPM with no propeller attached 

The origin of this noise is the electromagnetic coils in the center of the motor. The 

pulse-width modulation from the ESC will induce a magnetic charge on the stator coils and spin 

the motor causing an excitation and vibration due to electromagnetic forces. The excitation of 

the coils will cause electromagnetically induced acoustic noise, commonly referred to as coil 

whine. This noise is a natural resonance of the coils and is not dependent upon frequency. 

 The broadband noise portion of the measured curve needed further investigation to 

determine if it is acoustic or turbulent energy. A double microphone experiment was conducted 

in the anechoic chamber using two 1/2” B&K type 4190 microphones with 4” foam wind screen 

coverings. If acoustic, the time delay between the microphones would be consistent with the 

speed of sound, approximately 343m/s. The microphones were placed in the plane of the 

propeller and positioned radially outward from the center of the motor at distances of 100cm 
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and 114cm away. The motor speed was set at 4250 RPM, measured with an optical tachometer, 

with a Nexus conditioning amplifier set at a gain of 316mV/Pa for each microphone. An image 

of the setup is shown in Figure 3.13. 

 

 

 

 

 

 

 

Figure 3.13. Double microphone setup in anechoic chamber. 

 A coherence plot of the data is shown in Figure 3.14 and implies the broadband noise 

curve in the high frequency range is generally coherent. Higher coherence at this short 

separation distance indicates that the noise is acoustic in nature. A calculation of the time delay 

of the signal received on the two microphones was performed with the results shown in Figure 

3.15. A time delay of approximately 0.4mSec for the microphone spacing of 14cm as measured 

relative to the motor/propeller assembly produces a propagation speed of 350 m/s which is 

consistent with an expected speed of sound in the chamber in the range around 343 m/s. This 

indicates that the broadband noise curve is predominately composed of propagating acoustic 
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energy and not turbulent energy directly impending on the microphones. The source of this 

noise is still turbulence but it is turbulence generated acoustic energy, and for rotorcraft it is 

referred to as broadband acoustic energy. 

 

 

 

 

 

 

Figure 3.14. Coherence plot between microphones.  Figure 3.15. Time delay 

between microphones. 

3.5 Multiple Motor Configuration 

 In the single motor configuration, the noise sources are distinguishable from each other 

and are identifiable. In practice a drone will have multiple motors in use with constantly varying 

speeds both individually and relatively to each other. To study these effects, a two-motor 

assembly was constructed as shown in Figure 3.16. The B&K microphone was placed centrally 

and 18cm below the edge of the frame. The motors were spun at similar speeds (within 100 

RPM of each other, measured by the optical tachometer) and the PSD plot was produced. 

Figure 3.17 shows the PSD for a speed of 5000 RPM. The plot indicates that there is no new 
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phenomenon occurring when multiple motors are in use. The overall magnitude of the noise is 

increased with the structure of the curve similar to a single motor assembly.  

 

 

 

 

 

 

 

  

 

Figure 3.16. Multiple motor configuration for testing in anechoic chamber. 
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Figure 3.17. Multiple arm noise level comparison. 

When the motor speeds differ by more than a few hundred RPM the characteristics of the 

different rotational rates begin to show up. For example, as discussed earlier the coil whine at 

4250 RPM is much greater than at 5000 RPM. In order to determine how the motor speed vary 

in actual flight BL_Heli32 ESC’s, which have the capability to directly measure motor rotational 

rate, were installed on the Tarot 680 Pro to obtain direct measurements of motors RPM during 

flight. The motor speed information was collected by the ground control station software 

Mission Planner and showed the RPM of each individual motor at a measurement rate of 

200ms. Excluding advanced and drastic maneuvers, the motors were always within 100-200 

RPM of each other and therefore the noise generated by the system should be similar to that of 
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the two-motor assembly but with a greater magnitude noise level due to presence of four 

additional motor/propeller assemblies and any additional turbulence resulting from flight. 
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Chapter 4 

ADAPTIVE FILTER FOR TRANSIENT DETECTION 

4.1 Least Mean Square Filter 

 The least mean square algorithm (LMS) is a form of adaptive filer invented first in 1960 

by Bernard Widrow and Ted Hoff that uses a steepest descent method to find the desired 

results. Essentially, the filter seeks to find coefficients (weights) that minimize a least-squared 

error measure of performance, with the weights being updated as the algorithm is run. Due to 

the quadratic nature of the LMS there is a single extremum that is approached by the changing 

weights.

The LMS can be fully described using the set of equations: 

𝑾(𝑛) = [𝜔଴(𝑛) 𝜔ଵ(𝑛) … 𝜔௅ିଵ(𝑛)]் 

𝑿(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐿 + 1)]் 

𝑒(𝑛) = 𝑑(𝑛) − 𝑾்(𝑛)𝑿(𝑛) 

𝑊(𝑛 + 1) =  𝑊(𝑛) +  𝜇(𝑛)𝑒(𝑛)𝑿(𝑛) 

Where W(n) is the coefficient vector, X(n) is the input signal vector, d(n) is the desired signal, 

e(n) is the error signal, and µ(n) is the step size [Widrow, B. and Hoff, 1960]. In this application 

the desired out put is the next measurement in the future. 
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 The LMS filter is able to predict the desired results and return a given output. For the 

application of a HFDS, the algorithm will run until the predicted value of the next measurement 

is statistically significantly different from the actual value. This is treated as a transient 

detection and evaluated further. 

 An LMS filter is dependent on the input value scaling and requires a learning rate that 

provides a stable filter. Achieving an optimum learning rate for the algorithm is possible for 

analysis of sets of data, however it is not robust enough for similar learning rates to be used on 

multiple sets of data. The learning rate needs to be evaluated and chosen specifically for each 

situation, which requires significant testing and analysis. 

4.2 Normalized Least Mean Square Filter 

 For a chosen step size that is small to guarantee stability of the algorithm, the 

convergence speed is unnecessarily slow for a small signal power. This can be improved with a 

normalized step size of  

𝜇(𝑛) =  
𝜇̅

𝛿 + 𝐿𝜎௫
ଶ෢(𝑛)

 

Where 𝜎௫
ଶ෢(𝑛) is an estimate of the input signal power, 𝜇̅ is a constant, and 𝛿 is a small constant 

to avoid a divide-by-zero. For an estimate of the input signal power, a lowpass filter can be 

applied to the sequence 𝑥ଶ(𝑛). The two commonly used estimates include 

Exponentially weighted estimate: 

𝜎௫
ଶ෢(𝑛) = (1 − 𝑐)𝜎௫

ଶ෢(𝑛 − 1) + 𝑐𝑥ଶ(𝑛) 
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Sliding-window estimate: 

𝜎௫
ଶ෢(𝑛) =  

1

𝑁
෍ 𝑥ଶ(𝑛 − 𝑖)

ேିଵ

௜ୀ଴

 

Where the parameters c, 0 < c << 1 and N, N ≥ L control the effective memories of the two 

estimators. 

 If a sliding window estimate of length N = L is chosen, the LMS filter with normalized 

step size becomes 

𝑾(𝑛 + 1) = 𝑾(𝑛) +  
𝜇̅𝑒(𝑛)

𝑝(𝑛)
𝑿(𝑛) 

𝑝(𝑛) =  𝛿 +  ‖𝑿(𝑛)‖ଶ 

Where ‖𝑿(𝑛)‖ଶ is the L2-norm of the input signal vector. The value of p(n) can be updated 

recursively as 

𝑝(𝑛) = 𝑝(𝑛 − 1) +  𝑥ଶ(𝑛) −  𝑥ଶ(𝑛 − 𝐿) 

This adaptive filter is known as the Normalized Least Mean Square (NLMS) adaptive filter, and it 

has two properties that a very useful: 

 The NLMS is guaranteed to converge for any value of 𝜇̅ in the range 0 <  𝜇̅ < 2 

regardless of the statistics of the input signal. 

 With the proper 𝜇̅ choice, the filter can often converge faster that the LMS filter. 
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These properties allow for an easier selection of the step size µ and a more uniform 

convergence than the LMS filter. [Farden, 1981] 

4.3 NLMS filter for Transient Detection 

 A NLMS algorithm was written in the programming language Python using Enthought 

Canopy for evaluation of data taken during field testing of the Tarot 680 Pro hexacopter multi-

rotor drone. The field test was conducted at Water Valley Airport in Water Valley Mississippi 

and consisted of flying the multi-rotor drone with an onboard microphone array while a 

propane cannon was fired. The microphone array was a Zylia ZM-1, 19 channel spherical array 

and it was mounted on the Tarot hexacopter, as shown in Figure 4.1. This array uses digital 

microelectro-mechanical systems (MEMS) microphones that give a digital output of the 

measured acoustic signal. The propane cannon was fired at various times as the multi-rotor 

drone was flown directly away from the propane cannon location. 
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Figure 4.1. Tarot 680 Pro with Zylia ZM – 1 spherical array 

For initial data analysis a single microphone channel was evaluated on a ten second file 

sampled at 50,000 sps. The microphone channel was chosen arbitrarily and used as a basis to 

study the effects of varying 𝜇̅, filter order values, and the false alarm rate (α). The false alarm 

rate value is set assuming that the data is a normal distribution and α is the upper and lower 

limit cutoff. The α value was initially set as 1 − 1
5𝑒10ൗ  The standard deviation of the error was 

the value studied for each case, allowing for analysis of filter and step sizes. To study these 

effects the error and standard deviation of the error was evaluated for the NLMS algorithm on 

data that was both non-decimated as well as decimated by factors of 2, 5, and 10 on a dataset 

that was known to have a propane cannon shot of magnitude significantly larger than the 

background noise level. 
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4.4 NLMS Filter Results 

 The non-decimated data produced the standard deviation of the error shown in Table 

4.1. The data shows that the filter works well for varying step sizes (𝜇̅) and filter order (p) due 

to the low standard deviation of the error. The results show that a decreasing step size and an 

increasing filter order have a trend of decreasing the standard deviation of the error. Once the 

step size is further decreased however it causes an increase in the standard deviation of the 

errors and is not as effective. Further study was performed with smaller filter orders and step 

sizes, to match a realistic step size value and is shown that too small of a filter order causes a 

negative effect on the standard deviation. The results from this study are shown in Table 4.2. 

    
p 

  

  
10 20 50 100 500 

 
1 0.0645 0.0644 0.0625 0.0521 0.042 

 
0.75 0.0576 0.0574 0.0555 0.0469 0.0412 

µ 0.5 0.0526 0.0522 0.0504 0.0444 0.0407 

 
0.1 0.0457 0.0449 0.0445 0.0445 0.0437 

 
0.01 0.0445 0.0447 0.0479 0.0539 0.0554 

 

Table 4.1. Standard deviation of the error for NLMS algorithm 
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p 

  

  
10 20 30 40 50 

 
0.1 0.0457 0.0449 0.0449 0.0446 0.0445 

 
0.01 0.0446 0.0448 0.0457 0.0466 0.0479 

µ 0.001 0.0483 0.0519 0.0557 0.59 0.0626 

 
0.0001 0.0623 0.0705 0.0783 0.0821 0.0886 

 
0.00001 0.0874 0.1025 0.1172 0.1257 0.1327 

 

Table 4.2. Standard deviation of errors for smaller step sizes 

 The decimated data allows for comparable standard deviations, with a smaller step size. 

A smaller step size is computationally less taxing and allows for faster algorithm run times. A 

decimation by a factor of 2 shows that using a step size of 0.1 and a filter order of 10 obtains a 

standard deviation that is comparable to the non-decimated data with a step size of 0.1 and 

filter order of 50. A comparison of the standard deviations of the errors for the decimated data 

is given in Tables 4.3 and 4.4. 
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p 

  

  
2 4 6 8 10 

 
0.1 0.0831 0.0664 0.0603 0.0554 0.0524 

 
0.01 0.0709 0.0633 0.0587 0.0556 0.0561 

µ 0.001 0.0672 0.0644 0.0635 0.0649 0.0662 

 
0.0001 0.0694 0.0748 0.0786 0.0817 0.0846 

 
0.00001 0.0795 0.093 0.1007 0.1053 0.1122 

 

Table 4.3. Standard deviation of errors with a decimation by a factor of 2 

 

    
p 

  

  
2 4 6 8 10 

 
0.1 0.1283 0.0868 0.0796 0.0748 0.0681 

 
0.01 0.1077 0.0829 0.0783 0.0775 0.0778 

µ 0.001 0.1043 0.0861 0.0917 0.09 0.0932 

 
0.0001 0.1062 0.1069 0.1143 0.1146 0.1189 

 
0.00001 0.1136 0.1254 0.1458 0.1661 0.1846 

 

Table 4.4. Standard deviation of errors with a decimation by a factor of 5 
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 The low standard deviations give a level of confidence to predictions of when an alarm 

has been triggered. The algorithm is adjusted slightly to trigger an “alarm” when the algorithm 

fails to predict the future value by a statistically significant margin. In preforming this study α is 

the value that reduces or increases the false alarm rate. As the value of α is increased to values 

closer to 1, the false alarm rate decreases by a significant margin. Table 4.5 shows the false 

alarm rate for varying filter order and step sizes. The alarms triggered are for every instance the 

algorithm failed to predict the next value. These triggers are only for a single microphone 

channel and when multiple channels are utilized in the algorithm a comparison is used and only 

triggers at the same or similar locations are kept. Table 4.6 indicates that there is significant 

background noise reduction when utilizing a NLMS adaptive filter. 

 

 

 

Table 4.5. False alarm rate for 𝛼 =  1 −  1 5𝑒15⁄ , D = successful detection, F = only false alarms 

 

 

 

Table 4.6. Noise level reduction. 

    p   

      50      100      150 

 0.5 0.025% (F) 0.012% (F) 0.012% (F) 

µ 0.1 0.029% (D) 0.029% (D) 0.021% (D) 

 0.01 0.027% (D) 0.019%(D) 0.017% (D) 

    p  

      50    100     150 

 0.5 47.60%  47.60%  48.60% 

µ 0.1 43.29%  43.29%  43.80% 

 0.01 43.29%  45.70%  47.60% 
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 This algorithm has not yet been implemented on continuously running data from 

microphones on a multi-rotor drone, but shows an example of an adaptive filter that works in 

accurately identifying if there is a shot present in acoustic data. 
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CHAPTER 5 

CONCLUSIONS 

 Noise source identification of a multi-rotor drone was achieved by analyzing the noise 

characteristics present in a PSD graph. The experimental results show that all primary noise 

sources were identified and have been characterized by their frequencies. The results also show 

that this characterization is consistent with multiple motors in simultaneous operation with no 

significant changes in the overall sound signature resulting from their operation.

It is also shown that an adaptive filter algorithm is able to successfully identify a 

transient signal from a microphone source mounted on a multi-rotor drone. The NLMS 

algorithm when run on recorded data accurately triggers if a propane cannon shot is in the 

data. The results of this testing show that an integrated system running a similar algorithm will 

be able to successfully trigger an alarm for the user operating the HFDS. The successful trigger 

will then allow for a direction of arrival estimation to be made. 

 The acoustic characterization of a multi-rotor drone that is presented provides a 

compliment to research in implementing a HFDS on a multi-rotor drone. The characterization of 

the noise produced by a multi-rotor drone could be an inspiration for further studies on 

mitigating the noise of a multi-rotor drone as well as understanding the noise produced by 

brushless electric motors. 
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