
Woman C.P.A. Woman C.P.A. 

Volume 40 Issue 2 Article 8 

4-1978 

Electronic Data Processing: Systems Design and Application Electronic Data Processing: Systems Design and Application 

Programming Programming 

Elise G. Jancura 

Follow this and additional works at: https://egrove.olemiss.edu/wcpa 

 Part of the Accounting Commons, and the Women's Studies Commons 

Recommended Citation Recommended Citation 
Jancura, Elise G. (1978) "Electronic Data Processing: Systems Design and Application Programming," 
Woman C.P.A.: Vol. 40 : Iss. 2 , Article 8. 
Available at: https://egrove.olemiss.edu/wcpa/vol40/iss2/8 

This Article is brought to you for free and open access by the Archival Digital Accounting Collection at eGrove. It 
has been accepted for inclusion in Woman C.P.A. by an authorized editor of eGrove. For more information, please 
contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/wcpa
https://egrove.olemiss.edu/wcpa/vol40
https://egrove.olemiss.edu/wcpa/vol40/iss2
https://egrove.olemiss.edu/wcpa/vol40/iss2/8
https://egrove.olemiss.edu/wcpa?utm_source=egrove.olemiss.edu%2Fwcpa%2Fvol40%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fwcpa%2Fvol40%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/561?utm_source=egrove.olemiss.edu%2Fwcpa%2Fvol40%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/wcpa/vol40/iss2/8?utm_source=egrove.olemiss.edu%2Fwcpa%2Fvol40%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


Systems design and analysis has been 
defined as the analysis of present 
methods, applications, objectives, and 
all pertinent data followed by the design 
of improved systems using data process­
ing equipment and techniques. The 
primary aim of this function is to 
produce the optimum solution for 
application needs; the most economic 
solution consistent with management 
and operating objectives, equipment 
capabilities and personnel resources. 
Programming has been defined as the 
translation of defined systems re­
quirements and procedures into a 
logical process and a set of instructions 
for its operation on data processing 
equipment. Systems design and 
programming represent two separate 
though related functions in the data 
processing environment.

In some installations the same staff 
performs both functions, although in 
many of the larger installations these 
functions are performed by separate 
staffs. In some organizations the 
systems design group does not report to 
the computer installation but is attached 
instead to the various using departments 
for which the designs are being 
developed. This occurs because of the 
very strong need for the systems analyst 
to develop a full, detailed understanding 
of the information function and the 
needs of the user departments for which 
systems are being designed. Regardless 
of the organizational position of the 
systems development group — both the 
analyst and the programmers — it is im­
portant that those performing these 
functions have full access to the 
information available in the user 
departments and have the full 
cooperation of those departments as 
they attempt to study current 
procedures and design new procedures.

Systems and Programming Reliability
The management of an organization 

must clearly define and support the ob­
jectives that a system is to accomplish. It 
is impossible either to develop a system 
or subsequently to evaluate it if the ob­
jectives against which that system is to 
be measured are unknown. Proper con­
trol of the systems development 
procedure requires a formalized review 
and management authorization of each 
system before it is implemented. One of 
the important controls in the systems 
development process is appropriate 
authorization of the plan and evidence 
of regular appraisal and supervision of 
the progress of the systems development 
project.

Electronic
Data Processing
Systems Design and Application Programming

Editor, Elise G. Jancura, CPA, Ph.D. 
The Cleveland State University 
Cleveland, Ohio

An essential ingredient in efficient 
direction of the development effort and 
meaningful evaluation of its ac­
complishments is adequate documenta­
tion of the manual procedures and 
programmed procedures to be com­
bined in the given data processing 
system or application. Evidence of close 
supervision such as regular progress 
reports, planning schedules, and 
management review reports can be used 
by the auditor in making inferences 
about the efficiency with which the 
development procedure was carried out, 
and more important, the accuracy and 
the adequacy of the resulting system. 
Authorization and approval of the 
system must be obtained not only from 
systems development management but 
also from the management of the 
operating or user department for which 
the data system is being designed.

Provision for error detection and cor­

rection procedures should be made at 
the time an application is designed. 
These detection and correction 
procedures may represent a mixture of 
manual operations and program checks, 
but efficiency demands that the systems 
analysts and the programmers incor­
porate those checking features as part of 
the original development work. These 
procedures should be fully documented, 
with specific instructions as to how 
errors are to be corrected and with 
specific provisions for reintroduction of 
previously erroneous data once the data 
has been corrected. The formalized 
procedures designated should also in­
clude operator instructions for both 
normal conditions and for error con­
ditions such as label errors and machine 
errors, as well as for any special 
operating conditions.
Programming

Programs are a series of instructions 
April 1978/25



executed sequentially by the central 
processing unit of the computer. These 
instructions must be stored within the 
computer’s internal memory and must 
be expressed in language that the com­
puter understands. This language is fre­
quently referred to as machine language 
or object language. It is possible for a 
programmer to write a program in 
machine language. However, this is a 
tedious, time consuming process, 
because computer languages are fre­
quently complex and expressed in a 
coding structure different from that 
familiar to human beings.

To facilitate the programming 
process, a number of programming 
languages that are easier to use and are 
similar to language used by human 
beings are available. These languages 
are called symbolic or source languages. 
However, if a programmer writes in one 
of these symbolic languages, the 
programmer must first translate the 
language written in source code into the 
computer’s language expressed in object 
code. When a computer vendor designs 
a language for convenient use by the 
programmer, the vendor also provides a 
program that will translate this sym­
bolic language into object language. 
These translating programs are general­
ly called compilers. In addition to per­
forming the translation from source to 
object language, the compiler also 
produces the object program in a 
medium or form that is ready for 
loading into the computer.

There are several types of symbolic 
languages. Some of these languages re­
quire fairly expert knowledge of the 
computer system and its facilities and 
are rarely transferable to other systems. 
Others, frequently referred to as high 
level languages, require little knowledge 
of the specific computer, only general 
functional knowledge of computer 
systems in general. These high level 
languages are generally transferable 
from one computer system to another — 
a characteristic that is referred to as 
source compatibility. The language is 
implemented on individual computer 
systems through the compiler provided 
for each subsequent computer system. 
Examples of source compatible 
languages are FORTRAN, COBOL, 
PL/I, ALGO, and BASIC. A number of 
other generally source compatible 
languages have been developed for cer­
tain types of processing problems; LISP 
and SNOBOL are examples of list 
processing languages and GPSS and 
COGO represent examples of languages 

26/The Woman CPA

developed for simulation techniques.
An operating system is simply a collec­

tion of programs that allows control of 
the computer to be more fully 
automated. The heart of an operating 
system is a control program, frequently 
referred to as the monitor, that controls 
the automatic transition from one 
application program to another. In ad­
dition, the operating systems in a multi­
programming environment will control 
the concurrent execution of several 
programs within the central processing 
unit. An operating system usually 
means that the programs are stored in a 
machine readable library. The operating 
system may also collect operational 
statistics and keep a log of console 
operations.
Systems and Program Testing

The testing procedures performed in 
the systems development process can 
have a major impact on the subsequent 
reliability of that system, including both 
the manual procedures and the 
programmed procedures involved in the 
system. A definite plan should be 
prepared for testing the system. By 
testing in an organized and controlled 
fashion, much more accurate results can 
be obtained with a great deal less time 
and effort. It is important to make 
provision for testing every possible 
alternative processing path that exists 
within the system.

Test data should be prepared and run 
through the system for every condition 
that the system is designed to handle. 
Furthermore, test data should also in­
clude invalid data, in order to test the 
system’s ability to recognize and 
segregate invalid and erroneous data. 
For example an accounts receivable 
program might expect to handle 
purchases and sales. Purchases might be 
designated by a 1 in the activity code and 
sales by a 2 in the code. The program 
should recognize that a record with a 3 
in the activity code does not represent a 
legitimate alternative and should 
properly reject that transaction. A com­
mon failing of many programs is the 
assumption that if the first code does not 
exist, the record automatically 
represents the second code. Figure 1 il­
lustrates alternative coding logic for 
program identification of the activity 
code. In Figure 1A the programmer 
erroneously assumes that if the code be­
ing tested was not a 1, that it was a 2. 
Mistakenly assuming that only properly 
recorded data reaches a program is a 
common error. Figure 1B shows a more 
desirable approach that tests the data as 

thoroughly as possible.
In installations handling large 

volumes of data, erroneous records can 
slip through the verification and other 
control procedures and reach the 
processing runs. Thus, in constructing 
the test data, the programmer or analyst 
testing the system should try to include 
examples of both valid and invalid data 
conditions. Further tests should be run 
with essential data missing (fields within 
records or even whole records), to test 
whether the programs can detect the 
absence of needed information. For se­
quential files, one test should include 
test data that is out of sequence. For files 
that need particular activity codes, tests 
should include data with codes that are 
incorrect as well as examples of all cor­
rect codes. When a program that has 
been properly executing for some time 
suddenly begins producing an 
erroneous result, a good probability ex­
ists that the program was incorrectly 
tested and that a relatively rare error 
condition occurred that was not 
recognized in the original test data. 
Thorough testing is such an important 
part of a systems development, it should 
receive major consideration.

Wherever possible, it is desirable to 
test in two phases: in the first phase, 
specially constructed test data is used; in 
the second phase, the system can be 
tested with actual data as it is being 
generated in the installation. This latter 
approach is called a parallel run, 
because this execution of the new system 
should be concurrent with continued ex­
ecution of the old system. The purpose 
of a parallel run is to test the entire 
system in an actual operating environ­
ment. This can serve two purposes: to 
insure that the systems description and 
design accurately reflect the actual en­
vironment; and to check that the related 
programs function together as an 
cohesive system.

However, the installation should 
always be aware of the fact that 
successful parallel runs do not necessari­
ly guarantee a complete test. When the 
new system differs substantially from 
the old, the results may not be com­
parable without extensive reconcilia­
tion. Also, in most environments there 
are relatively rare combinations of data 
conditions that very infrequently occur 
in the normal course of events. Unless 
the parallel run should happen by 
chance to occur when one of these rare 
combinations exist, the system will not 
be tested for its ability to handle such a 
situation. This is the reason why the



(Fig. 1A) (Fig. IB)

Fig. 1 - ALTERNATIVE CODING FOR ACTIVITY CODES

construction of formalized test data is so 
important.

Control of Programs and 
Program Libraries

Plans should be specified and fully 
documented as to the way in which in­
dividual programs are to be stored and 
maintained within the installation. This 
includes plans for control of access to 
the program libraries as well as specific 
provisions for program modifications. 
One test of a well controlled installation 
is the degree to which prior authoriza­
tion is required for program changes 
and the degree to which any changes 
made to computer programs, once these 
programs are placed in a normal 
operational state, are documented.

An all too frequent error made by in­
stallations is to allow changes to the 
program without correction of the 
documentation for that program. 
Another serious error consists in allow­
ing unauthorized access to an operating 

version of a program, thus making it 
possible to change the function of a 
program. The problem of controlling 
changes to programs must be addressed 
at several levels. First the systems 
development process must plan ahead 
and define the procedure for making 
authorized changes, with the attendant 
requirements for proper documenta­
tion. Second, appropriate operational 
control must be instituted to prevent un­
authorized intervention from the com­
puter console when a program is loaded 
for execution that could result in un­
documented and therefore possibly un­
detected change in the program.

Depending upon the sophistication of 
the installation, copies of the programs 
can be in the form of card decks and 
stored in appropriate filing drawers. 
Most installations, however, have 
progressed to some sort of operating 
system environment in which the 
machine language copies of the 
programs are usually maintained in a 
machine accessible library, usually 

stored on a disk file. Access to these 
programming libraries must be con­
trolled both in terms of execution of the 
programs within these libraries and in 
terms of any changes made to the copies 
of the programs that exist in the work­
ing library. Periodic examination of the 
programs stored in the working libraries 
(which are libraries from which the 
programs are actually loaded and ex­
ecuted in the computer) is a necessity to 
insure against any unauthorized 
changes in the programs as they are ex­
ecuted from the specifications found in 
the installations formal documentation.

To review briefly, programming in 
systems reliability will be greatly 
enhanced if processings systems and 
their programs are designed to meet 
carefully defined objectives, are proper­
ly authorized by the organization 
management, have heavy user involve­
ment in the design and testing phase, are 
adequately documented, make provi­
sion for control changes to the system, 
and are thoroughly tested.

April 1978/27


	Electronic Data Processing: Systems Design and Application Programming
	Recommended Citation

	Woman CPA, Volume 40, 1978

