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ABSTRACT 

The reproductive success of many aquatic insects is highly dependent on where they 

deposit their eggs. Not all habitats are created equal. Some are more favorable than others for 

larval development. Therefore it would be evolutionarily advantageous for an ovipositing female 

to differentiate between them and choose the most suitable for her offspring’s survival. 

Numerous studies have shown that many species with complex life-cycles representing a diverse 

array of taxonomic groups sort themselves non-randomly among habitat patches on the basis of 

perceived habitat quality. In the case of dragonflies, insufficient evidence exists to support the 

hypothesis that this group can assess relevant indicators of patch quality and use those cues to 

select habitat. I conducted a series of experiments to investigate what effects a predatory fish, the 

green sunfish (Lepomis cyanellus), had on larval dragonfly performance and development and 

adult female habitat selection behavior. Developmental studies were performed to determine the 

degree of consumptive and non-consumptive effects of L. cyanellus and how they affect survival 

and other fitness correlates of larval dragonflies. I found that larval survival is significantly 

affected by the presence of uncaged L. cyanellus, but not affected by caged L. cyanellus. Caged 

L. cyanellus did not have an effect on fitness correlates, suggesting larvae are not capable of 

detecting fish. I examined whether female dragonflies actively avoid ovipositing in sites 

containing predatory fish which potentially inflict significant fitness costs via offspring 

predation. Results indicated that female adults of three common species of dragonflies did not 

discern between habitat patches based on the presence or absence of fish predators. This suggests 

that members of this group either rely on a bet-hedging or risk-spreading strategy, utilize a form 
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of philopatry, or the presence of fish predators may not be an important factor for odonates in 

oviposition site selection. There is a mismatch between the results of the oviposition and 

development experiments, suggesting there is much more to learn about how dragonflies select 

habitat for their offspring, how their decisions affect aquatic community assembly, and how 

these can be used to inform conservation efforts designed to protect threatened odonate species. 
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CHAPTER 1: 

 LARVAL ODONATE PERFORMANCE IN RESPONSE TO LEPOMIS CYANELLUS 

(CONSUMPTIVE AND NON-CONSUMPTIVE EFFECTS) 

 

Introduction 

Post-colonization species sorting is a critical determinant of community assembly and 

metacommunity dynamics models (Leibold et al. 2004, Binckley and Resetarits 2005, McCauley 

et al. 2008). Species sorting refers to the differential mortality of individuals in response to 

environmental and biological conditions in their habitat that affect the distributions and 

abundances of species within a community (Leibold et al. 2004, Binckley and Resetarits 2005). 

In aquatic ecosystems, these conditions can include temperature, water chemistry, pond 

desiccation, competition, resource availability, disease, and predation. 

Predation is a critical determinant of post-colonization community structure in aquatic 

systems that can dictate species composition, richness, and overall population dynamics (Brooks 

and Dodson 1965, Morin 1981, 1984, Petranka and Fakhoury 1991, Binckley and Resetarits 

2002, Abrams et al. 2007). If introduced into previously fishless habitats, predatory fish can have 

powerful effects on invertebrate prey populations by affecting abundances not only via direct 

consumption but also through non-consumptive effects, thereby potentially extirpating 

susceptible species from an aquatic habitat (Wellborn et al. 1996, Binckley and Resetarits 2002, 

Eby et al. 2006). In addition to the direct effect of mortality, the mere presence of predators can 
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reduce the fitness of prey by affecting fitness correlates such as growth, larval periods, and size 

at metamorphosis due to the prey’s behavioral and morphological anti-predator responses (Sih 

1980, Werner and Gilliam 1984, Johansson and Samuelsson 1994, Abrams and Rowe 1996, 

Lima 1998, Relyea 2001, 2007). Induced states of anti-predator responses can result in sub-

optimal foraging and resource allocation compared to  populations lacking predation risk (Sih 

1982, Abrams and Rowe 1996, Relyea 2001, Werner 2016). The benefit of these anti-predator 

responses comes at the cost of decreased energy intake, a trade-off that results in increased 

survival but decreased growth, development, and fecundity (Lima 1998).  

Predator induced phenotypic plasticity has been extensively studied in many aquatic 

organisms with complex life cycles (Grant and Bayly 1981, Harvell 1990, McCollum and Van 

Buskirk 1996, Van Buskirk 2000). These phenotypic changes ultimately affect an organism’s 

size at metamorphosis or its time to metamorphosis (Abrams and Rowe 1996, Benard 2004). In a 

literature review of 40 development experiments on amphibians and aquatic insects, predator 

cues alone affected larval development in 22 cases either affecting size, age at metamorphosis, or 

both (Benard 2004). In most cases, predator cues only affect one of these fitness correlates; 

either the larval period is extended, or individuals emerge at a smaller size (Benard 2004). 

Cues from predators can also elicit morphological changes to prey through predator-

induced phenotypes, creating two or more morphs of a single species called polyphenisms. 

Polyphenisms induced by the threat of predation have been described in a variety of taxa 

including caudates (Wilbur and Collins 1973, Van Buskirk and Schmidt 2000, Michimae and 

Wakahara 2002), anurans (McCollum and Van Buskirk 1996, Van Buskirk 2000, Schoeppner 

and Relyea 2009), and cladocerans (Grant and Bayly 1981, Miyakawa et al. 2013). 
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Some predator-induced morphological phenotypes have been described in odonates. In 

the naiads of the fish sensitive dragonfly species Leucorrhina dubia, the lengths of the 

abdominal spines were significantly longer on individuals collected from bodies of water with 

fish as opposed to individuals that came from fishless ponds (Johansson and Samuelsson 1994, 

Johansson 2002). The same study also showed that it took fish longer to handle the long-spined 

naiads as opposed to the short-spined naiads, suggesting abdominal spine length is a defensive 

morphological adaptation in L. dubia that is induced by cues produced by its predators 

(Johansson and Samuelsson 1994, Johansson 2002). Another developmental study by Mccauley 

et al. (2011) found that nonlethal effects from a fish predator created enough stressors in larvae 

of the odonate species Leucorrhinia intacta to affect survival rate and the frequency at which 

larvae successfully complete eclosion from the final larval instar into the adult stage. 

Surveys of ovipositing females alone can over-estimate pond quality, so counting 

emerging adults is a better metric for assessing habitat quality than simply determining adult 

oviposition preference or sampling larvae (Raebel et al. 2010). It is important to disentangle the 

effects of habitat selection from the effects of post-colonization processes, both of which play 

essential roles in determining community assembly and species sorting models (Wellborn et al. 

1996, Leibold et al. 2004, Vonesh et al. 2009, Kraus and Vonesh 2010). The data gained from 

such studies should address whether there are consumptive and/or non-consumptive post-

colonization effects of sharing habitat with predatory fish on dragonfly larvae. Therefore results 

may explain whether an evolutionary selection pressure exists for individual female odonates to 

select oviposition sites based on habitat quality.  

My developmental experiments investigate deviations in survival rates and multiple 

metrics of fitness in two different species of dragonflies subjected to two treatments: fishless 
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control pools and pools containing Lepomis cyanellus. The fitness correlates being compared are 

body length at emergence and length of larval period. The consumptive effects study had no 

constraints on the fish and allowed consumption of larvae to occur. The non-consumptive effects 

study isolated the fish from the larvae, preventing consumption. These studies test the hypothesis 

that the consumptive and non-consumptive effects of predatory fish have a negative impact on 

larval dragonfly survival and development. I predict in both cases that patches containing L. 

cyanellus will produce fewer dragonflies surviving to the adult stage, and those that do will have 

reduced size at metamorphosis and a longer developmental larval period compared to naiads in a 

fishless patch. 

 

Materials and Methods 

Study Site 

All experiments were performed at the University of Mississippi Field Station (UMFS) 

located in Lafayette County, MS. The UMFS encompasses 318 hectares and contains 223 ponds 

along with multiple streams, forests, and wetlands. This location is especially ideal for this study 

because it supports large populations of fish and aquatic insects, and hosts a wide variety and 

abundance of odonate species. 

 

Study Species 

To test the post-colonization effects of fish on larval dragonfly survival and growth, two 

separate studies were conducted to isolate the consumptive and non-consumptive effects on 

larval performance. The dragonfly species Erythemis simplicicollis (eastern pondhawk) and 

Pachydiplax longipennis (blue dasher) were used as models in these studies because they are 
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among the most abundant odonate species found at UMFS. Gravid females can be found from 

Spring-Fall as they employ a bivoltine life history strategy, producing two generations (cohorts) 

per year. Lepomis cyanellus (green sunfish) was employed as the predator in this experiment. L. 

cyanellus’s large body size and gape ensure that naiads of all sizes and species are susceptible to 

predation. L. cyanellus is one of the most widespread fishes in North America and is widely 

introduced to previously fishless waters both inside and outside of its native range (Lee et al. 

1983). Its wide distribution and proficiency as an invader into new aquatic ecosystems make L. 

cyanellus a logical choice as the experimental predator in this study.  

Eggs were collected from the first cohort that emerged in the spring. Those eggs spawned 

the second cohort that emerged in late summer from inside the experimental tanks (Corbet et al. 

2006). The process of egg collection mirrors the methods described and employed by Schenk et 

al (2004) and was performed by first capturing a female dragonfly using an aerial insect net. 

While carefully grasping the wings pinched above the thorax, the terminal segments of the 

abdomen containing the ovipositor were repeatedly dipped into a small container of pond water 

kept at ambient temperature. If the female had recently mated and is gravid, the water triggers 

egg release. Eggs were collected in a small container until the female was depleted. These eggs 

were transferred into larger 1 L containers of dechlorinated water where they were mixed with 

egg clutches from multiple females. All eggs were incubated inside a greenhouse with 

moderately fluctuating day/night temperatures. Eggs were checked daily until they begin to hatch 

after 10-15 days and first instar larva emerged. The early instars were collected and counted via 

transfer pipette and separated into groups of 100 individuals. Each group of hatchlings likely 

contained individuals from multiple clutches, ensuring genetic heterogeneity within each tank. 

When randomly assigning groups of hatchlings to tanks, each sequential group alternated 
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between tanks containing the control and predator treatments to further ensure that genetics were 

not a confounding variable between the two treatments. 

 

Experimental Design 

The design of the two developmental experiments consisted of two 16 mesocosm 

(~1200L cattle tanks) arrays (one for each species) totaling 32 mesocosms. This setup created 

eight replicates per combination of species and treatment. Each mesocosm was filled with well 

water and inoculated with 1kg of dried leaf litter and a 1 L aliquot of zooplankton and 

phytoplankton from a nearby fishless pond to facilitate natural water quality conditions (Morin 

1981). Mesocosms were left to age for 7 days, and during that time a fiberglass screen (1.3 × 

1.13 mm openings) covered the tanks to prevent colonization. Eight of the mesocosms in each 

array received one L. cyanellus and the other eight remained fishless controls. Finally, all 32 

mesocosms received 100 first instar dragonfly larvae for a total of 1600 initial larvae per species. 

The screens were tightly fitted over the tank and out of the water in order to close the system and 

prevent any oviposition or colonization, ensuring that treatments do not receive unequal food 

resources or external predators or competitors. Throughout the course of the experiments, all 

emerging E. simplicicollis and P. longipennis adults were captured, measured for total length, 

and total days to emergence were recorded. 

Two separate sets of experiments were conducted to test the consumptive and non-

consumptive effects of predatory fish on the development of the two model odonate species. 

During the summer of 2018, consumptive effects were tested by adding one individual L. 

cyanellus to eight of the 16 tanks in each array without restricting the ability of the fish to 

traverse its environment or consume dragonfly larvae. During the summer of 2019, the non-
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consumptive effects were tested by adding a single caged L. cyanellus to eight of the 16 tanks in 

each array. The cage prevented the fish from causing direct mortality to larvae while still 

allowing the larvae to receive chemical cues from the fish. Empty cages were placed into control 

tanks to maintain the standardization of all tanks. Cages were mesh cylinders (height = 0.61m, 

diameter = 0.58m, volume = 0.16 m3, mesh = 1.3 × 1.13 mm openings). 

 

 

Statistical Analysis 

The survival rate for each tank was calculated by dividing the total number of emerged 

adults by the total number of larvae initially added to each tank at the start of the experiment. 

The survival rate to the adult stage in each treatment (Control vs. Fish) was analyzed using a 

general linear model ANOVA with treatment as a fixed factor and tank as a random factor using 

the lmerTest package in R (Bates et al. 2015). The length of larval period and body length 

metrics were also analyzed using general linear models. Larval period and body length models 

initially included treatment (Control vs. Fish) as a fixed factor, tank survival rate as a covariate to 

control for changes in larval density, and tank as a random factor. Survival rate had no 

significant impact on either variable and was dropped from the models. All analyses were set 

with α = 0.05. 

 

 

 

 

 



 

8 
 

Results 

Consumptive Effects 

One E. simplicicollis development tank was excluded from analyses due to fish mortality. 

Additionally, two E. simplicicollis and one P. longipennis development tanks were excluded 

from analyses due to the invasion of Pantala flavescens, whose naiads consumed experimental 

naiads. E. simplicicollis began emerging in late-July and continued until early-September. P. 

longipennis began emerging in mid-August and continued until late-September. The sex of all 

individuals of both species was determined by inspecting the anal appendage for the presence of 

claspers (Male) or an ovipositor (Female). 

At the termination of the experiment, 253 (19.5%) E. simplicicollis and 186 (12.4%) P. 

longipennis individuals survived to metamorphosis. The proportion of surviving individuals was 

significantly affected by the presence of a fish predator (Figure 1.1). In the case of E. 

simplicicollis, the mean survival rate from control tanks was 42.2%, while no individuals from 

predator tanks survived to the adult stage. In P. longipennis, the mean survival rate was 26.0% in 

the control tanks, and 0.5% in predator tanks, the latter representing only 4 individuals. Due to 

the lack of survivors from tanks containing the predator treatment, analysis of effects on body 

size and length of larval period could not be performed. 
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Figure 1.1. Survival rate of control versus uncaged predator treatments for E. simplicicollis and P longipennis. 

Survival rate is affected by cohabitation with L. cyanellus in E. simplicicollis and P. longipennis. 
 

 

 

Table 1.1. Analysis of variance for consumptive survival 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 5744.4 65.627 <0 .001  1 2427.6 15.216 0.0018 

Residuals  11 962.8    13 2074.0   

Total 12 6707.2    14 4501.6   

 

 

 

Non-Consumptive Effects 

 One E. simplicicollis tank was excluded from analyses due to the invasion of large 

numbers of dragonflies. E. simplicicollis began emerging in mid-July and continued until early-

September. P. longipennis began emerging in mid-July and continued until late-September.  

 At the termination of the experiment, 541 (36.1%) E. simplicicollis and 696 (43.5%) P. 

longipennis individuals survived to metamorphosis. Caged predators did not affect the 

probability of survival to metamorphosis for either dragonfly species (Figure 1.2). The mean 
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survival rate of E. simplicicollis in the control treatment was 38.9%, and in the caged predator 

treatment 35.4%. In P. longipennis, the mean survival rate was 44.8% in the controls, and 42.3% 

in the predator treatment. Length of larval period did not differ in response to predator presence 

for either E. simplicicollis or P. longipennis (Figure 1.3a). When accounting for sex, there was 

still no difference in larval period. (Figure 1.3b, c). Similarly, there was no significant main 

effect of a caged predator on body length at emergence for either species (Figure 1.4a), even 

when accounting for sex (Figure 1.4b, c).  

 

 
Figure 1.2. Survival rate of control versus caged predator treatments for E. simplicicollis and P longipennis. 

Survival rate is not affected by cohabitation with a caged L. cyanellus in E. simplicicollis or P. longipennis. 

 

 

 

Table 1.2. Analysis of variance for non-consumptive survival rate 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 8.2 0.030 0.865  1 25 0.0677 0.798 

Residuals  13 3556.7    14 5171   

Total 14 3564.9    15 5196   
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Figure 1.3. (a) Length of larval period is 

not affected by cohabitation with a caged 

L. cyanellus in E. simplicicollis or P. 

longipennis. (b) Mean larval period of 

male E. simplicicollis and P. longipennis 

individuals. (c) Mean larval period of 

female E. simplicicollis and P. 

longipennis individuals. 

 

 

 

Table 1.3. Analysis of variance for length of larval period 

 All Sexes 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 3.5 0.150 0.705  1 105.2 2.573 0.134 

Survivors 1 1.4 0.060 0.810  1 15.0 0.366 0.556 

Fish × Survivors 1 0.3 0.012 0.914  1 131.4 3.212 0.098 

Residuals  11 252.7    12 490.7   

Total 14 257.9    15 742.3   

 Males 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 6.7 0.389 0.545  1 84.9 1.982 0.185 

Survivors 1 4.7 0.270 0.8143  1 2.5 0.058 0.814 

Fish × Survivors 1 0.3 0.020 0.1927  1 81.6 1.905 0.193 

Residuals  11 190.4    11 514.3   

Total 14 202.1    14 683.3   

 Females 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 0.8 0.019 0.891  1 90.9 1.938 0.189 

Survivors 1 0.0 0.0001 0.994  1 4.6 0.098 0.759 

Fish × Survivors 1 0.3 0.007 0.933  1 114.3 2.438 0.144 

Residuals 11 479.8    11 562.5   

Total 14 480.9    14 772.3   

b 

a 

c 
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Figure 1.4. (a) Adult body length is not 

affected by cohabitation with a caged L. 

cyanellus in E. simplicicollis or P. 

longipennis. (b) Mean body length of 

male E. and P. longipennis individuals. 

(c) Mean body length of female E. 

simplicicollis and P. longipennis 

individuals. 
 

 

 

 

Table 1.4. Analysis of variance for body length 

 All Sexes 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 0.75 0.312 0.587  1 0.22 0.318 0.583 

Survivors 1 2.67 1.111 0.314  1 0.73 1.077 0.319 

Fish × Survivors 1 1.71 0.711 0.417  1 0.50 0.735 0.408 

Residuals  11 26.42    12 8.14   

Total 14 31.55    15 9.59   

 Males 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 1.18 0.616 0.449  1 0.74 0.760 0.401 

Survivors 1 3.44 1.792 0.207  1 0.32 0.331 0.576 

Fish × Survivors 1 1.67 0.872 0.370  1 1.09 1.119 0.311 

Residuals  11 21.11    11 11.68   

Total 14 27.4    14 13.83   

 Females 

 E. simplicicollis  P. longipennis 

Source df SS F p (>F)  df SS F p (>F) 

Fish 1 0.24 0.069 0.798  1 0.29 0.432 0.523 

Survivors 1 1.20 0.346 0.568  1 1.12 1.695 0.217 

Fish × Survivors 1 1.38 0.398 0.451  1 0.29 0.443 0.518 

Residuals 11 38.18    11 7.94   

Total 14 41.0    14 9.64   

b 

a 

c 
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Discussion 

Consumptive Effects  

 The outcome of the consumptive development study provided irrefutable evidence that 

dragonfly naiad survival was affected by L. cyanellus, but could not determine the predator’s 

effect on other fitness correlates due inadequate survival in the predator treatment. Naiads that 

share their habitat with a predatory fish are exceptionally unlikely to survive the larval stage, so 

that non-consumptive effects may be irrelevant. The degree to which predation depressed the 

survival rate of naiads in this experiment certainly suggests that any clutch of eggs laid with 

predatory fish is likely to result in a complete loss of reproductive output for the parent. 

If E. simplicicollis or P. longipennis larvae have any behavioral or morphological 

defenses against fish predators (Johansson and Samuelsson 1994, Johansson 2002, Brodin et al. 

2006), they were not evident or effective in this experiment. If they restricted activity to avoid 

fish, the tradeoff of reduced foraging was too strong as even if they avoided predation, they 

could not consume enough food to develop and metamorphose in time before environmental 

conditions became too cold for adult dragonflies to withstand.  

 

Non-Consumptive Effects 

 The results of the non-consumptive development study revealed that when direct 

consumption is removed from the system, larval performance of E. simplicicollis and P. 

longipennis is still not affected by cohabitation with L. cyanellus. The survival rate for both 

species of dragonflies did not significantly differ between treatments, so there was no predator 

induced mortality, which has been observed with other odonates (McCauley et al. 2011). The 

caged fish treatment did not affect either of the evaluated fitness correlates as compared to the 
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control treatment. Total body length and length of larval period of the experimental group did not 

differ from the control group, which contradicts a priori hypotheses developed based on a review 

of similarly structured developmental studies in which a majority of invertebrate larvae 

experience some form of predator-induced plasticity (Benard 2004). However, the results of this 

experiment are largely in line with those of a study investigating non-lethal effects of predators 

on the larvae of Leucorrhinia intacta by McCauley et al (2011). In that similarly designed 

experiment, their study species (Leucorrhinia intacta) showed no difference in body size 

between control groups and those subjected to a caged pumpkinseed sunfish (Lepomis gibbosus). 

Conversely, McCauley et al. (2011) found a reduction in survival in the caged fish treatment that 

was not seen in our experiment. 

 I provide clear evidence that the larvae of two common species of dragonflies are highly 

susceptible to mortality by a generalist predatory fish. The reproductive output of an adult female 

E. simplicicollis or P. longipennis that oviposits into an environment analogous to that of the 

experimental mesocosms would likely be reduced to zero due to direct consumption by L. 

cyanellus. The results of the effects of caged predator presence conclusively show that larval 

dragonflies of these species do not respond morphologically or behaviorally when exposed to 

cues from a fish predator. The absence of deviation of the measured fitness correlates between 

control and treatment larvae indicate that the larvae did not exhibit anti-predator responses to 

chemical cues from caged fish and their foraging and energy intake were not affected.  

 Non-consumptive effects of predators on the growth rate, life cycle, and survival of prey 

has ramifications for understanding community dynamics and predator-prey interactions. The 

works of other researchers on odonate behavior in response to predators are indicative that anti-

predator behavior, predator-induced plasticity, and the overall ability to avoid predation by fish 
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vary on a species to species basis. Whereas the larva of the species used in this experiment did 

not display any tolerance to fish, odonate species such as Leucorrhinia intacta (McCauley et al. 

2011), Leucorrhinia dubia (Johansson and Samuelsson 1994), and some members of genus 

Enallagma (McPeek 1989) do show behavioral and/or morphological responses to fish that make 

them at least somewhat tolerant to fish predation. The ability or inability of odonate larvae to 

detect chemical cues from fish predators and use those signals to adjust their behavior and 

resource allocation has implications for community assembly as it may explain why odonate 

species that are sympatric as aerial adults may not be found together as larvae in the same 

aquatic habitat patches (Morin 1984, Semlitsch 1988, McPeek 1990). The consumptive and non-

consumptive effects of fish on prey fitness have broader implications due to the continued 

expansion of human society into natural spaces, especially as wetland habitat is lost and novel 

fish species are introduced into new and previously fishless habitats via anthropogenic 

mediation. In these conditions, fish intolerant species are more likely to be threatened with 

population decline, notably rare endemic species which tend to be specialists when it comes to 

their habitat requirements (Sahlen 2005, Suhonen et al. 2014, Khelifa and Mellal 2017). For the 

advancement of our understanding of community dynamics, predator-prey interactions, and 

biodiversity conservation, the repercussions of consumptive and non-consumptive effects of 

predators on their prey warrants further scientific investigation. 
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CHAPTER 2: 

OVIPOSITION SITE SELECTION OF PACHYDIPLAX LONGIPENNIS, PANTALA 

FLAVESCENS, AND LIBELLULA INCESTA IN RESPONSE TO LEPOMIS CYANELLUS 

 

Introduction 

The reproductive success of many insects is highly dependent on the oviposition site 

choice of adult females (Rausher 1983, Singer 1984, Petranka and Fakhoury 1991, Resetarits 

1996, McGuffin et al. 2006). Heavy selection pressure due to variation in habitat quality (e.g., 

predators, competitors, resources) and the strong effect it has on offspring performance has 

driven the evolution of non-random habitat site selection. This process more accurately explains 

the uneven distribution of species and individuals across a metacommunity landscape than other 

community assembly processes such as random distribution and post-colonization species sorting 

(Resetarits 1996, Leibold et al. 2004, Rieger et al. 2004). Oviposition habitat selection is a form 

of parental care where females assess patch quality in order to select a habitat that will maximize 

offspring growth and survival, thus maximizing their genetic contribution to the next generation 

(Rausher 1983, Singer 1984, Resetarits and Wilbur 1989, Rieger et al. 2004). Aquatic insects 

have relatively short life-spans at sexual maturity and experience relatively few reproductive 

events; in addition, many aquatic insects also deposit their entire reproductive output into a 

single habitat patch. These combined traits emphasize the importance of oviposition habitat 

selection because a single mistake can greatly diminish or obliterate fitness in a breeding adult 

(Blaustein 1999). Individuals selecting habitats that maximize resource availability, minimize 
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competition for space and resources, and avoid/limit the effects of predators will maximize their 

potential reproductive success by improving the performance of their offspring (Rausher 1983, 

Singer 1984, Werner and Gilliam 1984, Resetarits 1996, Relyea 2001, 2007). 

Many aquatic insects utilize fishless or temporary habitats due to their susceptibility to 

predation by residents of many permanent aquatic habitats, particularly fish (Petranka and 

Fakhoury 1991, Resetarits 1996, Wellborn et al. 1996). Consumption, as well as non-

consumptive effects (i.e., the threat of predation), by fish induce a heavy fitness cost for aquatic 

insecs, and in response, some species of insects have evolved sensory and behavioral adaptations 

to detect predatory fish via chemical cues and subsequently avoid patches containing them 

(Petranka and Fakhoury 1991, Resetarits 1996, Silberbush and Blaustein 2008, Eveland et al. 

2016). Patterns of colonization in response to predators have been well documented in multiple 

aquatic taxonomic groups including Order Coleoptera, Order Hemiptera, Family Culicidae, 

Order Anura, and Order Caudata (Petranka and Fakhoury 1991, Kats and Sih 1992, McGuffin et 

al. 2006, Binckley and Resetarits 2008, Shaalan and Canyon 2009). Colonization rates and 

population and community dynamics of aquatic beetles are significantly impacted by the 

presence of fish predators through decreased abundance, species richness, and altered species 

composition (Binckley and Resetarits 2005, Resetarits and Pintar 2016). Tree frog species Hyla 

chrysoscelis, Hyla squirella, and Hyla femoralis are all known to avoid laying eggs in habitat 

patches containing fish that are predators of their offspring (Resetarits and Wilbur 1989, 

Binckley and Resetarits 2002, Rieger et al. 2004). Similarly, mosquitoes of the genus Culex 

strongly avoid ovipositing in habitats containing the Western Mosquitofish (Gambusia affinis) 

(Angelon and Petranka 2002, Eveland et al. 2016). 
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Habitat selection by odonates on the other hand, is not well understood, especially for 

dragonflies (Anisoptera). Odonate larvae are susceptible to fish predation and there are 

significant differences between the odonate community structures in aquatic habitats that contain 

fish and those without fish (McPeek 1990, Johansson and Brodin 2003, Johansson et al. 2006). 

Larval dragonflies (naiads) play an important role as mesopredators in fishless ponds because 

they have the ability to influence a significant portion of the aquatic invertebrate and amphibian 

communities through both consumptive and non-consumptive effects (Fauth 1999, Meadows et 

al. 2017). As both aquatic larvae and terrestrial adults, anisopterans are voracious predators that 

play a role in providing a top-down effect that limits populations of abundant invertebrate 

primary consumers and lower level heterotrophs (Shaalan and Canyon 2009, Meadows et al. 

2017). In addition to consumptive effects, evidence suggests that the presence of dragonfly 

naiads can significantly deter mosquito oviposition (Stav et al. 2000). These qualities have the 

potential to make odonates an effective biocontrol agent of mosquitoes and other insect vectors 

of disease that develop in aquatic habitats (Mandal et al. 2008, Shaalan and Canyon 2009). These 

top-down consumptive and non-consumptive effects on grazing organisms by dragonfly naiads 

can contribute to a trophic cascade in the food web, influencing the abundance of zooplankton, 

phytoplankton, and periphyton in aquatic habitats (Stav et al. 2000, Knight et al. 2005).  

According to a global assessment of the conservation status of odonates, approximately 

10–15% of odonate species are threatened with extinction, and a high proportion of those are 

endemic species with specialized niches (Clausnitzer et al. 2009). The primary causes of 

extinction in odonates are habitat destruction, pollution, and the establishment of exotic fish 

facilitated by humans (Eby et al. 2006, Clausnitzer et al. 2009). A better understanding of 

oviposition habitat selection by odonates can facilitate the conservation of threatened species. 
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Predatory fish may create an ecological trap, wherein sensory cues emitted from the habitat are 

dishonest indicators of the true quality of a site (Delibes et al. 2001). These ecological traps may 

deceive adult females to leave their progeny in an environment in which they are very unlikely to 

survive to adulthood (Horváth et al. 1998, Schlaepfer et al. 2002, Raebel et al. 2010, Šigutová et 

al. 2015). 

Current and historical oviposition choice literature primarily focuses on insect species in 

Order Coleoptera, Order Hemiptera, Family Culicidae, and the class Amphibia, specifically 

Order Anura due to their prevalence and convenience as model systems. These studies have 

tested a multitude of factors, including predator presence, resource availability, water quality, 

canopy cover, and competitor density (Binckley & Resetarits, 2009; Pintar & Resetarits, 2017; 

Fairchild, Faulds, & Matta, 2000). For many species, the factor bearing the largest effect on the 

oviposition decision of females is the presence/absence of predators (Petranka et al. 1987, 

Binckley and Resetarits 2002, Silberbush and Blaustein 2008, Resetarits and Pintar 2016, 

Resetarits and Silberbush 2016). The presence of predatory fish results in strong oviposition and 

colonization avoidance in anurans and aquatic insects, and the addition of fish into previously 

fishless habitats results in sharp declines in existing populations of these groups (Resetarits, 

2001; Resetarits & Binckley, 2009; Resetarits, Rieger, & Binckley, 2004; Silberbush & 

Blaustein, 2008). There are few studies on the effects of predators on odonate oviposition site 

choice, and most survey behavior at natural ponds, making it difficult to isolate factors 

contributing to habitat selection decisions. Controlled studies have the advantage of reducing 

confounding factors as well as limiting observational errors that are likely to occur in visual 

encounter surveys of natural ponds. 
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The primary mechanism utilized by odonates to detect predators is also debated. As 

opposed to other orders of aquatic insects that rely primarily on chemical cues from predator 

released kairomones (Petranka and Fakhoury 1991, Relyea 2001, Silberbush and Blaustein 

2008), a study by McGuffin et al. (2006) did not support the hypothesis that Enallagma 

damselflies (Zygoptera) could detect the chemical cues of predatory fish. This study, as well as 

others (Horváth et al. 1998, Wildermuth 1998, Šigutová et al. 2015), suggest that visual cues, 

particularly polarotaxis (detection of reflected polarized light), are the dominant sensory 

modalities utilized by odonates for selecting oviposition habitat based on characteristics such as 

depth, vegetation structure, and trophic state of habitat. It has yet to be tested whether fish can be 

detected via effects of reflectance of polarized light, but using vision alone to spot fish would be 

unreliable. Another study by McPeek (1989) determined that habitat selection in these 

Enallagma damselflies was not due to active selection in response to habitat quality, but was 

instead due to philopatry to natal ponds. Additionally, these Enallagma damselflies were unable 

to discriminate between fishless and fish-containing habitats when given the choice (McPeek 

1989). These uncertainties demonstrate the need for further research into the oviposition 

selection ecology of odonates, especially in Anisoptera which may use very different tactics for 

oviposition site selection than Zygoptera. This may stem from their larger size, higher trophic 

level, and propensity to disperse long distances as adults (Utzeri et al. 1984, McPeek 1989, 

Michiels and Dhondt 1991, Conrad et al. 1999). 

Neural physiological studies of the most ancient lineage of insects, the bristletails 

(Archaeognatha), found that the brain of these ancient insects did not possess mushroom bodies, 

which are responsible for olfactory processing, and thus they areanosmic (no sense of smell) 

(Wheeler et al. 2001, Strausfeld et al. 2009, Regier et al. 2010). Likewise, Order Odonata is an 
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ancient taxa that represents one of the basal groups (Palaeoptera) from which modern flying 

insects (Neoptera) are evolutionarily derived, and likely lack well-developed chemosensory 

capabilities due to their close phylogenic proximity to other ancient insect lineages such as 

Archaeognatha (Strausfeld et al. 2009, Meusemann et al. 2010, Crespo 2011). The brain structure 

of odonates does contain mushroom bodies, but those bodies lack calyces and antennal lobes, 

both responsible for receiving olfactory input (Svidersky and Plotnikova 2004, Strausfeld et al. 

2009, Crespo 2011). External antennae of odonates are highly reduced in size compared to 

insects that possess olfactory receiving brain structures (Strausfeld et al. 2009, Crespo 2011) 

(Figure 2.1). It is for these reasons, dragonflies are suggested to be anosmic, and cannot detect 

volatile chemicals from the air (Crespo 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Comparison of external antennae size and complexity between (a) dragonfly (Gomphaeschna 

furcillata), (b) damselfly (Ischnura posita), (c) paper wasp (Polistes carolina), and (d) mosquito (Culex restuans). 

Members more modern insect lineages such as Orders Hymenoptera and Diptera are highly capable of olfactory 

reception, evident by their large complex antennal structures, while antennae are reduced in size and filiform in 

shape in odonates. Photo credit: Kevin M Potts. 

a 

c d 

b 



 

22 
 

Here, I investigated the effect of predatory fish on the habitat selection behavior of 

anisopterans using an outdoor mesocosm experiment in naturally colonized experimental 

landscapes. I created controlled environments where test variables could be easily and reliably 

manipulated and regulated to investigate the frequency of dragonfly oviposition between two 

treatments: fishless control pools and pools containing green sunfish (Lepomis cyanellus). I 

hypothesized that female dragonflies would avoid sites that incur fitness costs to their offspring 

by choosing to oviposit primarily in fishless habitat patches. 

 

Materials and Methods 

Study Species 

The anisopteran models in my experiment were of the family Libellulidae, a highly 

abundant dragonfly family across North America and at my field site (UMFS). Libellulids are 

ideal for this study because they employ an exophytic oviposition strategy where females deposit 

their eggs in open water by repeatedly dipping the terminal segments of their abdomen into the 

water while in flight as opposed to ovipositing endophytically (inserting eggs into macrophytes) 

or epiphytically (laying eggs on the surface of macrophytes). Weekly dragonfly surveys were 

performed at the study site in order to identify all species present during the experiment (Table 

2.1).  
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Lepomis cyanellus (green sunfish) was used as the predator in this study. Lepomis 

cyanellus is an effective generalist predator with a relatively large body and gape size that allow 

for the consumption of sizable prey items, including dragonfly naiads. L. cyanellus is a common 

predator encountered by dragonfly larvae found in many permanent bodies of fresh water in 

North America (Lee et al. 1983). L. cyanellus is known to repel mosquito and beetle colonization 

and its chemical cues have strong effects on larval gray tree frog behavior (Petranka et al. 1987, 

Resetarits and Pintar 2016, Bohenek et al. 2017).  

 

Experimental Design 

To test the effect of fish on dragonfly habitat site selection, I constructed nine spatial 

blocks using mesocosms (~1200 L cattle tanks). Each block was composed of equal parts of two 

treatment types: 1) Fishless control tanks and 2) predator tanks containing two L. cyanellus. 

Blocks contained four mesocosms in 2018, and were reduced to two mesocosms in 2019. All 

tanks within each block were placed 7m apart. Each block was constructed at a different 

geographical location at the UMFS as anisoptera species are not distributed evenly across the 

landscape (Potts, personal observation) (Figure 2.2). All mesocosms were prepared in an 

identical fashion to the development studies in regards to water volume (1000 L), leaf litter (1 

kg), and plankton (1 L) then covered with a fiberglass screening. Half of the mesocosms in each 

block received two equivalently sized L. cyanellus assigned randomly and the screens were 

pushed down into the water to allow colonization and create a physical barrier between the fish 

and any ovipositing adult dragonflies or other colonizing insects. All fish used in the experiment 

were captured from ponds located within the UMFS. 
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Figure 2.2. Locations of blocks in oviposition experiment at UMFS. Square symbols represent 2018 sites, and circle 

symbols represent 2019 sites.  
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To observe the oviposition behavior in real time at each mesocosm, I mounted 170°wide-

angle action camera next to each mesocosm. Each camera was capable of recording video at a 

quality of 1080p at a frame rate of 60fps, providing sufficient quality to identify dragonflies to 

the species level and to clearly observe their oviposition behavior. Mesocosms were filmed 

simultaneously for approximately 80-90 minutes per day within the time window of  10:00-15:00 

h, which is the period when most dragonfly oviposition occurs (Koenig and Albano 1985). Video 

recording occurred on days with optimal conditions for dragonfly activity: plentiful direct 

sunlight, moderate to high temperatures, and no precipitation. This experiment began in May 

2018 and ended in September 2019. 

Oviposition behavior was quantified using two metrics, the number of oviposition visits 

and the number of abdomen dips for each species observed. An oviposition visit is defined by a 

single female dragonfly depositing eggs in the same patch by dipping once or multiple times in 

succession without prolonged interruption. Oviposition dips are the number of times a female 

dragonfly dips its abdomen into the water during a single oviposition visit. Oviposition dips are 

used as a proxy for the actual number of eggs laid during a single event, which is virtually 

impossible to assess directly and accurately under natural or semi-natural conditions (Waage 

1978, McVey 1984, Khelifa and Zebsa 2012). 

 

Statistical Analysis 

Statistical analysis of oviposition site choice was conducted using linear mixed model 

ANOVA in R using the lme4 package (Bates et al. 2015) with block as a random factor and 

treatment as a fixed factor. Each species was analyzed separately for number of oviposition visits 

and number of abdomen dips in each of the two treatment types. Oviposition visits and abdomen 
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dips data were transformed using a square root + 0.5 transformation (Sqrt(x + 0.5)). All analyses 

set α = 0.05. 

 

Results 

 During the summers of 2018 and 2019, roughly 1500 hours of video footage was 

recorded. Six species of dragonflies were observed ovipositing in the experiment. Of these six, 

only three species, in three different genera within Family Libellulidae, were observed with 

enough frequency to warrant analysis: Pachydiplax longipennis (blue dasher), Pantala flavescens 

(wandering glider), and Libellula incesta (slaty skimmer). 

 The control treatment received 31 oviposition visits from P. longipennis (4.3 ± 3.6, tank 

mean ± SE), 32 oviposition visits from P. flavescens (4.0 ± 1.7), and 11 oviposition visits from 

L. incesta (1.4 ± 0.4). The fish treatment received 32 oviposition visits from P. longipennis (4.6 

± 2.0), 35 oviposition visits from P. flavescens (4.8 ± 2.3), and 9 oviposition visits from L. 

incesta (1.2 ± 0.3). There was no significant treatment effect of the presence of L. cyanellus on 

the number of oviposition visits for any of the three dragonfly species observed (Fig 2.3). 

The number of dips per visit in the control treatment for P. longipennis was 41.2 ± 7.8, P. 

flavescens 10.8 ± 1.8, L. incesta 12.6 ± 3.9. The number of dips per visit in the L. cyanellus 

treatment for P. longipennis was 28.0 ± 5.0, P. flavescens 12.2 ± 1.9, L. incesta 12.1 ± 5.4. There 

was no significant treatment effect of the presence of L. cyanellus on the number of dips per 

oviposition visit for any of the three dragonfly species observed (Fig 2.4). 

 

 

 
 



 

28 
 

 
 

Figure 2.3. Mean oviposition visits for three focal dragonfly species across treatment types. There were no 

significant predator effects on any species. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Analysis of variance for oviposition visits 

Species: L. incesta 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish –0.079 0.149 13.51 –0.529 0.605 

Random Effects Variance SD    

                Block 0.052 0.227    

                Residuals 0.117 0.342    

Species: P. longipennis 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish 0.335 0.553 8.752 0.605 0.560 

Random Effects Variance SD    

                Block 0.765 0.874    

                Residuals 1.068 1.033    

Species: P. flavescens 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish 0.011 0.149 8.116 0.075 0.942 

Random Effects Variance SD    

                Block 1.131 1.064    

                Residuals 0.069 0.258    
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Figure 2.4. Mean dips per oviposition visit for three focal dragonfly species across treatment types. There were no 

significant predator effects on any species. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3. Analysis of variance for abdomen dips per oviposition visit 

Species: L. incesta 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish –0.145 0.548 16.03 –0.199 0.845 

Random Effects Variance SD    

                Block 0.329 0.573    

                Residuals 2.518 1.587    

Species: P. longipennis 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish –1.317 0.821 61 –1.604 0.114 

Random Effects Variance SD    

                Block 0.000 0.000    

                Residuals 10.62 3.259    

Species: P. flavescens 

Source Estimate SE df t p (>|t|) 

Fixed Effects      

                Fish 0.424 0.328 65 1.288 0.202 

Random Effects Variance SD    

                Block 0.000 0.000    

                Residuals 1.807 1.344    
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Discussion 

 The results of the oviposition study reveal that none of the dragonfly species observed in 

this experiment showed a preference when given the choice between habitats with and without 

fish predators. For both number of visits and number of abdomen dips per visit, there was no 

significant effect of fish presence on oviposition habitat selection. There was some suggestion of 

deviation between treatments in the number of dips per visit in P. longipennis, albeit a weak 

difference. This keeps the door open to the possibility that P. longipennis females may lay more 

eggs during visits to fishless mesocosms than during visits to fish mesocosms, even though both 

types are visited with equal frequency, but whether that difference would be biologically 

meaningful for offspring survival and adult fitness is doubtful. 

The results of this experiment suggest possible explanations, which are not mutually 

exclusive: 1) sensory mechanisms used by odonates to locate and select aquatic habitat cannot 

perceive sensory cues emitted by L. cyanellus. Avoidance of habitats containing L. cyanellus and 

other closely related sunfish via detection of predator-released kairomones has not been 

documented for odonates, but has been recorded in numerous species of treefrogs, mosquitoes, 

beetles, and other families of aquatic invertebrates with complex life cycles (Petranka et al. 1987, 

Eveland et al. 2016, Resetarits and Pintar 2016). The inability of any observed odonate species to 

avoid predator patches in this experiment demonstrates that odonates may rely on senses other 

than chemoreception for habitat selection such as polarotaxis, for which no current evidence 

exists to suggest it can be used for predator detection (Horváth et al. 1998, Wildermuth 1998). 2) 

Odonates primarily rely on cues from alternative environmental factors to determine offspring 

habitat quality. Though predators have a strong effect on non-random habitat selection in many 

species, it is not the only factor colonizing organisms consider. Published observations of 
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dragonfly oviposition preferences in natural ponds suggest that females are attracted to structural 

factors such as pond size, depth, canopy cover, and vegetation structure despite the presence of 

fish (Wildermuth 1994, Šigutová et al. 2015, French and McCauley 2018). This is reinforced by 

the fact that only 3 out of 20 total observed species frequently visited experimental mesocosms. 

3) Odonates utilize a bet-hedging/risk-spreading strategy of habitat selection in which they 

deposit small numbers of eggs into a variety of different habitat patches in the hope that at least 

some of them are viable for offspring development. Dragonflies’ capability to spread an egg 

clutch across multiple habitat patches in conjunction with their strong capacity to traverse vast 

distances may offset the cost of laying some of their eggs in fish habitats and is a possible 

explanation for why the ability to chemically detect potential aquatic predators is absent in adult 

odonates but exists in taxa that deposit entire clutches of eggs into a single habitat patch in a 

single event. The degree of risk spreading varies with dragonfly species. One species observed in 

this experiment, P. flavescens, is known for its transition through many habitat changes during 

the release of a single clutch of eggs (Schenk et al. 2004). A fourth scenario, that of philopatry as 

a means of avoiding fish – you lay eggs in the patch from which you emerged – is obviated here 

by the fact that none of these individuals emerged from our experimental patches or previous 

patches set up in the same locality. In addition, P. flavescens travel hundreds of miles following 

weather fronts seeking oviposition sites, so that philopatry is not a viable option (Anderson 2009, 

May 2013). To the contrary, this specific life history strategy of choosing newly formed pools 

may constitute an effective predator avoidance mechanism (Utzeri et al. 1984, McPeek 1989).  

Other studies observing habitat selection in anisopterans record instances of all adults 

visiting a possible oviposition site regardless of sex or whether oviposition occurred (Steytler 

and Samways 1995, Samways and Steytler 1996, French and McCauley 2018). This experiment 
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focused explicitly on female oviposition activities due to the lack of evidence suggesting male 

presence alone is correlated to a habitat’s suitability for offspring development. Presence alone 

can account for non-reproductive activities such as feeding, so only reproductive activities were 

recorded for data analysis. It should be noted that numerous male P. longipennis individuals 

were observed patrolling a large majority of the experimental mesocosms of both treatments, 

even at those that received very little or received zero oviposition visits from females.  

Throughout this experiment, it was evident that male territorial behavior played a role in 

determining female oviposition. Male-male aggressive behavior was the most common territorial 

interaction displayed. P. longipennis females were often seen being chased away from 

mesocosms or having their oviposition interrupted before completion by males defending their 

territorial claims. Females that were not guarded by their mate were frequently antagonized and 

sometimes re-copulated by new males, preventing or cutting short oviposition visits. These 

observations are in line with normal territorial behavior for this species (Sherman 1983). In 

limited instances, male P. longipennis males were observed chasing off members of other 

dragonfly species as well. 

Anecdotal evidence of predation risk to the adult female during oviposition was also 

observed during this experiment. L. cyanellus individuals were frequently caught on camera 

stalking and following P. longipennis females while they deposited eggs close to the water 

surface. On a few occasions, fish attempted to jump from the water and consume ovipositing 

dragonflies from beneath the fiberglass screening, deterring that individual from laying eggs and 

in most cases causing them to flee. In a subset of those instances, the female dragonfly promptly 

returned to continue ovipositing at the same location, seemingly undeterred by the direct danger 

posed by the predatory fish. Direct mortality of ovipositing female dragonflies by sunfish was 
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observed in natural ponds during field surveys, albeit these occurrences were quite rare (Potts, 

personal observation). While this study focused on habitat quality for larval performance, it is 

unclear if the predation threat of fish on ovipositing dragonflies plays a role in habitat site 

selection. 

I conclude that the presence of a fish predator does not affect the oviposition site 

selection behavior in dragonflies. One advance of this study is the differentiation of two metrics 

used to quantify oviposition, oviposition visits and abdominal dips, each of which can provide 

different information used to draw conclusions on questions relating to habitat selection. The 

results of this study show that none of the observed species of dragonfly exhibited a preference 

towards fish or fishless habitats under the context of either metric of oviposition. These results 

suggest that adult dragonflies cannot detect fish due to the anosmic nature of their brain and/or 

that alternative biotic and abiotic factors may play a more essential role in how dragonflies select 

habitat for their offspring that maximizes larval fitness and performance. Further research testing 

a variety of environmental cues as well as those of other predators and competitors are necessary 

to better understand how complex life history decisions are made by odonates. 

The mismatch observed between the results of the developmental experiments and the 

oviposition site selection experiment reinforce the findings of Raebel et al. (2010) in which they 

found a large discrepancy between ovipositing adult surveys and exuviae surveys at 29 ponds, 

and conclude that adult dragonflies overestimate pond quality when laying eggs. This general 

mismatch of results produces more questions about how dragonflies make habitat selection 

decisions in the face of a myriad of biotic and abiotic conditions that may affect their offspring’s 

survival. However, there was a congruency in dragonflies’ inability to chemically detect and 

respond to fish as adults and larvae in both studies. This work shows that the mechanism utilized 
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by anurans and more modern insects (Hemiptera, Coleoptera, Diptera, ect.) to chemically detect 

fish predators is not present in odonates and suggest that this sensory capability evolved later in 

the evolutionary tree of insects during the radiation of Infraclass Neoptera. 

I have demonstrated that odonates exhibit an oviposition strategy that neglects the risk of 

potential predation to their offspring, a cost that can be negated by their ability to disperse their 

egg clutch amongst numerous habitat patches and localities. This strategy is in stark contrast to 

that of many other aquatic insect taxa whose habitat selection strategy revolves around the 

adaptation and use of chemical cues to avoid ovipositing in habitats bearing predators to their 

offspring. It remains unclear how the anosmic nature and less predictable oviposition behavior of 

odonates influences community structure and patterns of species distributions across multiple 

spatial scales. Given the important ecological role odonates serve as mesopredators and their 

increasingly threatened status, a better understanding of dragonfly oviposition site selection 

behavior is worthy of further scientific inquiry despite the methodological challenges of using 

these insects as models. 
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