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ABSTRACT 

 

The blood-brain barrier (BBB), formed by the endothelial cells of the brain capillaries, 

inhibits the penetration of many therapeutic compounds into the brain. Liposomes, which 

have unique physicochemical characteristics, have been widely investigated for the drug 

delivery system across BBB. In the current study, FITC-dextran was used as a model drug 

that encapsulated in a liposomal formulation to investigated its ability to overcome the 

blood-brain barrier for targeted brain delivery of therapeutic agents. 

Here, non-targeted liposome (NT LPs) and RVG-modified liposome (RVG LPs) were 

prepared. The NT LPs and RVG LPs were about 97 and 101 nm in diameter with the zeta 

potential of -27.0 mV and -21.2 mV, respectively. In vitro study in mouse SH-SY5Y 

neuroblastoma cells and mixed glial cells demonstrated that the RVG LPs were taken up with 

enhanced efficiency comparing to the NT LPs. In vitro release study results indicated the 

sustained release of FITC-dextran from NT LPs. A preliminary pharmacokinetic study 

showed prolonged circulation time of FITC-dextran encapsulated in NT LPs compared to the 

free form. As expected, free FITC-dextran manifested no brain distribution. Further studies 

on the pharmacokinetics of RVG LPs are warranted, to establish the proof of concept for its 

application in brain-targeted drug delivery. 
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I. INTRODUCTION 

 

  Brain diseases have a huge impact on the safety and quality of human life because of 

its high morbidity and mortality1. According to statistics, the USA and Europe spent about 

800 billion dollars on brain diseases in the past ten years2. However, the development of the 

therapeutics for brain diseases is slow and immature compared to other therapeutic areas. A 

crucial challenge of the treatment for brain diseases is the complex microvasculature. The 

blood-brain barrier (BBB) is located between a blood vessel wall. It is a semi-permeable 

membrane in the central nervous system (CNS) and it is mainly comprised of tightly sealed 

brain capillary endothelial cells that are surrounded by astrocytic perivascular end-feet and 

pericytes through the basal lamina (Figure.1A). Pericytes which are covering 20% of the 

outer surface of endothelial cells can control the blood flow in the brain capillary by 

contraction and relaxation. Astrocytes are glial cells connect the brain capillary and neurons. 

The previous studies showed that astrocytes played an important role in BBB’s barrier 

integrity. Both pericytes and astrocytes can provide neurons with nutrition to maintain BBB’s 

function, therefore, avoiding oxidative stress and metal toxicity. The endothelial cells limit 

the diffusion of molecules and proteins because they do not have fenestrations. There is a 

high electrical
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resistance (1500–2000 Ω cm2) within the endothelial cells caused by the encapsulation of 

capillaries by the pericytes and astrocytes that only allow the small molecules to penetrate 

through passive diffusion. The tight junction is the main component with high 

trans-endothelial resistance in the BBB. They severely restrict paracellular diffusion of the 

water-soluble agents3,4. As the results of these barriers, only small (molecular weight < 400 

Da), lipid-soluble molecules can cross the BBB by passive diffusion, however, most 

molecules with characteristics such as high molecular weight, high electric charge or 

hydrophilicity cannot pass through BBB. This structure of BBB protects it from harmful 

foreign substances; however, it blocks 95% of potential drugs from entering brain5,6. 

 

Figure 1. Anatomy and pathways for crossing the Blood-Brain Barrier (BBB). 

The BBB is located at the walls of the blood vessels that supply the central nervous system, 

including the brain. (A) Cross-section of a cerebral capillary. (B) Different mechanisms for 
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drug delivery across the BBB. 

 

In general, the mechanism of the solute transcellular pathway through the BBB are 

divided into three groups: passive diffusion, carrier-mediate transport, and endocytosis 

(Figure.1B). Passive diffusion is driven by the concentration gradient between both sides of 

the membrane without the consumption of ATP, this makes some water-soluble molecules 

and small lipophilic molecules able to pass through BBB. The size, polarity, and lipophilicity 

of a substance are the factors which can influence the rate of passive diffusion7. However, 

passive diffusion is rare in the process of substance transport across BBB. In most cases, the 

peptides and small molecules pass through the specific carrier-mediated transport. Some ions, 

glucose, nucleotides, etc. are diffused into the membrane with the help of transport proteins 

on the endothelial cells6. This kind of transportation has three characteristics: 1. Substances 

can be transferred against the concentration gradient. 2. The specific receptor is needed. 3. 

ATP is needed through the whole procedure8.  

Transcytosis of macromolecules across BBB provides the main route by which large 

molecular weight solutes enter the CNS intact8. Initially, the endocytosis mechanism is an 

invagination of the plasma membrane that leads to the production of endocytic vesicles which 

facilitated the incorporation of extracellular macromolecules into the cells9. 

Receptor-mediated transcytosis can provide a specific uptake of the extracellular 

macromolecules which has been well studied for brain targeting. Endothelial cells have 

different receptors for various types of ligands' uptake. Macromolecules first bind to 

receptors known as coated pitsthat which collected in specific areas of the plasma membrane. 

These pits invaginate into the cytoplasm and then pinch free of the plasma membrane to form 
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coated vesicles after bound to the ligand. After acidification of the endosome, the ligand will 

dissociate from the receptor and cross the other side of membrane10,11. 

Liposomes are sealed vesicles with a bilayer structure. The bilayer composes of 

amphiphilic molecules such as phospholipids. Therefore, liposomes can encapsulate both 

water-soluble and lipid-soluble substances6. Considering that conventional liposomes are 

mainly constituted of lipids and amphiphilic phospholipids, liposome’s lipophilic layers 

facilitate the drug passing across the membrane of brain endothelial cells liposomal 

formulations can which endow excellent features for transporting drugs to the BBB and 

release their content following endocytosis to permit encapsulated drugs to gain access to the 

brain. Due to it have so many advantages, its’ good biocompatibility and biodegradability, 

high delivery efficiency and flexible modification strategies, liposomes were expected to be 

ideal carrier for brain drug delivery. for brain uptake12. The conventional liposomes can carry 

a drug cargo into the brain by the mechanism of endocytosis.  

However, there are still some issues that hinder the brain targeting and tissue distribution. 

The fast clearance of the liposomes leads to a restricted circulation time and a reduced BBB 

crossing ability13.  

The stealth technology of liposomes is to functionalize a liposome’s surface with 

polyethylene glycol (PEG) or polysaccharides. In this way, stealth liposomes protects the 

active moiety from the recipient’s immune system, which results in reduced immunogenicity 

and antigenicity.14 Longer circulation time-period and more tissue distribution can be realized 

thereby increasing the liposome's targeting efficiency12,14,15.  

Doxil® is a liposome which was first approved by FDA as a nano drug delivery system 
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based on PEGylated liposome technology through intravenous injection. Doxil® liposomes 

are composed of HSPC, cholesterol, and DSPE-PEG. More drug retention was obtained 

because of the optimum proportion of cholesterol and HSPC, which forms a non-flexible 

bilayer at 37℃ and below 37 ℃, this loading technology allows higher retention with less 

drug efflux in circulation, while providing acceptable rates of drug distribution in tissues 14.  

So, in this study, HSPC, cholesterol, DSPE-PEG2000 was used as the composition of NT 

LPs’ lipid. For RVG LPs, DSPE-PEG-RVG was synthesized by coupling RVG-peptide to 

DSPE-PEG2000 instead of DSPE-PEG2000. 

 

 

Figure 2.. Structure of FITC-dextran encapsulated NT LPs and RVG LPs. 

 

Surface-functionalized liposomes with a wide variety of targeting agents can achieve 

effective delivery across the BBB and can be designed to interact with specific therapeutical 
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targets and finally arrive at the targeted site in brain1,16. RVG is a 29-amino acid peptide 

derived from rabies virus glycoprotein17. It can bind with the α7 subunit of nicotinic 

acetylcholine receptor (nAchR)18. Since microglial cells of BBB express nAchR widely, RVG 

can interact with microglial specifically, thereby entry into BBB19. The ability of RVG to 

enter the brain through the BBB via intravenous injection has been demonstrated by previous 

experiments. Moreover, RVG promotes retro-axonal and the spread of trans-synaptic thereby 

enhances the transduction of neighboring neuronal cells20. Compared with the large molecule 

protein ligands or antibodies, peptide ligands such as RVG have several advantages: (1). Easy 

synthesis and isolation (2). Low immunogenicity and (3). Stable during the process of 

coupling to the nanoparticles21. In this way, due to the ability demonstrated by 

RVG-conjugated nanoparticles to overcome the BBB through nAchR-mediated endocytosis 

and promote the preferential accumulation of loaded nucleic acid in neuronal cells, RVG 

ligand was chosen to functionalized the liposome’s surface for enhanced BBB penetration 

and brain targeting19. So, in this study, simple “none-targeted” liposomes and RVG modified 

liposomes were prepared, and different characteristics of the liposomal formulation were 

studied (Figure 2).  

Liposomes' ability of drug-carrying and transport capabilities can be investigated by in 

vivo imaging markers, such as fluorescent dyes for optical imaging7. The selected fluorescent 

dyes when assessing BBB permeability requires: (1). The fluorescent dye cannot penetrate 
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the BBB naturally, (2). It should be quantifiable in low concentrations22, and (3). It should not 

affect the physiology and function of the animals. Also, since the process of the fluorescent 

dye going into the liposomes is not an “all-or-nothing” phenomenon, the molecular size of 

the tracers needs to be taken into consideration. Typically, if higher molecular weight tracers 

with the complex chemical structure are encapsulated in liposomes, the liposome is 

considered to have better loading efficiency than that only the low molecular weight tracers 

can be encapsulated23. Fluorescein isothiocyanate dextran (FITC-dextran) is a large 

water-soluble molecule that is widely employed to assess BBB permeability in this century24. 

The solubility of FITC-dextran in water at concentrations at or above 25 mg/ml. Considering 

all of the necessary conditions for in vivo image markers mentioned above, in this study, the 

FITC-dextran was utilized as a model drug to investigate the delivery effect of the liposomal 

formulations. 

In this work, FITC-dextran encapsulated NT LPs and RVG LPs were prepared. Particle 

size, zeta-potential and stability of the liposomal formulations were studied. In vitro uptake of 

each liposome formulation was evaluated in SH-SY5Y neuroblastoma cells and primary brain 

mixed glial cells. Then, in vitro release study demonstrated an extended release of 

FITC-dextran encapsulated liposome. Lastly, the pharmacokinetics of FITC-dextran-loaded 

NT LPs was studied in mice following IV injection and the brain distribution was evaluated. 
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II. MATERIALS AND METHODS 

 

Chemicals and instrumentation  

Hydrogenated soybean phospholipids (HSPC, MW: 783.774), 

1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N- [methoxy (polyethylene glycol)-2000] 

(DSPE-PEG2000, MW: 3400) were purchased from Avanti Polar Lipids, INC. (AL, USA). 

Cholesterol (MW: 386.654) was purchased from MP Biomedicals, LLC. (OH, USA). 

Fluorescein isothiocyanate (FITC)-dextran (100 kDa) was bought from Sigma–Aldrich (MO, 

USA). Trichloroacetic Acid was purchased from VWR International LLC. (PA, USA). Sodium 

Hydroxide was purchased from Fisher Scientific (NJ, USA). Tris was bought from MARESCO 

Inc. (OH, USA). Triton® X-100 was bought from Sigma–Aldrich (MO, USA). 

DSPE-PEG-RVG (MW: 7092.5) was synthesized by coupling RVG-peptide to 

DSPE-PEG2000. ICR (CD-1) mouse was purchased from ENVIGO. 

Treated cells were imaged by a fluorescence microscope (Nikon Instruments Inc., 

Melville, NY). Fluorescent detection was performed on CLARIOstar® Plus microplate reader 

(BMG LABTECH, Germany). The average size, polydispersity index (PDI) and zeta potential 

were determined using Nano ZS zeta sizer (Malvin, UK).    
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Preparation of the NT LPs and RVG LPs 

    The liposomes were prepared by a thin-film method25. NT LPs with the composition of 

HSPC, cholesterol, and DSPE–PEG2000 at 67.5: 30: 2.5 (mol) ratios were prepared26. Briefly, 

0.5mg of lipids were mixed and dissolved in 300 µl chloroform in a round-bottom flask, 

which was removed under vacuum at room temperature to form a homogenous thin lipid film. 

The lipid film was hydrated at 60 ℃ with 5mM FITC-dextran solution, then sonicated for 2 h 

under 60 ℃ water bath. 

    The NT LPs encapsulated with FITC-dextran were separated from non-encapsulated 

FITC-dextran by passing the liposomal solution through an ultrafiltration filter (Amicon® 

Ultra Centrifugal Filters, 100K MWCO). The resultant liposome solution was stored at 4 ℃.  

In addition, RVG LPs were prepared using the same method described above, except that 0.6 

mg of lipids were mixed and dissolved in 200 µl of chloroform and 100 µl of 

acetonitrile-methanol (1:1, v/v). 

 

Characteristics of the liposomes 

NT LPs and RVG LPs’ properties, particle size, PDI and zeta potential were measured by 

a Dynamic Light Scattering (DLS) analyzer (Nano-ZS; Malvern, UK).  

The concentration of encapsulated FITC-dextran in the liposomes was determined by 

fluorescent detection conducted on CLARIOstar® Plus microplate reader (BMG Labtech INC, 

USA). The excitation and emission wavelengths were 493 nm and 520 nm, respectively. 

Before the fluorescent detection, the liposomal formulation was lysed by adding 1% Triton® 

X-100 solution to each sample followed by 15 minutes of a continuous vertexing to eliminate 
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the interference of lipid and quantify the total amount of encapsulated drug27. The drug 

encapsulation rate percentage (ER%) of liposomes and drug loading percentage (DL%) of 

liposomes (LPs) was calculated by the equations below: 

 

(𝐸𝑅%) = (
𝐷𝑟𝑢𝑔 𝑖𝑛 𝑡ℎ𝑒 𝐿𝑃𝑠

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 
) ∗ 100% 

 

(𝐷𝐿%) = (
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝐿𝑃𝑠

𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐿𝑃𝑠
) ∗ 100% 

 

Stability study  

The freshly prepared liposomes were stored at 4 ℃. Size and drug leakage of the liposomal 

formulation were monitored for up to two weeks upon storage in DI water at 4 °C. The released 

FITC-dextran was removed by passing the liposomal solutions through the Amicon® Ultra 

spin filters (100K MWCO) by centrifuging at 2000 x g at 4 °C for 15 min. 

 

Cell uptake study 

The SH-SY5Y neuroblastoma cells were purchased from ATCC and were used only up to 

passage number 20. Primary mixed glial cells were prepared from the pups (0-1 day) of ICR 

(CD-1) mouse and seeded at 220,000 cells per well of poly-L-lysine treated 24 well plates. The 

cells were grown for 8 days followed by treatment with liposomes (NT, RVG LPs, and free 

FITC dextran)  

On the day of the assessment, the media was removed and the cells were washed with 

HBSS once. A working solution of propidium iodide (ex/em: 536/617 nm) and Hoescht 33342 



11 
 

(ex/em: 350/461 nm) was prepared by diluting stocks in Hank’s Balanced Salt Solution (HBSS; 

1:50 dilution for propidium iodide and 1/10000 for Hoescht). Fluorophores-containing HBSS 

(300 µl) was added to each well. The cells were incubated for 15 min at 37 ℃ humidified 

incubators with 5% CO2 and followed by reading on a CLARIOstar® plate reader (BMG 

Labtech, NC). After reading the cells in the plate reader, the cells were imaged using a Ti2-E 

motorized, mounted with 40,6-diamidino-2-phenylindole (DAPI) and observed with a 

microscope (Nikon Instruments Inc. NY) to check the uptake of each type of liposomes. 

 

Quantification of FITC-dextran 

The calibration curves for FITC-dextran in DI water, plasma, and brain homogenate were 

established by spiking the FITC-dextran stocks (1 mM) with a range of 0.005-5 µM, 

0.01-0.1µM, and 0.03-0.5µM, respectively.  

The plasma and tissue homogenate samples were analyzed by protein precipitation method 

using trichloroacetic acid28. The mice's brain tissue was dissolved in PBS buffer (1:1, v/v) and 

homogenized by probe sonication. Briefly, 100 µL trichloroacetic acid (50%, w/v) were 

dropwise added to plasma and tissue homogenate samples, and the suspended solution was 

centrifuged at 4000×g at 4 °C for 5 min. The supernatant was collected and neutralized with 

10M NaOH and Tris-based buffer (pH=8) for fluorescent analysis. All the samples were 

detected via spectrophotometry (fluorescein-dextran: 493/520 nm, ex/em). 

 

In vitro release study 

The in vitro release kinetics of free FITC-dextran and NT LPs were studied in phosphate 
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saline buffer (PBS, 20 mM pH 7.4) and fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) 

using a dialysis method29. The liposomes were prepared as described before and diluted 10 

times with PBS or FBS. Free FITC-dextran and NT LPs were loaded into a 200 µl Micro 

Float-A-Lyzer (100K, Fisher Scientific, NJ). Each cassette was placed in 500 ml PBS to ensure 

the sink condition. The release medium was refreshed every 2 h. At each time point, samples 

were collected from the dialysis cassette. The concentration of each sample was determined by 

the CLARIOstar® plate reader (493/520 nm, ex/em). 

 

Pharmacokinetics of free FITC-dextran and NT LPs   

The mice were randomly divided into two groups (n=3) for the pharmacokinetic study of 

free FITC-dextran and NT LPs. The free FITC-dextran group and NT LPs group were 

administered via i.v. route at 2 mg/kg. Whole blood samples were collected via the retro-orbital 

bleeding at predetermined time points after administration. The plasma was obtained by 

centrifuging the blood sample at 4800×g for 5 min for further analysis. The plasma samples 

were analyzed using the protein precipitation method previously described. 

 

Brain distribution study 

To determine the biodistribution of free FITC-dextran, mice were randomly divided into 2 

groups (n=3). Each group of mice was intravenously injected with PBS, free FITC-Dextran at a 

dosage of 8 mg/kg. 

The brains were harvested at 80 minutes and were processed for the further analysis 

described above.
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III. RESULTS  

 

Characteristics of the liposomes 

The size distribution of liposomes can influence the release, cell uptake, and 

biodistribution. The particle size and surface charge of liposomes are summarized in Table 1 

and Figure 3. The NT LPs had a mean size between 97.3 ± 4.02 nm, and the RVG LPs had a 

mean size between 101.9 ± 2.38 nm. Both of them had a PDI below 0.2 which indicated a 

uniform spherical nanoscale liposome was formed as expected. Since the ability of liposomes 

to cross the BBB is at least partially dependent on their size, the achieved sizes smaller than 

200 nm met the requirements for a potentially successful BBB targeting. Liposomes being too 

small (size < 50 nm) may escape out of peripheral capillaries, while liposomes being too large 

(size > 200nm) may not be able to pass cell membranes and may be removed faster by the 

reticuloendothelial system (RES). Particles below 200 nm rather avoid recognition by the RES 

and exhibit a prolonged half-life in the blood30. 

The zeta potential of NT LPs and RVG LPs were -27.0 mV and -21.2 mV, respectively, 

which showed both NT LPs and RVG LPs were negatively charged.  

The drug encapsulation rates (ER%) of NT LPs and RVG LPs were 0.29 ± 0.01%, 0.15 ± 

0.025%. The drug loadings (DL%) of NT LPs and RVG LPs were 6.11± 1.2% and 1.93 ± 0.9%, 
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respectively. Since the model drug, FITC-dextran, is a large hydrophilic molecule with a long 

chain chemical structure. The drug encapsulation rates and drug loading percentage was 

acceptable. Future formulation of the drug with lower molecular weight and simplified 

chemical structure was anticipated to have higher drug encapsulation rates and drug loading 

percentage.  

 

Table 1. Particle size (nm) and surface charge of NT LPs and RVG LPs. 

 

 

 

 

 

 

Figure 3. The particle size (nm) and zeta-potential of NT LPs and RVG LPs. (A) NT LPs’ 

particle size. (B) RVG LPs’ particle size. (C) NT LPs’ zeta-potential. (D) RVG LPs’ 

zeta-potential. 

 Particle size (nm) PDI Zeta potential (mV) 

NT LPs 97.3 ± 4.02 0.108 -27.0 ± 5.91 

RVG LPs 101.9 ± 2.38  0.071 -21.2 ± 5.60 
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Stability study  

The stability of the NT and RVG LPs storage in DI water was tested by monitoring the 

particle size and the concentration of encapsulated FITC-dextran (Figure 4). The results 

showed that for both NT and RVG LPs’ the drug concentration loss was less than 15%, and 

their size loss was less than 5%, which demonstrates both formulations were stable at 4 ℃ for 

14 days. 

 
Figure 4. Stability study of NT LPs and RVG LPs for 14 days storage in DI water at 4 ℃. (A) 

The particle size of NT LPs and RVG LPs. (B) The concentration of encapsulated 

FITC-dextran in NT LPs. (C) The concentration of encapsulated FITC-dextran in RVG LPs. 

 

Cell uptake study 

    To investigate the internalization and intracellular behavior of FITC-dextran loaded 

liposomes, cellular uptake was examined after 48-hour treatment of free FITC-dextran, NT 

LPs, and RVG LPs using a fluorescence microscope. As shown in the microscope images 

(Figure 5), a similar intensity of DAPI staining in the wells of each cell type demonstrate the 
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uniform seeding of the primary culture. Low green fluorescence could be detected in NT LPs 

treated cells, by contrast, strong green fluorescence was observed in the cells treated with 

RVG LPs, demonstrated enhanced uptake of RVG LPs by the SH-SY5Y neuroblastoma cells 

and mixed glial cells.  

 

Figure 5. Free FITC-dextran, NT LPs and RVG LPs’ cell uptake in SH-SY5Y neuroblastoma 

cells and mixed glial cells. The images show FITC-dextran (green) and nuclei staining with 

40,6-diamidino-2-phenylindole (DAPI) (blue). 

   

Quantification of FITC-dextran  

Typical calibration curves of FITC-dextran in DI water, plasma, and brain tissue 

homogenate are listed (Figure 6). As shown in the figure, the correlation coefficient (r) 

exceeded 0.99, showing good linearity over the concentration range. In DI water, 

FITC-dextran calibration curves were fitted over the concentration range of 0.005-5µM. The 

linear ranges of the calibration curves in plasma and brain homogenate were between 

0.01-5µM and 0.03-0.5µM, respectively. 

An efficient extraction procedure was developed which minimizes the interference of 
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the background’s fluorescence intensity. The control group was prepared by spiking different 

concentrations of FITC-dextran to the supernatant collected from the blank plasma or brain 

homogenate after protein extraction. The efficiency of protein extraction was determined by 

comparing samples extracted from plasma or tissue homogenates with the control group.  

The results showed that over 90% of FITC-dextran was extracted from plasma and the 

recoveries of FITC-dextran for the brain tissue homogenate were over 85%, which supports 

the method’s validation. 

 

 

Figure 6. Calibration curves of FITC-dextran. (A) In DI water (0.005-1µM); (B) In DI water 

(1-5µM); (C) In plasma (0.01-0.1µM); (D) In plasma (0.1-5 µM); (E) In brain homogenate 

(0.03-0.5µM)  

 

In vitro release study 

To serve as drug carriers and promote drug accumulation, it is crucial for liposomes to 

entrap the drug molecules for a prolonged period in circulation. Although the physiological 

environment in the human body is more complexed than in vitro, the evaluation of the drug 
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release profile is still an important aspect to predict the release kinetics in vivo. Here, the 

release kinetics of FITC-dextran from NT LPs was studied. The release of free FITC-dextran 

was examined as a control group to verify that the diffusion of drug molecules across the 

dialysis membrane was not a rate-limiting step during the release process. As illustrated in 

Table 2 and Figure 7, NT LPs had a significantly prolonged-release half-life (t1/2, release, 

41.7 hours), comparing to the free drug (3.72 hours). 

Next, we carried out the release study in the presence of 90 % FBS to mimic the in vivo 

environment of drug circulation. As illustrated (Table 2, Figure 7), the release of 

FITC-dextran from NT LPs in 90% FBS was significantly slower (t1/2, release, 27.65 h) than 

the free drug (t1/2, release, 4.03 h). The presence of serum made the release of drug molecules 

from NT LPs faster overall, suggesting that serum proteins may influence NT LP’s 

encapsulation ability. 

 

Table 2. The release half-lives (t1/2, release) of free FITC-dextran and NT LPs in PBS and 90% 

FBS 

Formulation t1/2, release (h) The goodness of fit (R2) 

Free FITC-dextran in PBS 3.72 0.9984 

Free FITC-dextran in 90% FBS 4.03 0.9876 

NT LPs in PBS 41.70 0.9254 

NT LPs in 90% FBS 27.65 0.9011 

 



19 
 

 
Figure 7. In vitro release profile of free FITC-dextran and NT LPs in PBS and 90% FBS. 

(A) Free FITC-dextran and NT LPs release study in PBS. (B) Free FITC-dextran and NT LPs 

release study in 90% FBS. 

 

Pharmacokinetics of free FITC-dextran and NT LPs 

The FITC-dextran concentration in plasma-time profiles of free FITC-dextran and NT 

LPs are illustrated in Figure 8. FITC-dextran concentration in plasma-time data with free 

FITC-dextran and NT LPs best fit a two-compartment model, characterized by an initial rapid 

phase of drug concentration decrease, and a slower terminal elimination phase. The 

pharmacokinetic parameters of free FITC-dextran and NT LPs are shown in Table 3. The 

AUC of free FITC-dextran was 16.55 µM*h, and the terminal half-life (t1/2) was 0.71 hours. 

Additional pharmacokinetic parameters of NT LPs were an AUC of 22.50 µM*h and a 

terminal half-life (t1/2) of 1.41 hours. 
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Figure 8. Pharmacokinetics of free FITC-dextran and NT LPs. 

 

Table 3. The half-lives (t1/2), the area under the curves (AUC) of free FITC-dextran and NT 

LPs for the intravenous injection 

 

 t1/2(h) AUC (µM*h) 

free FITC-dextran 0.71 16.55 

NT LPs 1.41 22.50 
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Brain distribution study 

The fluorescent signal in the brain homogenate of the mice that was intravenously 

injected with free FITC-dextran was 10361. It was almost equaled to the control group which 

was 10381. The result illustrated that there is almost no drug distributed in the brain. This 

was expected since free FITC-dextran is not able to pass through the BBB without the 

liposomal carriers.   
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IV. DISCUSSION 

 

The presence of the blood-brain barrier (BBB) is one of the major challenges of drug 

delivery to the brain. Liposome-based formulations have been investigated extensively as 

delivery systems to overcome the BBB. Utilization of the transporters expressed on the BBB 

has been an attractive strategy for the therapeutic delivery of drugs into the brain, and several 

carrier-mediated brains targeting drug delivery systems have been developed. Based on the 

fact that RVG can specifically interact with the nAchR which is widely expressed in the brain, 

we prepared an RVG-linked liposome. And a plain NT LPs without the target ligand was also 

prepared for comparison. The characteristics of the liposomal formulation were investigated. 

Particle size and zeta potential are important factors that affect the liposome uptake by 

the brain capillary cells on the BBB, and the size distribution is generally limited within 200 

nm in diameter for brain-targeted liposomes31. Liposomes being too small (size < 50 nm) 

may escape out of peripheral capillaries, while liposomes being too large (size > 200 nm) 

may not be able to pass cell membranes and may be removed faster by the reticuloendothelial 

system (RES). Particles below 200 nm avoid recognition by the RES and exhibit a prolonged 

half-life in the blood. In this study, NT LPs and RVG LPs were successfully prepared with 

particle sizes narrowly distributed around 100 nm in diameter. Zeta potential values were 

between -20 mV to -30 mV. In vitro uptake experiments in SH-SY5Y neuroblastoma cells as 
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well as primary brain mixed glial cells clearly showed the cell uptake of RVG LPs was much 

higher than NT LPs, indicating a clear targeting effect of RVG LPs. Evaluation of in vitro 

drug release profiles is an important aspect of the development of drug carriers. In this study, 

the release profiles of NT LPs and free FITC-dextran in both PBS and 90% FBS solutions 

were analyzed. The results demonstrate the sustained release of FITC-dextran from NT LPs. 

By compare to the release study in PBS, the presence of serum made the release of drug 

molecules from NT LPs faster overall, suggesting that serum proteins may influence NT LP’s 

encapsulation ability. However the substance release of FITC dextran in both release study 

demonstrate that the liposome truly encapsulated FITC-dextran and can work as a drug 

carrier  

The pharmacokinetics of free FITC-dextran and NT LPs, as well as the brain distribution 

study of free FITC-dextran, were investigated after intravenous injection. The results showed 

that although the plasma concentration maintained a detectable level until 1 hour after 

intravenous administration, there was almost no FITC-dextran distributed in the brain. This is 

expected since FITC-dextran is a large and hydrophilic molecule that is unable to pass 

through the BBB without carriers.  

In summary, RVG LPs have demonstrated a strong targeting efficiency to the brain cells, 

it is reasonable to expect an enhanced brain distribution of payload by RVG LPs in vivo. 

Further evaluation of the pharmacokinetics and brain distribution study of NT LPs and RVG 

LPs are warranted.   
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