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ABSTRACT

Unstructured meshes are used in a variety of disciplines to represent simulations and

experimental data. Scientists who want to increase accuracy of simulations by increasing

resolution must also increase the size of the resulting dataset. However, generating and

processing a extremely large unstructured meshes remains a barrier.

Researchers have published many parallel Delaunay triangulation (DT) algorithms,

often focusing on partitioning the initial mesh domain, so that each rectangular partition

can be triangulated in parallel. However, the common problems for this method is how

to merge all triangulated partitions into a single domain-wide mesh or the significant cost

for communication the sub-region borders. We devised a novel algorithm – Triangulation

of Independent Partitions in Parallel (TIPP) to deal with very large DT problems without

requiring inter-processor communication while still guaranteeing the Delaunay criteria. The

core of the algorithm is to find a set of independent partitions such that the circumcircles of

triangles in one partition do not enclose any vertex in other partitions. For this reason, this

set of independent partitions can be triangulated in parallel without affecting each other.

The results of mesh generation is the large unstructured meshes including vertex

index and vertex coordinate files which introduce a new challenge - locality. Partitioning

unstructured meshes to improve locality is a key part of our own approach. Elements that

were widely scattered in the original dataset are grouped together, speeding data access. For

further improve unstructured mesh partitioning, we also described our new approach Direct

Load which mitigates the challenges of unstructured meshes by maximizing the proportion

of useful data retrieved during each read from disk, which in turn reduces the total number

of read operations, boosting performance.
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CHAPTER 1

INTRODUCTION AND CONTRIBUTIONS

Delaunay triangulation[31] is a fundamental problem for many fields including ter-

rain modeling, scientific data visualization, surface construction, finite element analysis, and

computational fluid dynamics. Scientists in these fields demand ever-increasing resolution

and spatial scale, which in turn increases the number of points that must be triangulated.

The increasing availability of large scale parallelism over the last several decades make larger

triangulations possible. Three main topics will be covered in this chapter including triangu-

lation, I/O, and load balancing.

1.1 Large-Scale Parallel Delaunay Triangulation

The demand of high mesh resolution together with the widely available high per-

formance hardware motivates to develop new triangulation algorithms that take advantage

of parallelism. Unlike regular grids, a triangulation may place points where they are most

needed in order to accurately represent rapidly changing attributes. That is, the resolution

of the triangulation is easily varied over the domain according to the needs of the application.

Computational Fluid Dynamics (CFD) is a classic application of Delaunay Triangulation,

and appears in a variety of fields, including biology and medicine [63, 6], physics [58], and

mechanical engineering [98]. However, triangulations are quite general, finding applications

outside CFD, including chemistry [27], communications [51], and computer vision [30].

Any triangulation of a set of points P = {p ∈ R2} produces a set of triangles with

vertices taken from P . Edges of the triangles do not cross, and triangles do not overlap

[50]. The Delaunay Triangulation (DT ) of P has additional properties that are particularly

desirable for science and engineering applications.
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Computing a DT for a set of points is computationally expensive due to exhaustive

search. For example, the incremental insertion approach described in section 2.1 requires

us to find the set of triangles with circumcircles that enclose a newly added point. Smaller

meshes can be calculated on a single machine, but as demand for larger meshes increases,

we must find ways to distribute the computational cost over several machines.

Researchers have published many parallel DT algorithms, often focusing on parti-

tioning the initial mesh domain, so that each rectangular partition can be triangulated in

parallel [26, 40, 23, 22, 13, 35, 52, 53, 54, 55]. As a result of this parallel strategy, trian-

gulation performance improves significantly. However, a common problem for this method

is how to merge all triangulated partitions into a single domain-wide mesh. The triangles

in the border of a partition have to connect to triangles in adjacent partitions. Any newly

generated triangles in the borders of partitions should (preferably) satisfy the Delaunay

properties. This merging step is sometimes referred to as “stitching”, and is notoriously

difficult, especially when guaranteeing a result that satisfies the Delaunay criteria. One way

to avoid the stitching problem is to communicate between partitions during triangulation.

However, this is especially expensive in a distributed environment, and when working with

very large datasets.

Other studies [25, 33] divide the initial domain into many sub-regions with arbitrary

shapes, allowing load balancing by choosing shapes with roughly the same number of tri-

angles. However, performance is somewhat reduced due to communication and contention

along the sub-region borders.

We develop a novel algorithm – Triangulation of Independent Partitions in Parallel

(TIPP) to deal with very large DT problems without requiring inter-processor communica-

tion while still guaranteeing the Delaunay criteria. The core of the algorithm is to find a set

of independent partitions (see section 2.3) such that the circumcircles of triangles in one par-

tition do not enclose any vertex in other partitions. For this reason, this set of independent

partitions can be triangulated in parallel without affecting each other and reduced signif-
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icantly the communication between workers while still globally guaranteeing the Delaunay

criteria throughout the triangulation time.

1.2 Delaunay Triangulation of Large-Scale Datasets Using Two-Level Parallelism

With the TIPP algorithm, we can deal with a very large DT problems in parallel

with uniform data distribution. However, there are some issues that need to improve. First,

the bottleneck seems to be happen at master node as increasing dataset size. Indeed, the

original TIPP algorithm relies upon a single master node to identify the set of partitions

that can be scheduled simultaneously. We evaluated performance using synthetic datasets

containing billions of points with a uniform distribution over the domain. Results indicated

that when the number of partitions is large, the master node becomes a bottleneck, causing

worker nodes to wait for new work. Second, the load unbalancing is another factor that

significantly affects the triangulation performance. With non-uniform data distribution, the

computing capability is wasted by the idle time of some worker processes. Some processes

have done their tasks while others got heavy jobs since the data is not balanced.

We improve the original TIPP algorithm, producing multi-master TIPP, which shares

the master’s burden over several sub-masters. Sub-masters can also receive worker results

in parallel, so workers receive the next task sooner. We measure TIPP performance using

a real-world dataset with a non-uniform distribution of points across the domain, observing

the impact of uneven load on overall performance. We modify TIPP to better address the

challenges of uneven point distribution. To evaluate the new method, we also analyze and

examine the scalability behavior of our multi-master TIPP versus Tess [72, 60, 59] which is

a distributed-memory with high scalability Delaunay and Voronoi parallel algorithm.

We show that our improvements allow us to triangulate even larger datasets, with 20

billion triangles or more using commodity machines. As unstructured datasets continue to

grow in scale and resolution, tools such as TIPP will help to extend the reach of scientific

inquiry.
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1.3 Accelerating Range Queries for Large-scale Unstructured Meshes

The size of modern scientific datasets has been steadily increasing into the terabyte

and petabyte range, presenting challenges for storage and processing resources. The problem

is even more acute for unstructured meshes, because these datasets have especially poor

locality, which significantly hampers performance.

Unstructured meshes are used in a variety of disciplines to represent simulations and

experimental data. Scientists who want to increase accuracy of simulations by increasing

resolution must also increase the size of the resulting dataset. It is therefore important

that the size of datasets used by scientists should not be dictated by the capacity of a local

machine, disk, or memory. Recently, we have applied a partitioning technique to the storage

and processing of large unstructured datasets throughout the memory hierarchy [79, 1, 3]. By

allowing unstructured meshes (or grids) to be processed in a piecewise fashion, storage and

memory capacity no longer constrain the practical size of datasets. However, this partitioning

process is computationally expensive, as is the interpolation process that is performed during

dataset access. Both processes can benefit from a parallel implementation.

With the integration of hundreds to thousands of processing cores, Graphics Pro-

cessing Units (GPUs) [62] present powerful computational capabilities and have become a

general-purpose computing platform for data-intensive applications. However, GPUs have

limited memory capacity, which requires careful management of data access when processing

very large datasets. Data management is further complicated by the poor locality exhibited

by unstructured grids, which especially hurts performance when accessing a spinning disk.

Dataset partitioning (or chunking) has been an active area of research for decades

[10, 68, 82, 84]. However, much of this work does not address the unique challenges of

unstructured meshes, while other work does not take advantage of the bandwidth and com-

puting power of modern GPUs. For example, Akande et al. report that the partitioning

problem can take hours for a 25GB data volume [2, 1, 3]. Though they demonstrate sig-

nificant performance gains by improving I/O behavior, scaling to even larger data volumes
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must also address computation.

The performance of our GPU implementation improves drastically over the serial

version, achieving a 4× speedup for the partitioning process, and over 100× for the range

query. These results reflect not only the computational advantages of GPU computing, but

also our efforts to keep the GPU busy by efficiently reading data from disk. In this paper, we

will describe a new approach to the I/O problem called Direct Load. This method mitigates

the challenges of unstructured meshes by maximizing the proportion of useful data retrieved

during each read from disk, which in turn reduces the total number of read operations,

boosting performance.

1.4 Contributions

– We devise a novel algorithm– Triangulation of Independent Partitions in Parallel

(TIPP) for partitioning unstructured meshes and distributing the partitions to nodes

in a cluster. The core of TIPP algorithm is to identify the independent partitions which

can be assigned to processes run independently without communication between them.

Hence, reduce the overall performance of Delaunay triangulation.

– We prove that our algorithm generates triangulations that globally satisfy the Delau-

nay criteria in entire Delaunay triangulation time. Specifically, we make two claims

that require formal verification. First, we establish that the effect of triangulating

points contained within a partition is localized, implying that an appropriate set of

partitions can be triangulated in parallel. We call this property independence. The

second claim requiring verification is that our approach does not require a stitching

process in order to join the triangles of partitions once they have been processed. We

refer to this property as fit. For these reasons, we do not have to merge all partitions

after triangulations.

– We also analysis the tradeoff between the parallelism and the workload of master

process to prepare initial triangles for other partitions. Large number of initial triangles
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in the domain means that more number of independent partitions will be generated.

Thus, increase the parallelism. However, it would cause more workload for the master

process.

Taken together, these contributions make possible the triangulation of extremely large

datasets, with billions of triangles. As a result, we significantly improve performance

by reducing the scope of the searches each node must perform, and by allowing nodes

to work in parallel. However, the original TIPP algorithm relies upon a single master

node to identify the set of partitions that can be scheduled simultaneously. We evalu-

ated performance using synthetic datasets containing billions of points with a uniform

distribution over the domain. Results indicated that when the number of partitions

is large, the master node becomes a bottleneck, causing worker nodes to wait for new

work.

– For above reasons, we further develop the TIPP algorithm to employ multiple master

processes, distributing computational load across several machines. This new design

improves both performance and scalability. Since, the workload for master process is

distributed to multiple sub-master processes, the idle time of independent partition

preparation reduces considerably.

– Load unbalancing is another issue that affect performance. We measure TIPP perfor-

mance using real-world dataset with a non-uniform distribution of points across the

domain, observing the impact of uneven load on overall performance. We propose two

ways to mitigate the process idle time during the triangulation. First, we partition

the non-uniform point distribution dataset in two-level partitions to reduce the point

differences between minor partitions. Then, base on number of points that assigns for

sub-master, we dynamically distribute number of processes to sub-masters accordingly.

– We also develop a new method named Direct Load to address the bad locality problem

of unstructured mesh instead of using LRU. The Direct Load is working much better

6



LRU in the case when the dataset size is larger than main memory. We parallelize the

partitioning process for unstructured meshes as well as range queries using the GPU.

7



CHAPTER 2

PARALLEL DELAUNAY TRIANGULATION FOR LARGE-SCALE DATASETS

Because of the importance of Delaunay Triangulation in science and engineering,

researchers have devoted extensive attention to parallelizing this fundamental algorithm.

However, generating unstructured meshes for extremely large point sets remains a barrier for

scientists working with large scale or high resolution datasets. In this chapter, we introduce a

novel algorithm – Triangulation of Independent Partitions in Parallel which can triangulate

a large number of points in parallel and guarantee all triangles are Delaunay globally at any

time during the triangulation.

2.1 Background

The Bowyer–Watson algorithm [14, 95], also known as an incremental insertion al-

gorithm, is a method for computing the Delaunay triangulation of a finite set of points. The

triangulation begins with super triangles large enough to contain all points. The points are

added to the domain, one at a time. For each point p, the triangles whose circumcircles con-

tain p are deleted, leaving a star-shaped polygonal cavity. The cavity is then retriangulated

using p and the vertices of the cavity boundary.

Figure 2.1 presents the basic idea of the Bowyer–Watson method, in which p is the

new inserted point. Triangles �v1v2v5, �v2v4v5, and �v2v3v4 are removed because their

circumcircles contain p, which introduces a cavity (the shaded region). New triangles are

created from the vertices v1...v5 and p, which covers the cavity.

8
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Figure 2.1. Triangles T in cavity C = {v1, v2, ..., v5} (the shaded region) have circumcircles enclos-
ing point p.

2.2 Foundations

Delaunay triangulation becomes challenging when dealing with a large number of

triangles because the triangle search procedure is so time-consuming. The common method

to solve this problem is to divide the domain into regions which are then triangulated in

parallel. However, merging these separate triangulations into a single result mesh requires

“stitching” the triangles together along region boundaries. It is particularly difficult to stitch

regions together while also satisfying the Delaunay criteria, and many existing approaches

relax the Delaunay constraint [53, 54, 55, 89].

The work described here divides the domain into rectangular partitions, rather than

arbitrarily shaped regions. Like the works cited above, TIPP can triangulate multiple par-

titions in parallel. However, we allow triangles along partition borders to be refined as the

algorithm progresses, so the resulting triangles belong to the final Delaunay Triangulation,

and no stitching phase is required.

We make two claims that require formal verification. First, we establish that the effect

of triangulating points contained within a partition is localized, implying that an appropriate

set of partitions can be triangulated in parallel. We call this property independence. The

9
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Figure 2.2. Triangles T in polygon {V1, V2, ..., V7} have circumcircles that intersect with partition
P . The circumcircle of triangle �V1V2V3 does not intersect partition P , and is a member of the
set T � described in lemma 1.

second claim requiring verification is that our approach does not require a stitching process

in order to join the triangles of partitions once they have been processed. We refer to this

property as fit. The next two sections formally describe and establish these properties.

2.2.1 Independence

Definition 1. Two partitions P1 and P2 are independent iff the points within each partition

can be triangulated simultaneously, producing results identical to those produced when the

partitions are triangulated one at a time.

Lemma 1 establishes that only the set of triangles T with circumcircles intersecting

a partition P could be deleted by triangulating points contained in P . Lemma 2 establishes

that if we add a new point p to the triangulation, where p ∈ P , we will not need to add an

edge (and therefore triangle) involving a vertex outside the triangles in T . Taken together,

these two lemmas formally establish the possibility of independent partitions that can be tri-

angulated without disturbing each other. Specifically, we say two partitions are independent

10



if there is no triangle t with a circumcircle intersecting both partitions.

Lemma 1. Let T be the set of triangles with circumcircles that intersect with a partition P ,

then any triangle t /∈ T will not be deleted by the Delaunay triangulation of any new vertex

inserted within partition P .

Proof. As shown in figure 2.2, let T ⊂ DT be a set of triangles with circumcircles that

intersect with a partition P , where DT is the Delaunay Triangulation of the points inserted

so far. Let T � = DT − T . If P contains a new point p, there is no element of T � with a cir-

cumcircle containing p. Therefore, no element of T � will be deleted by the new triangulation

made by inserting p.

Lemma 2. Let T be a set of triangles with circumcircles that intersect with a partition P .

If a point p ∈ P is added to the triangulation, no edge between p and a vertex outside of T

will be generated.

Proof. Assume there exists an edge connecting p with some vertex v� of a triangle t� ∈ T �,

where T � = DT − T . The Delaunay algorithm would only construct such an edge if the

circumcircle of t� contains p (see figure 2.1). However, p ∈ P , so t� cannot be in T �, which

contradicts the assumption.

Theorem 1. Two partitions P1 and P2 are independent iff no triangle t exists such that the

circumcircle of t intersects both P1 and P2.

Proof. Let T (P1) be a set of triangles with circumcircles that intersect with partition P1.

Let R ⊂ P1 be the set of points that remain to be triangulated.

We assume that no triangle in T (P1) has a circumcircle that intersects with T (P2).

By lemma 1, we know that inserting any point p ∈ R will not cause any triangle

outside T (P1) to be deleted. By lemma 2, we know that inserting any point p ∈ R will

not generate any edge using a vertex outside of T (P1). By the assumption, T (P1) does

not contain any triangles with circumcircles that intersect T (P2), and furthermore cannot

11



have any triangles in common with T (P2). Therefore, the further triangulation of points in

R ⊂ P1 can neither delete any triangle in T (P2) or add an edge to any vertex in P2. We can

also make a symmetric claim about the triangulation of P2.

�����������

�����������

�����������

Figure 2.3. Interior and boundary triangles of a partition P , which is drawn as a dashed square.
The interior triangles, shown in very light gray, all have circumcircles (not shown) contained wholly
inside P . In contrast, the boundary triangles (darker gray) have circumcircles that intersect, but
are not wholly inside P .

2.2.2 Fit

Definition 2. Consider two sets of triangles T1 and T2, and the set of edges E1 and E2

taken from T1 and T2 respectively. We say that T1 and T2 fit if T1 ∩ T2 = ∅ and (in the

general case) C = E1 ∩ E2 forms a circular path 1.

This definition implies that one set of triangles wholly surrounds the other, and that

when the two sets are joined, there are no holes in the interior of the joined sets, making

any “stitching” process unnecessary.

1When T1 or T2 are adjacent to a domain boundary, C = E1 ∩ E2 forms a single connected path with
endpoints on the domain boundary, rather than a circular path.
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Lemma 3 establishes that once all points contained within a partition have been

inserted into the triangulation, there is a set of interior triangles within that partition that

can be finalized, meaning they can be written to disk, and removed from memory. This not

only saves memory, but also reduces the cost of future triangle searches.

Lemma 4 establishes that although the triangles surrounding the interior triangles of

a partition may change during triangulation of points outside of partition P , the interior set

will fit exactly with the rest of the triangulation without modification. After triangulation of

a partition P , there is a set of boundary triangles belonging to P that cannot yet be finalized,

and must instead be rejoined with triangles of the global mesh in order to be further processed

as members of another partition. Lemma 5 demonstrates that the perimeter of this set of

triangles will not change during the triangulation of P , meaning they will fit perfectly when

rejoined with the global mesh.

Taken together, these three lemmas establish that the results of Delaunay Triangula-

tion within partitions can be merged together without resorting to a stitching process that

artificially creates new edges or triangles along partition boundaries.

Lemma 3. As shown in figure 2.3, we define the interior of a partition P as the set of tri-

angles I = interior(P ) that have circumcircles wholly contained in P , implying the triangles

of I are also wholly inside P . Let R be the set of points that remain to be inserted into the

triangulation. If all points p ∈ R are outside of P , then the set I remains unchanged after

the points of R are inserted.

Proof. From the discussion in section 2.1, we know that only triangles with circumcircles

containing the new point will be deleted. No interior triangle has a circumcircle containing

p ∈ R, because the circumcircles of these triangles are entirely inside P , and R contains

only points outside P . Therefore no interior triangle will be deleted as the points in R are

inserted into the triangulation.

We now consider the possibility of adding triangles to the interior of P as the points

in R are triangulated. If the insertion of some point p ∈ R results in a new triangle t ∈ I,
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then P contains t and its three vertices, since I consists only of triangles with circumcircles

wholly within P . This contradicts the assumption that R contains only points outside of P .

Since no triangle in I is deleted by the triangulation of R, and no triangle is added

to I, the set I remains unchanged.
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Figure 2.4. Exterior, Interior and Boundary triangles of a partition P . Triangle t belongs to
boundary(P ), while triangle t� belongs to exterior(P ). Circumcircles of exterior triangles do not
intersect P .

Lemma 4. Once all the points within a partition have been inserted into the triangulation,

the interior triangles for that partition are finalized. However, the boundary triangles of the

partition may change during the triangulation of the remaining points. When these boundary

triangles B of partition P are finalized, they will still fit the interior of P .

Proof. We define the set B = boundary(P ) of a partition P to be the set of triangles with

circumcircles that intersect, but are not wholly contained by P . As shown in figure 2.3, the

boundary set of P is hollow, because it can be formed by removing I = interior(P ) from
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Figure 2.5. Boundary and interior triangles of the partition P when the boundary is ready to be
finalized. Notice that although the boundary set has changed compared to the previous figure, the
border between the interior and boundary sets remains unchanged.

the set of triangles with circumcircles that intersect with P . We say the boundary has an

inside perimeter formed by the edges surrounding this hollow region.

We assume that I was finalized when no points p ∈ P remained, but that the bound-

ary set may have changed due to further triangulation. Consider an edge e of a triangle t ∈ B

that lies on the inside perimeter of B, as shown in figure 2.5. Since the inside perimeter of

B is also the perimeter of I, edge e is also an edge of some triangle t� ∈ I. If e is deleted

by triangulating a point p via the process described in section 2.1, then both t and t� must

have been deleted. If t� has been deleted, it must also be true that t� has a circumcircle

extending beyond P , since only points p /∈ P remain. This violates the definition of t� as an

interior triangle, so we conclude that no edge e on the inner perimeter of B will be deleted

by triangulation of points p /∈ P .

Between the time when I is finalized and when B is finalized, lemma 3 implies that
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no new edges will be added to the perimeter between I and B, since no triangles (or edges)

will be added to I. We have now also shown that during that same time, no edge of the

inner perimeter of B is deleted, implying the perimeter is unchanged. Since this perimeter

between B and I is unchanged by triangulation of points p ∈ P , B and I will still fit after

this process concludes.

Lemma 5. The outside perimeter of the set of boundary triangles B of partition P will not

change during the triangulation of P .

Proof. As before, we define the set B = boundary(P ) of a partition P to be the set of

triangles with circumcircles that intersect, but are not wholly contained by P . We also

define the exterior triangles of P as the set of triangles E = exterior(P ) with circumcircles

that do not intersect P . We say the boundary has an outside perimeter consisting of edges

between triangles in B and triangles in E.

Consider an edge e of a triangle t ∈ boundary(P ) that lies on the outside perimeter of

boundary(P ), as shown in figure 2.4. Edge e is also an edge of some triangle t� ∈ exterior(P ).

If e (and therefore t�) is deleted by triangulating a point p ∈ P via the process

described in section 2.1, it must also be true that t� has a circumcircle intersecting P ,

since only such triangles are deleted by that process. This contradicts the definition of t�

as an exterior triangle, so neither t� nor e will be deleted by the triangulation of points

p ∈ P . We conclude that no edge of the outside perimeter of boundary(P ), and no triangle

t� ∈ exterior(P ), will be deleted during the triangulation of P .

More broadly, no new triangle n ∈ exterior(P ) will be introduced by the triangulation

of P , since n would have to be incident to some point p ∈ P , and there are no such triangles

in exterior(P ).

During the triangulation of P , no edge of the outside perimeter of boundary(P ) is

deleted, and E = exterior(P ) is unchanged. Therefore, the outside perimeter of boundary(P )

is not changed during the triangulation of P .
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Theorem 2. Immediately after the Delaunay Triangulation of partition P is complete,

boundary(P ) fits interior(P ) and exterior(P ).

Proof. For some partition P , the boundary set B = boundary(P ) shares an outer perimeter

with E = exterior(P ) and an inner perimeter with I = interior(P ). Assuming all points

p ∈ P have already been inserted into the triangulation, we know from Lemma 3 that

I remains unchanged when triangulating additional points outside partition P . Lemma 4

shows that B will fit I even when the entire triangulation is complete, despite changes in B

due to triangulation of points outside of P . Lemma 5 shows that B fits E immediately after

the triangulation of P .

Therefore, B will fit both I and E immediately after the triangulation of all points in

P . Furthermore, B will continue to fit I even when the entire triangulation is complete.

There are two important implications of Theorem 2. First, once triangulation of P

is completed, we can put aside interior(P ), since it will not be changed by triangulation

of points not in P , and will always fit boundary(P ). Second, we can completely avoid a

stitching phase if we rejoin boundary(P ) with the remainder of the global mesh immediately

after triangulation of P is finished. At that time, boundary(P ) will fit exterior(P ) (and the

global mesh) without stitching.

2.3 Triangulation of Independent Partitions in Parallel

Processing very large Delaunay Triangulations in parallel is challenging because we

must identify regions that can be processed independently. When a new point is inserted

in the domain, some triangles whose circumcircles enclose that point will be removed, and

new triangles in the resulting cavity are generated. If more than one point is inserted at the

same time, the multiple insertions must not interfere with each other.

Our solution is to divide the domain into partitions, and carefully identify the parti-

tions that can be processed simultaneously while still guaranteeing correctness. Partitioning

the domain has the additional benefit of reducing triangle search costs, since the number of
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triangles in each partition is vastly reduced compared to the overall number of triangles in

the domain.
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Figure 2.6. Partition 0 conflicts with partition 3 due to the circumcircle of triangle B, so this pair
cannot be triangulated simultaneously. Partition 0 is independent of all other partitions, however.
Similarly, partition 4 conflicts with partitions 5, 7, and 8 due to triangle C, but could be processed
in parallel with partitions 0,1,2,3, or 6. The circumcircle of triangle A stays wholly inside partition
1, and causes no conflict.

2.3.1 Terminology

For clarity, we provide a brief glossary of terms:

Initial points: set of points collected from each partition and used for generating the initial

mesh. The number of initial points is much smaller than the total number of points in the

domain.

Initial mesh: the Delaunay triangles which are generated from the initial points.

Global mesh: the Delaunay triangles generated at a given time across the entire domain.

Partitions: rectangular regions resulting from dividing domain axes into sections, forming

a rectilinear grid that covers the domain. Each partition manages its own set of points and

triangles.
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Independent partitions: Partitions are independent if their interior triangles can be tri-

angulated simultaneously, producing the same result as a serial implementation.

Conflicting partitions: two partitions conflict if there exists a triangle whose circumcircle

intersects both partitions, meaning they are not independent.

Active partitions: the set of partitions that are currently being triangulated. We must

ensure these partitions are independent.

Interior triangles of a partition: The set of triangles that have circumcircles wholly

contained inside the partition.

Boundary triangles of a partition: The set of triangles with circumcircles that intersect,

but are not wholly contained by the partition.

Exterior triangles of a partition: The set of triangles that have circumcircles that do

not intersect the partition.

Active triangles: The triangles belonging to currently active partitions.

Finalized partitions: A partition P can be finalized if all points p ∈ P have been triangu-

lated. Interior triangles of finalized partitions can be written to storage and removed from

memory.

Finalized triangles: Triangles that have been written to non-volatile storage.

Major partition: an element of the coarse top-level partitioning used with multi-master

TIPP, as described in section 3.1.

Minor partition: an element of the fine second-level partitioning used with multiple-master

TIPP, as described in section 3.1.

2.3.2 The TIPP algorithm

In this section we present a novel algorithm to generate very large Delaunay Trian-

gulations in parallel, as shown in Algorithm 1, and depicted in figure 2.7.

There are three prework tasks. First, points in the domain are distributed to the

partitions that geometrically contain them. Second, for each partition, points are sorted

19



according to x coordinate. Third, we randomly select a set of k points from each partition to

form a set of initial points. Selecting points in this fashion reduces the occurrence of sliver

triangles, as described in section 2.4.

20



(a) The initial mesh is generated from the set
of initial points taken equally from all partitions.
The intersections are calculated between triangle
circumcircles and partitions.
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(b) We choose four active partitions numbered 0,
3, 9, and 15. The active triangles belonging to
these partitions form four disjoint areas that are
independent and will be assigned to processors for
further triangulation.
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(c) Four groups of triangles have been triangu-
lated in parallel. The circumcircles of light gray
triangles (the interior set) are contained wholly
within their partition and can be finalized. The
dark gray triangles (the boundary set) will require
further processing.
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(d) The interior triangles from figure 2.8(c) have
been finalized (stored to disk). The boundary tri-
angles of partitions 0, 3, 9, and 15 will later be
assigned to other partitions for further triangula-
tion.

Figure 2.7. Parallel Delaunay Triangulation — example of TIPP with 1000 points.
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(e) The inactive triangles from figure 2.8(a) did
not have circumcircles intersecting our active par-
titions, but will be further refined by the next
stage.

� �

�

��

(f) The boundary triangles from figure 2.8(d)
are joined with the inactive triangles from figure
2.8(e). The resulting set is ready for the next
stage, beginning with the selection of new active
partitions.

Figure 2.7. Parallel Delaunay Triangulation — example of TIPP with 1000 points.

We begin the main algorithm by constructing the initial mesh IM from the initial

points and two supertriangles constructed from the four corners of the domain. (These

corner points can be removed after the algorithm finishes, along with other artificially added

points.) Since we choose only a small number of points from each partition, the number of

triangles in the initial mesh is much smaller than the set of triangles in the final triangulation.

Following lemmas 1 and 2, we assign a triangle to a partition Pi if the circumcircle of

the triangle intersects Pi. We say the triangle belongs to Pi. A triangle may belong to more

than one partition.

In order to triangulate in parallel we need to find a set of independent partitions IP

such that triangulation of a partition Pi ∈ IP will not affect any other partition Pj ∈ IP.

Beginning with the initial mesh (shown in figure 2.8(a)), we determine the partitions that

conflict, meaning they are not independent. More specifically, two partitions conflict if there

exists a triangle t with a circumcircle that intersects both partitions, meaning that t belongs
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Algorithm 1: Overview of TIPP

Input: set of partitions P = P0 . . . Pm covering domain D, and Points ∈ D.
1 Prework: Compute partitioned points Pointsp = points0 . . . pointsn : pointsi ∈ Pi

2 Prework: For each Pi, sort pointsi according to x coordinate.
3 Prework: Compute initial points PointsI (Points in the domain are distributed to

partitions based on their coordinates. From each partition, we randomly select k
points to form the set of initial points).
Output: All triangles in T are Delaunay.

4 Step 1: generate the initial mesh (IM) (see figure 2.8(a)) using initial points
(PointsI) and two super-triangles (see figure 2.9(a)) constructed from the four
corners of the domain and additional points along the edge of the domain

5 T ← IM
6 while P �= ∅ do
7 Step 2: generate the set of independent partitions IP ∈ P based on the

intersection between partitions and the circumcircles of triangles in T .
8 Step 3: for each partition P ∈ IP collect triangles in T that belong to P , using

the circumcircle intersections computed in step 2.
9 Step 4: Triangulate each partition P ∈ IP in parallel on the worker nodes, and

update T accordingly. If the number of available processes np is less than |IP|,
we schedule partitions in shifts of size np.

10 Step 5: write finalized triangles to external storage and update P:

11 let Tf ⊂ T be the finalized triangles.
12 T ← T − Tf ;
13 Finalize(Tf );
14 P ← P− IP;

15 end
16 Step 6: (Optional) Remove any triangles that use artificial vertices added in step 1.

to both partitions. Algorithm 2 shows in detail how we generate IP.

The edge and vertex neighbors of Pi are those partitions that share either an edge

border or a corner vertex with Pi. These partitions are almost certain to have triangles

belonging to both Pi and to themselves. If Pi was chosen as a member of IP, then those

edge and vertex neighbor partitions that conflict with Pi must not be in IP. This explains

the checkerboard appearance of some of the diagrams in figure 2.7. However, TIPP does not

depend on this observation, and rigorously checks for triangles that actually cause a conflict

between partitions.

For example, in figure 2.8(b), partitions 4, 5, 6, 8, 10, 12, 13, and 14 clearly con-

23



Algorithm 2: Determining independent partitions.

Input: Mesh M = (triangles, points), set of partitions P in domain
Output: set of independent partitions IP

1 Let CP (p) be the set of partitions that conflict with a partition p.;
2 ∀p : p ∈ P,CP (p) ← ∅
3 for each triangle t ∈ M do
4 Determine a set of partitions Pt = {p0 . . . pn} : circumcircle(t) ∩ pi �= ∅.;
5 for each partition pi ∈ Pt do
6 for each partition pj ∈ Pt do
7 if pi �= pj then
8 CP (pi) ← CP (pi) ∪ pj;
9 end

10 end

11 end

12 end
13 ∀pi : p ∈ P, Unique(CP (pi)) remove duplicates;
14 Let SP be a list of pi ∈ P , sorted according to |CP (pi)|, in increasing order.;
15 SP = Sort(P ) according to |CP (pi)|, in increasing order. ;
16 Let IP be the set of independent partitions.;
17 Let C be the set of partitions that conflict with some element of IP ;
18 C ← ∅;
19 IP ← ∅;
20 while (C ∪ IP ) �= P do
21 let p = head(SP ) (the partition in SP with the fewest conflicts);
22 if p /∈ C then
23 IP ← IP ∪ p ;
24 C ← C ∪ CP (p) ;

25 end

26 end

flict with partition 9, meaning that if partition 9 is chosen as a member of IP, then the

aforementioned partitions will not be placed in IP.

After determining IP, partitions that are not in IP cannot be active in the upcoming

processing stage, and will have to wait for a future round. For example, in figure 2.8(b),

partitions 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, and 14 are inactive, while active partitions 0, 3,

9, 15 are being processed in parallel. Notice that these four active partitions have triangles

associated with them that are not wholly inside the partition. Recall from section 2.2 that

the boundary set of a partition is the set of triangles with circumcircles that cut the partition
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border. Because each partition only processes points that fall within its borders, the effect

of triangulating these points can extend no further than the boundary set.

Figure 2.7.c presents four active partitions after triangulation. More triangles (shown

in light grey) have been added to the interior set of the partitions. Recall that the interior

set of a partition is those triangles with circumcircles wholly contained within the partition.

Because all points within each active partition have now been inserted into the triangulation,

we can finalize the interior set of each partition, writing these triangles to disk and removing

them from memory. This not only conserves memory, but also reduces triangle search costs

for the remainder of the triangulation.

Partitions 0, 3, 9, and 15 in figure 2.8(d) have been finalized, but the boundary sets of

these partitions must continue to be processed, since they can be affected by the insertion of

points in nearby partitions, because their circumcircles intersect with them. We simply give

these triangles to nearby partitions that intersect their circumcircles for further processing.

Figure 2.8(e) shows the global mesh before the boundary sets from partitions 0, 3, 9, and

15 are added. Notice that (due to lemma 5 ) the boundary sets fit cleanly in the cavities

surrounding the finalized partitions, producing a new global mesh, shown in figure 2.8(f).

We now repeat the process, beginning with identifying active partitions using the

triangles from the updated global mesh. These partitions are processed as before, resulting in

newly finalized interior triangles and a global mesh that is updated with boundary triangles.

When all partitions are finalized, all interior triangles have been finalized, and all

points have been inserted. We can now finalize any remaining boundary triangles. Lemma 4

shows that the outside border of a partition’s interior triangles and the inside border of the

partition’s boundary triangles will fit, even when the boundary triangles have been updated.

This means that interior and boundary triangles are Delaunay and there is no need for

stitching or a complex merging process. The pieces all fit perfectly together.

For many applications, we will want to remove the artificial points introduced during

step 1 of Algorithm 1, since they are not genuine sample points. They do not have data
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(g) A worst case for the TIPP algorithm in which
the circumcircle of a large triangle �MNP inter-
sects with all partitions in the domain, effectively
serializing the triangulation. Only one partition
can be processed at a given time.

(h) An ideal case for an 8 × 8 partitioning.
No circumcircles span more than two parti-
tions, allowing triangulation in four stages of
16 partitions each. Stages are shown in dif-
ferent shades of gray.

Figure 2.8. A worst case and ideal case of Parallel Delaunay Triangulation algorithm.

values associated with them, so triangular cells that use such points as vertices cannot be

used for interpolation. One solution is to simply remove the triangles that are incident to

these artificial points. Since the removed triangles may leave a ragged border, we could also

add missing edges of the convex hull [9] to repair the triangulation. Davy, et al.[29] report

an algorithm with upper bound O(n2), the same as serial Bowyer-Watson triangulation, but

note that in practice the complexity is closer to the lower bound of Ω(nb), where nb is the

number of points on the convex hull. The quickhull algorithm [9] has worst case O(n log v),

where n is the number of input points, and v is the (much smaller) number of points on the

hull.

2.4 Improving Performance of TIPP

We can improve the performance of our algorithm by increasing the degree of paral-

lelism, and also by optimizing the search operation for the Delaunay process on the worker

nodes.
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2.4.1 Increasing Parallelism

The TIPP algorithm is not fully parallel. The degree of parallelism depends on the

number of active partitions, which in turn depends on the number of triangles. A small

triangle count increases the presence of large triangles with circumcircles that intersect more

than one partition. Such triangles introduce dependencies between partitions, decreasing

opportunities for parallelism.

For example, figure 2.8(g) consists of a large triangle MNP with a circumcircle that

intersects all partitions in the domain ABCD. In this case all partitions (P0...P15) are

conflicting partitions. This means only a single partition can be active at one time. In this

special case, the algorithm degrades into sequential triangulation. On the other hand, the

number of initial triangles in figure 2.8(a) is roughly 320, so the number of active partitions

is much improved (e.g. four active partitions in figure 2.8(b)).

For this reason, an initial mesh with many triangles will improve performance during

parallel processing. However, this mesh is computed serially, so we should be careful to

implement this task efficiently. We choose the initial points so that each partition contributes

the same number of points, which improves the resulting mesh. Large triangles or long, thin

slivers are far less likely, increasing performance for a mesh of a given size.

Delaunay implementations often use one or more supertriangles that contain the

entire domain, and are then removed from the final triangulation. We chose to use two

supertriangles ABC and ACD, as shown in figure 2.9(a). Unfortunately, this introduces

many slivers with edges AB, BC, CD, or DA. These triangles directly intersect many

partitions. Even worse, such triangles have very large circumcircles, which introduces more

dependencies between partitions, and also increases search costs. Worse still, once the long

edges of slivers are introduced into the triangulation, they provide opportunity for further

slivers to be created, and performance degrades substantially.

The solution for this problem is to introduce more points along the exterior edges of

the supertriangles. Figure 2.9(b) shows the addition of points A1...A3, B1...B3, C1...C3, and
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D1...D3 along edges AB, BC, CD, and DA.

2.4.2 Improving Triangle Search

The most expensive step of Delaunay triangulation is to find the triangles whose

circumcircles enclose a newly inserted vertex. These triangles later will form a polygon or

a cavity (shaded triangles in figure 2.1) for further triangulation. In a large-scale domain,

the number of triangles in a domain could reach millions or billions. At this scale, triangle

search becomes very time consuming.

Our partitioning approach addresses this bottleneck in two ways. First, the triangle

list for each partition is much shorter than in the serial case, since these lists only record

triangles relevant to each partition. Second, partition triangle lists can be searched inde-

pendently in parallel. Both factors contribute to the performance improvements observed in

section 3.3.

We further enhance performance within each partition by using the sweep line algo-

rithm [34] to process vertices in order sorted by x coordinate. This allows us to determine

(a) Two super triangles �ABC and �ACD
that cover all points in the domain. Four
sliver triangles �AMB, �BNC, �CPD,
and �AQD degrade DT performance.

(b) Addition of points A1...A3, B1...B3,
C1...C3, and D1...D3 along edges to reduce
sliver problems and improve the parallelism.

Figure 2.9. Super triangles introduce sliver triangles.
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Figure 2.10. An active partition during triangulation. The new inserted vertex P is on the vertical
sweep line. The light gray triangles are stored to external memory because their circumcircles can
not reach the sweep line or partition border (square). The shaded triangles form a cavity to be
retriangulated. The boundary triangles (drawn in black) will be further processed as members of
other partitions.

finished triangles, delete them from the triangle list, and write them to external storage.

In figure 2.10, circumcircles of light grey triangles do not enclose point p, and their largest

x coordinate is smaller than that of the sweep line. Therefore, vertices to the right of the

sweep line will not be enclosed by any circumcircle of the grey triangles. We can consider

them to be part of the final triangulation, and write them to storage. Since they are also

removed from the partition’s triangle list, future triangle search operations will benefit from

the shorter list.

2.5 Implementation

We implemented TIPP using C/C++ and MPI (Message Passing Interface)[38]. The

MPI programming model greatly simplifies development of code that runs in parallel over a

cluster of ordinary machines, and also allows an arbitrary number of tasks to be scheduled
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on each machine. In contrast, shared memory models such as TBB [73], OpenMP [28], and

pthreads [61] do not easily extend over multiple nodes.

This section describes some of the choices made during the implementation of TIPP.

2.5.1 Data Structure

The intersection between circumcircles of triangles in the initial mesh and partitions

in the domain requires a data structure that can answer two types of query. First, given a

triangle, we need a list of partitions that intersect with that triangle’s circumcircle. Second,

given a partition, we need a list of triangles with circumcircles that intersect the partition.

We could choose either an array-based implementation or a dynamic data structure.

Arrays are convenient for GPU computing [65], a possible future extension of TIPP. Some

researchers [81, 18, 75, 74] were able to use arrays for elements (triangles or tetrahedra)

because the maximum number of elements could be calculated in advance [50]. This is

harder for our work, due to the partitioning mechanism. Also, an array implementation

cannot easily free the memory used by deleted triangles, which is an important feature of

TIPP. For these reasons, we chose a linked list to hold triangles, since we can efficiently

reclaim memory when triangles are finalized.

We have not yet investigated the possibilities for dynamic tree-like spatial data struc-

tures, such as r-trees [39], and have instead used our own linked list implementation that

is convenient for our application. Because the scope of triangle search is already greatly

reduced by partitioning, and also by the sweep-line algorithm described in section 2.4.2, the

benefits of a tree implementation are uncertain.

2.5.2 Parallelism

Our distributed system includes multiple worker nodes and a master node, which

can also serve as a worker node. The computation is distributed, and the data access is

centralized. The entire dataset is stored in one directory on the master node, made available

to all worker nodes via NFS[87].
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The master node is responsible for selecting active partitions based on the initial mesh.

Each active partition will then be assigned to an MPI process for further triangulation on

a worker node. However, the number of active partitions may overwhelm the number of

available processes. In this case, we schedule partitions onto available processes in groups

until all partitions have been triangulated.

When worker nodes complete their jobs, they use NFS to store the finalized triangles

and also return the remaining (boundary) triangles to the master. The boundary triangles

will be assigned to non-finalized partitions by the master as it prepares the next stage of

active partitions. This set of boundary triangles is quite small compared to the set of interior

triangles that were finalized, which helps TIPP scale to datasets with billions of triangles.

2.6 Experimental Results

We tested TIPP on a cluster running on the Chameleon Cloud Testbed [20]. Our

storage node with two Intel R� Xeon R� E5-2650 v3 processors @ 2.30GHz, 64GB RAM and

2T HDD served data via NFS and was also both a worker and master node. Nine additional

worker nodes running 64 bit Linux had two Intel R� Xeon R� E5-2670 v3 @ 2.30GHz processors

(16 cores total), 128G RAM and a 250GB HDD.

We use 2D datasets that are generated from the qhull utility [8, 9]. Point coordinates

are generated on the range [0, 1] and converted from text into binary representation for speed

and storage efficiency. The point coordinates are separated into partitions in the domain

and sorted based on x coordinate. The coordinate files belonging to partitions will later be

joined into a single large file. The size of the datasets ranges from 500,000 points (roughly

one million triangles) up to 500 million points (around one billion triangles). Section 3.3.2

also describes performance for an 8 billion point triangulation. In all cases, there are no

obstructions such as airplane wings or similar objects, and points are evenly distributed

throughout the domain.

31



Figure 2.11. Execution times of Parallel Delaunay Triangulation with four different datasets (500K,
5M, 50M, and 500M points) or (1M, 10M, 100M, 1B triangles) while changing partitioning granu-
larity. Each bar represents the execution times of master (lower) and worker nodes (upper). n× n
is the number of partitions.

2.6.1 Performance

The performance of TIPP depends on the dataset size (number of points in the do-

main), number of the partitions, number of compute nodes, and the performance of each

node. The domain is divided into n× n partitions where n is in the range (4, 8, 16, 32, 64,

128). Figure 3.4 shows the execution times of TIPP with different numbers of partitions.

The best performance falls in the middle of partition granularity. Indeed, there is a trade-off

between the granularity of the partitioning and performance. Coarse–grained partitionings

improve the speed of the master, since fewer partitions mean fewer triangle–partition in-

tersection tests are required. However, coarse partitionings hurt triangulation performance

on the workers because large partitions are not as effective in reducing the scope of point-

circumcircle search. Conversely, fine–grained partitionings burden the master node while

32



Figure 2.12. Speed up of Delaunay triangulation with different domain sizes (1 Million, 10M, 100M,
and 1000M triangles). The X axis is logarithmic.

Figure 2.13. TIPP Execution times for increasing numbers of nodes.

improving computational performance on the workers.

However, computational performance on the workers is only part of worker perfor-

mance. I/O is another important factor. Fine–grained partitionings imply a large number
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of small communications between master and worker nodes, which will incur larger overall

latency costs compared to a coarser partitioning. For this reason, partitionings that are too

fine–grained can increase overall worker execution time.

Figure 3.4 shows TIPP performance for different partitioning granularities and dataset

sizes. The execution time due to the master node is shown as a the darker region at the

base of each bar. As partitionings become more fine–grained, this cost increases. Worker

execution costs are lowest in the middle case for all datasets, but are higher for the most

fine-grained partitionings, due to I/O costs.

We also measure the speedup (figure 2.12) between Parallel TIPP running on ten

nodes with 16 cores apiece and a separate serial implementation. The best performance of

parallel TIPP from figure 3.4 is compared with serial TIPP for four different dataset sizes.

As expected, speedup improves as the dataset size increases, since overhead costs become

proportionally less significant.

Figure 2.13 shows the effect of an increasing number of compute nodes on overall

execution time for different dataset sizes. For each size, we chose the partitioning with best

performance from figure 3.4. The current implementation is not able to take advantage

of more than about eight nodes, probably due to I/O contention and load on the master

node. The flattening of the curves past eight nodes indicates that performance is dominated

by non-parallelizable costs, likely involving our single master node. That we see similar

behavior for all three dataset sizes indicates that these non-parallelizable costs are not O(1),

but instead dependent on data volume.

2.6.2 Processing a Large Dataset

Qhull [8, 9] can generate at most two billion points in the domain. However, in

order to produce even larger datasets, we can replicate points in this domain to adjacent

domains, but must check the resulting dataset to make sure there are no duplicate points.

In our experiment, we make a 4 × 4 domain with 8 billion points and generate roughly
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16 billion triangles, which may be the largest existing 2D mesh. The domain is divided

into 128 × 128 = 16384 partitions. In the first stage of TIPP, almost one fourth of these

partitions are independent and ready for triangulation. However, the number of active

partitions processed simultaneously depends on the number of MPI process slots available.

For this experiment, each of our 10 nodes was set to 24 slots, using a round-robin scheduling

policy to assign processes to nodes. Execution took 19988 seconds overall, with 1478 seconds

initially taken by the master node to distribute partitions.

2.7 Discussion

The TIPP algorithm is designed to work in a distributed environment in which the

master node prepares the independent (active) partitions and sends them to worker nodes

for triangulation in parallel. With this in mind, we analyze both the scalability and load

balancing issues in the algorithm.

2.7.1 Scalability

The TIPP algorithm is able to handle very large datasets because the processing and

memory requirements are split across the nodes of the cluster, partially escaping the limits

of a single machine approach. When dealing with a very large number of points, the domain

is simply divided into many more partitions.

The number of active partitions given to worker nodes depends on the total number

of partitions in the domain, with roughly 25% being processed during each stage of the algo-

rithm regardless of the granularity of the grid (see table 2.1). Therefore, to take advantage

of more worker nodes, we can simply increase the number of partitions by using a finer grid

over the domain.

However, the TIPP implementation relies upon a single master node to identify the

next active set of partitions. This is a computationally expensive process, requiring a large

number of rectangle-triangle and rectangle-circumcircle intersection tests. Worker nodes
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access their assigned partitions via an NFS server running on the master, which places

further load on this single machine.

To alleviate the congestion, we envision several approaches. First, we could reduce the

number of triangles and points in the initial mesh, reducing the cost of determining active

partitions. Unfortunately, this approach would reduce parallelism because the number of

active partitions in the first stages of TIPP would also be reduced, due to the prevalance of

large triangles with circumcircles spanning several partitions.

Another approach is to raise master performance is to share master’s workload to

several sub-master processes. Instead of triangulation a large amount of points to prepare

independent partitions as problem size increasing, master process simply triangulate a coarse-

grained initial meshes at the first level. The second level of triangulation will further carry

out the fine-grained triangulation. The detail of how to triangulate in two-level parallelism

will be described in next chapter.

Table 2.1. Number of active partitions based on the total number of partitions

Number of partitions active
during first phase

4 16 61 251 1020

Total number of partitions 16 64 256 1024 4096

2.7.2 Load balancing

We used qhull utilities [8, 9] to generate point datasets uniformly distributed over the

domain. Since partitions are same–sized rectangles, the number of points in each partition

is roughly similar, implying similar execution times for each node. For non-uniform point

distribution, some nodes may take much longer than others, all else being equal. Happily, we

expect to greatly reduce this load imbalance by using a finer grid, when appropriate. With

smaller partitions, the number of points in each partition will be closer. Also, since smaller

partitions take less time to compute, idle workers will not wait as long for more work.
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2.8 Chapter Summary

We have developed a novel algorithm named TIPP to generate Delaunay triangula-

tions for very large scale datasets. We have shown that the dataset domain can be decom-

posed into independent partitions that can be processed in parallel. TIPP also improves

performance by identifying sets of triangles that can be finalized early, removing those tri-

angles from memory, and reducing the cost of triangle search. The result is a distributed

algorithm able to generate roughly 16 billion triangles.

We have also shown that the results of triangulated partitions fit perfectly together,

preserving the Delaunay criteria. We do not require a stitching process that would introduce

non-Delaunay triangles between partitions.

TIPP significantly improves the performance of Delaunay triangulation, bringing

extreme-scale meshes into the realm of the feasible through its distributed approach. How-

ever, there is still room for improvement. We would like to implement a method of repairing

the mesh boundary after removing artificial vertices and their triangles. Also, because we

use partitions of uniform size, we do not yet perform load balancing between worker nodes.

A third issue is the master node. When the number of partitions is large, the master node

becomes a bottleneck, causing worker nodes to wait for new work. A solution for this prob-

lem is to parallelize the master process tasks, which will boost performance, efficiency, and

the size of datasets feasible for scientific researchers.
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CHAPTER 3

PARALLEL DELAUNAY TRIANGULATION FOR LARGE-SCALE DATASETS USING

TWO-LEVEL PARALLELISM

In the previous chapter, we developed a novel algorithm – Triangulation of Indepen-

dent Partitions in Parallel (TIPP) to deal with very large DT problems without requiring

communication between workers while still guaranteeing the Delaunay criteria. However,

the original TIPP algorithm relies upon a single master node to identify the set of partitions

that can be scheduled simultaneously. We evaluated performance using synthetic datasets

containing billions of points with a uniform distribution over the domain. Results indicated

that when the number of partitions is large, the master node becomes a bottleneck, causing

worker nodes to wait for new work. In this chapter, we further develop the TIPP algorithm to

employ multiple master processes, distributing computational load across several machines.

This new design improves both performance and scalability.

3.1 Multiple Masters

While TIPP worker processes are tasked only with triangulation, the master process

must repeatedly generate the next set of independent partitions that are assigned to work-

ers. Because this job requires circumcircle-partition intersection tests, it is computationally

expensive. This burden increases significantly when finer-grained partitionings are employed

to improve parallelism with larger datasets. In our previous chapter, we found that using

only a single master process became a performance bottleneck, due to both computational

and I/O costs.
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3.1.1 Multiple Masters for Uniform Point Distribution

Our solution for this problem is to share the master’s burden over several sub-master

processes. We divide the worker processes into groups (actually MPI Communicators) that

are each served work by a single sub-master. A single master process remains, but its job

is now to assign partitions to sub-master processes, so they may in turn piece out tasks to

the worker processes in their group. Because the master now works with a coarse-grained

partitioning, its burden is much reduced. However, workers can be given much smaller

partitions, due to our two-level partitioning scheme.

As shown in figure 3.1(a), multi-master TIPP uses a relatively coarse major parti-

tioning to assign work to sub-masters. Each major partition is further subdivided using a

minor partitioning, allowing sub-masters to assign fine-grained tasks to workers for improved

parallelism. Our notation for two-level partitionings is [n×n]× [m×m] where [n×n] is the

number of major partitions and [m×m] is the number of minor partitions.

In effect, this two-level partitioning forms a very shallow tree, where each tree node

(a) Two level partitions with uniform point
distribution. The domain consists of 16 ma-
jor partitions, each of which includes 16 mi-
nor partitions.

(b) Two level partitions with non-uniform
point distribution. The domain consists of
16 major partitions, each subdivided into
a number of minor partitions depending on
point distribution.

Figure 3.1. Two level partitioning with uniform and non-uniform point distribution.
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has a very large number of children. Using only two levels, we address the scaling problems

of single-master TIPP while retaining the O(1) complexity of regular partitionings.
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(a) The initial mesh, including active triangles
(darker gray) which belong to four independent
major partitions (0, 2, 8, 10), which are about to
be triangulated.
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(b) Independent major partitions are refined with
some additional points. Each major partition is
divided into minor partitions for Delaunay trian-
gulation in parallel.

(c) Detail of major partition 10, taken from figure
3.2(b). Major partition 10 is subdivided into 16
minor partitions.

� �

� � � �

�

�� �� ��

����

(d) Triangulation in progress. We show four inde-
pendent minor partitions (0, 3, 9, 15) chosen for
parallel refinement.

Figure 3.2. Multi-master TIPP — An example with 10,000 points.
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(e) The four independent minor partitions are tri-
angulated. Darker gray triangles are boundary
triangles, while light gray triangles form the inte-
rior of the minor partitions.

(f) After all minor partitions in major partition
10 are triangulated, the minor partition results
are assembled into the final result for the major
partition, including interior (light grey) and up-
dated boundary triangles (dark gray).

Figure 3.2. Multi-master TIPP — An example with 10,000 points.

Multi-master TIPP determines independent partitions in a manner similar to the

single-master case described in section 2.3, but applied to two levels, as shown in figure

3.2. Algorithm 3 describes the two-level parallelism (multi-master TIPP). The master first

constructs a coarse initial mesh, and uses it to identify independent major partitions. Inde-

pendent major partitions are then chosen (figure 3.3(a)) and sent to the sub-master processes

for further triangulation. Each sub-master process then refines an initial mesh for their ma-

jor partition, and uses it to determine a set of active minor partitions to be given to worker

processes in the sub-master’s group. Major partition 10, circled in figure 3.3(b), is detailed

in the subsequent figures. When workers have completed triangulation of this partition, the

responsible sub-master sends the boundary set to the master, while interior triangles are

finalized to disk. The entire procedure is then repeated.
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Algorithm 3: Overview of multi-master TIPP

Input: A set of partitions P = P0 . . . Pm−1 covering domain D. Partition Pi ∈ P is
divided into multiple minor partitions Pi0 . . . Pi(n−1)

Output: All partitions Pi ∈ P are triangulated and Delaunay

1 Step 1(on master): generate the initial mesh for the domain (fig. 3.3(a)).

2 while P �= ∅ do
3 Step 2(on master): generate the set of independent major partitions IP ⊂ P (fig.

3.3(a)).
4 Step 3(on master): master sends active major partitions to sub-masters

5 Step 4: triangulate all partitions Pi ∈ IP in parallel:

6 for each Pi ∈ IP do
7 Step 4.1(on sub-masters): refine initial mesh for partition Pi (fig. 3.3(b)).

8 Step 4.2(on sub-masters): Assign triangles t ∈ Pi to all minor partitions

Pij ∈ Pi that intersect the circumcircle of t.
9 let Pminor be the set of minor partitions Pij ∈ Pi

10 while Pminor �= ∅ do
11 Step 4.3(on sub-masters): generate independent minor partitions

IPminor ⊂ Pminor (fig. 3.3(d)).
12 Step 4.4 sub-master sends IPminor to workers

13 Step 4.5(on workers): triangulate IPminor (fig. 3.3(e)).

14 Step 4.6 worker sends interior and boundary triangles to sub-master

15 Step 4.7(on sub-masters): finalize the interior triangles of IPminor

16 Step 4.8(on sub-masters):

17 Pminor ← Pminor − IPminor.
18 Step 4.9(on sub-masters): reassign boundary triangles to new minor

partitions that are members of Pminor

19 end

20 end
21 Step 5(on master): master collects boundary triangles from IP and updates

P ← P− IP.
22 Step 6(on master): reassign boundary triangles to new major partitions that are

members of P

23 end

3.1.2 Multiple Masters for Non-Uniform Point Distribution

Both the single and multi-master algorithms described so far are designed only for

datasets with uniform point distributions. However, many important real-world datasets

show great density variation across the domain, due to features such as coastlines (see figure
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3.7) or concentration of sample points in areas of interest. To handle these non-uniform

cases efficiently, we must augment TIPP to balance load between processes.

As shown in figure 3.1(b), the solution for this problem is to choose a minor partition-

ing for each major partition that assigns roughly the same number of points to each minor

partition. Since each minor partition is assigned to a single process, the result is relatively

balanced load.

Let threshold T be the number of points in a minor partition, and Ni be the number

of points in major partition i The number of minor partitions in a major partition i will be

MPi:

MPi =





0, if Ni = 0

1, if 0<Ni ≤ T
�

Ni

T
, if Ni>T

(3.1)

Figure 3.1(b) is an example of 4×4 major partitions. Major partitions 1-5, 9, 10 and

15 have more points than others, so they are more finely subdivided. The remaining major

partitions have fewer points, so they are partitioned more coarsely.

3.2 Implementation

We implemented TIPP using C/C++ and MPI (Message Passing Interface)[38]. The

MPI programming model greatly simplifies development of code that runs in parallel over a

cluster of ordinary machines, and also allows an arbitrary number of tasks to be scheduled

on each machine. In contrast, shared memory models such as TBB [73, 77], OpenMP [28],

and pthreads [66] do not easily extend over multiple nodes.

This section describes some of the choices made during the implementation of TIPP.

3.2.1 Parallelism for Uniform Point Distribution

TIPP includes worker, master, and sub-master processes. The computation is dis-

tributed via MPI, while the Ceph distributed filesystem [96] handles data I/O for compute
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nodes across the cluster.

We implemented both single-master (described in previous chapter) and multi-master

TIPP. The first version consists of one master process and many worker processes. Master

process execution time for single-master TIPP can be significant when processing a large

number of partitions. For this reason, we designed the multi-master version described in

section 3.1. Figure 3.3 illustrates process behavior across several steps.

In the top row of figure 3.3, the master process is preparing the set of active partitions

for the sub-master processes, which must wait until the master is done. Although the sub-

masters are idle, the coarseness of the major partitioning means the wait will be brief. In

the bottom row of figure 3.3 the sub-masters now prepare active partitions for the worker

processes in their group.

We add two more details to this description. First, the number of worker processes

in each group is adjusted dynamically in response to the number of active major partitions.

At the tail end of the calculation, the number of active major partitions is often smaller, so

group membership is adjusted accordingly.

The second point relates to the gathering of results. Once worker processes in a

group have completed their triangulations, the group sub-master collects the boundary set.

Boundary triangles are needed by the sub-master in order to determine the next set of active

minor partitions assigned to the group.

At the major partition level, TIPP’s handling of interior triangles differs for the single

and multi-master variants. In single-master TIPP, the worker nodes write interior triangles

directly to the Ceph filesystem, not requiring sub-master involvement. In contrast, multi-

master TIPP benefits from aggregating writes at the sub-master, reducing the load on Ceph.

Once a group has finished its computation, the sub-master sends the boundary set to the

master, which uses the boundary set to determine the next set of active major partitions.
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Figure 3.3. The running of multi-master TIPP for uniform (a) and non-uniform (b) point distri-
bution. 12 processes are divided into three groups with a sub-master in each group (blue) and one
master (red).

3.2.2 Parallelism for Non-uniform Point Distribution

In section 3.2.1, all processes are assigned into equally-sized groups of communicators

because each group is responsible for a roughly similar workload. However, with non-uniform

point distribution, the number of processes in each group should depend upon the number

of points each group is responsible for. Figure 3.3(b) illustrates this case.

Let NP be the number of major partitions, and |Pi| be the number of points in some

major partition Pi. Let |world| be the total number of all MPI processes. Let |groupi| be the

number of processes assigned to a group (or communicator) working on a major partition

Pi . |groupi| should be:

|groupi| =
|Pi|�

NP−1�
j=0

|Pj|
� × |world| (3.2)

The non-uniform point distribution problem can also be solved by applying the tra-

ditional producer-consumer model to single-master TIPP. In a given stage of Delaunay tri-

angulation, the master process waits for worker requests, responding with new work items

until no more work is available. Workers that finish partitions quickly are able to request

more work from the master immediately, rather than wait for their busier peers to finish.

The master node is responsible for keeping track of all independent partitions available for

processing.
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3.3 Experimental Results

We tested TIPP on a cluster running on the Chameleon Cloud Testbed [20]. Our

storage node had two Intel R� Xeon R� E5-2650 v3 processors @ 2.30GHz, 64GB RAM and a

2TB HDD. Dedicated worker nodes had two Intel R� Xeon R� E5-2670 v3 @ 2.30GHz processors

(16 cores total), 128G RAM and a 250GB HDD. All nodes ran 64-bit Linux.

We use 2D datasets that are generated from the Qhull utility [8, 9]. Point coordinates

are generated on the range [0, 1] and converted from text into binary representation for speed

and storage efficiency. The point coordinates are separated into partitions in the domain

and sorted by x coordinate. The size of the datasets ranges from 250 million points (roughly

500 million triangles) up to 2000 million points (around four billion triangles). Section 3.3.2

also describes performance for a 10 billion point triangulation. In all cases, there are no

obstructions such as airplane wings or similar objects, and points are evenly distributed

throughout the domain, except where otherwise noted.

3.3.1 Performance

The performance of TIPP depends on the dataset size (number of points in the

domain), number of partitions, number of compute nodes, and the performance of each

node. Figure 3.4 shows the execution times of TIPP with different numbers of partitions.

The execution time of the the master node is shown as the darker region at the base of

each bar. The middle bar in each graph shows the best performance, while finer and coarser

partitionings perform less well overall.

Indeed, there is a trade-off between the granularity of the partitioning and the overall

performance. Coarse–grained partitionings improve the speed of the master, because fewer

partitions means fewer triangle–partition intersection tests are required. However, coarse

partitionings hurt triangulation performance on the worker side because large partitions are

not as effective in reducing the scope of point-circumcircle search. Coarse partitionings also

exacerbate the effects of poor load balancing. Conversely, fine–grained partitionings burden
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Figure 3.4. Execution times for 10 nodes executing 256 processes. The left column shows results for
single-master TIPP while the second column shows multi-master results. For both implementations,
four different datasets (250M, 500M, 1000M, and 2000M points) were used, each having a uniform
point distribution. For each dataset, we show results for different partitioning granularity. For the
multi-master case we write n2 ×m2, where n2 denotes the major partitioning, and m2 denotes the
minor partitioning. Each bar represents the execution times of the master computation (lower),
worker and sub-master nodes (upper), and master write (middle).
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the master node while improving computational performance on the workers.

However, computation on the workers is not the only factor affecting performance.

The results shown in figure 3.4 were generated using TIPP implementations in which the

master node is solely responsible for reading and writing data files. Data must be distributed

to the workers and results collected once complete, so they can be written to disk. The

read/write and data collection costs depicted in figure 3.4 grow quickly as the problem size

increases, hurting scalability. For this reason, we chose to employ Ceph[96], a well-known

distributed filesystem suited for scientific computation. Results shown in the figures following

figure 3.5 reflect performance of TIPP leveraging Ceph for file I/O.

Figure 3.5. Performance of multi-master TIPP relative to single-master TIPP, excluding I/O. (a)
Speedup for both master and workers (256 total processes). (b) The percentage of total execution
time due to the master for 1B triangles, for both multi and single-master TIPP.

From the execution times presented in figure 3.4, we also measure the speedup (see

figure 3.5.a) of multi-master over single-master TIPP over 4 different dataset sizes, separating

results for master and worker. Speedups were computed by comparing the best cases of multi-

master TIPP with the best cases of the single-master version. The speedup ranges from 3.4

to 4.8 for master performance. Since we divide the domain into two levels of partitions in

multi-master TIPP, the master is burdened by a much smaller number of partitions, reducing
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master execution time.

The worker processes in multi-master TIPP also demonstrate superior performance.

The reason is that the update procedure in the multi-master version is performed in parallel,

while single-master TIPP must perform this task in serial fashion if the number of inde-

pendent partitions is greater than the number of processes. The update procedure includes

collecting boundary triangles and preparing active minor partitions for the next stage, so it

has significant communication and computational components. On the right side of figure

3.5, we compare the percentage of total execution time spent on master tasks for both single

and multi-master TIPP. This percentage grows much more rapidly in the single-master case,

causing reduced performance not only because of resource contention on the master, but

because workers sit idle waiting for work.

Figure 3.6. The scaling behaviors of multi-master and single-master TIPP for five datasets from 500
million to 4 billion triangles on 10 compute nodes. (a) The execution times of single-master TIPP
(b) The execution times of multi-master TIPP. (The horizontal and vertical axis are logarithmic).

Figure 3.6 shows the effect of an increasing number of processes on overall execution
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Table 3.1. Execution time (seconds) for master and worker processes of single and multi-master
TIPP for 10 billion points (or 20 billion triangles) on 10 nodes, 256 processes.

TIPP versions master worker total

single-master TIPP 718 2897 3615

multi-master TIPP 110 1461 1571

time for different dataset sizes in both single-master and multi-master TIPP versions. For

each dataset size, we choose the partitioning with best performance from figure 3.4. The

results indicate that multi-master TIPP is faster for a given problem size, and improves

scalability compared to the single-master version, since the master node is no longer a bot-

tleneck.

3.3.2 Processing a Large Dataset

With Qhull [8, 9] we can generate at most two billion points in the domain. However,

in order to produce even larger test cases, we can replicate points in a sub-domain to adjacent

sub-domains. All sub-domains are joined together into one large domain. Similarly, we also

generate a large number of random points in a domain by generating random points in a

partition, then replicating these points to all partitions in the domain. We check the resulting

dataset to make sure there are no duplicate (or very close) points.

In our experiment, we triangulate a domain with 10 billion points and generate

roughly 20 billion triangles on a Chameleon cluster with 10 nodes. The domain is divided

with a [256× 256] partitioning for the single-master TIPP version and [32× 32]× [16× 16]

for the multi-master version. We ran the experiment using a cluster with 10 nodes and 256

processes.

Table 3.1 presents the execution times of single-master and multi-master TIPP ver-

sions. The speedup of the master process in the second version over the first version is

roughly 6.5 times. A major reason for the improvement is the coarseness of the partitioning

used by the master process. Single-master TIPP uses a 256×256 partitioning on the master

node, compared to a 16× 16 major partitioning for multi-master TIPP. Because the initial
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mesh is built by selecting a similar number of points from each partition, the coarse par-

titioning used by multi-master TIPP results in a coarser initial mesh. In turn, the coarser

mesh reduces the cost of identifying independent partitions, leaving a larger portion of work

to be parallelized over the sub-master processes.

The total execution time is under half an hour for 20 billion triangles using only 10

nodes. We expect multi-master TIPP to make even larger meshes feasible even on commodity

machines.

3.3.3 Load Balancing

In this section we conduct an experiment on non-uniform point distribution from a

real-world dataset used for real-time storm surge prediction on the North Carolina coast

[64] (see figure 3.7). The original mesh consists of 31,435 points, but we added points to

the dataset while maintaining a distribution of points that is similar to the original. We

produced four different sizes, resulting in 125, 250, 500 and 1000 million triangles. All tests

were run with 10 nodes.

Figure 3.8 presents TIPP performance with uniform and non-uniform point distribu-

tion using 10 nodes.

For the uniform case, figure 3.8(a) shows that the multi-master implementation out-

performs the single-master version by nearly 3× due to the distribution of master load onto

several sub-masters. More generally, the trend as data size increases implies that multi-

master TIPP scales better than the single-master version with regard to data size. We found

similar behavior in figure 3.6.

For the non-uniform case shown in figure 3.8(b), multi-master TIPP shows much

less improvement over the single-master version, due to the lack of effective load balancing.

Figure 3.7 shows significant empty areas in North and South America in which there is

no work to perform, while other areas have a much denser concentration of points. The

figure also shows the relative size of the (major) partitions used by each version. Since
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the major partitioning is uniform, some partitions contain huge numbers of points, while

others have none. Since multi-master TIPP uses the same number of processes per major

partition, load balancing is clearly poor. It is even worse than the single-master case for

two reasons. First, the use of a coarse major partitioning increases the difference in load

between partitions. Second, because the allocation of processes is the same for all major

partitions, lightly loaded partitions finish very quickly, while heavily loaded partitions take

much longer. Early finishers must wait until the other sub-masters have finished in order to
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Figure 3.7. The ADCIRC Mesh. An example of a dataset with non-uniform point distribution.
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Figure 3.8. TIPP performance using 10 nodes, 256 processes (a) uniform and (b) non-uniform
point distributions. (The horizontal axis is logarithmic).

contribute further to the triangulation.

To address this problem of load-imbalance, we implemented the adaptive version

of the multi-master code, as described in section 3.2.2. Figure 3.8(b) shows a dramatic

improvement in execution time. As shown in figure 3.1, this method varies the resolution of

the minor partitionings within each major partition. Major partitions with a large number of

points get subdivided into finer sub-partitionings, meaning they are assigned a larger number

of processes. Conversely, lightly loaded partitions will be assigned only a small number of

processes. The overall effect is to apply computational resources proportional to load in

different areas of the domain. Although this method is adaptive, it is still a static load

balancing strategy, since the load is divided up before starting the computation itself.

We also evaluated the effectiveness of dynamic load balancing in the form of a simple

producer-consumer implementation with a single master, as described in section 3.2.2. The

motivation is to address the problem of “stragglers” when processing partitions in shifts. As

described in section 2.3.2, when the number of independent partitions is greater than the

number of processes, we must schedule partitions in several shifts on the available processes.

54



If one partition takes longer than the rest of the shift, the plain single-master implementation

waits until that straggler is finished before giving other processes in the shift more work.

The producer-consumer implementation allows individual processes in the shift to request

more work without waiting for stragglers to finish. Results in figure 3.8(b) show modest

improvement over the plain single-master case. The adaptive static approach proved to be

much more effective.

3.3.4 The Tess System

Like our own work, the Tess system performs distributed Delaunay tessellations, and

can handle extremely large input sets [72, 60, 59]. Tess is targeted to 3D tetrahedralizations

running on supercomputer hardware such as IBM’s BlueGene/Q and the Cray XC30. Tess

can decompose the input set using either a regular partitioning for balanced point distribu-

tions or a kd-tree for unbalanced datasets. In either case, the points belonging to each block

are tessellated using an existing tool, either qhull [8] or CGAL [19]. After each block has

performed an initial tessellation, points that may affect neighboring blocks are exchanged.

Local tessellations are then updated with the newly received points. This process is repeated

until no blocks exchange any more points.

The result of the initial tessellation is a set of disjoint tessellations, rather than a single

global tessellation that spans the domain. Subsequent rounds will refine the tessellation

until the global mesh satisfies the Delaunay property. During this process, Tess keeps mesh

data in memory on the compute nodes, assuming that the aggregate memory available in

a supercomputing environment is sufficient to hold the dataset. In contrast, TIPP can

process partitions in shifts, so it does not the require aggregate capacity necessary to hold

the complete dataset.

Tess and TIPP differ in their approach to communication. TIPP sends a few large

messages between (sub)master and worker. Tess workers communicate directly, sending

relatively small messages when exchanging points with neighboring blocks, avoiding the
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Figure 3.9. The scaling behavior of total execution time, including tessellation and data I/O costs
for (a) multi-master TIPP and (b) Tess[60] on 32 compute nodes. (The horizontal and vertical
axes are logarithmic).

contention seen in single-master TIPP. Supercomputing environments such as BlueGene have

very high performance interconnects, so latency costs due a large number of communications

are minimized. However, clusters of commodity machines connected via less exotic networks

are far more common in institutional and cloud computing. In these environments, the Tess

design may suffer from network contention and increased latency. On BlueGene/Q, the Tess

authors report a strong scaling efficiency of 32% for the tessellation phase (no I/O), using

a regular decomposition of 1 billion points. We repeated this test on a 32 node cluster

connected via 1Gbps Ethernet, provided by the Chameleon Testbed [20]. We found strong

scalability of only 21%, reflecting the higher overhead costs of the cluster environment.

On the same platform, we observed strong scaling efficiency for TIPP’s tessellation phase

to be 45%, but since Tess works in 3D, the numbers are not directly comparable. A 3D

implementation of TIPP is an avenue for future work.

Figure 3.9 shows the results of a scalability study for both TIPP and Tess, running
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on a cluster hosted on the Chameleon testbed consisting of 32 compute nodes and 9 Ceph

storage nodes. TIPP results rely on Ceph, while Tess handles I/O on its own. However, the

cause of the poor scalability in figure 3.9b is likely not I/O, but communication overhead. On

commodity hardware, network latency is simply too high to support many small messages.

TIPP scalability fairs better with high process count for two reasons: the 2D case inherently

requires less communication than 3D, and the TIPP design aggregates the communication

that is required.

3.3.5 Chapter Summary

In this paper, we improved the original single-master TIPP algorithm (present in pre-

vious chapter) by introducing parallelism at two levels, distributing the burden of the master

node across several sub-masters. Multi-master TIPP shows significant gains in performance

over the previous version.

We also implemented both static and dynamic load-balancing strategies to address

non-uniform point distribution. Although a producer-consumer implementation shows im-

provement over the original TIPP, a static adaptive strategy demonstrated the most signifi-

cant gains over all.

One avenue for future work is to augment the existing implementation to produce ad-

ditional information convenient for topological navigation of the computed mesh. Although

our geometric approach has proven convenient for generating the mesh in parallel, as well as

geometric queries, support for topological queries would be a useful addition.

Along these lines, we envision a distributed query engine that would take advantage

of the triangulated mesh. Such a system might not gather triangulation results back to

the master nodes, but instead leave this data on the workers, making it available to answer

queries on unstructured datasets at unprecedented scale.
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CHAPTER 4

ACCELERATING RANGE QUERIES FOR LARGE-SCALE UNSTRUCTURED

MESHES

Unstructured meshes are essential to certain fields of engineering and science, but

they present special challenges for efficient access and processing. The work described in

this chapter accelerates range queries for very large unstructured meshes using the GPU.

Prior work in the area introduced a preprocessing phase that partitions large unstructured

meshes in order to improve locality in storage and memory.

Here, we apply the computational power and bandwidth of GPUs to the partitioning

problem, significantly reducing preprocessing time. In order to keep the GPU busy, we

have to overcome the poor locality of the original unstructured mesh. Toward this end, we

developed our own approach to unstructured mesh I/O, called Direct Load. We show that

Direct Load significantly outperforms a typical LRU cache. Our ultimate goal is to accelerate

range queries. Our preprocessing steps allow us to parallelize range query processing with

relatively simple GPU code.

4.1 Background

Spatial scientific data is a general term that often is classified into two types of data:

structured and unstructured meshes. Structured meshes follow a regular pattern throughout

the dataset domain, while unstructured meshes contain points that are arbitrarily distributed

in space. Because of their irregular nature, unstructured meshes are very flexible, but also

much more difficult to process efficiently.
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4.1.1 Data Structures

Unstructured meshes are a collection of non-overlapping cells, usually triangles (in

2D) or tetrahedra (in 3D). Such cells are called simplices or simplicial cells, meaning that

they use the fewest number of vertices to form a closed region in space.

The data structure of unstructured meshes can be organized into several files. The

first file, known as a cell file consists of tuples of indices into the vertex file. One triangular

cell require three vertexIDs while a tetrahedron needs four. The vertex file contains all data

associated with vertices, including tuples of coordinates. There can be many attributes of a

vertex, for example, in a weather application the attributes might be temperature, humidity,

pressure, etc. In figure 4.1, cell 200 has three vertexIDs (1, 300, 2999) pointing to three

coordinates (0.75, 0.53), (0.25. 0.95), and (0.45, 0.78) respectively.

Figure 4.1. Data structure for unstructured meshes. Cell 200 has three indexes 1, 300, and 2999
in vertex file

4.1.2 Owner and borrower cells

Partitioning datasets into partition elements is an effective general-purpose technique

for improving access to unstructured datasets. However, one of the problems of partitioning

unstructured grids is cells that span partition element boundaries, causing duplication of
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cell data [79, 1, 3, 2]. To solve this duplication problem, Akande et al. [1] used the owner-

borrower scheme to store attributes of a cell uniquely. In this scheme, a cell can intersect

with one or more partition elements in the domain space, but only one partition is chosen

as the owner, while other intersecting partitions are the borrowers. Figure 4.2 presents an

example of 8 partition elements with 4x4 partitioning resolution. The empty and shaded

triangles are owner and borrower cells respectively.

Figure 4.2. 2D partition element 0 to 7 of 4x4 partitioning for 2000 cells. Black and blue triangles
are owner and borrower cells. There is no borrower cell at partition element 0.

4.1.3 The partitioning process

Partitioning spatial datasets is a method to split the domain space into many smaller

partition elements. Figure 4.2 shows 8 partition elements out of a total of 16. Based on

the partition element positions in domain space, cells that are nearby and located inside a

partition element will be grouped together and stored to a file on disk. Partitioning methods

have been applied widely for decades [83, 82, 84, 102, 80] as effective techniques for solving big

data problems, especially for multidimensional data. After reorganization, the partitioned

datasets will have significantly improved locality, and therefore gain overall performance.

Moreover, partitioning is a solution for breaking down the large datasets and distributing

them over a set of cloud or cluster machines.

60



4.1.4 Caching

Caching is a well-studied technique for accelerating access to data. Caches maintain

a collection of cache blocks that each hold a copy of some subset of a larger dataset. Because

the cache is quicker to access than the underlying dataset, query performance is enhanced

whenever the cache contains the requested data.

Caches work by exploiting two different types of locality in an access pattern. Spatial

locality refers to multiple accesses to data items that are nearby in the dataset. An access

pattern with good spatial locality benefits from a cache because the same cache block can

satisfy several nearby accesses. Temporal locality refers to multiple accesses to the same data

item over time. As long as the block containing that data item remains in the cache, an

access pattern that requests the same item repeatedly will benefit from the cache’s quick

response time.

An access pattern with poor temporal locality will cause the cache to discard a block

before it is reused. Correspondingly, an access pattern with poor spatial locality will fill

the cache with blocks that are widely separated in space, and are not reused before being

discarded. In either case, the result is cache pollution [103], meaning that the cache is filled

with information that will not actually be used.

The degree of cache pollution is partially dependent on factors such as the size of

the cache blocks, and also on the replacement policy, which governs which block is evicted

when more space is needed in the cache. A very common example is the Least Recently Used

(LRU) policy [88], which discards the cache block that was accessed least recently. In any

case, changing the replacement policy or cache block size cannot help in cases where the

access pattern has little or no locality. In such cases, pollution is inevitable, and caching

may even hurt, rather than help, performance.

Cache pollution results from the assumption that future accesses can be predicted

from a current access to the cache. The cache loads data “on demand”, in response to a

query, in the hope that the extra data read into a cache block will be used in the near future.
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For access patterns with poor locality, this gamble does not pay off, and the cache only

increases the volume of data read from file.

One of the goals of this paper is to demonstrate an alternative to straightforward

caching that takes better advantage of available information to handle the challenge of read-

ing from the vertex file of an unstructured mesh. Since this file has extremely poor spatial

locality, we should use the information in the cell file to help manage how vertex data is ac-

cessed. In section 4.3.1, we describe Direct Load, our proposed solution to the I/O problems

of unstructured meshes. Direct Load is not a caching method, and therefore has no need for

a replacement policy. Most importantly, it makes few assumptions about the access pattern

used when reading data from the vertex file.

4.2 Motivations

Our goal is to accelerate both the partitioning process and the response to range

queries made by end users. Because we focus on large datasets, both tasks present perfor-

mance challenges, which we further explain in this section.

4.2.1 Partitioning Performance Breakdown

The partitioning process consists of three phases: load, process, and update. The load

phase reads cells and corresponding coordinate data from files into memory. The process

phase distributes cells and their corresponding data to the appropriate partition elements.

The update phase simply stores cells, coordinates and attributes into partition files. Figure

4.3 shows the proportions of these three phases to the overall execution time of the partition-

ing process in which we use the best results of LRU for the loading phase. The particulars

of the testing environment are described in section 4.5.

Figure 4.3 presents the execution times of phases in which the load phase proportion

increases as the dataset size becomes larger. The load phase is therefore an obvious candidate

for improvement. Load often has a relatively high cost due to the scattered locations of cell

vertices in the vertex file. Since cell vertices are often far apart in the file, reading cell
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Figure 4.3. The proportion of load, process, and update execution time with different 2D dataset
sizes

vertices requires several separate read operations, not just one. To address this problem,

we first tried using an LRU cache to store and reuse data loaded from the vertex file. We

also developed a new approach, Direct Load, which shows substantial improvement over the

LRU implementation. Section 4.3 describes this method in detail.

The other major partitioning cost is the Process phase, in which cells are associ-

ated with the partitions with which they intersect. This requires triangle-rectangle (2D)

or tetrahedron-cuboid (3D) intersection tests, which are expensive. However, we can use a

cheap rectangle-rectangle or cuboid-cuboid test with the cell’s bounding box to vastly reduce

the number of expensive intersection tests. Nonetheless, the sheer volume of cells is a natural

candidate for the bandwidth and computational power of the GPU.

4.2.2 Range Queries

Scientists often query attribute data in an arbitrary rectangular area or cuboid volume

(i.e. range) within the domain space. Instead of only collecting attribute data from cell

vertices, it is often useful to resample the data at regular intervals within the specified

range (see figure 4.7). For each point in the resampling, we must first determine which cell
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contains the point using an intersection test, and then interpolate new data values from the

relevant cell. Both the intersection test and the interpolation contribute significantly to the

execution time of the range query. The performance results in table 4.1 show that range

query execution times are sensitive to the number of query points, indicating that a highly

parallel GPU implementation of range queries will be fruitful.

Table 4.1. Range query time of domain for 2D and 3D datasets

Number of query points in a partition 25 36 64 144

Range query on CPU, 2D (seconds) 42.84 57.88 94.05 200.89

Number of query points in a partition 1 8 27 64

Range query on CPU, 3D (seconds) 39.1 128.02 396.4 879.4

For large range queries that are too large to be processed in-core, we must process

the data in a piecewise fashion. Fortunately, the original dataset has been restructured

into convenient partition elements that significantly simplify I/O. Range query performance

is further improved by the parallelism of the GPU, but a major motivation of our work

is to allow the query code to be as simple as possible. After all, the partitioning process

is performed once, but users will present queries repeatedly. Other geometric queries for

scientific mesh data, such as those listed by Lee, et al. [49], should also benefit from the

data reorganization, though we focus only on range queries in this paper.

4.3 Preprocessing datasets

The unstructured datasets used by scientists can be very large, often with hundreds

of millions of cells. Since we cannot read the entire dataset into memory for partitioning, we

instead load subsets of the cell file into memory in a piecewise fashion. We call this subset

a chunk. For each cell vertex index in a chunk, we must also read its coordinates from the

vertex file. Each vertex index in the chunk points to a coordinate record in the vertex file

(see figure 4.1 or 4.4.a). The cells in each chunk can then be further processed for classifying
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into the partitions to which they belong.

4.3.1 Direct Load

Loading vertex data presents a performance challenge because of poor locality. The

vertexIDs of a cell may refer to coordinates that are far apart in the vertex file, which will

likely hurt performance by incurring separate read operations for each cell vertex. In this

case, cache methods (such as LRU) do not work effectively. Large numbers of blocks that

would have been reused are discarded, while non-reused blocks are retained.

Figure 4.4. Direct Load method. Each item in cell array is vertexID, three vertexIDs form a cell
sequentially. The vertex array consists of coordinate and attribute data for vertexIDs. (a) Read
vertex array from vmin and vmax indices. (b) Gaps are unneeded segments where their distances are
larger than vertex memory threshold M. (c) bitmap contains active (shaded rectangles) and inactive
segments.

In this section, we developed a new approach to the locality problem called Direct

Load (DL) which reduces the number of read operations made to disk. DL is not a caching

algorithm, and does not require a replacement policy. Instead, we see DL as a prefetching
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algorithm that avoids reading unnecessary vertex data using prior knowledge extracted from

the cell file.

The main idea is to read as much data as possible from vertex files and reduce the

number of read operations. Because not all of these coordinates are required by the cells, we

copy out only those that are needed. The final result is a flattened version of the original cell

file subset, in which each vertex index has been replaced with the corresponding coordinate

values (see figure 4.5.b). Figure 4.4.a presents DL in the simplest case, where enough memory

is available to read the vertex data for an entire chunk of cells. However, if memory is scarce,

or the gaps between vertexIDs are too large to fit into the available memory, we must perform

more than one read, rather than one large one.

In order to improve the performance in this case, we can increase the amount of useful

coordinate data contained in each read by skipping over large regions (at least M vertices)

that contain no required vertices.

Figure 4.4.b shows the case where a set of vertices are separated by significant gaps

of unneeded data. To skip unneeded segments in the vertex file, we design a bitmap array

(bitmapArr) to reduce the number of read operations. Each bit of the bitmap refers to

a corresponding segment of contiguous vertices in the vertex file. The bitmap labels each

segment as either active or inactive. A segment is called active if it contains coordinate data

needed by a cell while inactive segments will not have any references pointing from vertexIDs

in cellArr (i.e. a chunk). Inactive segments are skipped to save reading time. Figure 4.4.c

shows several skipped regions of inactive segments.

The Delaunay triangulation algorithm reads segments of coordinate data from the

vertex file and copies needed data to the result array (coorArr). Because only needed

segments are read and the number of read operations is far less, DL performance is much

faster than LRU. Algorithm 4 presents in detail how DL works. First, we load a subset

[vertexIDmin . . . vertexIDmax] of vertices from the vertex file into temporary buffers (buff )

using one or more reads (see figure 4.4). Then, we copy needed coordinate data from the
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Algorithm 4: Direct Load read a subset of coordinates from vertex file based
on vertexIDs in a chunk (cellArr)

Input: cellArr is the array of vertexIDs, M is the number of vertices threshold or
memory threshold, verFile is vertex file

Output: coorArr (coordinates Array)
1 verIdmin ← min(cellArr);
2 verIdmax ← max(cellArr);
3 chunkRange = verIdmin . . . verIdmax;
4 if �chunkRange� ≤ M then
5 buf ← readF ile(verF ile, chunkRange);
6 for i ← 0 . . . �cellArr� − 1 do
7 coorArr[i] ← buf [cellArr[i]− verIdmin];
8 end

9 else
10 bitmapSize ← ��chunkRange�/M�;
11 Generate bitmapArr[bitmapSize] where each item is corresponding to a segment

with length M
12 segmentIDs ← 0 . . . bitmapSize− 1;
13 for each segID ∈ segmentIDs do
14 if bitmapArr[segID] is active then
15 firstVerId ← segID ×M + verIDmin;
16 lastVerId ← (segID + 1)×M + verIDmin;
17 verRange ← {firstV erId . . . lastV erId};
18 buf ← readF ile(verF ile, verRange);
19 for i ← 0 . . . �cellArr� − 1 do
20 verId ← cellArr[i];
21 if verID ∈ verRange then
22 coorArr[i] ← buf [verId− firstV erId];
23 end

24 end

25 end

26 end

27 end

buffers to the coordinate array (coorArr). If the subset to be read from the vertex file is too

large to fit into the available memory, we divide it into a number of segments of size M and

read each segment one at a time. The advantage of this method is that we do not read a

segment more than one time, so segment memory can be reused. Moreover, the segment size

can be as large as the vertex memory threshold M. Therefore, the number of read operations
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is reduced significantly.

Figure 4.5. Data organization before and after loading data using DL or LRU of 2D datasets. (a)
The original data organization of cell and vertex arrays. The values vi in rectangles of cell array
are vertexIDs, and the indices outside rectangles are cell indices. (b) Coordinate array after loading
data using either DL or the LRU cache. The values inside small rectangles are coordinates, and
the values below the rectangles are cell indices. The coordinate array now contains all coordinates
needed for each cell in a very localized manner.

The key difference between LRU and DL is the number of read operations from the

vertex file. In case the vertex data is too large to fit in the available memory, the DL method

only reads �chunkRange�/M times to load coordinate data for a chunk cellArr. Since M is

relatively large, the number of reads is quite small. On the other hand, in the LRU method,

the number of reads depends on cache block size, the number of blocks, and the number of

gaps in the vertex file. The number of reads increases if cache size is limited. We will give

details of our LRU implementation and the performance of both methods in section 4.5.A.

4.3.2 Partitioning operations on the GPU

The Owner-borrower representation of unstructured meshes divides an unstructured

mesh into a set of partitions that vastly improve locality [79, 2, 1, 3]. Adapting this par-

titioning scheme to run efficiently on a GPU presents challenges, largely due to the GPU’s

SIMD (single instruction multiple data) architecture. We do not know ahead of time how
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many cells will be given to each partition, and the GPU cannot dynamically allocate mem-

ory, so predetermining adequate memory space is a particular concern. Along similar lines,

we must accommodate a potentially different number of cells for each partition, but cannot

use the dynamic data structures available on an ordinary CPU. In this section, we present a

GPU version of the original owner-borrower algorithm.

Algorithm 5 loads successive chunks of cells from the cell file, processing the file in a

piecewise fashion. If a chunk is larger than GPU global memory, that chunk will be split up

into sub-chunks and each one processed on the GPU sequentially. For the cells in each chunk,

we must determine the partitions they intersect with, and also which of those partitions is

the cell’s owner, and which are borrowers. Each cell has exactly one owner, but may have

several borrowers.

Having loaded a chunk of cells, we next use the GPU to compute the bounding box

for each cell, and then map that bounding box to a set of intersecting partitions. Because the

bounding box is axis-aligned, this is an arithmetically simple operation. It is also embarrass-

ingly parallel and well suited to the GPU. For each cell, we count the number of partitions

the cell’s bounding box intersects with. After all cells in the chunk have been processed, we

sum the counts to produce N , the total number of cell-partition intersections found within

the chunk. Along with K, the number of cells in the chunk, we now have enough information

to allocate space for two GPU arrays: the owner array requires K elements, since each cell

in the chunk has exactly one owner, while the borrower array requires no more than N −K

elements. We know this because K of the N intersections must correspond to owner parti-

tions, since each cell has one owner. Therefore N −K intersections will either correspond to

borrower partitions, or perhaps to partitions that intersect with a cell’s bounding box, but

not with the cell itself (i.e. false intersections).

The next task is to eliminate false intersections by doing a true cell-partition inter-

section test for each cell in the chunk, and also determine the owners and borrowers for

each cell. This test is much more expensive than the bounding box intersection and bene-
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Algorithm 5: Partitioning unstructured meshed into partition elements

Input: cellFile, coorFile (coordinate), set of partitions P
Output: Owned and borrowed cells for partitions in P

1 for each chunk Ci ⊂ cellF ile do
2 On CPU:
3 coorArr ← loadDirect(Ci, coorF ile);
4 On GPU:
5 for each cell cj ∈ Ci do
6 nj ← count(map(P, boundingBox(cj));
7 end
8 On CPU:
9 N ← �

nj;
10 K ← count(Ci); //number of cells in Ci

11 Allocate ownArr[K], borrArr[N-K], borrId[K]
12 borrId[0] ← 0;
13 for each cell cn ∈ Ci, except c0 do
14 borrId[cn] ← borrId[cn − 1] + nj − 1;

15 end
16 On GPU:
17 for each cell ck ∈ Ci do
18 Pb ← map(P, boundingBox(ck));
19 for each partition pl ∈ Pb do
20 if ck.containedBy(pl) then
21 ownArr[ck] ← pl;

22 else
23 if ck.intersects(pl) then
24 if ownArr[ck] == ∅ then
25 ownArr[ck] ← pl;
26 else
27 borrArr[borrId[ck]] ← pl;
28 borrId[ck] ← borrId[ck] + 1;

29 end

30 end

31 end

32 end

33 end
34 On CPU:
35 for each partition pm ∈ P do
36 Extract cells, coordinates, and attributes to datam from ownArr, borrArr,

coorArr
37 append(datam, partitionF ilem);

38 end

39 end
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fits significantly from parallel execution. Because each cell may have an arbitrary number

of borrowers, we use a borrowerIndex array that records the index in the borrower array

where the list of borrowers for a given cell begin (see figure 4.6). Because we know how many

bounding box intersections involved each cell, we can initialize the borrowerIndex array to

provide enough space for each cell’s intersecting partitions (see line 13 in algorithm 5).

Figure 4.6. Owner, Borrower, Borrower Index arrays in the GPU memory. The numbers inside
the squares of the Owner and Borrower arrays are partition IDs. The numbers inside squares of
the Borrower Index array are indices into the Borrower array, keeping track of Borrower data for
each cell.

The GPU next iterates through the set of partitions that intersect each cell bounding

box, and determines each such partition to be either the owner, a borrower, or a false

intersection. The owner is always the first truly intersecting cell encountered during the

iteration, and is recorded in the owner array. Other intersecting cells are recorded in the

borrower array via the borrowerIndex described above.

It now remains to write the owner and borrower information for each partition out

to file. However, the GPU arrays are organized by cell, rather than partition. Beginning

at line 35, algorithm 5 reorganizes the owner and borrower arrays, and then writes data

corresponding to each partition out to the corresponding files.

The GPU portions of algorithm 5 run with one thread per cell, and no communication

or synchronization between threads is required. For best performance, threads should each

process a similar number of cell-partition intersections because of the lockstep execution
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model of SIMD. Otherwise, all threads in a group will have to wait for the busiest thread to

complete. For our algorithm, if the partition size is reasonably large compared to cell size,

most cells fall within the interior of the partitions, so corresponding threads have a similar

workload (see line 20 of algorithm 5).

4.4 Range Queries

A user can specify a range query by giving an axis-aligned bounding box (AABB) and

delta values for each dimension. We express the bounding box as two points in the domain,

corresponding to lower and upper corners of the box. Delta values are used to step through

the volume described by the bounding box, generating a grid of sample points along the

way. In effect, these delta values allow the user to specify the resolution of the range query.

Figure 4.7. 2D range query. The shaded rectangle is the bounding box. The intersections are from
I0 to I11

Figure 4.7 shows the relationship between the dataset partitioning and the range query

itself. We can easily map the query bounds to the partitioning, finding the partition elements

that intersect the bounds. In some cases, the partition elements are entirely contained in

the query (I5 and I6 in figure 4.7), while in others the query bounds intersect only a portion

of the partition. In either case, we compute the set of sample grid points corresponding to

each partition, load the relevant data, and launch a GPU kernel to perform the bulk of the
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computation. The data relevant to each partition includes not only the attribute data for

cells owned by a partition, but also cells borrowed by a partition.

Finding the cell that contains a sample point is an essential part of satisfying a range

query. To find this cell, we must examine each cell in a partition using a moderately expensive

geometric test [48, 4]. Once the containing cell has been determined, we must compute

interpolated attribute values from the data associated with the cell vertices. Because this

process must be performed for every sample point in the grid, range queries are particularly

expensive. Table 4.1 shows the range query running times of 2D and 3D datasets. The range

query times increase significantly when the number of sample points increases.

We expect that the number of cells will typically be greater than the number of grid

points, so we parallelize over the set of cells instead of the set of points. Each thread iterates

through the given grid of sample points, and tests whether each point is contained by the

cell it is responsible for.

4.5 Experimental Results

We ran our experiments on a 64 bit Linux server with 8 AMD cores running at 4Ghz

and 32G RAM. Our AMD GPU has 3GB of global memory and 2048 lightweight cores

running at 925 MHz.

We use 2D and 3D datasets that are generated from the qhull utility [8]. For both 2D

and 3D datasets, point coordinates are generated on the range [0, 1], and then grouped into

cells using qhull’s Delaunay triangulation (or tetrahedralization for 3D). The results include

a cell file, containing the vertexIDs for each cell, and a vertex file containing the coordinates

and attributes for each vertex. The vertexIDs in the cell file are indices into the vertex file.

We convert both files from text to a binary representation for speed and storage efficiency.

The 2D dataset contains over 30 million triangular cells while the 3D data consists

of 67 million tetrahedral cells. We evaluated both an LRU cache and our own DL method.

For fair comparison between the two approaches, we restrict the number of vertices held in
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memory to be no greater than a vertex memory thresholdM . For LRU, this value determines

the size of the cache used, while for DL, it limits the size of the buffer used for reading from

the vertex file.

We also consider the effect of the file system cache on performance. This cache is

maintained by the operating system, and is most effective with sequential access patterns,

but still somewhat affects performance in our experiments. Cold Cache results were obtained

by explicitly clearing the filesystem cache of data between runs. Warm Cache experiments

allowed the filesystem cache to accumulate data between runs.

When evaluating the performance of the partitioning step, we choose 4x4 partitions.

4.5.1 LRU Read Performance

In this section, we describe the performance of an LRU cache while reading a large

mesh. The LRU cache is implemented using both a hash table and a doubly linked list. The

list is ordered by access time, simplifying maintenance of the LRU replacement policy, while

the hash table allows O(1) access to cache blocks.

To gain insight into LRU performance, we explored the effect of changing some param-

eters. Figure 4.8 visualizes loading time for the entire 2D mesh with various combinations of

M and the number of blocks used for the cache. Note that increasing the number of blocks

also decreases their size for a given value of M . We ran this experiment with both a warm

and cold filesystem cache.

The hump along the rear plane of figure 4.8 shows that when the number of cache

blocks is relatively small, loading time is particularly sensitive to M , the overall size of the

cache. Case A of Table 4.2 yields further insight. The number of cache misses decreases as

M increases, due to the corresponding increase in block size. The competing factor is the

cost of reading larger blocks. The hump in the middle occurs because this increased I/O

cost overwhelms the benefit of a lower miss rate. It is only when blocks are much larger that

the cache is able to demonstrate a benefit (due to spatial locality) in spite of the increased
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I/O cost.

The front of the surface in figure 4.8, corresponding to 256 × 1024 cache blocks

behaves much more uniformly. Case B in Table 4.2 shows that the number of cache misses

behaves similarly to case A, but the loading time is dramatically smaller, and monotonically

decreasing with increasing M . This contrast with case A is due to the large number of cache

blocks in case B, which consequently has much smaller blocks. Each block holds data for only

a handful of vertices. That such a fine-grained cache would outperform other configurations

indicates that the access pattern has little spatial locality, and performance is best when the

I/O cost for reading a block is minimized. Indeed, it is likely that the LRU cache is often

more a hindrance than a help.

Table 4.2. Number of cache misses (×106) and load time for loading 2D vertex file in two cases:
(A) block Number = 512 and (B) block Number = 256× 210, warm cache system

Thrshld M (×220) 2 4 6 8 10 12 14

# misses (case A) 14.1 11.79 9.49 7.01 4.84 2.59 0.34
Load time (second) 264.8 413.7 490.9 484.9 413.2 267.2 47.49

# misses (case B) 13.2 11.10 8.99 6.89 4.79 2.69 0.58
Load time (second) 29.53 26.3 24.4 20.7 17.8 14.1 10.64

4.5.2 Direct Load Read Performance

Given that the access pattern presented to the vertex file has very little spatial locality,

we developed our own DL method to take particular advantage of temporal locality without

incurring the costs associated with ineffective caching.

As described in section 4.3.1, DL reads consecutive chunks of cell data from the

cell file, where each cell consists of several vertex indices pointing into the vertex file. We

can then determine for each chunk which vertices (actually segments of the vertex file) are

needed. Some vertices are needed repeatedly, but DL reads them only once for each chunk,

thus taking advantage of temporal locality.

This process starts over again for each successive chunk, so vertex data is not retained
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(a) Warm system cache

(b) Cold system cache

Figure 4.8. LRU execution times for 2D dataset with chunkSize = 128× 1024 vertices, 2D. Lower
values are better.
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(a) Load time of LRU and DLs, warm system
cache

(b) Load time of LRU and DLs, cold system cache

Figure 4.9. 2D Load performance using LRU and Direct Load

across chunks. However, DL’s ability to exploit temporal locality increases as the chunk size

is increased. Figure 4.9 shows DL performance for several different chunk sizes and varying

values of M . Larger chunk sizes significantly improve performance. The figure also shows

the performance of LRU in the best cases, which are clearly slower than DL except for

the smallest chunk size. Specifically, DL with M = 8 million vertices and chunksize =

16 million vertices is about 4 times faster than the best LRU performance for the same

value of M .

DL achieves this significant improvement by significantly reducing the number of

seeks and reads because DL reads M vertices at once, while the LRU cache divides this same

volume of memory into a large number of small blocks which must each be read separately.

At the same time, DL is able to skip over segments that contain no required vertices using

the bitmap described in section 4.3.1.

4.5.3 Performance of partitioning processes on CPU and GPU

After loading data from CPU, all vertex data (coordinates and attributes) for cells

are copied into a coordinate array (coorArr or chunk) with a relatively good locality (figure

4.5.b). This coordinate array will be processed, distributing cells to different partition ele-

ments. In this experiment, we compare partitioning process performance on both CPU and
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(a) GPU partitioning time, 2D (b) GPU partitioning time, 3D

(c) Partitioning speedup GPU over CPU,
2D

(d) Partitioning speedup GPU over CPU,
3D

Figure 4.10. Partitioning process performance of GPU over CPU (without read performance). 2D
CPU time was approximately 30 seconds, and 3D time was about 93 seconds.

GPU. First, we evaluated the single-CPU partitioning process with different chunkSizes, and

found results to be very similar. This is because partitioning execution time only depends

on the number of cells. In all cases, the execution time for the partitioning process is about

30 and 93 seconds for 2D and 3D datasets respectively.

We also implemented the partitioning process on the GPU. Since the GPU organizes

thousands of threads running in parallel, the partitioning performance improves drastically.

Figures 4.10.a and 4.10.b show the execution times of the partitioning process for both 2D

and 3D datasets on the GPU. We test with different chunkSizes from 64 × 210 to 16 × 220.

The best case happens when chunkSize is 4096× 210, but performance is not very sensitive

to chunkSize, as expected. Figures 4.10.c, 4.10.d present speedups from 6× to 8× for the

partitioning process on the GPU compared to the CPU.

4.5.4 Overall partitioning performance

In this experiment we combine all execution times of Load, Partition and Update

phases into one value. We compare the performance of two cases: Simple and Advanced.
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(a) Simple1, Simple2: loading data by LRU
method and partitioning cells on CPU. Advance1,
Advance2: loading data by DL method and par-
titioning cells on GPU with M = 16×220. (1 and
2 are hot and cold system cache)

(b) Advance1, Advance2: loading data by DL
method and partitioning cells on GPU with M =
14 × 220. (1 and 2 are warm and cold system
cache)

(c) Speedup1, Speedup2: Overall Partitioning
speedup use DL for loading data and partitioning
by GPU over the best case of Normal1, Normal2.

(d) 3D results corresponding to (a)

(e) 3D results corresponding to (b) (f) 3D results corresponding to (c)

Figure 4.11. Overall partitioning performances between Simple and Advanced cases.
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Simple uses LRU for loading and partitions the cells using the CPU. Advanced used DL for

loading, and runs the GPU version of the partitioning code.

Figures 4.11.a,.d compare the overall performance of Simple and Advanced. The

performance of Simple is sensitive to both the vertex memory threshold M and chunkSize

while Advanced performance depends somewhat on chunkSize, and very little on M.

Figures 4.11.b,.e show the execution time of Advanced over a range chunkSizes in two

cases: warm and cold system cache. The best values of Simple1, Simple2 are compared with

Advanced1, Advanced2 of figure 4.11.b,.e to get speedups in figure 4.11.c,.f

4.5.5 Range Queries

We performed several range query experiments on CPU and GPU using 2D datasets.

The range query running time is related to the number of cells and number of grid points

in a partition element. The complexity of the interpolation function also affects the query

performance significantly. In this experiment, we choose a range query bounding box covering

the whole domain space, thus, each intersection is a partition element in the domain.

We use the 2D datasets, containing over 30 million triangular cells. We test the

performance of range queries based on various numbers of grid points in a partition element

and various numbers of partition elements. The experimental results in figure 4.12 show

significant speedup over the serial version.

Assuming a fixed number of cells within the domain space, we analyze the speedup

based on the number of grid points and the number of partition elements. The CPU imple-

mentation uses a loop to iterate over the set of grid points, checking cells for containment,

and moving to the next point when the containing cell is found. The GPU implementation

has no such loop, since the computation is parallelized over the set of cells. The GPU there-

fore does more work than the CPU version, since all cells are checked simultaneously with

respect to each point. Nevertheless, the GPU takes advantage of the power of 2048 cores

running simultaneously, and the range query performance improves drastically.
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Figure 4.12. The speedup of GPU range query compared to CPU on 2D datasets

In figure 4.12, for the same number of grid points in a partition element, the perfor-

mance slightly degrades as the number of partition elements intersected by the query bounds

increases. This is because we invoke a kernel for each partition element, meaning all partition

elements in the bounding box are processed sequentially on the GPU. This problem can be

solved by making the GPU workload as large as possible. With the current implementation,

we can do this by choosing a coarse partitioning in which each partition matches the GPU’s

capacity. In future, we also hope to evaluate performance with multiple kernels processing

partition elements at the same time. This scheme will allow us to decouple the partitioning

granularity from GPU characteristics.

4.5.6 Chapter Summary

We have accelerated range queries for very large unstructured mesh datasets via the

GPU, producing very significant speedup over the serial version. This improvement requires

not only parallelization of the range query itself, but also reorganization of the original

dataset to improve locality both when accessing files and memory. We also accelerated the

reorganization process by applying GPU power to the computationally expensive intersection

tests required to assign cells to the appropriate partitions. At the disk level, we compared
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LRU cache performance with our own DL method for reading the vertex coordinates required

by a collection of cells. DL was found to be dramatically faster.
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CHAPTER 5

LOAD BALANCING FOR A LARGE-SCALE UNSTRUCTURED MESHES

Performance of mesh applications running on parallel system is significantly influ-

enced by the quality of a partitioning unstructured meshes. There are variety partitioning

approaches which are classified into two categories, topological and geometric approach.

Choosing a partitioning approach is highly specific to the unstructured mesh applications.

In this chapter, we analyze two common approaches of mesh partitioning for a range query

application and design a new algorithm for partitioning a large-scale unstructured meshes.

5.1 Background

Unstructured meshes contain points that are arbitrarily distributed in space. Because

of their irregular nature, unstructured meshes are very flexible, but also much more difficult

to process efficiently. Organizing the unstructured mesh file system and manipulating the

access pattern influence the range query performance.

5.1.1 Data Structures

The data structure of unstructured meshes can be organized into several files. The

first file, known as a cell file consists of tuples of indices into the vertex file. One triangular

cell require three vertexIDs while a tetrahedron needs four. The vertex file contains all data

associated with vertices, including tuples of coordinates and many attributes of a vertex, for

example, in a weather application the attributes might be temperature, humidity, pressure,

etc. Figure 5.1.1 presents the structure of two files.

The size of cell file is relatively far different from the vertex file. While cell file only

contains the indices, vertex file consists of all important data including coordinates and
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attributes of vertices. Assume each data size of index, coordinate, and attribute is 8 bytes.

If N is the number of attributes of a vertex, then the proportion between cell file over vertex

file is 1/(2+N) in 2D and 1/(3+N) in 3D domain. In reality, number of attributes of a

vertex can be up to twenty, therefore, with large-scale mesh data, the vertex file is very large

(terabytes).

5.1.2 Unstructured mesh access pattern

The unstructured mesh dataset basically organized into two files, cell file and vertex

file (see figure 4.1). The cell file contains only references to the second file that includes

all point coordinates and attributes. When loading a partition including multiple mesh

elements, the cell file should be read first to collect elements in term of indices. Based on the

array of indices from reading cell file, the second read will collect coordinates and attributes

of points belong to the partition. When a domain is partitioned into multiple partitions, the

only cell file is divided into multiple files.

Figure 5.1. Two layers access pattern of an unstructured mesh files. The coordinates and attributes
data of a group of cell file may not be continuously in one range.

5.1.3 Ceph- a distributed file system

The unstructured mesh data files are organized into two files, in which the vertex file

can be very large (discussed in 5.1.1) so that the storage space of vertex file can surpass

the storage capacity of a normal node in a cluster. In this case, Ceph [96], a distributed

filesystem can be an acceptable solution.
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Ceph handles data I/O for compute nodes across the cluster. It provides excellent

performance, reliability, and scalability. One of important function of Ceph is CRUSH [97].

It is scalable data distribution function designed for distributed object-based storage systems.

5.1.4 Range query

Range query unstructured meshes is a task to collect attribute data in an arbitrary

rectangular area or cuboid volume (i.e. range) within the domain space or to resample the

data at regular intervals within the specified range. Figure 4.7 is an example for a 2D range

query. The size of query’s rectangular area can be small, therefore, in this case, there is no

need to load full mesh files to memory. It means that, the mesh data should be designed in

a way that the system can only read related mesh data for a small area of range query.

5.2 Partitioning unstructured meshes

Partitioning unstructured meshes into partition elements is a work to split the meshes

into multiple regions to reduce the overall computation time in some mesh applications on

parallel environment. The unstructured mesh domain should divided in such a way to satisfy

two desirable requirements, load balancing and low communication. The workload is evenly

distributed so that the load on all processors is balance. Furthermore, the communication

cost between regions should be reduced as possible. Many partitioning algorithms have been

proposed and they can be categorized into two general classes: geometric and topological.

Choosing to use geometric or topological method is highly specific to the unstructured mesh

applications.

5.2.1 Topological methods

Topological methods partition unstructured meshes based on the connectivity of the

elements in the domain. In general, the meshes are modeled as a graph G(V,E) in which the

set of vertices V are mesh elements and set of edges E are the adjacency between elements.

The unstructured mesh partitioning is a method to split the graph into many regions where

85



each region has mostly the same amount of elements. Beside, the communication between

regions is also minimized. It means that the boundary triangles between regions are limited.

These characteristics of graph partitioning method satisfy two requirements of mesh parti-

tioning. The amount of elements for each region is mostly the same can reduce the waiting

time between processors because they mostly finish running region meshes at the same time.

Moreover, the less communication between region boundaries also reduce the communication

between processors. For these reasons, the graph-based method can be able to generate the

high quality of mesh partitioning.

Figure 5.2. Mesh partitioning with graph-based method (http :
//www.simmetrix.com/index.php/technologies/parallel −meshing).

Since graph-based method can be able to partition a mesh domain in very high quality,

it is widely used in many applications including fluid dynamic simulation, finite element

computation, aerospace dynamic, etc. In visualization, it used to partition complex objects

(see figure 5.2). A popular tool widely used for many unstructured mesh partitioning is

ParMetis [46, 45] which uses graph-based algorithms. ParMetis is MPI-based parallel library,

and works efficiently with a large-scale unstructured meshes. All partitioning regions are well

balance, however, graph-based methods do not well apply all mesh applications. Specifically,

for the applications that focus on rectangular areas in the domain such as unstructured mesh

query [65, 69, 92], the query regions are commonly represented as a rectangular shape (see

section 4.4 for more detail). On the other hand, the partitioning regions, using graph-based

methods, have arbitrary shapes which would not work very well in a small range query case,

meaning that reading the whole mesh files for a small rectangular area of range query would
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degrade performance significantly.

5.2.2 Quadtree

The quadtree [5] is a data structure that organizes data in term of tree structure,

in which each node has 4 children nodes in form of 2 × 2 squares of North-West (NW),

North-East (NE), South-West (SW), and South-East (SE).

Quadtree can be considered as a hierarchical spatial structure which each child level

corresponds to a further subdivision of the domain space. Based on the threshold argument

(highest number of mesh elements in a child quadrant) and the element belongs to a quadrant,

it can be recursively subdividing it into four quadrants or regions.

5.2.3 Geometric methods

Instead of exploiting the connectivity of topological method, geometric methods par-

tition the unstructured meshes by dealing with the location of the elements in the domain.

Many geometric approaches [37, 42, 70, 7, 100, 99, 41, 7, 101, 85, 16] have been proposed.

Space-filling or Morton curves [43, 71, 7, 41, 85, 16] are useful methods to map elements in

multi-dimensional data into one dimension and still guarantees the spatial locality charac-

teristic. It means that neighboring elements of an element in the domain are also stay close

together in one dimensional file. Morton curves (or Z-order), on the other hand, partition

with recursively splitting in four quadrants density areas in the domain into an array parti-

tions which can results from a depth-first traversal of a quadtree. Basically, both methods

are relatively similar to the way of reorganization multi-dimensional dataset into one dimen-

sion. The common advantage geometric methods is easy to implementation, however, the

partitioning quality is low. It means that the number of elements in each partition may

be far different, especially for the non-uniform data distribution. Some partitioning applica-

tions gain high quality of partitioning in term of well balancing such as binary decomposition

[11], or KD-tree [101], yet, they seem to have more interface boundary with larger influences

to communications. It may have a trade-off between mitigating the waiting time and the
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communication time.

To satisfy the partitioning requirements (load balancing and less communication),

several improvements should be made. Since the load is imbalance, fine-grained partitioning

would mitigate the load imbalance. The problem now is simplified to solve how to distribute

the workloads to the group of processors such that the total elements for each processor would

be similar [100, 99, 41]. However, fine-grained partitioning may cause the communication

between processors becomes worse. In particular, the boundary elements (triangles) on a

partition should be sent to neighbored partitions for the their computations.

To reduce the boundary element communications during the computations, our solu-

tion is to duplicate the boundary triangles for all subdivisions. This may increases the data

size, especially, it is even severely with large-scale data size and fine-grained partitioning.

One solution for saving storage is called Owner and Borrower [79, 1, 3, 2] which dealing with

the span partition element boundaries without duplication storing the boundary elements.

This can save storage space to unstructured mesh data. Nevertheless, the price to pay for

this saving is number of times of reading mesh data. To load mesh data for a partition,

instead of read once to mesh elements that belong to a partition, it has to make several

reads. The first read is to collect the Owner data, then the next several reads to get all

Borrower data which are located in other partitions. For instances, it would be extra three

reads in 2D dataset, and seven with 3D case. Figure 4.2 the shows the Owner and Borrower

elements in the domain.

This is the trade-off between storage and computation that many computer engineers

would sacrifice the storage space for better execution time. In some cases, the execution

time would be the better option. This solution can be acceptable for two reasons, first,

the hardware storage is cheaper recently, and second, the duplication seems to less heavy

because of the unstructured mesh file structures (see subsection 5.1.2). In particular, we

only duplicate the reference (indices to points) or elements (triangles) related to boundary

interface (boundary triangles) between partitions. It means that the some parts of cell
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file are duplicated, and the vertex file does not change. As describing in 5.1.1, the vertex

file stores most important information of unstructured meshes data, while cell file only

contains references, therefore, vertex file is very large for the big unstructured mesh. Hence,

duplicating some parts in cell file will not affect much.

5.3 Load balancing

A large-scale mesh applications desires a high level of parallelism to gain an accept-

able performance. The efficiency of mesh applications mostly depends on the partitioning

approaches for distribution workloads across processors. In this section, we will address how

to partitioning a large-scale mesh dataset in parallel and schedule partitions to processors

with good load balacing. As discussed in section 5.3.1, we would choose geometric method

to decompose the mesh domain such as Morton curve with quadtree (see figure 5.3).

(a) Partitioning with recursive method. (b) Morton curves

Figure 5.3. Recursive partitioning the small mesh sample of North Carolina coast. The sample
have 300 elements, and threshold = 50.
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5.3.1 Partitioning a large-scale unstructured meshes with quadtree

Partitioning an unstructured mesh domain is a method to split the domain into

multiple partitions. In particular, we use Morton curve and quadtree data structure to

divide the mesh domain into many square shape partitions. A root node containing entire

mesh domain will be recursively partitioned into multiple tree levels in which each node

contains four quadrant nodes. Each node in the quadtree consists of bounding box that

contains mesh elements. The traditional algorithm of mesh partitioning is to decompose the

condensed quadtree node that has more number of elements than a threshold. Finally, mesh

partitions that are subdivided will stay in the leaf nodes of quadtree. The middle nodes

contains only empty bounding box.

The algorithm of subdivision of an unstructured mesh with quadtree is relatively

simple, however, it needs completely mesh loading to memory for the decision of decomposi-

tion. This would become impractical for a very large unstructured meshes, which often have

hundreds of millions to billions of cells. This overflow problem can be solved with external

memory by swapping data in and out of main memory. Yet, it would dramatically degrade

performance.

In the big-data era, the power of computation for large datasets has been beyond the

serial computation. The current trend of designing and processing unstructured meshes is

moving toward parallelization. We will presents a new algorithm to partitioning a large-scale

unstructured meshes in a cluster with multiple processes running at a same time.

The main idea of the algorithm is to share the workload to many processes and let

them to recursively partition by themselves. Several steps are presented in algorithm 6. Step

1 is recursive partitioning in parallel. At first, each process reads an equally amount of ele-

ments from mesh domain which is stored in two data files (cell and vertex files) with function

readElements(E,#process)). After worker processes get their elements (setElements), all

processes run recursivePartitioning function to partition in parallel to generate their own sub

quadtrees qt. This function works recursively based on the number of elements, the bounding
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Figure 5.4. Partitioning the unstructured meshes with Z-order. (a), (b), (c), (d) are four processes.
Each process partitions one fourth of meshes. (e), (f), (g), (h) are sub-quadtrees that are generated
from processes. (i), (j) are first level merged sub-quadtrees. The last task is to merge all sub-
quadtrees into the final result.

box in the current node of the quadtree until setElements is smaller than threshold T .

Since each process partitions on a subset of total elements E, their sub quadtrees

are relatively shallow. In order to have a final result, all sub quadtrees in worker processes

should merge into a large one. This would repeat the overflow problem if all sub quadtrees

in worker processes are gathered to master process. The solution for this issue is to merge

the structure of sub quadtrees. It means that we will not gather elements in sub quadtrees

of worker processes, instead, we merge quadtree structures only. The merge is similar to the

parallel reduction problems. Instead of using basic operators and normal numbers of the

operands for the reduction, the operator in this case is merging and operands are quadtree
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Algorithm 6: Partitioning unstructured meshed into partitions using quadtree in
parallel with MPI

Input: All elements E (cells/triangles), threshold T, domain bounding box B,
number of processes #process.

Output: A quadtree contains all mesh partitions in leaf nodes.

1 Step 1: recursively partitioning with quadtree in parallel. Leaf nodes contain
elements that intersect the bounding boxes (see figure 5.4):

2 setElements ← readElements(E,#process))
3 qt ← recursivePartitioning(setElements, B, T )

4 Step 2: merge quadtree structure of qt (merge quadtree structure only, no elements
involve) in all processes into a large quadtree bigQt and update to qt in processes:

5 bigQt ← reduceQuadTreeStructure(qt)
6 bigQt ← mergeQuadTree(qt, bigQt)
7 bigQt ← moveElements(bigQt)

8 Step 3: update number of elements in all leaf nodes of the quadtree in master

process based on leaf nodes of quadtrees of all processes:
9 Step 3: update number of elements in all leaf nodes of the quadtree in master

process based on leaf nodes of quadtrees of all processes:
10 stop ← false
11 while stop == false do
12 for each leafNodei ∈ getLeafNodes(bigQt) do
13 leafNodei.�element� ← gatherElementsFromProcesses(leafNodei)
14 end
15 stop ← true
16 for each leafNodei ∈ getLeafNodes(bigQt) do
17 if leafNodei.�elements� > T then
18 leafNodei ← decompose(leafNodei)
19 stop ← false

20 end

21 end

22 end

structures. The function reduceQuadTreeStructure merges all sub quadtree structures in

processes into one big structure (bigQt) at master process. Figure 5.4 (i) and (j) shows

the first merged level. After one merged level, number of processes joining for the merging

reduces a half. The reduction would continue until the last level which has only one last

process. This process normally scheduled as master.

Other processes should have the same structure as bigQt for further updating, there-
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fore, function mergeQuadTree(qt, bigQt) should be used to merge bigQt to sub quadtree

qt in each process. Eventually, all quadtrees in worker processes have the same quadtree

structure with bigQt. After merging, some internal nodes may have elements that should

moved to leaf nodes. The moveElements function does the job based on the intersection

between triangles and the bounding boxes.

After step 2, quadtree structures in all processes are the same, the only difference

is the number of elements in their leaf nodes. The final step should combine elements in

leaf nodes in processes, specifically, for a specific leaf node of bigQT, we collect a number of

elements (�elements�) in the same leaf node but different bigQT of processes. Again, we

do not collect all elements, just find the total number elements in a leaf node because if it is

greater than threshold T , then the leaf node should be decompose one more time. The task

will repeat until no leaf nodes should be decomposed. Figure 5.3 is a example of partitioning

unstructured meshes of the North Carolina ocean with 300 elements and threshold is 50.
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CHAPTER 6

RELATED RESEARCH

In this chapter, we are going to review the previous research related to large-scale

parallel Delaunay triangulation and unstructured meshes accessing.

6.1 Parallel Delaunay Triangulation

There has been extensive research on Parallel Delaunay Triangulation as well as

out-of-core Delaunay Triangulation. However, the combination of both parallelism and out-

of-core triangulation is rare. Parallel approaches run on a single machine rather than over a

cluster.

Cignoni [26], Hardwick [40], Chen [23, 22], Blelloch [13], Fuetterling [35],and Lin [52]

employed parallel Delaunay algorithms based on the divide-and-conquer method in which an

initial mesh is recursively divided into sub-regions and each of them assigned to a processor.

These regions are further triangulated simultaneously, and later joined into one domain.

The method achieves a certain level of parallelism; however, the joining of separated regions

is challenging. This is the “stitching problem” mentioned in chapter 2.2. Since the sub-

regions have independently processed triangulation, each region must have its own convex

hull. After triangulation for each region, the triangles in the sub-regions have been updated.

The merging of sub-region triangles to form a final mesh can be quite difficult, especially if

preserving the delaunay criteria.

Some research also divides the domain into smaller regions without recursion. In-

stead, they directly divide the domain into many areas. Lo, et al. [53, 54, 55] divided the

rectangular/cuboid domain into many partitions and triangulated partitions simultaneously.
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In this case, the corners of the domain are used as the convex hull for each partition’s trian-

gulation. Since the triangulation has been processed in parallel, the performance improves

significantly. However, the joining of partitions into the final mesh still presents a stitching

problem. Smolik et al. [89] used partitioning and triangulation methods similar to Lo, et al.,

but address the stitching problem differently. However, the final mesh is not delaunay, which

is an important property for many applications, since it promotes accurate interpolation of

data values.

Conversely, the research from Remacle et al. [78] describes an incremental inser-

tion algorithm which does not assign a region to each processor; instead, they use multiple

threads via OpenMP [28] to run DT simultaneously in a shared memory environment. The

performance suffers if the cavities created by threads intersect with each other. In this case,

only one thread can update the triangles. To minimize the conflict, Remacle sorts vertices

using a Hilbert curve, and distributes points to each thread such that points from threads

are not geometrically close. Blandford et al. [12] also use OpenMP to generate a very large

3D DT using a 64 core SMT machine. They also improve DT performance using a spe-

cial data structure for facilitating DT operations. While both methods hold the dataset in

shared memory, our own work scales well beyond the limits of a single machine because of

our distributed approach.

Various parallel algorithms for incremental insertion avoid conflicts by assigning a

region of the mesh to each processor. Chrisochoides et al. [33] triangulate independent

sub-regions in parallel. The sub-regions are selected and scheduled to processors from a

refinement queue such that they do not share the same boundary tetrahedra. Hence, the

communication latency between processors is eliminated, improving performance. The algo-

rithm works well for uniform data, but suffers from poor load balancing in the non-uniform

case.

Chen et al. [24] present a method for localizing DT computation. While the serial

implementation is only half as fast as other methods, the high efficiency of the parallel
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implementation yields performance that exceeds several competing tools. However, this

method runs on a single multi-core machine, and is not applied to very large meshes.

Aside from parallelism, many studies have focused on large dataset triangulation

using out-of-core methods. Isenburg [44] reports a DT method which can process a very large

number of triangles (up to many billions) with relativey good performance. The domain is

divided into small regions and loads new partition to triangulate after the previous one is

done. There are not so many current triangles in the memory because when the last point

in a region is inserted and triangulated, a significant number of triangles are finalized. Since

these triangles do not affect the DT of other regions, they are stored in the external memory.

However, this method is limited to a single machine, with no parallel implementation.

Several researchers employ a space-filling Hilbert curve to improve locality [15, 47, 57].

For example, Kohout et al. recursively split the initial mesh into regions with the help of

a lifting transformation [36, 76]. Partitions are then sequentially triangulated and stored

to files. The final step is to merge the partitions into the final result by updating the

connectivity between triangles of adjacent partitions. This step appears to be a stitching

problem, but details are not given.

In contrast, as TIPP adds points to the triangulation, it maintains the Delaunay

property over the entire global mesh, so stitching is unnecessary. However, TIPP does this

without requiring worker processes to coordinate while triangulating, which avoids commu-

nication and contention along the partition boundaries.

6.2 Load balancing

Load balancing is an important consideration for any parallel mesh algorithm, es-

pecially when applied to non-uniform point distributions. Like our own work, the PLUM

system [67] uses a coarse initial mesh to inform the load balancing process. Many researchers

have addressed this problem using geometric partitioning methods. Campbell and Remacle

[17, 78] use a space filling curve to map points to rectangular units such that the number of
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points for each unit is roughly the same. Other studies [56, 11] use Quadtree or Octree data

structures to fairly divide the computational load.

6.3 Accessing unstructured mesh

Although the challenges of big data have recently been the focus of intense interest,

comparatively little work has been done on spatial scientific data or unstructured meshes.

Thakur et al. [94, 93] improve I/O latency by aggregating multiple small, non-

contiguous transactions into a few, large, contiguous transactions. The I/O performance

improves significantly because they make as few read operations as possible. Taking advan-

tage of parallel I/O, their ROMIO model uses MPI-IO to read and write all data with a

single I/O function request.

Some work on reorganizing unstructured grids has been reported. Rhodes and Akande

[79, 1, 2, 3] use a partitioning method to reorganize data for locality improvement. They

use the owner-borrower scheme to solve the spanning problem for reducing duplicated data

between partition elements. However, their implementation is not parallelized.

There have been many contributions to the field of graph and unstructured mesh par-

titioning. Devine et al. [32] have developed the Zoltan library based on recursive bisection,

space-filling curves, and graph partitioning algorithms. The Zoltan library supports parallel

partitioning and load balancing. Schloegel et al.[86] describe unstructured mesh partitioning

based mainly on graph partitioning. Graph based partitioning methods usually yield high

quality results [86], but they are usually in-core techniques and are therefore hard to scale

to very large datasets. In contrast, our own partitioning method uses a piecewise approach

that is applicable to datasets much larger than available memory. Similarly, our range query

implementation collects only those partition elements belonging to the bounding box of the

range, greatly reducing memory requirements and speeding performance.

Papadomanolakis et al. [21] uses a space filling curve method to reorganize the tetra-

hedral meshes for improving locality access to the datasets. Specifically, simplicial cells
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located closed to each other are also stored together on disk. With this reorganization,

data access is improved significantly. However, that work predates mainstream use of GPU

Computing. Other research [82, 84, 68] addresses chunking or partitioning problems for mul-

tidimensional data, but not the unstructured meshes that are the focus of this dissertation.

There have been some efforts to implement unstructured mesh applications on GPUs.

Solano-Quinde et al. [91, 90] uses iterative method until converges to compute values of

solution points in the cells. Also, memory access pattern has been mentioned in detail, but

not analysis the impacts from dataset pattern.
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CHAPTER 7

CONCLUSION

We have developed a novel algorithm named TIPP to generate Delaunay triangula-

tions for very large scale datasets. We have shown that the dataset domain can be decom-

posed into independent partitions that can be processed in parallel. TIPP also improves

performance by identifying sets of triangles that can be finalized early, removing those tri-

angles from memory, and reducing the cost of triangle search. The result is a distributed

algorithm able to generate roughly 20 billion triangles.

We have also shown that the results of triangulated partitions fit perfectly together,

preserving the Delaunay criteria. We do not require a stitching process that would introduce

non-Delaunay triangles between partitions.

TIPP significantly improves the performance of Delaunay triangulation, bringing

extreme-scale meshes into the realm of the feasible through its distributed approach. How-

ever, there is still room for improvement. We would like to implement a method of repairing

the mesh boundary after removing artificial vertices and their triangles. Also, because we

use partitions of uniform size, we do not yet perform load balancing between worker nodes.

A third issue is the master node. When the number of partitions is large, the master node

becomes a bottleneck, causing worker nodes to wait for new work. Empirical evaluation

exposed some drawbacks to the algorithm that degrade performance for extremely large

datasets. Specifically, when the number of partitions is large, master node performance be-

comes a bottleneck, causing worker processes to wait for new work. Furthermore, the original

TIPP algorithm has no load-balancing mechanism, an essential feature for the non-uniform

point distributions exhibited by real scientific datasets.
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We improved the original single-master TIPP algorithm by introducing parallelism

at two levels, distributing the burden of the master node across several sub-masters. Multi-

master TIPP shows significant gains in performance over the previous version.

We also implemented both static and dynamic load-balancing strategies to address

non-uniform point distribution. Although a producer-consumer implementation shows im-

provement over the original TIPP, a static adaptive strategy demonstrated the most signifi-

cant gains over all.

In addition, we developed a new algorithm for a very large-scale unstructured mesh

spatial-based partitioning in parallel.

One avenue for future work is to augment the existing implementation to produce ad-

ditional information convenient for topological navigation of the computed mesh. Although

our geometric approach has proven convenient for generating the mesh in parallel, as well as

geometric queries, support for topological queries would be a useful addition.

Along these lines, we envision a distributed query engine that would take advantage

of the triangulated mesh. Such a system might not gather triangulation results back to

the master nodes, but instead leave this data on the workers, making it available to answer

queries on unstructured datasets at unprecedented scale.
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