
University of Mississippi University of Mississippi

eGrove eGrove

Honors Theses Honors College (Sally McDonnell Barksdale
Honors College)

Spring 4-14-2021

Non-Linear Dimensionality Reduction using Auto-Encoder for Non-Linear Dimensionality Reduction using Auto-Encoder for

Optimized Malaria Infected Blood Cell Classifier Optimized Malaria Infected Blood Cell Classifier

Aayush Dhakal

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Dhakal, Aayush, "Non-Linear Dimensionality Reduction using Auto-Encoder for Optimized Malaria Infected
Blood Cell Classifier" (2021). Honors Theses. 1873.
https://egrove.olemiss.edu/hon_thesis/1873

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell
Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized
administrator of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/hon_thesis
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/honors
https://egrove.olemiss.edu/hon_thesis?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/hon_thesis/1873?utm_source=egrove.olemiss.edu%2Fhon_thesis%2F1873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

NON-LINEAR DIMENSIONALITY REDUCTION USING AUTO-ENCODER FOR

OPTIMIZED MALARIA INFECTED BLOOD CELL CLASSIFIER

by

Aayush Dhakal

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the

requirements of the Sally McDonnell Barksdale Honors College.

Oxford, MS

May 2021

Approved by:

Advisor: Professor Yixin Chen

Reader: Professor Feng Wang

Reader: Professor Phillip Rhodes

© 2021

Aayush Dhakal

ALL RIGHTS RESERVED

i

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor Dr. Yixin Chen for being a mentor

to me and providing his support in the course of this project. I am also thankful to my readers Dr.

Feng Wang and Dr. Philip Rhodes who have provided strong support throughout my

undergraduate studies.

I am also very thankful towards Sally McDonnell Barksdale Honors College and Department of

Computer and Information Science for providing numerous opportunities to get involved in

exciting research and providing adequate resources to follow through with it.

I would also like to thank the Office of Research and Sponsored Programs for sponsoring this

project. This research project was funded through the University of Mississippi-Summer

Undergraduate Research Fellowship (UM-SURF). I am thankful for their contribution to make

this research project a success.

ii

ABSTRACT

Neural Networks have been widely used in the problem of Medical Image Analysis. However,

when dealing with large images, deep networks easily exhaust computer resources, which in turn

hinders training. This paper shows the efficacy of using Auto-Encoders as a dimensionality

reduction tool to increase the efficiency of a Malaria Infected Blood Cell Image classifier. We

show that using an autoencoder, we can reduce the dimensionality of large blood cell images

effectively such that the features in the new space retain all the essential information from the

original input. Then we show that the new features obtained from the autoencoder can be used to

train a classifier while maintaining the same accuracy. Using a Convolutional autoencoder with a

Convolutional Neural Network(CNN) for malaria infected blood cell classification, gives us a

significantly smaller model compared to a vanilla CNN model which performs similar in terms

of accuracy.

iii

CONTENTS

LIST OF FIGURES ...v

LIST OF ABBREVIATIONS ... vi

INTRODUCTION..1

CONCEPTS ..3

2.1 Dimensionality Reduction ..3

2.2 Neural Network ..3

2.2.1 Convolutional Neural Network ...6

2.2.2 Auto Encoder ...7

METHODOLOGY ..10

3.1 Dataset ..10

3.2 Malaria Infected Blood Cell Classifier ...10

3.2.1 Data Preprocessing ..11

3.2.2 CNN Classifier Architecture ...12

3.2.1 CNN Classifier Training..14

3.3 Auto Encoder for Dimensionality Reduction ...15

3.3.1 Data Preprocessing ..15

3.3.2 Auto-Encoder Architecture ...16

3.3.1 Auto-Encoder Training ..18

iv

3.4 Malaria Infected Blood Cell Classifier with reduced features as input 20

3.2.1 Data Preprocessing ..20

3.2.2 Combined Architecture of Encoder and CNN ..20

3.2.1 CNN-Encoder Model Training ...23

RESULTS ...24

4.1 Classifier Comparison Metrics ...24

4.1.1 Accuracy ..24

4.1.2 Model Size ...25

4.1.2.1 Model Size Evaluation on Disk Space ..28

4.2 Results Summary ..28

CONCLUSION ..30

5.1 Conclusion ..30

5.2 Future Work ...31

BIBLIOGRAPHY ..32

v

LIST OF FIGURES

2.1 A Fully Connected Neural Network with 2 hidden layers .. 5

2.2 Convolution operation on a pixel over a 3x3 kernel ... 7

2.3 Fully Connected Auto Encoder ... 9

3.1 Example of Healthy Blood Cell vs Infected Blood Cell .. 10

3.2 Summary of the CNN Classifier Architecture .. 13

3.3 Progression of Training and Validation Loss during training of the CNN classifier 14

3.4 Summary of the Convolutional Auto-Encoder Architecture... 17

3.5 Original Vs Reconstructed Images obtained from the CAE .. 19

3.6. Architecture of Malaria Infected Blood Cell Classifier with an encoding layer 22

3.7. Progression of Training and Validation Loss during training of the CNN-Encoder Model 23

4.1. Comparison of Vanilla CNN Model with CNN-Encoder Architecture 27

4.2 Comparison of disc space occupancy between Vanilla CNN and CNN-Encoder Model 28

vi

LIST OF ABBREVIATIONS

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

FCNN Fully Connected Neural Network

CAE Convolutional Auto-Encoder

1

CHAPTER 1

INTRODUCTION

In recent years, Neural Networks have taken over the field of medical image analysis and

gained success in fields of image-based diagnosis, disease prognosis and risk assessment. Neural

Networks are not restricted by the current knowledge of disease related diagnosis pattern and

thus have a high diagnostic accuracy [1]. Researchers are using deeper and deeper neural

networks to increase the accuracy of image classification. This is because research has shown

that deep neural networks are able to drastically increase the accuracy of image classification by

learning to exploit complex nonlinear structures of the images [2]. However, deeper network

exponentially increase the number of parameters in the network. Such models with very high

number of parameters require huge computational resources for training and storing purposes.

One way to exponentially decrease the number of parameters is to reduce the size of the input

feature vector. The number of trainable parameters in a neural network is a function of the

network architecture and the size of the input vector. Thus, reducing the size of the input allows

training a very deep neural network with much lower number of parameters.

Unsupervised learning methods are used to extract useful features from unlabeled data by

removing redundancies and preserving only the essential aspects of the input data[3]. In the

context of neural networks, autoencoders use unsupervised learning to map the input data into a

bottleneck layer which extracts essential features from the input. Using this structure of a

2

bottleneck layer, autoencoder can be used as a dimensionality reduction model which reduces the

number of input dimensions to the output size of the bottleneck layer[4].

In this paper, we propose the use of Convolutional Auto-Encoder to reduce the dimensionality of

the Blood Cell Images. We use both reduced input and original input on a CNN for

classification. We show that we achieve similar accuracy when using either inputs but the CNN

with the reduced input is a smaller model that requires significantly less storage space.

3

CHAPTER 2

CONCEPTS

2.1 Dimensionality Reduction

Dimensionality refers to the number of features in a given data. The size of a neural network

model is directly proportional to the size of the input feature vector. Thus, it is inconvenient to

use high dimensional data to train neural networks due to concerns of scalability. The size of a

model can increase exponentially with larger number of input features. Thus, in this project, we

will convert the high dimensional blood cell image data into lower dimensional data by

extracting only the key features from the images. This can be done by mapping the original input

to a new space with less number of features, such that it preserve the global characteristics of the

input. If these features in the new space accurately preserve the important information from the

original input images, they can be used to learn a classifier using a much smaller neural network

model. To carry out this feature extraction, we will perform non-linear dimensionality reduction

on the images using an auto-encoder.

2.2 Neural Network

Neural Networks are models that are able to learn highly complex and nonlinear decision

boundaries purely from the input data. These networks were initially inspired by the biological

neural systems of the human brain [5]. A simple Neural Network takes a set of inputs (X) and

their corresponding outputs (y), and then tries to learn a function that can map X to y:

4

F(X) = �̂� ≈ y

The model tries to learn this function by minimizing a cost function over a number of iterations.

The cost function is a value that represents the distance of the model’s prediction from the

correct values. By using an optimization algorithm like gradient descent, after a number of

iterations, the model can learn complex functions that minimize the cost and produce a good

mapping from X to y.

The most basic neural network is a perceptron. It has an input layer, which represents the input

features, and an output layer [5]. The output layer is a node that performs a mathematical

computation:

 �̂� = a (WX + b)

Where, W is the weight, b is a bias and a is an activation function.

This single node is only capable of learning linear functions, and therefore does not allow the

network to solve nonlinear problems. However, we can stack these nodes on top of each other

making a layer and further use multiple layers between the input and output layer, known as

hidden layers. Such an architecture where we use multiple hidden layers between the input and

output layer to learn complex non-linear functions is commonly known as Deep Neural

Networks (DNN). Outputs from each layer in a DNN serve as inputs to the next layer. By

passing outputs from one layer as inputs to the next, the degree of complexity of the learned

function increases with deeper layers. Thus, Deep Neural Networks, enable us to learn highly

complex nonlinear boundaries, which would not be possible using a perceptron.

By changing the operation at the nodes, or adjusting the architecture of the layers, these networks

can be tuned to facilitate different purposes. In this project, we will use a Convolutional Neural

5

Network (CNN) to build a classifier for the Blood Cell Images and a Convolutional Auto-

Encoder (CAE) to reduce the dimensionality of the Blood Cell Images.

Input Layer

Hidden Layer 1 Hidden Layer 2
Output Layer

X1

X3

X2

X4

�̂�

Fig. 2.1. A Simple Neural Network with 2 hidden layers

6

2.2.1 Convolutional Neural Network

Traditional Neural Network architectures (such as the fully connected NN described above), are

not well suited for handling image data. As each pixel of an image acts as a feature, image data

usually have a very high number of input features. For example, even if we take a small image of

size 32x32x3 and use a perceptron, we still have 32x32x3 or 3,072 parameters to train. However,

it is unlikely that a single node perceptron can extract useful features from such data [6]. Adding

more nodes, however, will exponentially increase the number of parameters in this network.

Instead of connecting each node with each feature, a better way to deal with such data is to

connect each neuron to a local region in the image. For example, one neuron activation may be

dependent on a 3x3 region of an image. Furthermore, the local connection weights can be fixed

for the entire neurons of the next layer [6]. By doing so, we drastically reduce the number of

parameters; in a FCNN, to map the input of a 64x64 image to a layer with 64x64 neurons, we

would need 16,777,216 (64x64x64x64) parameters, whereas using this new approach, if we use a

7x7 local region, we only need 49 parameters. In this particular example, this process can be

viewed as sliding a window of size 7x7 across the image such that we perform the convolution

operation for each pixel and map the output to the corresponding space in the next layer. The

convolution operation over a pixel is defined as the sum of the product of each overlapping

tensor values within the region of the kernel window. An example of a convolution operation is

provided in figure 2.2.

A CNN generally uses multiple kernels (or filters) in each layer, such that each filter learns to

extract a certain feature from the input. Furthermore, the deeper layers of the CNN learn abstract

features of the input. For example, in facial recognition, the shallow layers usually learn different

7

edges whereas the deeper layer learns high level features like eyes, nose, face etc. A convolution

layer is often followed by a nonlinearity function (like Relu) which is followed by a pooling

layer.

2.2.2 Auto Encoder

Fig 2.2. Convolution operation on a pixel over a 3x3 kernel [7]

8

Suppose we have an input x of n dimensions. An autoencoder is a special neural network that

learns the function:

hW,b (x) = y ≈ x

The output for this network is set to be equal to the input x. Hence, the network learns this

identity function by minimizing a cost function which represents the difference between the

produced output y and the input x.

The output of an autoencoder is not particularly useful as it is close to the identity function of the

input. However, by manipulating the hidden layers carefully, the autoencoder can be used for

feature extraction and dimensionality reduction. Suppose we want to express our original input x

of n dimensions in terms of lower number of dimensions m. We can use an autoencoder with a

hidden layer whose output size is m. The values obtained from the activations of this layer after

training will be the latent representation of the original input x [4]. This process can be viewed in

three stages:

 The encoder maps the input to the latent representation g(x) = a(Wx + b)

 The decoder reconstructs the input by a reverse mapping of h(g(x)) = a(W'g(x) + b')

 The loss (L) is calculated as some distance between h and x, and the parameters are

updated through backpropagation. E.g. If Mean Squared Error was used the loss

function would be: Loss =
1

2𝑘
∑ (h(g(x)) − x)2

𝑘

𝑖=0

9

X1

Fig. 2.3. Fully Connected Auto Encoder

X2 G1

Xn

X3 Gm

m

H1

H2

H3

Hn

Bottleneck Layer

Output Layer Input Layer Input Layer

10

CHAPTER 3

METHODOLOGY

3.1 Dataset

For this project, we used a publicly available dataset of 27,558 thin blood smear slide images

from the Malaria Screener research activity [8]. The National Library of Medicine (NLM)

maintains this dataset. The dataset is well balanced with equal instances of parasitized and

uninfected cells. For this project, we spit the train, validation, and test set in the ratio of 8:1:1.

3.2 Malaria Infected Blood Cell Classifier

Fig 3.1. Example of Healthy Blood Cell (left) vs Infected Blood Cell (right) images from the dataset

11

In the first phase of the project, we built a convolutional neural network that functioned as a

binary classifier. This classifier takes as input a blood smear image and predicts if the image

belongs to parasitized class or uninfected class. This classifier acts as the benchmark for our

approach. The goal was to reach this accuracy using our approach of using reduced features in

the second phase.

3.2.1 Data Preprocessing

An important part of training Neural Network Model is preprocessing the data properly.

Adequate preprocessing steps can help solve problems like overfitting, and incompatible

dimensions in the training phase.

Firstly, Neural Networks cannot take inputs with varying number of input features. The images

in our datasets do not have a consistent size. We calculated the mean for the x and y dimensions

for all the images in the training set. The mean size for all the images was calculated as [134,

133, 3], where 3 refers to the color channels. By convention, it is best to use image sizes that are

powers of 2. Therefore, we transformed all images to a size of [128,128, 3].

Another important step in data preprocessing is Data Normalization. Normalization ensures that

the input features have a similar data distribution, which makes convergence fast while training.

While we usually subtract the data by its mean and then divide the result by the standard

deviation to normalize it, for image data, we can also simply divide the data by 255 changing the

pixel range from [0-255] to [0-1]. We divided the test and train set by 255 and normalized our

data.

To prevent overfitting, we used Data Augmentation in the training set. Using augmentation, we

can give our model a richer variety of training data to learn from. This can prevent overfitting in

12

the test set as the model sees a different variation of the training data in each epoch. We used

rotation, height shift, width shift, random zoom, horizontal flip, and vertical flip as the

augmentation methods. Each of these augmentation were performed in real time during training

with a random possibility of applying any, all, or none of these augmentations on the input data.

3.2.2 CNN Classifier Architecture

The CNN classifier was built using TensorFlow and Keras libraries. There are three

convolutional blocks in the model. Each convolutional block is comprised of a Convolutional

Layer, which is followed by a Relu activation, which is followed by a Max Pooling Layer. The

first, second and third convolutional blocks use 32, 64 and 128 filters respectively. After the third

convolutional block, we have a Flatten Layer that flattens the 3-dimensional output from the

convolutional block into a one-dimensional tensor. The output from this Flatten layer is passed to

a Fully Connected layer (or Dense layer) with 128 neurons. Each neuron in this layer uses a Relu

activation. The output from this Dense Layer is connected to a single neuron with a sigmoid

activation. This single neuron behaves as our output layer. The output from this final layer is a

value between 0 and 1 (because of the range of the sigmoid function). Hence, it acts as a Binary

Classifier by rounding the output values to either 0 or 1.

13

Fig 3.2. Summary of the CNN Classifier Architecture

14

3.2.3 CNN Classifier Training

The training portion involves analyzing the performance and tuning the hyper parameters

accordingly. After many trials, the most precise model was obtained when trained under the

following conditions:

 Adam was used as the optimizer with a learning rate of 0.0001

 Binary cross entropy loss was used to computer loss

 A Dropout Layer with 25% dropout rate was used in the first Dense Layer

 Batch Size of 64 was used

 Early Stopping was used with a patience of 2 epochs

 The training was adjusted based on the performance on the validation set. Hence, the

model had not seen the test set during training.

Fig. 3.3. Progression of Training and Validation Loss during training of the CNN classifier

15

3.3 Auto-Encoder for Dimensionality Reduction

In the second phase, we built an Auto-Encoder and trained the blood cell images to retrieve a

latent representation of the data with reduced features. The goal of this phase was to encode the

original input of size [128, 128, 3] into a tensor of smaller size while preserving all the important

features.

3.3.1 Data Preprocessing

The images were transformed to a size of [128, 128, 3]. This was the closest value to the mean

size for the entire dataset that could be expressed as a power of 2. The reason behind choosing

the value to be a power of 2 lies with the pooling and upsampling layers of autoencoder. In the

encoding phase we use Pooling Layers of pool size [2,2] i.e. the number of input tensors in every

channel gets halved after each pooling operation. Similarly, in the decoding phase we use

UpSampling Layers of size [2,2] i.e. the number of input tensors in each channel gets doubled

after each UpSampling operation. Thus, using a value that can be expressed as a power of 2, we

can use Pooling and UpSampling operations symmetrically in the encoder and decoder to match

the dimensions at the input and output layer of the autoencoder.

As we did for the CNN classifier, we normalized the image data by dividing the dataset by 255

and changing the pixel scale from [0-255] to [0-1]. Data augmentation was not used as good

results were obtained with unaugment data.

16

3.3.2 Auto Encoder Architecture

The autoencoder was built using Tensorflow and Keras libraries. We used a Convolutional Auto-

Encoder instead of a Fully Connected Auto-Encoder for two reasons: 1) Convolutional layers are

better at handing image data as they preserve some spatial information, 2) Fully Connected

Auto-Encoder would itself be a massive network with large amount of parameters to train.

The size of the input images is [128, 128, 3] or 49,153 features. The output of our bottleneck

layer is of size [16, 16, 16] or 4,096 features. In the encoder, the input layer is followed by 3

Convolutional Blocks. Each Convolution Layer has a nonlinearity activation, which is followed

by a Max Pooling Layer. The number of filters in the first, second and third convolution layers is

32, 32, and 16 respectively. All pooling layers use a pooling size of [2, 2]. Relu activation is used

for nonlinearity.

In the decoder, the input size is [16, 16, 16], and the output size is [128, 128, 3]. The bottleneck

layer is followed by 3 Convolutional Blocks. Each Convolution Layer is followed by a Relu

activation, which is followed by an UpSampling Layer. The number of filters in the first, second

and third convolution layers are 16, 32, and 32 respectively. All UpSampling Layers use a size of

[2, 2]. The output from the final UpSampling layer is passed to a Convolutional Layer with 3

channels to match the dimensions with the original input.

17

Fig. 3.4. Summary of the Convolutional Auto-Encoder Architecture

18

3.3.3 Auto Encoder Training

After many trials, the most precise model was obtained when trained under the following

conditions:

 Adadelta optimizer was used with a learning rate of 2

 Binary cross entropy loss was used to computer loss

 Training progress was evaluated based on the loss as well as empirical analysis.

 The similarity of reconstructed image with the original image was used to estimate the

quality of features on the bottleneck layer. A good reconstruction is only possible if

the bottleneck layer accurately learns all the important features of the original data

which can be seen in figure 3.5

 Training was progressed for 10 epochs. After 10 epochs the performance of the

network did not increase significantly

 The training was adjusted based on the performance on the validation set. Hence, the

model had not seen the test set during training.

19

Fig 3.5. Original Vs Reconstructed Images obtained by the CAE on the test set

20

3.4 Malaria Infected Blood Cell Classifier with reduced features as input

The final phase of the project was to train the Malaria Infected Blood Cell Classifier using the

new features obtained from the Convolutional Auto-Encoder’s bottleneck layer. We used the

encoder portion of the previously trained CAE to get the encoded input vectors and used it to

train the Convolutional classifier that we had built in phase one. Since the input feature size is

reduced, our model would have a smaller number of parameters to train. The objective of this

phase was to see if we could build a smaller model using the reduced features without effecting

the performance of the classifier.

3.4.1 Data Preprocessing

The data preprocessing steps are identical to the ones used in the first phase to train the Malaria

Infected Blood Cell Classifier described in section 3.2.1.

3.4.2 Combined Architecture of Encoder and CNN

The input data has size [128, 128, 3]. The input layer is first connected to the Encoder obtained

from the Convolutional Auto-Encoder that was trained in phase 2. The encoder encodes the input

images to a tensor of size [16, 16, 16]. Since this encoding is obtained by training the CAE to a

good accuracy, the weights and biases need to be preserved. Hence, this encoding layer is frozen

so that the weights and biases are not updated during training. Although we used an active

approach for encoding, a passive approach can also be used where we first encode all the images,

store it in the disk, and use that as our input to the classifier.

The encoder outputs a tensor of size [16, 16, 16], which is passed to a CNN classifier. The

architecture of the CNN classifier is identical to the Malaria Infected Blood Cell Classifier which

was used in phase 1 (shown in figure 3.2). However, as a result of the using reduced number of

21

input features, significant difference can be seen in the amount of trainable parameters. The

combined architecture is show below in figure 3.6. This architecture of this CNN classifier with

an encoder attached to the input layer will be referred as the “CNN-Encoder Model” from this

point forward in the paper.

22

Fig 3.6. Architecture of Malaria Infected Blood Cell Classifier with an added encoding layer

(CNN-Encoder Model)

23

3.4.3 CNN-Encoder Model Training

The training conditions were tuned similar to the vanilla CNN classifier to properly estimate the

effects of dimensionality reduction without interference from changes in other parameters. The

final model was trained under the following conditions:

 Adam was used as the optimizer with a learning rate of 0.0001

 Binary cross entropy loss was used to computer loss

 A Dropout Layer with 25% dropout rate was used in the first Dense Layer

 Batch Size of 64 was used

 Early Stopping was used with a patience of 2 epochs

Fig. 3.7. Progression of Training and Validation Loss during training of the CNN-Encoder Model

24

CHAPTER 4

RESULTS

4.1 Classifier Comparison Metrics

To compare the efficiency and performance of the two models, two metrics were used, Accuracy

and Model Size. Firstly, accuracy of the CNN-Encoder Model had to be comparable with the

vanilla CNN classifier to posit that reduced features obtained from the auto encoders can be used

to train a classifier without a significant impact on the classification accuracy. Secondly, the

CNN-Encoder model would need to show a significant advantage in model size for us to

conclude that the added step of dimensionality reduction can be worthwhile the increase the

efficiency of the model.

4.1.1 Accuracy

Both the models were trained under similar conditions. The performance of the models on the

test set was used to generate the Classification Report. The classification reports for the two

models are shown side-by-side in table 1.

25

From table 1, we see that all the metrics in the Classification Report for both models are

comparable to each other. The accuracy, precision, recall and F1 score for both model fall within

an error bound of 1%, which is very close. Thus, looking at the classification report, we can

conclude that the accuracy of the Vanilla CNN and CNN-Encoder Models are comparable to

each other.

4.1.2 Model Size

The objective of our research project was to create efficient Neural Network models using non-

linear dimensionality reduction. The efficiency we were striving for in this project was related to

the model size i.e. building small NN models with comparable performance to their larger

counterparts. Therefore, model size comparison is an important metric to evaluate the

performance of our approach. Figure 4.1 shows the architecture of the Vanilla CNN and CNN-

Encoder Model side by side with the number of parameters in each layer. We have established in

the previous section that the accuracy for both these models is comparable. However, looking at

the difference in parameter size, it is clear that the CNN-Encoder is a much compact model than

Precision Recall F1-Score Support

0 0.97 0.87 0.92 1300

1 0.88 0.98 0.93 1300

accuracy 0.92 2600

marco avg 0.93 0.92 0.92 2600

weighted avg 0.93 0.92 0.92 2600

Precision Recall F1-Score Support

0 0.95 0.9 0.92 1300

1 0.91 0.95 0.93 1300

accuracy 0.93 2600

marco avg 0.93 0.93 0.93 2600

weighted avg 0.93 0.93 0.93 2600

Classification Report for CNN-Encoder Model Classification Report for Vanilla CNN Model

Table 1. Classification Report CNN-Encoder Model Vs Vanilla CNN Model

26

the vanilla CNN classifier. While the vanilla CNN Model has 3,306,305 trainable parameter, the

CNN-Encoder Model only has 185,745 total parameter and 170,977 trainable parameters; that

makes a difference of an enormous 3,120,560 total parameters between the two models.

27

Fig 4.1. Comparison of Vanilla CNN Model Architecture (left) with CNN-Encoder Architecture (right)

28

4.1.2.1 Model Size Evaluation on Disk Space

We saw the difference in the parameters size for the two models in the previous section. To have

a better understanding of the impact of this difference in a real world scenario, we compared the

difference of the model size on the computer disk. Both the Vanilla CNN and CNN-Encoder

models were saved as an h5 file. The Vanilla CNN model when stored as an h5 file occupied a

disc space of 37.8 MB or 38,804 KB. The CNN-Encoder model when stored as an h5 file

occupied a disc space of 2.08 MB or 2,133 KB (a mere 5.5% of the original model).

4.2 Results Summary

The results show that, with proper dimensionality reduction, we can reduce the number of input

features that are passed as input to a classifier to get a smaller model with good accuracy. The

original Vanilla CNN model took the raw [128, 128, 3] images as input and the model had an

accuracy of 93%. While the accuracy of the model was good, the model was very large with

about three million parameters to train and occupied 37.8 MB in disc.

We built and trained a Convolutional Auto-Encoder to reduce the dimensionality of our Blood

Cell Images from [128, 128, 3] to [16, 16, 16]. These new features although much smaller in size

preserved all the important artifacts from the original image; we were able to verify this by

looking at the reconstruction images obtained from the decoder. Since the decoder reconstructs

Fig 4.2 Comparison of disc space occupancy between Vanilla CNN Model and CNN-Encoder Model

29

an image from this latent space represented by [16, 16, 16] tensors, a good reconstruction would

be possible only if all the important information from the original data was preserved in this

latent space. We can see the high quality of reconstruction obtained from our bottleneck layer in

figure 3.5.

We used this new reduced representation as input on the Vanilla CNN (as opposed to the raw

image data) and trained this classifier under identical circumstances. This new model takes as

input the images, encodes them into tensors of [16, 16, 16] using the pre-trained encoder, and

uses this encoding to train the CNN classifier. This CNN with an encoding layer on top was

called CNN-Encoder Model. This model had an accuracy of 92% on the test set (only 1% less

than the vanilla CNN). However, the model was much smaller in size with only 185,745 total

parameters and 170,977 trainable parameters. Furthermore, this CNN-Encoder only occupied

2.08MB in disc, which is less than 6% of the original model.

30

CHAPTER 5

CONCLUSION

5.1 Conclusion

Deep Learning and Artificial Intelligence have tremendous potential to solve complex problems

in various domains. Deep Learning has been used to automate demanding tasks like detecting

Cancer-causing tumors, studying complex genetic sequences, building autonomous vehicles, etc.

However, the potential for Deep Learning stretches even beyond these tasks. 90% of the world’s

data was generated in the last couple of years [9]. With internet serving as the primary location

for generation and storage of this data, much of this data is openly available for use. Deep

Learning models thrive in the abundance of data, allowing them to perform complex tasks that

would be impossible to fathom otherwise. But, are our Deep Learning Models scalable to keep

up with the exponential growth of data and the expectations that come with it?

In 2019, Nvidia trained a model with 8.3 billion parameters where storing the parameters alone

used up 33 Gigabytes on the disc [10]. It might not be possible to keep using more resources as

the demand of resources also increase exponentially with larger DL models. Therefore, research

in the scalability of DL models is a must if we wish to continue this progress that has been made

in the field of Machine Learning in the era of Deep Learning.

 In this project, we looked into non-linear dimensionality reduction as a feasible tool to reduce

input data size features to significantly reduce the size of the model. By using autoencoder for

31

dimensionality reduction, we were able to achieve a much smaller classification model whose

performance was comparable to its larger counterpart. We used this technique to solve the

problem of detecting Malaria Infected Blood Cell Images and achieved good results. However,

the efficiency of this technique is not limited to this particular project. Any researchers or ML

engineers who use Deep Learning Models abundantly and thus are at risk of exhausting their

hardware resources are can benefit from this approach.

5.2 Future Work

For future work, we would like to test this approach on different problems to see if we can

properly generalize the CNN-Encoder model for different problems. Furthermore, we also want

to use the approach on some pre-built famous models like AlexNet or VGG. This will again help

us to gauze at the generalization of this approach on different Neural Network architectures.

32

BIBLIOGRAPHY

[1]M. de Bruijne, "Machine learning approaches in medical image analysis: From detection to

diagnosis", Medical Image Analysis, vol. 33, pp. 94-97, 2016. Available: 10.1016/j.media.2016.06.032.

[2]H. Lee and H. Kwon, "Going Deeper With Contextual CNN for Hyperspectral Image

Classification", IEEE Transactions on Image Processing, vol. 26, no. 10, pp. 4843-4855, 2017. Available:

10.1109/tip.2017.2725580.

[3]J. Masci, U. Meier, D. Ciresan and J. Schmidhuber, "Stacked Convolutional Auto-Encoders for

Hierarchical Feature Extraction", International Conference on Artificial Neural Networks, pp. 52-59,

2011. [Accessed 20 March 2021].

[4]Y. Wang, H. Yao and S. Zhao, "Auto-encoder based dimensionality reduction", Neurocomputing, vol.

184, pp. 232-242, 2016. Available: 10.1016/j.neucom.2015.08.104.

[5]P. Tan, M. Steinbach, V. Kumar and A. Karpatne, Introduction to data mining, 2nd ed. Pearson, 2019,

pp. 249-261.

[6]S. Albawi, T. Mohammed and S. Al-Zawi, "Understanding of a Convolutional Neural

Network", International Conference on Engineering and Technology, 2017, doi 10.1109/

CEngTechnol.2017.8308186.

[7] D. Mellouli, T. M. Hamdani, J. J. Sanchez-Medina, M. Ben Ayed and A. M. Alimi, "Morphological

Convolutional Neural Network Architecture for Digit Recognition," in IEEE Transactions on Neural

Networks and Learning Systems, vol. 30, no. 9, pp. 2876-2885, Sept. 2019, doi:

10.1109/TNNLS.2018.2890334.

33

[8]"Malaria Datasets. - LHNCBC Abstract", Lhncbc.nlm.nih.gov, 2021. [Online]. Available:

https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html. [Accessed: 20- Mar- 2021].

[9]A. Sondur, "How much Data is generated every day?", Medium, 2021. [Online]. Available:

https://medium.com/@amoghvs/how-much-data-is-generated-every-day-

b94af8bcef4b#:~:text=We%20create%20around%202.5%20quintillion,of%20data%20worldwide%20by

%202025. [Accessed: 20- Mar- 2021].

[10]J. Toole, "Deep learning has a size problem", Heartbeat, 2019. [Online]. Available:

https://heartbeat.fritz.ai/deep-learning-has-a-size-problem-ea601304cd8. [Accessed: 20- Mar- 2021].

	Non-Linear Dimensionality Reduction using Auto-Encoder for Optimized Malaria Infected Blood Cell Classifier
	Recommended Citation

	tmp.1619814403.pdf.xu7sN

