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ABSTRACT 

Flow separation is a phenomenon that occurs when pressure increases in the streamwise 

direction of a flow, making a distinctive boundary layer or separation bubble. It causes aircraft to 

experience an increase in drag and noise and a decrease in a lift, hence degrading their aviation 

performance. This study uses numerical simulations to understand better the effects of high-

frequency translational surface actuation (HFTSA) on flow separation control. The numerical 

simulations mimic the experimental parameters of an experiment performed by Okoye et al. on 

using the HFTSA system to control flow separation. A symmetrical airfoil structure of chord length 

of 0.3 m is drawn inside a computational domain with two velocity inlets and two pressure outlets. 

The velocity of streamwise flow is 4.3 m/s with the angle of attack -14 degrees. Structural grids of 

946k nodes and 872k elements were generated for the computational domain. An actuation surface 

located on the suction surface of the airfoil uses User Defined Function to realize 122-micron 

mean-to-peak displacement with 565 Hz frequency. Large-eddy simulation turbulence model is 

adopted to capture vorticial structures within the airfoil wake. Velocity contours, pressure 

contours, velocity profiles, pressure profiles, and aerodynamic forces were examined before and 

after actuation. It is revealed that after actuation, the flow re-attaches, and separation bubbles were 

shrunk. After actuation, the lift coefficient increased by 180%, and the drag coefficient decreased 

by 28%. Hence, the HFTSA could suppress flow separation and improves aviation efficiency. 
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Introduction 
 

An adverse pressure gradient is when the pressure increases in the streamwise direction of 

a flow, leading to flow separation and making a distinctive boundary layer. As an effect of adverse 

pressure gradient, reverse flow occurs at the downstream of separation, causing thickening of the 

boundary layer. Also, with the increase in the angle of the fluid's velocity, several reverse flow 

forms and flow separation get enlarged [1]. The flow separation largely affects aerodynamic 

performance, i.e., drag and lift. Also, during conditions like the high angle of attack (stall 

condition), take off/landing, and other flight conditions, separated or detached flow expands and 

affects important parameters of aerodynamic performance like drag and lift forces. Thus, the flow 

separation causes abrupt flow variation, increasing the drag and the moment of the flow system, 

causing inconsistent changes to aerodynamic fsorces [2].  

Over the years, numerous studies and research have been done in flow separation control 

to improve aerodynamic efficiency. These studies have focused primarily on two types of flow 

control: passive flow control and active flow control. Passive flow control does not require any 

external energy sources; instead, it uses fixed geometry or geometrically shaped mechanical 

devices such as vortex generators to control the flow separation [3]. Vortex generators are 

generally a small vane attached to a lifting surface, designed to remove part of the slow-moving 

boundary layer near the wing surface, delaying the flow separation and the aerodynamic stalling.  

A review study performed on low-profile vortex generators by Lin et al. suggests that low-

profile vortex generators produce streamwise vortices which suppress the laminar separation 

bubble by energizing the near-wall laminar flow [4]. Prince et al. [5] performed experimental and 

computational study on flow control using a passive air-jet vortex generator. They found that a 
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spanwise array of passive air-jet vortex generators can increase lift coefficient and delay drag by 

effectively delaying trailing-edge separation and subsequent stall to higher angles of attack. Tejero 

et al. [6] used a passive rod vortex generator and studied its application on helicopter rotor blades 

using numerical simulations. They discovered that the rod vortex generator decreased the 

separation bubble's size and increased the aerodynamic efficiency of the rotor. Luo et al. [7] 

investigated a passive flow control strategy by installing a micro-cylinder near the suction surface 

of a stalled airfoil for high angles of attack. They found that the micro control device could 

diminish the separation region with smaller scales of vortices on the suction surface. Therefore, it 

improved the aerodynamic performance of the stalled airfoil. 

Nevertheless, these benefits due to the control method were obtained at the loss of 

aerodynamic performance before stall, and its effectiveness got highly declined at an angle of 

attack greater than 22 degrees. Mohamed et al. [3] studied the application of bio-inspired nose on 

flow separation control. They modified the leading-edge profile of the airfoil to a nose design 

similar to cetacean species by creating a forward-facing step and a backward-facing step (cavity). 

This optimal nose-designed airfoil showed a 22.4 percent of maximum increase in aerodynamic 

efficiency. Zhou et al. [8] performed a computational study of the effects of Mach number on the 

passive control of flow separation by placing a small plate at the leading edge of an airfoil. This 

method creates a mutual interference between the trailing-edge vortex of the plate and the 

boundary layer of the airfoil. Using this method, they maintained a high lift coefficient of the airfoil 

with Mach numbers below 0.5, even at large angles of attack. However, it showed limited 

effectiveness for the flows over 0.5 Mach numbers. Due to difficulties associated with passive 

flow control, such as changing the profile of existing wings, positioning fixed vane vortex 

generators at different flow conditions, and drag penalties due to the installation of vortex 
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generators, active flow control methods have been proposed and studied. Active flow control 

techniques use external energy sources and are advantageous in terms of providing on-demand 

operation control.  

Shan et al. [9] numerically explored active and passive flow control over a NACA0012 

airfoil using vortex generators. Their investigation found out that passive vortex generators could 

reduce the separation zone by 80 percent. In contrast, the active vortex generator was proved to be 

more effective by making the separation zone invisible. Using a NACA 0015 wing and a synthetic 

jet actuator, Gilarranz et al. [10] explored flow separation control on the varying angle of attacks 

from -2.0 degree to 29.0 degrees. They discovered that the actuator had minimal effect on the flow 

separation for the angle of attacks lower than 10 degrees; however, the onset of the stall was 

successfully delayed at a higher angle of attacks. The synthetic jet actuator caused the increment 

of the stall angle by 6 degrees and the rise of the lift coefficient by 80 percent. The actuation was 

also able to decrease the drag on the wing. However, for the angle of attacks higher than 25 degrees, 

actuation with a larger frequency is required to affect the flow separation significantly. Melton 

[11] examined the momentum requirements of sweeping jet actuators for the flow separation 

control on a NACA 0015 Wing. It was found that a sweeping jet actuator with a high momentum 

coefficient is required for optimal performance when the actuator is placed downstream of the flow 

separation. Michelis et al. [12] found that the incoming disturbances from a dielectric barrier 

discharge plasma actuator caused shear layer breakdown of a laminar separation bubble.  

Zong et al. [13] investigated the use of 26 plasma synthetic jet actuators on a NACA-0015 

airfoil for controlling the leading-edge flow separation. Their study resulted that stall angle was 

increased from 15.5 degrees to 22 degrees, and the peak lift coefficient is increased by 21%. For 

the angle of attacks below 22 degrees, the flow separation control was found to be dependent on 
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the relative location of the actuation and separation and also on actuation frequency; however, 

frequency of the actuation did not affect the flow separation control for the angles of attack higher 

than 22 degrees. Kato et al. [14] used a plasma actuator driven by repetitive nanosecond pulse 

voltage to control flow separation. Their results show that the flow is steady, and the lift increment 

is independent of actuation frequency at the pre-stall and stall angles. However, the flow became 

unsteady at the post-stall angle and attained significant enhancement in the lift with the actuation. 

These studies about active flow control using actuators give promising increment in 

aerodynamic efficiency and prompt in-depth studies in using different types of actuators, 

positioning the actuator and actuator frequency to produce optimal flow separation control. 

Yeom et al. [15] explored improvements in the channel flow heat transfer due to piezoelectric 

translation actuation. Their results show a 55% enhancement in convection heat transfer 

coefficient. Okoye et al. [16] used a piezoelectric translational actuator which consisted of a 

piezoelectric stack actuator and an oval loop shell. The actuator could produce displacement of 

0.1% and 0.15% of its length when a maximum AC voltage is applied with the help of the oval 

loop shell. They studied the effect of HFTSA on delaying the flow separation over an airfoil by 

performing a fog-based flow visualization experiment. They found that the flow separation was 

fully suppressed for the flow parameters of the 14-degree angle of attack, 4.3 m/s velocity, and 

565 Hz frequency of the actuator.  

This study replicates the flow conditions and flow separation control methods used by 

Okoye et al. [16] by using numerical simulation. Thus, it elaborates on the physical phenomenon 

and effect of the HFTSA on the suppression of flow separation and their aerodynamic forces. 
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2. EXPERIMENTAL PART 
 
2.1 Experimental Setup 
 

High-frequency translational surface actuation was realized by using a piezoelectric 

translational actuator (PTA). Figure 1 shows the schematics of the PTA used for the experiment. 

This PTA consists of a piezoelectric stack actuator and an oval loop structure. The actuation 

surface is 3D printed using PLA plastic, which is mounted on the top of the oval loop structure. 

Using the hole in the oval loop and fasteners, the PTA is anchored to the airfoil. The actuation 

surface is designed to blend with the airfoil surface and has a dimension of 62 mm (𝐿") × 100 mm 

(𝐿#) with a 5 mm thickness. When an AC voltage is applied to the actuator, the stack actuator tends 

to produce small horizontal displacement, which then amplified to a vertical displacement by the 

oval loop structure. 

 
 

Figure 1. Schematics of a piezoelectric translational actuator (PTA) [16]. 
 

A symmetrical Eppler 862 airfoil with a spanwise length (𝐿$) and chord length (𝐿%) of 

152.4 mm and 304.8 mm is used in the experiment. As shown in figure 2, the airfoil is designed 
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to have a removable suction surface for installing the HFTSA system inside the airfoil. The 

distance between the leading edges of the airfoil and the actuation surfaces is kept at 76.8 mm, 

about 25% of the chord length. A pivot point is installed at 50 mm from the leading edge of the 

airfoil to change the angle of attack (AoA). 

 
 

 
 

 
Figure 2. Wing assembly with high-frequency translational surface actuation (HFTSA) system: (a) 
iso-view, (b) top-view, (c) front-view, (d) side-view. [16]. 
 
 

Figure 4 shows the experimental setup of flow visualization experiments in a wind tunnel. 

The Pitsco X-Stream wind tunnel has a testing chamber of dimension 48.26 cm x 29.21 cm x 29.21 

cm and a capacity of varying free stream velocity from 0 to 18 m/s. A wireless hot-wire digital 

anemometer was used to measure the free stream velocity. Using an Entour Ice fog generator, 

streams of dry ice fog were injected into the chamber from the inlet of the wind tunnel, and with 

the help of a continuous laser, the fog streams were illuminated. A high-speed Nikon 52 camera 

took sequential photographs of the airflow every 10 microseconds before and after the HFTSA 
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was turned on. Using the visualization pictures, flow separation control was analyzed for various 

conditions like free stream velocity, AoA, and HFTSA displacement.  

 

 
Figure 3. Experimental setup of flow visualization in a wind tunnel [16]. 

 
 
2.2 Experimental Results 
 

The experiment was conducted for various flow and HFTSA parameters such as: for free 

stream velocities (u∞) of 4.3 m/s, 8 m/s, and 12.7 m/s, for AoA of 0°, 6°, 12°, 14°, 18°, and 24°, 

and for mean to peak displacement of the actuator of 24 µm, 46 µm, 82 µm, and 122 µm. However, 

the optimal flow separation control was found when the free stream velocity was 4.3 m/s, for the 

airfoil having an AoA of 14° and the HFTSA system producing 122 µm mean-to-peak 

displacement with a frequency of 565 Hz. 

Figures 4(a) and (b) show the wing structure at AoA = 14° and the relative positions of 

HFTSA leading edge (LE) and trailing edge (TE). Figures 4(c) and 4(d) are the flow visualization 

pictures captured at a particular instant time without and with the activation of HFTSA, 

respectively. It can be explicitly seen from figure 5(c) that there is a big separation bubble 

downstream of the flow separation point. However, when the HFTSA was turned on (figure 4(d)), 
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complete suppression of the separation bubble can be noticed. The results inferred that an optimal 

HFTSA system could delay or suppress the flow separation over the airfoil. 

 
 

Figure 4. Validation of HFTSA on flow separation control at the specific condition of AOA = 
14° with the maximum displacement: (a) and (b) references pictures of wing-assembly showing 

its relative positions and AOA with respect to the flow visualization photos; (c) flow    
visualization with the HFTSA off; (d) flow visualization with HFTSA on at 565 Hz and 150VAC 

[16]. 
 
 
 
3. NUMERICAL SIMULATIONS 
 
 Numerical simulations were performed to understand better the underlying physics of the 

effects of HFTSA on flow separation. 

3.1 Computational Domain 
 

The computational test case is asymmetric Eppler 862 airfoil with chord length (c = 0.3048 

m) at AoA (α = -14˚) and Re = 88,700. As shown in figure 5, the computational domain covers 1c 

downstream, 1c in upstream, 1c in normal, and 0.1c in spanwise directions. A free stream with a 
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constant velocity of 4.3 m/s enters the domain from upstream and top boundaries. Downstream 

and bottom boundaries are set as pressure outlets with the ambient temperature. 

 
 

Figure 5. Computational domain and boundary conditions. 
 
 

Figure 6 shows the computational airfoil geometry and the placement of the actuating 

surface. The leading edge of the actuation surfaces is aligned at a distance of 76.8 mm, which is 

about 25% of the chord length, from the airfoil's leading edge. The length of the actuation surface 

is 20 mm. 

 
 

Figure 6. Positioning of actuation surface in the airfoi 
 
 



 

` 10 

3.2 Computational Grid 
 

Structured grids were selected over unstructured grids since structured grids provide a high 

degree of quality and control to avoid numerical errors and get better convergence. The employed 

872,781 hexahedron elements and 946,666 nodes. As seen in figure 7, the computational domain 

is partitioned to have more refined elements near the suction surface of the airfoil and coarser 

elements elsewhere to decrease computational time. The length of the elements of the airfoil 

surface is 1.75 x 10() m in the spanwise direction. The size of the elements near the suction surface 

of the airfoil is 1.5 x 10(* m, while the maximum length of the grid is 1.0 x 10(+ m. 

 

 
 

Figure 7. Computational grid of the entire domain. 
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Figure 8. Close view of the computational grids near the airfoil surface. 
 
 
3.3 Numerical Method Setup 
 
 All the simulations are performed with a pressure-based finite volume CFD solver for 

transient conditions. The governing equation are solved using a pressure-based coupled algorithm. 

The pressure equation is discretized spatially with the second order scheme whereas, the 

momentum equation has spatial discretization with bounded central differencing scheme. Bounded 

second-order implicit is used as transient formulations for the conditions without actuation 

condition, but for actuation turned on, transient formulations are set to first-order implicit. 

Adedoyin et al. [17] showed that Large Eddy Simulations (LES) with second-order discretization 

could predict turbulent structures very well and useful for these numerical simulations. The time 

step of the flow solver is set to 0.005 before actuation start and runs for 15s. However, after 

actuation, the time step size is 5.89 x 10(, s to discretize the high frequency of the actuating 
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surface, and it runs for 0.43 s. High-frequency translational surface actuation (HFTSA) is realized 

by giving motion to the actuation surface of the airfoil using dynamic mesh features. User-defined 

function (UDF) - a programming code is used to realize the motion of the actuation surface. The 

following equation is used in the UDF with 565 Hz frequency and 122 x 10(, m amplitude.  

Equation 1:  

Grid displacement = amplitude*2*3.141592*frequency*cos(2*pi*frequency*time) 

 
4. RESULTS 
 
4.1 Aerodynamic Performance Parameters of The Airfoil 
 

The aerodynamic performance of the airfoil can be reflected by the parameters like lift and 

drag coefficients. The results are post-processed to get lift force and drag force. Figure 9 shows 

the resultant forces decomposed into force D parallel to the flow direction and force L 

perpendicular to the flow direction. The force L and D represent the lift and drag, respectively. 

Using equation 3 and 4, lift coefficient and drag coefficient are calculated before actuation and 

after actuation. 

 

 
 

Figure 9. Schematic presentation of lift and drag 
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Equation 2:         𝐶. =
0

1
234

2%
 

 
Equation 3:       𝐶5 =

6
1
234

2%
 

 

Where L is the lift; D is the drag; 𝜌 is the density of the free stream; c is the chord length of the 

airfoil; v is the velocity of the free stream. 

As shown in table 1, 𝐶. and 𝐶5 are calculated to be 0.087 and 0.094, respectively, before 

actuation and 0.244 and 0.068, respectively, after actuation. Coefficient of lift increases by 180%, 

whereas the coefficient of drag decreases by 28%. These results confirm the positive effects of 

actuation on flow separation as it increases the aerodynamic efficiency of the airfoil.  

 
Table 1: Percent changes in aerodynamic forces before and after actuation 

 

Actuation Status Drag Force Lift force C9 𝐶. 

Before Actuation 0.03134 0.0291 0.094 0.087 

     

After Actuation 0.0227 0.0816 0.068 0.244 

     

Percent Change 28% decrease 180% increase 28% decrease 180% increase 

 
4.2 Velocity and Pressure Contours Before and After Actuation 
 

In order to visualize the fluid flow and flow separation, x-component of velocity contours 

are plotted. Figure 10 shows a clear picture of the velocity field of the flow around the airfoil. 

Since the angle of attack is negative, the flow separation occurs downside of the airfoil. A 

distinctive boundary layer can be seen near the suction surface of the airfoil, which separates the 
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high-velocity field and low-velocity field. The large separation bubble, which are blue and pink 

regions in the contour, consists of very low-velocity fields and negative velocity fields. The 

negative velocity fields are reverse flows that occur due to increasing pressure downstream.  

 
 

Figure 10. X-component velocity contour before actuation 
 

Figure 11 demonstrates static pressure contours before actuation starts. The figure shows 

pressure gradients which are the main cause of the flow separation. The shear stress has a retarding 

effect upon the flow due to viscosity. Pressure is as high as 36 Pa near the trailing edge, causing 

the flow to retard or slow down. There is high pressure near the suction side of the airfoil than the 

upper side, resulting in lower flow velocity. 
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Figure 11. Static pressure contour before actuation 
 
 

By introducing high-frequency translational surface actuation, the separation bubble has 

been diminished and become smaller, as demonstrated by figure 12. Some reverse flows still exist 

near the trailing edge, but it is comparatively less than before actuation. Figure 13 shows the 

lessening of large pressure gradients and the complete removal of negative pressure. The actuation 

is supposed to generate vortices that interfere with the boundary layer, bringing momentum and 

energy to the low-velocity region of the separation. This phenomenon is assisting in the 

reattachment of the boundary layer. 
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Figure 12. X-component velocity contour after actuation 
 
 

 
Figure 13. Static pressure contour after actuation 
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4.3 Time Averaged Velocity and Pressure Profiles  

Eleven lines are drawn downside of the airfoil, as shown in figure 14. Velocity and pressure 

profiles are plotted along the line to show separation and reattachment clearly. 

 
 

 
 

Figure 14. Representation of eleven lines for velocity and pressure profiles. 
 

Each line has 500 points incorporated, and data values for pressure and velocity were 

recorded for 50 time-steps. The data points were averaged and plotted to get velocity and pressure 

profiles. The solid-black line, solid-red line, and dotted-magenta line represent data before 

actuation, after actuation, and a zero-line. Figure 15 illustrates that the flow velocity decreases, 

and reverse flows increase from the leading edge to the trailing edge near the airfoil surface. 

Negative velocity is seen in line 4, which explains that flow starts to separate somewhere near line 

4, which is at 90 mm away from the airfoil's leading edge. Also, pressure values at all 11 lines are 

negative for the before actuation condition. However, due to the effect of HFTSA, the pressure 
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values are seen positive at all 11 lines. The velocity magnitude at the same points has increased, 

and even negative velocities are largely reduced.  

 
Figure 15. Velocity profiles at eleven lines before and after actuation 

 
 

 
 

Figure 16. Pressure profiles at eleven lines before and after actuation 
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CONCLUSION AND RECOMMENDATION 
 

Flow separation control using high-frequency translational actuation was investigated 

numerically. The numerical simulation is performed before and after high-frequency translational 

actuation for a symmetrical Eppler 862 airfoil with 0.3048 m chord and 𝑅𝑒% = 88,700 at 𝛼 = 14°. 

The actuation of the surface is realized by using a user-defined function with amplitude 122 x 10(, 

m and 565 Hz frequency. The simulation is performed using the Large Eddy Simulation (LES) 

turbulence model, which has been proved to capture vortical structures and their effects. After 

evaluating the velocity and pressure contours of the flow field, it was evident that flow separation 

got suppressed, and the separation bubble also got reduced mainly after using the HFTSA 

mechanism. The simulation results agree with the experimental results performed by Okoye et al. 

This positive effect of HFTSA on flow separation caused a 180% increase in lift coefficient and 

decrease in drag coefficient by 28%, hence improving the aviation performance of the airfoil. Some 

future works could be beneficial, such as performing more experiments and simulations to 

investigate the effects of HFTSA on an airfoil at different parameters such as actuator location, 

frequency of actuation, the amplitude of actuation, angle of attacks, and incoming flow velocity. 
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