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ABSTRACT 

Reproductive interference occurs when the mating behaviors of one species negatively 

impact the fitness of another species. It is of increasing interest in invasive species biology because 

the introduction of alien species often leads to novel sexual interactions with native taxa, which 

can contribute to their decline. I examined whether reproductive interference plays a role in the 

decline of native green treefrogs (Hyla cinerea) following invasions of Cuban treefrogs 

(Osteopilus septentrionalis) in the southeastern United States. The impetus for this study revolves 

around similarities in spectro-temporal features of Cuban treefrog courtship calls and green 

treefrog aggressive calls. The significance of this similarity is that the aggressive calls of green 

treefrogs stimulate elevations in circulating glucocorticoids in rival conspecific males, which 

suppresses androgen production and reproductive behavior. I thus hypothesized that introduced 

Cuban treefrogs negatively impact green treefrogs because the courtship calls of Cuban treefrogs 

stimulate chronic elevations in circulating glucocorticoid levels that suppress reproduction in 

native green treefrogs. This hypothesis was tested using vocal playback experiments to examine 

the effects of Cuban treefrog calls on the endocrine physiology of green treefrogs and by 

examining hormone levels and calling behavior of green treefrogs in natural choruses with and 

without Cuban treefrogs. Playback experiments revealed that the aggressive calls of green 

treefrogs stimulate glucocorticoid production in conspecific males, consistent with previous work, 

but that Cuban treefrog vocalizations do not stimulate glucocorticoid production in green treefrogs. 

In natural choruses, the density of calling male green treefrogs and the proportion of non-calling 

male green treefrogs were positively correlated with circulating glucocorticoids and negatively 
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correlated with androgens, and body size was positively correlated with circulating androgen 

levels. After statistically controlling for these variables, there was no evidence that circulating 

hormone levels or behavior differed in choruses of green treefrogs in the presence and absence of 

Cuban treefrogs. These results suggest that interactions among competing conspecific male green 

treefrogs influence circulating hormone levels but that Cuban treefrogs are not altering the 

endocrine physiology of green treefrogs.  
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EXAMINING THE POTENTIAL ROLE OF REPRODUCTIVE INTERFERENCE IN 

THE DECLINE OF NATIVE GREEN TREEFROGS FOLLOWING CUBAN 

TREEFROG INVASIONS 

 

I.  INTRODUCTION 

Invasive species are a leading cause of global declines in native taxa and biodiversity 

(Clavero and Garcia-Berthou, 2005; Doherty et al., 2016). Introduced species often negatively 

impact native taxa via direct predation, competitive exclusion, and/or the transmission of novel 

pathogens (Sakai et al., 2001; Crowl et al., 2008). However, there is also growing evidence 

implicating reproductive interference in the decline of native taxa following invasions by non-

native species (Rhymer and Simberloff, 1996; Uyehara et al., 2007; D’Amore et al., 2009; Kraus, 

2015). Reproductive interference refers to instances in which interspecific sexual interactions 

negatively impact the fitness of at least one of the species involved (Groning and Hochkirch, 2008). 

For example, European bumblebees (Bombus terrestris) and Japanese bumblebees (Bombus 

hypocrita) exhibit similar courtship behaviors, have a high rate of interspecific pairing, but do not 

produce viable offspring (Kondo et al., 2009). Since Japanese bumblebee queens generally only 

mate once during their life, mismatings with invasive European bumblebees could pose a threat 

for native Japanese bumblebee populations (Kondo et al., 2009; see also Uyehara et al., 2007 for 

a similar example involving introduced Mallard ducks and native Hawaiian ducks).  

Here, I examined the potential role of reproductive interference in the context of declines 

of native green treefrogs (Hyla cinerea) following Cuban treefrog (Osteopilus septentrionalis) 
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invasions in the southeastern United States. The Cuban treefrog is native to Cuba, the Cayman 

Islands, and the Bahamas (Meshaka, 2001). In the early 1920s, Cuban treefrogs were introduced 

to southern Florida through shipping ports in the lower Florida Keys (Meshaka, 2001). Established 

breeding populations were documented in Miami soon thereafter (Meshaka, 2001), and have now 

spread throughout southern and central Florida (Johnson, 2013) and southern Louisiana (Glorioso 

et al., 2018). Cuban treefrogs are of major conservation concern because they have been linked to 

population declines and localized extirpation of native anurans as they spread across Florida 

(Johnson, 2013; Rice et al., 2011; Meshaka, 2001). In particular, Cuban treefrogs have replaced 

native green treefrogs at sites where they were once common (Johnson, 2013).  

How Cuban treefrogs are negatively impacting green treefrogs and other native anurans is 

unclear (Rice et al., 2011). One prominent hypothesis is that Cuban treefrogs directly prey on 

native anurans (Meshaka, 2001; Wyatt and Forys, 2004). However, analysis of stomach contents 

of 767 adult Cuban treefrogs in South Florida revealed that native frog species were found in only 

26 (3.5%) of the frogs examined (Glorioso et al., 2012), suggesting that predation by Cuban 

treefrogs is not a primary factor driving the decline of native anuran species. There is also little 

evidence indicating that larval competition is a major factor contributing to the decline of native 

treefrogs. For instance, there was no detectable effect of Cuban treefrog tadpoles on survival of 

green treefrog tadpoles in mesocosm experiments (Smith, 2005). The presence of Cuban treefrog 

tadpoles did, however, result in decreased growth rates and smaller masses at metamorphosis in 

green treefrogs, but whether these effects translate into population declines is not known (Smith, 

2005).  

Recent work on Cuban treefrogs and other invasive anurans implicate acoustic interference 

as an important factor affecting native anuran species (Both and Grant, 2012; Bleach et al., 2015; 
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Tennessen et al., 2016). Most anurans use acoustic signals to attract mates (Gerhardt and Huber, 

2002) and many anurans call in mixed species breeding assemblages, but sympatric species 

characteristically evolve distinct “channels” (i.e. spectral and temporal characteristics of acoustic 

signals) that minimize acoustic interference (Chek et al., 2003). The calls of introduced species 

can, however, overlap and interfere with those of native taxa to alter their behavior. For example, 

overlap in the calls of Cuban treefrogs and green treefrogs causes male green treefrogs to shorten 

the duration of their advertisement calls and increase call amplitude when exposed to broadcast 

Cuban treefrog choruses (Tennessen et al., 2016). Similarly, native Australian marbled frogs 

(Limnodynastes convexiusculus) increase call amplitude and adjust the timing of their 

advertisement calls to minimize overlap with the vocalizations of invasive cane toads (Rhinella 

marina) (Bleach et al., 2015). In white-banded treefrogs (Hypsiboas albomarginatus), males 

produce shorter call durations with higher spectral peaks in response to broadcast calls of invasive 

bullfrogs (Rana catesbeiana) (Both and Grant, 2012). Because female white-banded treefrogs 

potentially select mates based on these altered call characteristics, the presence of invasive bullfrog 

calls could decrease reproductive success in this native treefrog (Both and Grant, 2012).  

One aspect of reproductive interference that remains unstudied involves how the courtship 

signals of invasive species potentially influence the endocrine physiology of native taxa. 

Advertisement calls of anurans, for example, are known to stimulate the production of gonadal 

steroids in males and females, which can promote reproductive behaviors (Lynch and Wilczynski, 

2006; Chu and Wilczynski, 2001). In contrast, males of many anuran species produce distinct 

aggressive calls that stimulate the production of glucocorticoids in conspecific male signal 

receivers (Leary, 2014; Leary and Crocker-Buta, 2018; Leary and Harris, 2013), which suppresses 

reproductive behavior (Leary et al., 2008a; Leary and Crocker Buta, 2018). In green treefrogs, 
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dominant males effectively oust competing males from the pool of conspecific males engaged in 

vocalization during close range aggressive vocal interactions which stimulate glucocorticoid 

production and suppress vocalization in contest losers, either independently or in conjunction with 

decreased androgen levels (Leary and Crocker-Buta, 2018; Leary, 2014). In this species, contest 

losers adopt non-calling alternative “satellite” mating tactics to increase their chances of acquiring 

mates in the presence of dominant males (Leary and Harris, 2013; Perrill et al., 1978).  

Here, I investigated reproductive interference between invasive Cuban treefrogs and native 

green treefrogs in the context of acoustic modulation of hormone levels because of the remarkable 

similarities in Cuban treefrog advertisement calls and green treefrog aggressive calls (Fig. 1). For 

example, in addition to sharing similar carrier frequencies, these two calls are also amplitude 

modulated (i.e., pulsed) and portions of the Cuban treefrog advertisement call possess similar pulse 

repetition rates, pulse durations, and pulse rise time characteristics as green treefrog aggressive 

calls (Fig. 1) – features that are crucial for central auditory processing in anurans (Leary et al., 

2008b; Edwards et al., 2003; Rose, et al., 2011, 2015). Similarities in spectral and temporal 

properties suggest that the advertisement calls of invasive Cuban treefrogs stimulate elevations in 

circulating glucocorticoid levels in male green treefrogs. Previous vocal playback experiments and 

hormone manipulation studies provide indirect support for this hypothesis. For example, the 

reduction in call duration in male green treefrogs in response to broadcast Cuban treefrog choruses 

(Tennessen et al., 2016) is very similar to the reduction in call duration reported in this species in 

response to corticosterone (CORT) injections (Leary and Crocker-Buta, 2018). This suggests that 

alterations in the call properties of green treefrogs in response to broadcast Cuban treefrogs calls 

could be mediated by elevations in circulating glucocorticoids.  
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Figure 1. Waveform representations of (a) Cuban treefrog advertisement call, (b) green treefrog 

aggressive call; (c) shows the extent of temporal overlap () between the aggressive call of green 

treefrogs () and the advertisement call of Cuban treefrogs (). In addition to these temporal 

features, the two calls also have similar spectral components (i.e. both calls have a peak carrier 

frequency around 2500 Hz, not shown). 

 

 

Acoustic modulation of circulating hormone levels in green treefrogs by Cuban treefrogs, 

if it occurs, may be particularly important because the persistence of courtship signaling by Cuban 

treefrogs (i.e., males produce advertisement calls throughout most of the night, Tennessen et al., 

2013) could stimulate chronic elevations in glucocorticoid levels in male green treefrogs. 

Chronically elevated glucocorticoids can have numerous negative fitness consequences stemming 

from suppression of reproductive behavior, general wasting, and compromised immunity (Selye, 

1936; Christian, 1950; Boonstra and Singleton, 1993; Creel et al., 2013).  
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I hypothesized that invasive Cuban treefrogs negatively impact green treefrog populations 

because the courtship calls of Cuban treefrogs stimulate chronic elevations in circulating 

glucocorticoid levels that suppress reproductive behavior in native green treefrogs. I tested this 

hypothesis using two approaches. The first approach involved using vocal playback experiments 

to examine the effects of Cuban treefrog calls on the endocrine physiology of green treefrogs. The 

second approach involved examining hormone levels and calling behavior of green treefrogs in 

natural choruses with and without Cuban treefrogs. The combined approaches allowed for 

determination of whether Cuban treefrog courtship signals cause changes in the endocrine 

physiology of green treefrogs and whether these effects translate into variation in hormone levels 

in natural populations of green treefrogs. The second approach, however, also allowed for 

examination of whether Cuban treefrogs alter the endocrine physiology of green treefrogs via non-

acoustically-mediated stimulation of hormone production. For example, invasive species can alter 

the endocrine physiology of native taxa via visual or chemical cues or through competition for 

limited food resources (Narayan et al., 2015; Jessop et al., 2015; Santicchia et al., 2018).
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CHAPTER ONE: INVESTIGATING THE EFFECT OF BROADCAST CUBAN 

TREEFROG CALLS ON HORMONE LEVELS IN NATIVE GREEN TREEFROGS 

 

I.  METHODS 

General procedures 

Calling male green treefrogs (Hyla cinerea) from natural choruses at the University of 

Mississippi Field Station were used in vocal playback experiments. Green treefrogs in Mississippi 

are naïve to Cuban treefrog vocalizations, and thus, there has been no opportunity for evolutionary 

responses to Cuban treefrogs in these populations. Calling male green treefrogs were captured by 

hand from 2100 to 2300 hrs, when natural choruses were at the highest level of activity. Captured 

frogs were then placed into individual damp pillow cases and left to acclimate for 1 hr away from 

the chorus before exposure to the stimuli (see Leary, 2014).   

 

Stimuli used in playback experiments 

The playback experiments consisted of five different treatment groups exposed to: 1) 

Cuban treefrog advertisement calls, 2) green treefrog advertisement calls, 3) green treefrog 

aggressive calls, 4) pearl spotted owlet (Glaucidium perlatum) calls, and 5) silence (Fig. 2). 

Parameterization of frog calls used in treatment groups 1-3 was based on the analysis of 13 Cuban 

treefrog advertisement calls, 54 green treefrog advertisement calls, and 24 green treefrog 

aggressive calls (using Raven software, Cornell Bioacoustics Laboratory, Ithaca, NY, U.S.A.). 

Call duration and carrier frequency showed the most variation among these three frog call types. 
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To account for the variation of calls in the playback experiments and to avoid pseudo-replication 

(Kroodsma, 1989), three representative calls were selected and used in each treatment group (Table 

1). The first call possessed the mean characteristics for call duration and carrier frequency. The 

second call possessed call parameters with a call duration 1 standard deviation above the mean and 

a carrier frequency 1 standard deviation below the mean. The third call possessed call parameters 

with a call duration 1 standard deviation below the mean and a carrier frequency 1 standard 

deviation above the mean. The pearl spotted owlet call and silence acted as controls in the playback 

experiments. The pearl spotted owlet, native to Africa, is a natural predator of anurans (Sinclair 

and Ryan, 2009). The owl call thus acted as a novel stimulus predator signal. To account for the 

variation of calls and to avoid pseudo-replication, three pearl spotted owlet vocalizations that 

varied in carrier frequencies were used in this treatment group (see Table 1). Calls were obtained 

from the following sources: mean frequency – xeno-canto, CAT# 266417; low frequency – Van 

Wyk, 2013; high frequency – Macaulay Library, CAT# ML21585441.  
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Figure 2. Waveform representations of the signals used in playback experiments: (a) Cuban 

treefrog advertisement call, (b) green treefrog advertisement call, (c) green treefrog aggressive 

call, and (d) pearl spotted owlet call. To the right of each waveform are spectra depicting peak 

carrier frequencies (*) for the calls. 

 

Table 1. Call durations and peak carrier frequencies for all acoustic stimuli used in playback 

experiments. Cuban treefrog advertisement calls had one peak carrier frequency, green treefrog 

advertisement and aggressive calls had two peak carrier frequencies, and pearl spotted owlet calls 

had four peak carrier frequencies (see Fig. 2). “High” and “low” call designations refer to 1 SD 

above and below the mean for that call parameter. 

______________________________________________________________________________ 

 

Cuban treefrog advertisement call          Peak carrier frequency (Hz)       Call duration (ms)  

High call             2577         450 

Mean call             2420        487 

Low call             2196        552 

 

Green treefrog advertisement call          Peak carrier frequencies (Hz)    Call duration (ms)  

High call             874, 2936       128 

Mean call             717, 2555       139 
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Low call             672, 2286       178 

 

Green treefrog aggressive call          Peak carrier frequencies (Hz)    Call duration (ms)  

High call             941, 2756       137 

Mean call             873, 2689       142 

Low call             728, 2622       153 

 

Pearl spotted owlet call           Peak carrier frequencies (Hz)    Call duration (ms) 

High call             2039, 4011, 6073, 8090      572 

Mean call             1546, 3048, 4571, 6095      299 

Low call             1389, 2779, 4235, 5535      301 

 

 

Exposure to the broadcast stimuli 

After one hour of acclimation, individuals were sampled for blood via cardiac puncture (in 

under 2 min) with a heparinized hypodermic needle (see Leary, 2014) and then placed back into 

separate pillowcases and acoustic chambers. Each acoustic chamber was constructed by lining a 

13” fabric cube storage bin with 0.125” Sound Transmission Class 27 soundproofing material 

sheet (Soundproof Cow, Chambersburg, PA, U.S.A.) and 2.5” Noise Reduction Coefficient 0.6 

eggcrate foam (Foam Factory, Macomb, MI, U.S.A.). Individuals were randomly exposed to one 

of the five treatments at 90 db SPL for 45 min with a Bluetooth speaker (Anker Soundcore, 

Shenzhen, China). The time period for exposure to broadcast anuran calls (45 minutes) is 

ecologically relevant because males in natural choruses produce aggressive calls for at least 45 

minutes at the onset of nightly chorus activity and advertisement calls of both species are produced 

for several hours each night (Leary, 2014). 

All stimuli were broadcast for an equivalent amount of time and at a 1:3 stimulus:silence 

ratio to control for total acoustic energy. Following exposure to the treatment, a second blood 
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sample was immediately taken. Blood samples were then stored on ice until they were taken back 

to the lab (<4 hrs). Blood was centrifuged at 2500 RPM for 12 min to separate plasma and 

subsequently frozen at -20ºC until radioimmunoassay was done to quantify hormone levels. 

Circulating hormone levels were measured from 9 males exposed to Cuban treefrog advertisement 

calls (high=2, mean=3, low=4), 10 males exposed to green treefrog advertisement calls (high=2, 

mean=3, low=5), 8 males exposed to green treefrog aggressive calls (high=0, mean=4, low=4), 12 

males exposed to pearl spotted owlet calls (high=5, mean=3, low=4), and 10 males exposed to 

silence.  

Previous work has shown that the magnitude of the CORT response to acoustic signals is 

inversely correlated with individual body size (Leary, 2014). In addition, circulating CORT levels 

are negatively correlated with individual body condition and circulating androgen levels are 

positively correlated with individual body condition (Leary and Harris, 2013). Hence, all 

individuals were measured from the tip of the snout to the end of the ischium (e.g., snout-ischial 

length, SIL) and weighed after obtaining the second blood sample. Body condition was calculated 

by obtaining the residual values from a linear regression of the cubed root body mass on SIL and 

dividing those values by SIL (Leary et al., 2015).  

 

Column Chromatography and Radioimmunoassay 

All blood samples (n=98, 49 pre-stimulus and 49 post-stimulus) were examined for levels 

of dihydrotestosterone (DHT), testosterone (T), and corticosterone (CORT). Hormone separation 

and quantification of hormone levels were done using column chromatography and 

radioimmunoassay following the methods described in Leary (2014). Briefly, plasma samples 

were incubated overnight with radiolabeled hormone (PerkinElmer, Inc. Hebron, KY, U.S.A.) for 
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determination of recoveries for each sample. Steroids were then extracted from plasma using 

diethyl ether, dried under nitrogen gas at 40°C, and resuspended in 10% ethyl acetate in iso-octane. 

Samples were then loaded onto diatomaceous earth columns containing a 3:1 diatomaceous 

earth:distilled water ‘glycol trap’ and a 1:1 propanediol:ethylene glycol mixture. Mixtures of 10%, 

20%, and 52% ethyl acetate in iso-octane were then used to collect DHT, T, and CORT, 

respectively. Fractions were dried under nitrogen and resuspended in phosphate buffered saline 

containing 0.3% gelatin for radioimmunoassay. T antibody was obtained from Fitzgerald 

Industries International, Inc (Acton, MA, U.S.A., #20R-TR018W) and used for both T and DHT 

assays. CORT antibody was purchased from MP Biomedicals, LLC (Solon, OH, U.S.A., 

#07120016). All samples were assayed in duplicate. 

Plasma samples from males in the playback experiments were analyzed for DHT, T, and 

CORT levels in three assays. Samples were randomized among assays but pre- and post-stimulus 

exposure blood samples from the same individuals were always included in the same assay. Mean 

intra-assay coefficients of variation for DHT, T, and CORT were 22%, 14%, and 11%, 

respectively, based on four standards run with each assay. Inter-assay coefficients of variation for 

DHT, T, and CORT were 2%, 14%, and 5.2%, respectively.  

 

Statistical Analysis 

Analysis of variance (ANOVA) was first used to determine if body size or body condition 

differed between treatment groups. Repeated measures ANOVAs were used to determine if the 

results from the three representative calls in each treatment group could be combined for the 

remainder of the analysis based on comparisons of pre- and post-stimulus CORT and total 

androgen (DHT + T) levels. Next, I compared the effects of the treatments on pre-stimulus and 
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post-stimulus CORT and total androgen (DHT + T) levels using a repeated measures ANOVA. I 

then used a paired t-test to examine CORT and total androgen levels prior to and after exposure to 

the broadcast stimuli. 

 

II. RESULTS 

Body condition and size 

Body size did not differ among the treatment groups (F4=1.209, p=0.320), nor did body 

condition (F4=1.676, p=0.173). Since body size and condition did not differ between treatments, 

they were excluded from the remainder of the analysis.  

 

Corticosterone levels 

There was no interaction among the three representative calls in each treatment and CORT 

production for any of the broadcast stimuli (Cuban treefrog advertisement calls F2,7=1.846, 

p=0.227; green treefrog advertisement calls F2,6=2.693, p=0.146; green treefrog aggressive calls 

F1,6=0.073, p=0.796; and pearl spotted owlet calls F2,9=0.793, p=0.482). The results from the three 

representative calls in each treatment group were thus combined for the remainder of the analysis.  

When averaged across treatment groups, there was no overall change in CORT levels 

(F1,44=1.835, p=0.182). However, the change in CORT levels did differ among treatment groups, 

resulting in a significant treatment by time interaction (F4,44=2.909, p=0.032). Males that were 

exposed to green treefrog aggressive calls showed a significant increase in CORT (t7=-4.614, 

p=0.002) (Fig. 3). There was no significant change in CORT levels for males exposed to green 

treefrog advertisement calls (t8=-1.116, p=0.297), pearl spotted owlet calls (t11=-0.546, p=0.596), 
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or silence (t9=0.091, p=0.930). Males exposed to Cuban treefrog advertisement calls actually 

showed a marginal decrease in CORT (t9=2.173, p=0.06) (Fig. 3).  

 

 

Figure 3. Corticosterone levels prior to () and after () exposure to broadcast Cuban treefrog 

advertisement calls (n=9), green treefrog advertisement calls (n=10), green treefrog aggressive 

calls (n=8), novel pearl spotted owlet calls (n=12), and silence (n=10).  

 

Total Androgen Levels 

There was no interaction among the three representative calls in each treatment and 

androgen levels for any of the broadcast stimuli (Cuban treefrog advertisement calls F2,7=2.078, 

p=0.196; green treefrog advertisement calls F2,6=3.146, p=0.116; green treefrog aggressive calls 

F1,6=3.529, p=0.109; and pearl spotted owlet calls F2,9=0.608, p=0.565). The results from the three 

representative calls in each treatment group were thus combined for the remainder of the analysis. 

Averaged across all stimulus types, there was an overall decrease in pre- to post-stimulus 

androgen levels (F1,44=82.067, p<0.001): Cuban treefrog advertisement calls (t9=4.368, p=0.002), 

green treefrog advertisement calls (t8=4.788, p=0.001), green treefrog aggressive calls (t7=3.172, 
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p=0.016), pearl spotted owlet call (t11=5.761, p<0.001), and silence (t9=4.144, p=0.003) (Fig. 4). 

In addition, there was an interaction between treatment and pre- and post-stimulus androgen levels 

among the treatment groups (F4,44=2.577, p=0.050); this was attributable to lower pre-stimulus 

androgen levels among individuals exposed to green treefrog aggressive calls than those among 

individuals exposed to silence.  

 

 

Figure 4. Total Androgen (T + DHT) levels prior to () and after () exposure to broadcast 

Cuban treefrog advertisement calls (n=9), green treefrog advertisement calls (n=10), green treefrog 

aggressive calls (n=8), novel pearl spotted owlet calls (n=12), and silence (n=10). 

 

III.  DISCUSSION 

Despite striking similarities in the spectral and temporal properties of Cuban treefrog 

advertisement calls and green treefrog aggressive calls, playback experiments revealed no 

evidence that the calls of Cuban treefrogs stimulate elevations in circulating glucocorticoids in 

green treefrogs. In fact, the Cuban advertisement call was the only stimulus that led to a marginal 



16 

 

decrease in glucocorticoid levels. The only treatment that elicited an increase in glucocorticoids 

was the green treefrog aggressive call, which is consistent with previous research (Leary, 2014).  

It is unclear why Cuban treefrog advertisement calls do not elicit elevations in circulating 

glucocorticoids. One possibility lies in the neural processing of pulse repetition rate by auditory 

neurons in anurans (Leary et al., 2008b; Edwards et al., 2003; Rose, et al., 2011, 2015). For 

example, midbrain auditory neurons of Pacific treefrogs (Pseudacris regilla) only respond to a 

specific pulse repetition rate; when the pulse repetition rate is too low or too high it can actually 

hyperpolarize the cell (Edwards et al., 2007). This is important because, unlike the stereotyped 

pulse repetition rate of the advertisement calls of many anurans, the pulse repetition rate of Cuban 

treefrog advertisement calls varies temporally. Hence, non-similar portions of the Cuban treefrog 

advertisement call could hyperpolarize the auditory neurons that may be involved in triggering 

endocrine responses. If the neuron is hyperpolarized by various preceding elements of the call, the 

portion of the Cuban treefrog advertisement call that is similar to the green treefrog aggressive call 

may not be sufficient to depolarize the cell.  

All treatments showed a significant decrease in total androgens (testosterone and 

dihydrotestosterone) after being exposed to the stimuli. This response is likely due to the period 

of acclimation (1 hr) before the playback experiment. During this period, each individual was 

placed in a damp pillow away from the chorus. Conspecific chorus sounds are known to stimulate 

androgen production in male green treefrogs (Burmeister and Wilczynski, 2000). Hence, the period 

of relative silence during acclimation may have resulted in decreased stimulation by chorus sounds 

that led to decreased androgen levels across all treatment groups.  

Overall, my results suggest that exposure to a single Cuban treefrog call does not elicit an 

increase in glucocorticoids in green treefrogs. However, how circulating glucocorticoid and 
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androgen levels of male green treefrogs are potentially altered by choruses of Cuban treefrogs is 

not known. This is important because the endocrine response to isolated calls and more complex 

chorus sounds may be very different in anurans. For example, in green treefrogs, conspecific 

choruses stimulate androgen production but broadcast representations of single advertisement calls 

do not (Burmeister and Wilczynski, 2000; Leary, 2014). Moreover, the presence of Cuban 

treefrogs could alter the endocrine physiology of green treefrogs through visual cues or 

competition for limited resources (Narayan et al., 2015). For example, invasive cane toads 

(Rhinella marina) cause an increase in glucocorticoid levels in native Fiji ground frogs 

(Platymantis vitianus) when placed together in large (4 x 10,000 m2) enclosures, presumably 

because toads are visually threatening to ground frogs or because direct competition for food elicits 

a stress response (Narayan et al., 2015). In addition, prolonged exposure to invasive cane toads 

was correlated with lower body condition and smaller egg clutch sizes in the Fiji ground frogs 

(Narayan et al., 2015), suggesting that the presence of alien cane toads can lead to declines in Fiji 

ground frog populations via effects of elevated glucocorticoids. Because invasive Cuban treefrogs 

are known predators of other anurans (Meshaka, 2001), it is entirely possible that visual, rather 

than auditory, stimulation elicits a stress response in green treefrogs. Alternatively, competition 

between the two species for limited resources could stimulate elevation in glucocorticoid levels in 

native green treefrogs. To address these possibilities, Chapter Two examines the endocrine 

physiology of green treefrogs in natural populations and in the presence and absence of Cuban 

treefrogs. 
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CHAPTER TWO: HORMONE LEVELS AND BEHAVIOR OF GREEN TREEFROGS 

IN NATURAL CHORUSES WITH AND WITHOUT CUBAN TREEFROGS 

 

I.  METHODS 

Site selection in Gainesville, FL 

I compared circulating levels of glucocorticoids and androgens in male green treefrogs 

(Hyla cinerea) and the proportion of calling and non-calling male green treefrogs at ponds in 

central Florida where Cuban treefrogs were present (“Cuban +” sites) and absent (“Cuban –” sites). 

Sampling occurred throughout June and July during the breeding season for both green treefrogs 

and Cuban treefrogs. A total of 6 sites were used that included 3 Cuban + sites and 3 Cuban – sites 

in Gainesville, FL (Table 2, Fig. 5).  

 

Table 2. Sites and GPS coordinates where green treefrogs were sampled in Gainesville, FL.  

______________________________________________________________________________ 

Cuban Present Sites     Site ID  GPS Coordinates   

Natural Area Teaching Lab (University of Florida) Cuban+1 29°38'01.0"N 82°22'02.3"W 

Depot Park      Cuban+2 29°38'37.7"N 82°19'17.1"W 

Private pond      Cuban+3 29°39'52.8"N 82°22'49.7"W 

______________________________________________________________________________ 

 

Cuban Absent Sites     Site ID  GPS Coordinates 

Private wetland     Cuban–1 29°35'38.6"N 82°20'40.3"W 

Lake Alice wetland (University of Florida)  Cuban–2  29°38'32.0"N 82°21'39.3"W 

Newnan’s Lake private wetland    Cuban–3  29°40'07.3"N 82°14'17.0"W
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Figure 5. Photographs of the six sites where green treefrogs were sampled. Cuban + sites: (A) 

Cuban+1, (B) Cuban+2, and (C) Cuban+3. Cuban – sites: (D) Cuban–1, (E) Cuban–2, and (F) 

Cuban–3. 

 

General sampling procedures  

Sampling took place between 2200 and 2400 hrs, when natural choruses were at the highest 

level of activity. Male green treefrogs at Cuban – sites were sampled once. In contrast, male green 

treefrogs at Cuban + sites were sampled twice: once when Cuban treefrogs were chorusing (Cuban 

+ Call) and once when Cuban treefrogs were present but not chorusing (Cuban + No Call). 

Sampling green treefrogs in the absence and presence of chorusing Cuban treefrogs allowed me to 

examine how circulating glucocorticoid or androgen levels in green treefrogs potentially vary in 

the mere presence of Cuban treefrogs versus when Cuban treefrogs are vocalizing. 

Beginning at 2100 hrs, I performed visual and auditory surveys to get an estimate of the 

proportion of non-calling to calling male green treefrogs at each site. Next, I measured the 

population density of green treefrogs. Conspecific chorus density is known to be positively 

correlated with circulating glucocorticoid levels in other anuran species (Leary et al., 2008c). 
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Density was calculated at each site by randomly selecting a calling individual and counting the 

number of conspecific males in a 1m radius. This was repeated 5 times with 5 different focal 

individuals over 20 min to obtain an average density (number of calling or non-calling males per 

1m2). After the population density was measured, I captured and rapidly (in under 2 min) obtained 

blood samples via cardiac puncture from calling and non-calling male green treefrogs between 

2200 and 2400 hrs for hormone analysis. Individuals were then measured from the tip of the snout 

to the end of the ischium (e.g., snout-ischial length, SIL) and weighed. Body condition was then 

calculated by obtaining the residual values from a linear regression of the cubed root body mass 

on SIL and dividing those values by SIL (Leary et al., 2015). 

 

Column Chromatography and Radioimmunoassay 

All blood samples (n=132) were assayed for levels of dihydrotestosterone (DHT), 

testosterone (T), and corticosterone (CORT) (see methods in Chapter One).  

Plasma samples were analyzed and randomized in two assays. Mean intra-assay 

coefficients of variation for DHT, T, and CORT were 22.5%, 14.5%, and 14.5%, respectively, 

based on four standards run with both assays. Inter-assay coefficients of variation for DHT, T, and 

CORT were 12.5%, 6%, and 5%, respectively. 

 

Statistical Analysis 

ANOVA was first used to determine if CORT levels, total androgen levels (DHT + T), 

body size, and body condition differed between calling and non-calling male green treefrogs. I 

then examined the relationship between hormone levels of calling male green treefrogs and several 

variables that could influence circulating hormone levels (body size, body condition, conspecific 
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density, and the proportion of non-calling male green treefrogs) using a multiple linear regression. 

I used scatterplots to visualize pairwise relationships between hormone levels and body size, body 

condition, conspecific density, and proportion of non-calling male green treefrogs.  

To control for the effects of these variables on hormone levels, I used the residuals from 

the multiple regression in place of raw hormone levels to determine whether hormone levels of 

calling male green treefrogs varied in the presence and absence of Cuban treefrogs. Specifically, I 

examined how hormone levels, corrected for these variables, differed among Site Type (Cuban –, 

Cuban + Call, and Cuban + No Call) and individual sites nested within Site Type. Individual sites 

were nested into Site Type to determine if and how hormone levels varied among Site Types and 

to account for random variation among sites. 

 ANOVA was used to test for differences between Site Type (Cuban –, Cuban + Call, and 

Cuban + No Call) and green treefrog density. ANOVA was also used to test for differences 

between Site Type and proportion of non-calling male green treefrogs. The relationship between 

green treefrog density and the proportion of non-calling male green treefrogs was examined using 

linear regression.  

 

II. RESULTS 

Differences in calling and non-calling male green treefrogs 

 Calling male green treefrogs had significantly higher circulating total androgen levels than 

non-calling males (F1,130=17.080, p<0.001; mean ± SE, callers (n=116): 27.5 ± 1.32 ng/ml, non-

callers (n=16): 12.4 ± 1.89 ng/ml), but the two groups of males did not differ in circulating CORT 

levels (F1,130=0.175, p=0.676; mean ± SE, callers (n=116): 2.5 ± 0.35 ng/ml, non-callers (n=16): 

2.4 ± 0.67 ng/ml). In addition, calling male green treefrogs were significantly larger (F1,130=11.656, 
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p=0.001; mean ± SE, callers (n=116): 4.6 ± 0.04 cm, non-callers (n=16): 4.1 ± 0.11 cm) and were 

in better body condition than non-calling males (F1,130=4.160, p=0.043; mean ± SE, callers 

(n=116): 0.003 ± 0.005, non-callers (n=16): -0.025 ± 0.013). Because of the relatively small 

sample sizes for non-calling males and differences in these parameters for non-calling and calling 

males, only calling male green treefrogs were used in the remainder of the analysis. 

 

Circulating glucocorticoid levels of calling male green treefrogs 

Multiple regression results indicated that body size, body condition, conspecific density, 

and proportion of non-calling male green treefrogs were significant predictors of circulating CORT 

levels in male green treefrogs (F4,109=3.554, r2=0.083, p=0.009). There was a significant positive 

relationship between CORT and green treefrog density (F1, 114=12.938, r2=0.096, p<0.001) and 

CORT and proportion of non-calling male green treefrogs (F1, 114=10.506, r2=0.076, p=0.002) (Fig. 

6a, 6b). There was no significant relationship between CORT and SIL (F1, 114= 0.639, r2=-0.003, 

p=0.426) or CORT and body condition (F1, 114=0.186, r2=-0.007, p=0.667) (Fig. 6c, 6d).  

After controlling for the effects of these variables by using the residuals obtained from 

multiple regression, there was no evidence that circulating CORT levels in male green treefrogs 

differed among sites where Cuban treefrogs were absent, present and chorusing, or present but not 

chorusing (F2,6(Site Type)=2.094, p=0.202) (Fig. 7). In addition, there was no difference in circulating 

CORT levels in male green treefrogs among individual sites (F2,6(Site(Site Type))= 0.823, p=0.555) 

(Fig. 8). 
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Figure 6. Linear regressions depicting the relationships between A) corticosterone and green 

treefrog density, B) corticosterone and proportion of non-calling male green treefrogs, C) 

corticosterone and snout-ischial length (SIL), and D) corticosterone and body condition. 

 

 
Figure 7. Corrected circulating corticosterone levels of calling male green treefrogs at sites where 

Cuban treefrogs were present and chorusing (Cuban + Call), Cuban treefrogs were present but not 

chorusing (Cuban + No Call), and Cuban treefrogs were absent (Cuban –). Corticosterone levels 

were corrected using the residuals from multiple linear regression (see text). 
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Figure 8. Corrected circulating corticosterone levels of calling male green treefrogs at the six sites 

sampled in Gainesville, FL. Corticosterone levels were corrected using the residuals from multiple 

linear regression (see text). 

 

 

Circulating androgen levels of calling male green treefrogs 

Multiple regression results indicated that body size, body condition, conspecific density, 

and proportion of non-calling male green treefrogs were significant predictors of circulating 

androgen levels in male green treefrogs (F4,109=3.948, r2=0.095, p=0.005). There was a significant 

negative relationship between androgens and green treefrog density (F1, 114=6.828, r2=0.049, 

p=0.010) and androgens and proportion of non-calling male green treefrogs (F1, 114=11.204, 

r2=0.082, p=0.001) (Fig. 9a, 9b). There was a significant positive relationship between androgens 

and SIL (F1, 114= 11.864, r2=0.086, p=0.001) (Fig. 9c). There was no relationship between 

androgens and body condition (F1, 114=0.375, r2=-0.005 p=0.542) (Fig. 9d). 

After controlling for the effects of these variables by using the residuals obtained from 

multiple regression, there was no evidence that circulating androgen levels in male green treefrogs 

differed among sites where Cuban treefrogs were absent, present and chorusing, or present but not 

chorusing (F2,6(Site Type)=1.172, p=0.371) (Fig. 10). In addition, there was no difference in 
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circulating androgen levels in male green treefrogs among individual sites (F2,6(Site(Site Type))=2.013, 

p=0.070) (Fig. 11). 

 

 
Figure 9. Linear regressions depicting the relationships between A) androgens and green treefrog 

density, B) androgens and proportion of non-calling male green treefrogs, C) androgens and snout-

ischial length (SIL), and D) androgens and body condition. 
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Figure 10. Corrected circulating androgen levels of calling male green treefrogs at sites where 

Cuban treefrogs were present and chorusing (Cuban + Call), Cuban treefrogs were present but not 

chorusing (Cuban + No Call), and Cuban treefrogs were absent (Cuban –). Androgen were 

corrected using the residuals from multiple linear regression (see text). 

 

 

 
Figure 11. Corrected circulating androgen levels of calling male green treefrogs at the six sites 

sampled in Gainesville, FL. Androgen levels were corrected using the residuals from multiple 

linear regression (see text). 

 

 

Proportion of non-calling green treefrogs and density  

The proportion of non-calling male green treefrogs did not differ between sites where 

Cuban treefrogs were present and absent (F2,6=0.530, p=0.614). Similarly, the density of male 

green treefrogs did not differ between sites where Cuban treefrogs were present and absent 

(F2,6=0.099, p=0.908). However, there was a significant positive correlation between the density 

of green treefrogs and the proportion of non-calling male green treefrogs (F1,7=7.345, r2=0.442, 

p=0.030) (Fig. 12). 
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Figure 12. Linear regression depicting the correlation between green treefrog density and 

proportion of non-calling male green treefrogs. 

 

III.  DISCUSSION 

 Results suggest that the presence of Cuban treefrogs is not correlated with the levels of 

circulating glucocorticoids and androgens in native green treefrogs. Furthermore, whether Cuban 

treefrogs were vocalizing or present and not vocalizing was unrelated to circulating hormone levels 

in green treefrogs. These results are consistent with the results obtained from playback experiments 

indicating that the vocalizations of Cuban treefrogs do not elicit a stress response in male green 

treefrogs. In addition, these results indicate Cuban treefrogs are not influencing circulating 

glucocorticoid or androgen levels of green treefrogs, suggesting that visual cues, olfactory cues, 

or interspecific competition from Cuban treefrogs are unlikely to modulate the endocrine 

physiology of green treefrogs.  

 I found that body size, body condition, conspecific density, and proportion of non-calling 

male green treefrogs were strong predictors for circulating glucocorticoid and androgen levels in 

green treefrogs. In addition, conspecific density and proportion of non-calling male green treefrogs 

were positively correlated with one another. This pattern has been seen in other anuran species as 
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well (Leary et al., 2008c; Ovaska and Hunte 1992). For example, chorus density in Woodhouse’s 

toads (Bufo woodhousii) was positively correlated with the proportion of non-calling satellite 

males (Leary et al., 2008c). Moreover, chorus density in this species was positively correlated with 

glucocorticoid levels (Leary, et al., 2008c). Similarly, I found that corticosterone levels in green 

treefrogs are positively correlated with both chorus density and the proportion of non-calling 

males. This relationship potentially occurs because a higher density of conspecifics is expected to 

increase the frequency of aggressive interactions, and high glucocorticoid levels mediate the 

adoption of non-calling alternative mating tactics. Hence, under dense chorus conditions more 

males will abandon calling behavior. I also found that circulating androgen levels were negatively 

correlated with the chorus density of green treefrogs. Similarly, increased aggressive interactions 

in more dense choruses may be driving this relationship despite evidence that chorus sounds can 

stimulate androgen production (Burmeister and Wilczynski, 2000).  

It is worth noting that I did not observe any interactions between adult Cuban treefrogs and 

adult green treefrogs while sampling the sites. This was because at all the Cuban + sites, Cuban 

treefrogs and green treefrogs were largely partitioned from one another when vocalizing. For 

instance, Cuban treefrogs vocalized high in the trees, while green treefrogs vocalized on vegetation 

close to the water. Such partitioning suggests that there is minimal physical contact between adults 

of the two species which may minimize reproductive interference.  

 

IV. OVERALL CONCLUSIONS 

I examined the how the acoustic signals of the invasive Cuban treefrog altered the 

endocrine physiology of native green treefrogs. Vocal playback experiments indicate that the calls 

of Cuban treefrog vocalizations do not alter the endocrine physiology of native green treefrogs. 
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Moreover, I found no evidence that the presence of Cuban treefrogs influences the endocrine 

physiology of male green treefrogs in natural choruses.  

Amphibians are the world’s most threatened group of vertebrates with 48% of extant 

species in decline (Stuart et al., 2004). Invasive species pose one of the greatest threats to this 

group (Knapp and Matthews, 2000; Kats and Ferrer, 2003). Understanding the different ways these 

invaders impact native amphibians is crucial to the protection and survival of native species. 

Outside of the current work, no studies to my knowledge have examined how the courtship signals 

of invasive species potentially alter the endocrine physiology of native taxa, yet overlap in 

courtship signals of invasive and native species is well documented. In addition to acoustic signals, 

olfactory and visual signals produced during courtship are known to modulate hormone levels in 

conspecific signal receivers (Schubert et al, 2009; Creel et al., 2013). This suggests that, if social 

signals overlap between invasive and native species, various courtship signals could be altering 

the endocrine physiology of native taxa. Investigating these signaling dynamics could provide 

valuable insight into how invasive species negatively impact native taxa. 
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