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ABSTRACT

Wildlife conservation has become increasingly difficult due to habitat loss, habitat
fragmentation, and land use change. Thus, conservationists have embraced advances in
molecular ecology, such as landscape genetics and microbial bioinformatics, that employ genetic
techniques to further understand the relationship between individuals and their environment. In
landscape genetics, model inferences can be used to identify features that facilitate or resist gene
flow, providing a framework for anticipating the impacts of land use changes on a species’
ability to disperse. However, the factors that affect the transferability of landscape genetics
inferences are poorly understood, and little is known about the effect of sampling density and
study area size on landscape genetics inferences. To address these understudied factors, I
performed a series of landscape genetics analyses using populations of the Mississippi slimy
salamander (Plethodon mississippi) in Mississippi and Alabama. Regional replication revealed
the importance of habitat configuration on the relationship between land use and gene flow
among salamander populations, and the transferability of landscape genetics inferences to
neighboring areas. Analysis of hierarchically nested datasets of different sampling densities and
study area sizes identified differences due to study area size, however no clear effect was seen as
a result of different sampling densities. Conservation practitioners can also use microbial
ecology to better understand the relationship between wildlife species and their environment.
The mutualistic relationship between amphibians and their cutaneous microbial community can

strengthen the amphibian’s ability to fight fungal pathogens. However, in order to inform

il



management strategies such as probiotic inoculation, researchers must first understand the
method in which amphibian cutaneous microbiomes are shaped. I compared salamander
relatedness, salamander cutaneous microbiomes, and the microbiomes of salamanders’
immediate soil environment, which revealed no relationship between kinship and similarity of
skin microbiomes. Further, comparison of skin and soil microbiomes provided evidence that the
presence of antifungal taxa in a salamander’s environment does not guarantee incorporation of
the taxa into salamander cutaneous microbiomes. The results of this research fill knowledge gaps
within the fields of landscape genetics and amphibian cutaneous microbial ecology and provide a

greater understanding of the relationship between P. mississippi and its environment.
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CHAPTER 1

INTRODUCTION

As a species, humans have created an impact on our planet that is so substantial many
have proposed a new epoch, the Anthropocene, that describes a period of time in which human
activity outweighs the forces of nature (Steffen et al. 2007). For wildlife species, this epoch will
be characterized by continued habitat loss, habitat fragmentation, and land use change. In light of
these challenges, the future of modern conservation has been hotly debated, with advocates for
both human centered, anthropocentric approaches and biodiversity centered approaches (Miller
et al. 2013; Corlett 2015). No matter their overarching philosophy, conservation practitioners are
faced with tough decisions exacerbated by limited funding and conflicting stakeholders.
Although management is increasingly difficult, innovative advancements in molecular ecology
offer new techniques to incorporate scientific investigation into management strategies.
However, a gap exists between the overarching, hypothesis-driven questions typical to primary
research and the species-specific, local projects that conservation practitioners seek to inform
(Braunisch et al. 2012). The studies within this dissertation are designed to address some of the
issues that conservation practitioners face when incorporating two techniques of molecular

ecology, landscape genetics and microbial bioinformatics, into their decision-making process.

Landscape genetics is an interdisciplinary field wherein researchers attempt to determine

the effects of different landscape features on dispersal and gene flow using landscape ecology



and population genetic techniques (Manel et al. 2003). The inferences made in landscape
genetics models can be used to anticipate the impacts of current and future land use on a focal
species’ long-term viability (Sork and Waits 2010). For example, land managers can identify
habitat that is effectively isolated due to landscape features that cause decreased dispersal and

gene flow and create spatially explicit corridors through these areas (Braunish et al. 2010).

Landscape genetics methods have the ability to generate information faster than
conventional scientific methods such as capture-mark-recapture (Berry et al. 2004), however
they analyses still require a significant investment of both time and money. State and federal
conservation practitioners are often called upon to justify the allocation of limited research funds
by demonstrating the overall value and broad applicability proposed projects, including the
applicability of research findings to nearby areas within a species’ range. Thus, there is a
continuing need for empirical landscape genetics research that demonstrates the transferability
(i.e. applicability to neighboring areas) of landscape genetics inferences (Short Bull et al. 2011).
Furthermore, funds are typically preferentially allocated to research that includes well-defined
methodology supported by previous studies as opposed to research whose goal is to develop
novel methods. As such, there is also a need for hypothesis-driven landscape genetics studies that

empirically test the methodology of the field.

To address methods of transferability, a focal species that is common across a large study
region and susceptible to land use change and environmental heterogeneity is essential. The
Mississippi slimy salamander, Plethodon mississippi (Highton 1989), is a terrestrial salamander

that spends the majority of its life under downed woody debris, in caves, or in leaf litter on the



forest floor. P. mississippi are commonly found in the bottomland hardwood forests, swamp
forests, and wet pine-woods of Mississippi, Alabama, and western Tennessee (Petranka, 1998).
As a directly developing species, P. mississippi do not need to disperse to aquatic environments
for reproduction, and move very little over their lifetimes (Wells and Wells 1976). Because of
these life history traits, this low-mobility salamander is a fitting focal species for comparative

landscape genetics analyses.

Like many wildlife species in the Anthropocene, salamanders like P. mississippi are not
only threatened by habitat fragmentation and land use change, they are also at risk from invasive
pathogens (Collins and Storfer 2003). Management of disease spread across wildlife populations
requires a multi-faceted approach from conservation practitioners that includes both empirical,
experimental research and careful response planning (Langwig et al. 2015). Part of this planning
must include projections of potential disease spread, which can be informed by an understanding
of the microbial communities in and around wildlife species through microbial bioinformatics
(Bahrndorff et al. 2016). Mitigation and containment strategies can also be informed by
knowledge of host microbiomes. For instance, a promising management strategy for the
containment of Batrachochytrium salamandrivorans (Bsal), a potentially lethal salamander
fungus, is the manipulation of the unique relationship between salamanders and the microbial
communities of their skin through the introduction of bacteria that exhibit antifungal properties
via probiotic mixtures (Becker and Harris 2010). However, in order to understand the probability
of uptake of these beneficial microbes, conservation practitioners must first develop an

understanding of how salamander cutaneous microbiomes are shaped.



In this collection of research, Chapters 2 and 3 have been designed to fill knowledge gaps
in the application of landscape genetics, specifically addressing the transferability (Chapter 2) of
model inferences, and the effect of sampling density and study area size (Chapter 3) on model
inferences. Chapter 4 explores the possible factors that influence salamander cutaneous
microbiome species composition by using relatedness and kinship data, as well as paired
comparison of salamander cutaneous microbiomes and the microbiomes of their immediate

environment.



CHAPTER 2
REGIONAL REPLICATION OF LANDSCAPE GENETICS ANALYSES OF THE

MISSISSIPPI SLIMY SALAMANDER (PLETHODON MISSISSIPPI)

Abstract

Landscape genetics inferences can be used to identify features that facilitate or resist gene
flow, providing a framework for anticipating the impacts of land use changes on a species’
ability to disperse. To use this framework for management, it is necessary to understand how
inferences derived from one region are applicable to other regions within a species’ range. We
investigated whether the landscape variables assessed in landscape genetics analyses of
Plethodon mississippi in two different study regions showed the same order of importance, had
the same direction and scale of effect, and/or exhibited the same functional relationship to gene
flow. In forests in Mississippi and Alabama, USA, we tested individual-based genetic distances
derived from microsatellite genotypes against five landscape variables that were optimized for
both scale and transformation using maximum likelihood population effects modeling. Of the
five landscape variables, agriculture and wetlands ranked at the top of both forests’ best-fit
models. Whereas agriculture consistently caused resistance, and pine consistently facilitated gene
flow across the two forest regions, we found region-specific differences in effects of wetlands,
hardwoods, and manmade structures on P. mississippi gene flow. Configuration of the latter

landscape variables differed between forest regions. Our results underscore the value of



metareplication in revealing which components of landscape genetics models may be consistent
across different portions of a species’ range, and those that have context-dependent impacts on
gene flow. We also highlight the need to consider habitat configuration when interpreting

landscape genetics inferences.

Introduction

All species have areas of preferred habitat interspersed with areas of sub-optimal or
unsuitable habitat within their range (i.e., a matrix; Fahrig and Merriam 1985). In order to
maintain demographic and genetic connectivity among local populations that reside within
different habitat patches, individuals must be able to traverse the intervening matrix. However,
such areas are increasingly heterogeneous and volatile due to anthropogenic influences.
Modifications of natural areas are occurring at an accelerated rate due to the direct effects of a
growing human population and associated expansion of urban areas, as well as indirect effects
such as alteration of natural disturbance regimes, introduction of exotic species, and climate
change (Vitousetk et al. 1997; Oswald et al. 2015; Parisien et al. 2016). As a result, areas that
were previously comprised mostly of suitable habitat areas have become increasingly "hostile" to
free movement of individuals. This change in the permeability of the habitat matrix can lead to
long-term isolation among locally small populations and random loss of genetic diversity due to
the predominance of drift over selection. As inbreeding becomes unavoidable in small isolated
populations, this can give rise to inbreeding depression. In turn, these negative effects on
individual fitness and reproductive output further diminish population size and growth rate

(Allendorf et al. 2013). Indeed, these population-level changes can interact with other



threatening processes (e.g., rapid changes in the abiotic environment, or emergence of wildlife
disease) leading to local extinction (Gilpin and Soulé 1986), and by extension, an overall

reduction in a species’ long-term viability (Sork and Waits 2010).

Knowledge about the relationship between organisms and their environments is a
cornerstone of natural resource management. Wildlife conservation must consider the
consequences of population isolation in the design of protected area networks and corridors, and
this requires an understanding of the effect of specific landscape features on dispersal of
individuals, and gene flow among populations. For decades techniques such as capture-mark-
recapture and radio telemetry have been used to gain such insights (e.g., Ovaska 1988; Riecken
and Raths 1996). These methods are valuable, but have notable limitations. For example,
capture-mark-recapture studies are time and labor intensive, and data points are acquired only
from individuals that are re-encountered (Berry et al. 2004). Furthermore, the probability of
recapturing marked individuals that have dispersed large distances is very low, creating an
observation bias toward detection of short-distance dispersal events (Koenig et al. 1996).
Similarly, radio telemetry and passive integrative transponder tagging are also time and labor
intensive, and involve expensive equipment such that data are typically obtained from relatively
few individuals (Hebblewhite and Haydon 2010; Connette and Semlitsch 2015). While these
methods can provide high-resolution information on fine-scale individual movement, given that
all data are usually acquired from a single cohort of individuals, capture-mark-recapture and
radio telemetry provide only a short temporal snapshot. Accordingly, inferences may be
influenced by abnormal environmental conditions, and could be unrepresentative (Bailey et al.

2004).



In principal, a robust understanding of how individuals perceive and move through a
habitat matrix would be drawn from a large number of individuals sampled over a range of
spatial and temporal scales, with at least two tiers of temporal insights: those reflecting very
recent dispersal events (i.e., within the past generation or two), and those based on the
accumulated effects of many generations of repeated dispersal and gene flow. Molecular
approaches have been used for these purposes, using individual-based comparisons of multilocus
genotypes to determine recent dispersal, and population-based allele frequencies to detect the
effects of repeated dispersal over time (e.g., Sunnucks 2000; Epps et al. 2013a,b). When
employing a landscape genetics approach, molecular data are used to generate genetic distances
between individuals or populations, which are then compared to corresponding distances based
on the permeability of intervening heterogeneous habitats (Manel et al. 2003). For example, in an
early landscape genetics study of gene flow among European roe deer in a fragmented landscape,
Coulon et al. (2004) considered two alternative measures of spatial distances: straight line
distances versus. the path that maximized use of wooded corridors (resistance distance). Those
authors found that compared to simple isolation-by-distance, the latter ecologically informed
"resistance distance" provided a significantly better fit to inter-individual genetic distances based

on microsatellite data, showing that roe deer dispersal is strongly tied to wooded areas.

Today, landscape genetics studies have become more analytically advanced, but the same
basic principles apply: the hypothesized resistance to dispersal caused by landscape variables
such as land cover, topography, or various bioclimatic measures (i.e., potential predictor

variables) is tested against empirically derived genetic distances (i.e., the response variable) in an



effort to determine which landscape features most strongly resist (or, conversely, facilitate) gene
flow. Findings from these investigations can be used to plan for the impacts of recent and future
land use changes upon a species’ ability to disperse, thus providing spatially explicit guidance

for conservation management (e.g., Cleary et al. 2017).

There are a variety of spatial data types available in landscape genetics, but of these, land
cover classifications, presence or absence of roads, and topographic data are among the most
commonly used (Zeller et al. 2012). The decision to include a given landscape variable, and
associated choices regarding its hypothesized resistance to gene flow, is typically informed by
expert opinion and literature reviews (Beier et al. 2008). While these approaches have value,
they may nonetheless overlook relationships that are counterintuitive given the current
understanding of organism’s natural history (e.g., Peterman et al. 2014). Some of the potential
bias associated with relying on a priori assumptions to define resistance weightings (i.e., the
presumed permeability) of different types of landscape features can be avoided by reassessing
the contribution of each landscape variable at multiple geographic scales, and in multiple
functional forms. An additional source of potential bias relates to idiosyncrasies associated with
the chosen study region. Indeed, understanding the transferability (i.e., applicability to other
areas) of landscape genetics models is critical to their use in conservation (Keller et al. 2014),
and as such, metareplication is a potentially powerful approach for distinguishing between site-

specific versus species-specific processes.

The geographic scale at which individuals of a species perceive habitat quality can be

variable and difficult to ascertain (Mayor et al. 2009). For example, a large scale may mean that



a road located 500 m away would nonetheless impede dispersal. Conversely, the same species
may interact with pine ridges on a much smaller scale, meaning pine even 100 m away does not
exert an effect. In the past, expert opinion, literature review, or habitat suitability assessments
have been used to set these scales, often with the same scale uniformly applied to all landscape
variables under consideration (McGarigal et al. 2016). However, as noted by Galpern et al.
(2012) and Zeller et al. (2017), a more suitable approach would be to consider several alternative
geographic scales for each landscape variable in order to determine the appropriate fit. Another
approach to model optimization focuses on the functional relationship between a landscape
variable and its level of resistance. The function (i.e., transformation) of resistance, like
geographic scale, has often been assigned on the basis of expert opinion or literature review
(Beier et al. 2008). To date, the most typical functional relationship has been negative and linear.
However several studies, including those with genetic response variables (Cushman et al. 2006;
Zeller et al. 2017) and with physical animal tracking (Trainor et al. 2013; Keeley et al. 2016),
have found support for non-linear functional relationships between landscape variables and
resistance. For example, Cushman et al. (2006) modeled a series of Gaussian relationships
between elevation and resistance to gene flow in black bears to determine the elevation at which

resistance to gene flow among bear populations was the lowest.

Replicated empirical analyses, or metareplications, have the ability to determine how
transferable landscape genetics models are across a species’ range, and to provide insights into
the relationship between model optimization and transferability. Successful metareplication
design requires that a species is distributed across a region large enough to have at least two

replicate study areas. While these must be similar enough to contain the same study species, it is

10



important that they not be identical to each other, thereby allowing the researcher to draw
conclusions about how the study species responds to landscape variables generally (Johnson

2002).

The present study focused on a species distributed throughout eastern Mississippi and
western Alabama, the Mississippi slimy salamander (Plethodon mississippi Highton 1989).
Plethodontid salamanders represent low-mobility ecologically specialized taxa that have several
life history traits that make them well-suited for landscape genetic studies. These amphibians
inhabit cool, moist environments (Petranka 1998). They also exhibit direct development,
meaning their offspring do not need an aquatic environment to metamorphose into the adult form
(Petranka 1998). Without the need to disperse to aquatic environments for reproduction, it is
hypothesized they disperse very little over their lifetimes, which may cause genetic
differentiation among populations over a relatively small geographic area. Furthermore, due to P.
mississippi’s short generation time (females and males reach sexual maturity in two years and
three years respectively; Highton 1962), the effect on dispersal by changes in the landscape may

be detected over relatively short times scales.

The geographic range of P. mississippi spans Holly Springs National Forest (HSNF) in
northern Mississippi, and Bankhead National Forest (BNF) approximately 190 km to the east in
northern Alabama. These two forest regions encompass similar land use types, with both
containing bottomland hardwood forests, forested wetlands, upland pine and silviculture,
agricultural fields and pastures, and manmade structures such as roads, buildings, and parking

lots. While composition of these forest regions is similar and both are managed by the U.S.

11



Forest Service, they differ in that only BNF includes a large protected Wilderness area (over
25,000 acres). Also, whereas BNF contains roughly 3,500 acres of old growth, HSNF has none

(U.S. Department of Agriculture Forest Service 2004, 2012).

In this study, we conducted separate landscape genetic analyses of P. mississippi in
HSNF and BNF to understand the extent to which inferences drawn from one location are
transferable to the other, and to examine the effect of optimization on transferability. We asked if
the landscape variables that were assessed (1) show the same rank or order of importance, (2)
have the same direction of effect (i.e. facilitate versus resist gene flow), (3) have the same scale

of effect, and (4) exhibit the same functional relationship.

Methods

Tail tip tissue was collected from 113 P. mississippi individuals at 19 locations in HSNF
in northern Mississippi, and 110 individuals at 20 locations in BNF in northern Alabama.
Sampling locations were chosen to span the entirety of each of the two forest regions, and spaced
approximately eight km apart. At least five individuals were sampled at each location. Average
distance between individuals within sampling locations was 122 m. Because P. mississippi is a
completely terrestrial species that is likely continuously distributed, population units cannot be
readily delimited a priori. Accordingly, we calculated individual-based genetic distance (Shirk

and Cushman 2014).

12



Genetic Analysis

Genomic DNA was extracted from tail tips using a DNeasy Blood and Tissue kit
(Qiagen, Valencia CA, USA) following the manufacturer's recommendations. Individuals were
genotyped using eight microsatellite loci described by Spatola et al. (2013; see Appendix for
PCR amplification conditions, and allele-calling approaches). At each of three locations in HSNF
and one location in BNF we collected 9-11 individuals. These four sample sets were tentatively
assumed to each represent panmictic groups for the purpose of testing for null alleles, Hardy
Weinberg Equilibrium, and linkage disequilibrium, using Genepop v 4.2 (Raymond and Rousset
1995). Based on the full genetic dataset, the R (R Core Team 2019) package “PopGenReport”
(Adamack and Gruber 2014) was used to quantify percent missing data, number of alleles per
locus, and mean allelic richness in each forest region. An examination of overall population
structure within each forest region was performed via genotypic clustering using STRUCTURE
v. 2.3.4 (Prichard et al. 2001). Briefly, we examined K values from 1-5 (3 replicates per K),
using the correlated allele frequencies and admixture ancestry models (with alpha and lambda
inferred separately for each cluster), with a burn-in of 1x10° MCMC iterations, and run length of
1x10° iterations. The best fit value of K was identified via comparison of the mean log likelihood
of each value of K, and calculation of delta K following Evanno et al. (2005) in STRUCTURE
HARVESTER (Earl and vonHoldt 2012). Also within each forest region, we used GenAlEx v.
6.503 (Peakall and Smouse 2012) to test for spatial autocorrelation using, 999 permutations, 999
bootstrap replicates, and tests for heterogeneity. For these analyses, a distance class (i.e., bin
size) size of 3 km was chosen to encompass the smallest distances between sampling locations,

which were greater than 8 km.
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To determine pair-wise individual-based genetic distances within each forest region, we
conducted a principal components analysis and calculated Euclidean distance between the first
64 axes of the ordination using the “ade4” package (Dray and Dufour 2007) in R. This method
has been shown to perform better than others when genetic structure and sample sizes are low
(Shirk et al. 2017). Pairwise genetic distances among individuals from the same sampling

location were removed from further analyses to avoid skewing landscape genetics models.

Landscape Analysis

To test the hypothesis that land use type would influence gene flow, we classified spatial
data into six distinct land use classes using multi-spectral raster files from the USGS Landsat 8
satellite (see Figure 1, left panel). Through the supervised classification feature in ERDAS
Imagine 2014 (Hexagon Geospatial, Norcross GA, USA), each pixel in the 30 x 30 m
multispectral image was classified as either agricultural, hardwood, manmade (e.g., paved
surfaces and buildings), pine, wetland, and water body land uses using training areas developed
using high-resolution imagery and previous knowledge of the study area and a maximum
likelihood algorithm. We overlaid wetland, water flowline, and road shapefiles onto the
classified image to ensure forested wetlands, small water features, and small roads were included
in the classification. The overlay was created using raster calculator in ArcGIS 10.2.2 (ESRI
2011). We used the final maps to calculate the amount of habitat, patch density, correlation
length, clumpiness, patch cohesion, and an aggregation index for each landscape variable using

the software FRAGSTATS v 4.2 (McGarigal et al. 2012). We then conducted a series of

14



univariate moving window analyses on the classified images using five separate kernel sizes
(100, 250, 500, 750, and 1000 m) for each land use class with the PLAND calculation in
FRAGSTATS (see Figure 1, middle panels). Each pixel in the resulting maps (a total of five
maps for each land use class) reflected the percent of a given land use class within the kernel
(i.e., if a 100 m square surrounding a given pixel is completely made up of agriculture, that pixel
would be given a value of 100 for the agriculture variable). These distance calculations were then
transformed using the eight transformations found in the R package “ResistanceGA” (named and
illustrated in Figure 1, right panels; also see Peterman 2018). The genetic algorithm optimization
method available in “ResistanceGA” would be computationally restrictive due to the large size
of the study areas, so for purposes of tractability, we calculated transformed values using the

“ResistanceGA” package with max=100 and shape=2.

Using the “gDistance” package (van Etten 2017) in R, we computed pairwise random-
walk distance between individuals for each map, resulting in 40 distance calculations for each
land use class. We also created a raster file that had a uniform pixel value of one to calculate a
random-walk distance that would represent the geographic distance between points and could be
used to test for isolation by distance (IBD). To remove the effect of geographic distance from our
land use class random-walk calculations, we performed a series of simple linear regressions of
the uniform pixel distance and each random-walk calculation using the “lme4” package in R

(Bates et al. 2015). The residuals from these linear regressions were then used in model testing.
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Figure 1. Depiction of landscape classification and optimization for scale and
transformation.

Landsat 8 imagery was classified into 5 landscape variables. Each variable was tested for five
scales (100, 250, 500, 750, and 1000 meters) and eight transformations (a. monomolecular, b.
reverse monomolecular, c. inverse monomolecular, d. inverse-reverse monomolecular, e. ricker,
f. reverse ricker, g. inverse ricker, and h. inverse-reverse ricker) and a linear relationship, for a
total of 45 univariate tests per landscape variable. The transformation graphs show the
relationship between the original resistance value (i.e., a value 0-100, indicating the percent of
the given landscape variable within 100, 250, 500, 750, or 1000 meters) on the x-axis, and the
new resistance value as a result of transformation on the y-axis, as is depicted in the inset.
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Model Testing

To optimize each land use type for both transformation and scale, we ran a series of
univariate maximum likelihood population effects models (MLPE). These linear random effects
models account for the lack of independence between pairwise comparisons. This method was
the most robust among seven regression-based model selection methods tested using inter-
individual landscape genetic simulations (Shirk et al. 2018). Furthermore, in species distribution
modeling simulations, generalized linear mixed models have been shown to be more transferable
than those generated using machine learning and random forest methods (Wegner and Olden,
2012). Univariate models were ranked using corrected Akaike Information Criterion (AICc;
Hurvich and Tsai 1989). The most strongly supported scale and transformation of each land use

class (i.e., that with the lowest AICc score) was used for final model testing.

We tested several hypotheses of resistance with Maximum likelihood population effects
(MLPE) models (Table 1). Each model included the geographic distance variable derived from a
uniform raster, as well as a combination of land use variables. Models were then ranked using
AlICc (Table 1). Summaries of the best-fit models were examined to determine the sign of effect
for each model component (i.e., each landscape variable). A positive sign of effect indicated that
the variable resisted gene flow, whereas a negative sign of effect indicated the variable facilitated

gene flow (Row et al. 2017).
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Table 1. Maximum likelihood population effects models and AICc scores.

The lowest AICc scores for each forest are in bold.

Model Name Variables Included HSNF | BNF
Full Model Geographic Distance, Agriculture, Manmade, Pine, | 29467 | 25809
Hardwood, Wetlands

Isolation by Distance | Geographic Distance 30089 | 26324
Modified Habitat Geographic Distance, Agriculture, Manmade 29879 | 25990
Moderate Habitat Geographic Distance, Pine, Agriculture 29467 | 25937
Forest Cover Geographic Distance, Pine, Hardwood, Wetlands 29914 | 26192
Agriculture Geographic Distance, Agriculture 29952 | 26018
Manmade Geographic Distance, Manmade 29991 | 26249
Pine Geographic Distance, Pine 30025 | 26269
Hardwood Geographic Distance, Hardwood 29954 | 26209
Wetlands Geographic Distance, Wetlands 29893 | 26104

Results

Genetic Analysis

Multilocus genotypes were produced from 113 of 114 individuals sampled in HSNF with
1.7% missing data, and 107 of 109 individuals sampled in BNF with 4.1% missing data. The
remaining individuals (one individual in HSNF and two individuals in BNF) were excluded from
the dataset because they failed to amplify at greater than two loci after repeated attempts. The
locus 402 tailed to amplify reliably in BNF, and was therefore removed from datasets in BNF
but not HSNF. The locus BSDRY was found to be monomorphic in HSNF but not BNF, so it was
removed from datasets in HSNF but not BNF. Loci within the HSNF dataset had 4-32 alleles,
and loci within BNF had 10-29 alleles. Tests for departures from HWE using sampling locations

with 9-11 individuals showed all loci were in HWE except one (OWZ) in HSNF and one (43M)
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in BNF. Tests for linkage disequilibrium and null alleles found no linkage, and only one
possibility of null alleles (43M) in BNF. QWZ was in HWE in BNF, and 43M was in HWE in
HSNF, and there was no indication of null alleles in 43M in HSNF, therefore both loci were kept
in the dataset. Mean allelic richness in HSNF was 14.5, and mean allelic richness in BNF was
18.9. STRUCTURE analysis supported K = 1 clusters (Evanno et al.'s 2005 method calculates a
delta K value which by definition cannot be calculated for K=1, therefore we relied on the
highest mean estimated log likelihood for each forest, which was at K=1). There was significant
spatial autocorrelation within both forests (test for heterogeneity p<0.001), with the x intercept at

7.38 km in HSNF and 16.28 km in BNF (Appendix Figures Al and A2).

Landscape Analysis

Supervised classification of the Landsat 8 imagery and subsequent analysis with
FRAGSTATS revealed HSNF and BNF have a number of similarities in the amount and
distribution of landscape variables as well as a number of differences (Table 2). There are similar
amounts of hardwood, manmade, and wetland areas in both forests, however there is
approximately ten times more pine in HSNF than BNF. Patches of pine patches were more
densely distributed across the landscape in HSNF (i.e., higher patch density) and they also had a
higher correlation length, which is a measure of the distance an individual could travel and
remain in a single patch when dropped in a random location and traveling in a random direction
(Keitt et al. 1997; McGarigal et al. 2012). The amount of agriculture in HSNF was higher than in
BNF, but the patches were at a similar density and the forests had similar correlation lengths.

Areas containing manmade structures were considerably denser in BNF, however HSNF had a
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higher average manmade correlation length, suggesting manmade structures in HSNF are mainly
roads, and in BNF they are more commonly buildings and paved lots. Hardwood patches were
denser in HSNF, but had a higher correlation length in BNF, and wetlands in BNF had a much

higher correlation length than in HSNF.

Model Testing

The full model had the lowest AICc and was thus the best-fit model for both forests,
indicating all of the tested landscape variables contribute to the genetic distances found in P.
mississippi. The rank of model components differed between forests (Table 3), with agriculture
and wetlands the top two components for both forests and the remaining variables contributing
less to P. mississippi genetic distance variability. Agriculture, pine, and hardwoods had the same
sign of effect in both forests, with agriculture and hardwoods resisting gene flow of P.
mississippi and pine facilitating gene flow. In HSNF, manmade areas facilitated gene flow,
whereas in BNF they resisted gene flow. The opposite was true for wetlands, which resisted gene

flow in HSNF and facilitated gene flow in BNF (Table 4).

Univariate tests for scale and transformation resulted in few similarities between the
forests (Figure 2). Only one landscape variable, pine, was optimized to the same transformation
(inverse-reverse ricker). The presence of pine on the landscape resulted consistently in increased
gene flow in both forest regions. In HSNF, gene flow was at its highest when ten percent of the

area within 1000 m was comprised of pine. As the percentage of pine increased within the 1000
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m area, the facilitation of gene flow decreased until it reached 80%, at which point it

exponentially increased. The scale at which this occurred in BNF was 750 m.

Table 2. Comparison of landscape metrics for Holly Springs National Forest and Bankhead
National Forest.

Habitat amount (km?) Patch Density (number of patches per 100 ha), Correlation Length,
Clumpiness Index, Patch Cohesion, Aggregation Index for Holly Springs National Forest (grey
rows) and Bankhead National Forest (white rows).

Landscape Amount Patch Correlation  Clumpiness Patch Aggregation
Type of Habitat  Density Length Index Cohesion Index
Hardwood 1339.41 14.04 353.68 0.59 93.24 68.73
1382.44 9.96 912.92 0.59 97.52 79.60
Pine 2230.41 17.22 562.51 0.61 95.53 76.65
236.40 6.41 211.13 0.69 89.43 71.51
Agriculture 958.83 8.03 295.24 0.69 92.13 74.53
271.55 4.10 258.56 0.73 92.09 75.42
Manmade 291.75 1.42 5511.04 0.53 98.80 55.50
311.57 10.66 3838.83 0.51 98.61 56.48
Wetlands 245.30 11.59 91.31 0.41 73.57 43.67
441.08 17.71 279.73 0.55 89.24 62.20

Table 3. Rank and model coefficients of landscape variables in most supported Maximum
likelihood population effects model for each forest region.

HSNF BNF

Wetlands | 0.91 | Agriculture | 1.14

Agriculture | 0.69 | Wetlands | -0.48

Hardwoods | 0.65 | Manmade | 0.47

Manmade | -0.43 Pine -0.40

Pine -0.25 | Hardwoods | 0.26
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Table 4. Comparison of scale, transformation, and sign of effect for Holly Springs National

Forest and Bankhead National Forest.

Results for Holly Springs National Forest are in grey and results <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>