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ABSTRACT 

 

Wildlife conservation has become increasingly difficult due to habitat loss, habitat 

fragmentation, and land use change. Thus, conservationists have embraced advances in 

molecular ecology, such as landscape genetics and microbial bioinformatics, that employ genetic 

techniques to further understand the relationship between individuals and their environment. In 

landscape genetics, model inferences can be used to identify features that facilitate or resist gene 

flow, providing a framework for anticipating the impacts of land use changes on a species’ 

ability to disperse. However, the factors that affect the transferability of landscape genetics 

inferences are poorly understood, and little is known about the effect of sampling density and 

study area size on landscape genetics inferences. To address these understudied factors, I 

performed a series of landscape genetics analyses using populations of the Mississippi slimy 

salamander (Plethodon mississippi) in Mississippi and Alabama. Regional replication revealed 

the importance of habitat configuration on the relationship between land use and gene flow 

among salamander populations, and the transferability of landscape genetics inferences to 

neighboring areas. Analysis of hierarchically nested datasets of different sampling densities and 

study area sizes identified differences due to study area size, however no clear effect was seen as 

a result of different sampling densities. Conservation practitioners can also use microbial 

ecology to better understand the relationship between wildlife species and their environment. 

The mutualistic relationship between amphibians and their cutaneous microbial community can 

strengthen the amphibian’s ability to fight fungal pathogens. However, in order to inform
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management strategies such as probiotic inoculation, researchers must first understand the 

method in which amphibian cutaneous microbiomes are shaped. I compared salamander 

relatedness, salamander cutaneous microbiomes, and the microbiomes of salamanders’ 

immediate soil environment, which revealed no relationship between kinship and similarity of 

skin microbiomes. Further, comparison of skin and soil microbiomes provided evidence that the 

presence of antifungal taxa in a salamander’s environment does not guarantee incorporation of 

the taxa into salamander cutaneous microbiomes. The results of this research fill knowledge gaps 

within the fields of landscape genetics and amphibian cutaneous microbial ecology and provide a 

greater understanding of the relationship between P. mississippi and its environment.  
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CHAPTER 1 

INTRODUCTION 

 

As a species, humans have created an impact on our planet that is so substantial many 

have proposed a new epoch, the Anthropocene, that describes a period of time in which human 

activity outweighs the forces of nature (Steffen et al. 2007). For wildlife species, this epoch will 

be characterized by continued habitat loss, habitat fragmentation, and land use change. In light of 

these challenges, the future of modern conservation has been hotly debated, with advocates for 

both human centered, anthropocentric approaches and biodiversity centered approaches (Miller 

et al. 2013; Corlett 2015). No matter their overarching philosophy, conservation practitioners are 

faced with tough decisions exacerbated by limited funding and conflicting stakeholders. 

Although management is increasingly difficult, innovative advancements in molecular ecology 

offer new techniques to incorporate scientific investigation into management strategies. 

However, a gap exists between the overarching, hypothesis-driven questions typical to primary 

research and the species-specific, local projects that conservation practitioners seek to inform 

(Braunisch et al. 2012). The studies within this dissertation are designed to address some of the 

issues that conservation practitioners face when incorporating two techniques of molecular 

ecology, landscape genetics and microbial bioinformatics, into their decision-making process.  

 

Landscape genetics is an interdisciplinary field wherein researchers attempt to determine 

the effects of different landscape features on dispersal and gene flow using landscape ecology 
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and population genetic techniques (Manel et al. 2003). The inferences made in landscape 

genetics models can be used to anticipate the impacts of current and future land use on a focal 

species’ long-term viability (Sork and Waits 2010). For example, land managers can identify 

habitat that is effectively isolated due to landscape features that cause decreased dispersal and 

gene flow and create spatially explicit corridors through these areas (Braunish et al. 2010).  

 

Landscape genetics methods have the ability to generate information faster than 

conventional scientific methods such as capture-mark-recapture (Berry et al. 2004), however 

they analyses still require a significant investment of both time and money. State and federal 

conservation practitioners are often called upon to justify the allocation of limited research funds   

by demonstrating the overall value and broad applicability proposed projects, including the 

applicability of research findings to nearby areas within a species’ range. Thus, there is a 

continuing need for empirical landscape genetics research that demonstrates the transferability 

(i.e. applicability to neighboring areas) of landscape genetics inferences (Short Bull et al. 2011). 

Furthermore, funds are typically preferentially allocated to research that includes well-defined 

methodology supported by previous studies as opposed to research whose goal is to develop 

novel methods. As such, there is also a need for hypothesis-driven landscape genetics studies that 

empirically test the methodology of the field.  

 

To address methods of transferability, a focal species that is common across a large study 

region and susceptible to land use change and environmental heterogeneity is essential. The 

Mississippi slimy salamander, Plethodon mississippi (Highton 1989), is a terrestrial salamander 

that spends the majority of its life under downed woody debris, in caves, or in leaf litter on the 
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forest floor. P. mississippi are commonly found in the bottomland hardwood forests, swamp 

forests, and wet pine-woods of Mississippi, Alabama, and western Tennessee (Petranka, 1998). 

As a directly developing species, P. mississippi do not need to disperse to aquatic environments 

for reproduction, and move very little over their lifetimes (Wells and Wells 1976). Because of 

these life history traits, this low-mobility salamander is a fitting focal species for comparative 

landscape genetics analyses.  

  

 Like many wildlife species in the Anthropocene, salamanders like P. mississippi are not 

only threatened by habitat fragmentation and land use change, they are also at risk from invasive 

pathogens (Collins and Storfer 2003). Management of disease spread across wildlife populations 

requires a multi-faceted approach from conservation practitioners that includes both empirical, 

experimental research and careful response planning (Langwig et al. 2015). Part of this planning 

must include projections of potential disease spread, which can be informed by an understanding 

of the microbial communities in and around wildlife species through microbial bioinformatics 

(Bahrndorff et al. 2016). Mitigation and containment strategies can also be informed by 

knowledge of host microbiomes. For instance, a promising management strategy for the 

containment of Batrachochytrium salamandrivorans (Bsal), a potentially lethal salamander 

fungus, is the manipulation of the unique relationship between salamanders and the microbial 

communities of their skin through the introduction of bacteria that exhibit antifungal properties 

via probiotic mixtures (Becker and Harris 2010). However, in order to understand the probability 

of uptake of these beneficial microbes, conservation practitioners must first develop an 

understanding of how salamander cutaneous microbiomes are shaped.  
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In this collection of research, Chapters 2 and 3 have been designed to fill knowledge gaps 

in the application of landscape genetics, specifically addressing the transferability (Chapter 2) of 

model inferences, and the effect of sampling density and study area size (Chapter 3) on model 

inferences. Chapter 4 explores the possible factors that influence salamander cutaneous 

microbiome species composition by using relatedness and kinship data, as well as paired 

comparison of salamander cutaneous microbiomes and the microbiomes of their immediate 

environment.  
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CHAPTER 2 

REGIONAL REPLICATION OF LANDSCAPE GENETICS ANALYSES OF THE 

MISSISSIPPI SLIMY SALAMANDER (PLETHODON MISSISSIPPI) 

 

Abstract 

 

Landscape genetics inferences can be used to identify features that facilitate or resist gene 

flow, providing a framework for anticipating the impacts of land use changes on a species’ 

ability to disperse. To use this framework for management, it is necessary to understand how 

inferences derived from one region are applicable to other regions within a species’ range. We 

investigated whether the landscape variables assessed in landscape genetics analyses of 

Plethodon mississippi in two different study regions showed the same order of importance, had 

the same direction and scale of effect, and/or exhibited the same functional relationship to gene 

flow. In forests in Mississippi and Alabama, USA, we tested individual-based genetic distances 

derived from microsatellite genotypes against five landscape variables that were optimized for 

both scale and transformation using maximum likelihood population effects modeling. Of the 

five landscape variables, agriculture and wetlands ranked at the top of both forests’ best-fit 

models. Whereas agriculture consistently caused resistance, and pine consistently facilitated gene 

flow across the two forest regions, we found region-specific differences in effects of wetlands, 

hardwoods, and manmade structures on P. mississippi gene flow. Configuration of the latter 

landscape variables differed between forest regions. Our results underscore the value of 
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metareplication in revealing which components of landscape genetics models may be consistent 

across different portions of a species’ range, and those that have context-dependent impacts on 

gene flow. We also highlight the need to consider habitat configuration when interpreting 

landscape genetics inferences.  

 

Introduction 

 

All species have areas of preferred habitat interspersed with areas of sub-optimal or 

unsuitable habitat within their range (i.e., a matrix; Fahrig and Merriam 1985). In order to 

maintain demographic and genetic connectivity among local populations that reside within 

different habitat patches, individuals must be able to traverse the intervening matrix. However, 

such areas are increasingly heterogeneous and volatile due to anthropogenic influences. 

Modifications of natural areas are occurring at an accelerated rate due to the direct effects of a 

growing human population and associated expansion of urban areas, as well as indirect effects 

such as alteration of natural disturbance regimes, introduction of exotic species, and climate 

change (Vitousetk et al. 1997; Oswald et al. 2015; Parisien et al. 2016). As a result, areas that 

were previously comprised mostly of suitable habitat areas have become increasingly "hostile" to 

free movement of individuals. This change in the permeability of the habitat matrix can lead to 

long-term isolation among locally small populations and random loss of genetic diversity due to 

the predominance of drift over selection. As inbreeding becomes unavoidable in small isolated 

populations, this can give rise to inbreeding depression. In turn, these negative effects on 

individual fitness and reproductive output further diminish population size and growth rate 

(Allendorf et al. 2013). Indeed, these population-level changes can interact with other 
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threatening processes (e.g., rapid changes in the abiotic environment, or emergence of wildlife 

disease) leading to local extinction (Gilpin and Soulé 1986), and by extension, an overall 

reduction in a species’ long-term viability (Sork and Waits 2010). 

 

Knowledge about the relationship between organisms and their environments is a 

cornerstone of natural resource management. Wildlife conservation must consider the 

consequences of population isolation in the design of protected area networks and corridors, and 

this requires an understanding of the effect of specific landscape features on dispersal of 

individuals, and gene flow among populations. For decades techniques such as capture-mark-

recapture and radio telemetry have been used to gain such insights (e.g., Ovaska 1988; Riecken 

and Raths 1996). These methods are valuable, but have notable limitations. For example, 

capture-mark-recapture studies are time and labor intensive, and data points are acquired only 

from individuals that are re-encountered (Berry et al. 2004). Furthermore, the probability of 

recapturing marked individuals that have dispersed large distances is very low, creating an 

observation bias toward detection of short-distance dispersal events (Koenig et al. 1996). 

Similarly, radio telemetry and passive integrative transponder tagging are also time and labor 

intensive, and involve expensive equipment such that data are typically obtained from relatively 

few individuals (Hebblewhite and Haydon 2010; Connette and Semlitsch 2015). While these 

methods can provide high-resolution information on fine-scale individual movement, given that 

all data are usually acquired from a single cohort of individuals, capture-mark-recapture and 

radio telemetry provide only a short temporal snapshot. Accordingly, inferences may be 

influenced by abnormal environmental conditions, and could be unrepresentative (Bailey et al. 

2004).  
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In principal, a robust understanding of how individuals perceive and move through a 

habitat matrix would be drawn from a large number of individuals sampled over a range of 

spatial and temporal scales, with at least two tiers of temporal insights: those reflecting very 

recent dispersal events (i.e., within the past generation or two), and those based on the 

accumulated effects of many generations of repeated dispersal and gene flow. Molecular 

approaches have been used for these purposes, using individual-based comparisons of multilocus 

genotypes to determine recent dispersal, and population-based allele frequencies to detect the 

effects of repeated dispersal over time (e.g., Sunnucks 2000; Epps et al. 2013a,b). When 

employing a landscape genetics approach, molecular data are used to generate genetic distances 

between individuals or populations, which are then compared to corresponding distances based 

on the permeability of intervening heterogeneous habitats (Manel et al. 2003). For example, in an 

early landscape genetics study of gene flow among European roe deer in a fragmented landscape, 

Coulon et al. (2004) considered two alternative measures of spatial distances: straight line 

distances versus. the path that maximized use of wooded corridors (resistance distance). Those 

authors found that compared to simple isolation-by-distance, the latter ecologically informed 

"resistance distance" provided a significantly better fit to inter-individual genetic distances based 

on microsatellite data, showing that roe deer dispersal is strongly tied to wooded areas. 

 

Today, landscape genetics studies have become more analytically advanced, but the same 

basic principles apply: the hypothesized resistance to dispersal caused by landscape variables 

such as land cover, topography, or various bioclimatic measures (i.e., potential predictor 

variables) is tested against empirically derived genetic distances (i.e., the response variable) in an 
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effort to determine which landscape features most strongly resist (or, conversely, facilitate) gene 

flow. Findings from these investigations can be used to plan for the impacts of recent and future 

land use changes upon a species’ ability to disperse, thus providing spatially explicit guidance 

for conservation management (e.g., Cleary et al. 2017).  

 

There are a variety of spatial data types available in landscape genetics, but of these, land 

cover classifications, presence or absence of roads, and topographic data are among the most 

commonly used (Zeller et al. 2012). The decision to include a given landscape variable, and 

associated choices regarding its hypothesized resistance to gene flow, is typically informed by 

expert opinion and literature reviews (Beier et al. 2008). While these approaches have value, 

they may nonetheless overlook relationships that are counterintuitive given the current 

understanding of organism’s natural history (e.g., Peterman et al. 2014). Some of the potential 

bias associated with relying on a priori assumptions to define resistance weightings (i.e., the 

presumed permeability) of different types of landscape features can be avoided by reassessing 

the contribution of each landscape variable at multiple geographic scales, and in multiple 

functional forms. An additional source of potential bias relates to idiosyncrasies associated with 

the chosen study region. Indeed, understanding the transferability (i.e., applicability to other 

areas) of landscape genetics models is critical to their use in conservation (Keller et al. 2014), 

and as such, metareplication is a potentially powerful approach for distinguishing between site-

specific versus species-specific processes. 

 

The geographic scale at which individuals of a species perceive habitat quality can be 

variable and difficult to ascertain (Mayor et al. 2009). For example, a large scale may mean that 
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a road located 500 m away would nonetheless impede dispersal. Conversely, the same species 

may interact with pine ridges on a much smaller scale, meaning pine even 100 m away does not 

exert an effect. In the past, expert opinion, literature review, or habitat suitability assessments 

have been used to set these scales, often with the same scale uniformly applied to all landscape 

variables under consideration (McGarigal et al. 2016). However, as noted by Galpern et al. 

(2012) and Zeller et al. (2017), a more suitable approach would be to consider several alternative 

geographic scales for each landscape variable in order to determine the appropriate fit. Another 

approach to model optimization focuses on the functional relationship between a landscape 

variable and its level of resistance. The function (i.e., transformation) of resistance, like 

geographic scale, has often been assigned on the basis of expert opinion or literature review 

(Beier et al. 2008). To date, the most typical functional relationship has been negative and linear. 

However several studies, including those with genetic response variables (Cushman et al. 2006; 

Zeller et al. 2017) and with physical animal tracking (Trainor et al. 2013; Keeley et al. 2016), 

have found support for non-linear functional relationships between landscape variables and 

resistance. For example, Cushman et al. (2006) modeled a series of Gaussian relationships 

between elevation and resistance to gene flow in black bears to determine the elevation at which 

resistance to gene flow among bear populations was the lowest.  

 

Replicated empirical analyses, or metareplications, have the ability to determine how 

transferable landscape genetics models are across a species’ range, and to provide insights into 

the relationship between model optimization and transferability. Successful metareplication 

design requires that a species is distributed across a region large enough to have at least two 

replicate study areas. While these must be similar enough to contain the same study species, it is 
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important that they not be identical to each other, thereby allowing the researcher to draw 

conclusions about how the study species responds to landscape variables generally (Johnson 

2002).  

 

The present study focused on a species distributed throughout eastern Mississippi and 

western Alabama, the Mississippi slimy salamander (Plethodon mississippi Highton 1989). 

Plethodontid salamanders represent low-mobility ecologically specialized taxa that have several 

life history traits that make them well-suited for landscape genetic studies. These amphibians 

inhabit cool, moist environments (Petranka 1998). They also exhibit direct development, 

meaning their offspring do not need an aquatic environment to metamorphose into the adult form 

(Petranka 1998). Without the need to disperse to aquatic environments for reproduction, it is 

hypothesized they disperse very little over their lifetimes, which may cause genetic 

differentiation among populations over a relatively small geographic area. Furthermore, due to P. 

mississippi’s short generation time (females and males reach sexual maturity in two years and 

three years respectively; Highton 1962), the effect on dispersal by changes in the landscape may 

be detected over relatively short times scales.  

 

The geographic range of P. mississippi spans Holly Springs National Forest (HSNF) in 

northern Mississippi, and Bankhead National Forest (BNF) approximately 190 km to the east in 

northern Alabama. These two forest regions encompass similar land use types, with both 

containing bottomland hardwood forests, forested wetlands, upland pine and silviculture, 

agricultural fields and pastures, and manmade structures such as roads, buildings, and parking 

lots. While composition of these forest regions is similar and both are managed by the U.S. 
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Forest Service, they differ in that only BNF includes a large protected Wilderness area (over 

25,000 acres). Also, whereas BNF contains roughly 3,500 acres of old growth, HSNF has none 

(U.S. Department of Agriculture Forest Service 2004, 2012).  

 

In this study, we conducted separate landscape genetic analyses of P. mississippi in 

HSNF and BNF to understand the extent to which inferences drawn from one location are 

transferable to the other, and to examine the effect of optimization on transferability. We asked if 

the landscape variables that were assessed (1) show the same rank or order of importance, (2) 

have the same direction of effect (i.e. facilitate versus resist gene flow), (3) have the same scale 

of effect, and (4) exhibit the same functional relationship. 

 

 

Methods 

 

Tail tip tissue was collected from 113 P. mississippi individuals at 19 locations in HSNF 

in northern Mississippi, and 110 individuals at 20 locations in BNF in northern Alabama. 

Sampling locations were chosen to span the entirety of each of the two forest regions, and spaced 

approximately eight km apart. At least five individuals were sampled at each location. Average 

distance between individuals within sampling locations was 122 m. Because P. mississippi is a 

completely terrestrial species that is likely continuously distributed, population units cannot be 

readily delimited a priori. Accordingly, we calculated individual-based genetic distance (Shirk 

and Cushman 2014).  
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Genetic Analysis 

 

Genomic DNA was extracted from tail tips using a DNeasy Blood and Tissue kit 

(Qiagen, Valencia CA, USA) following the manufacturer's recommendations. Individuals were 

genotyped using eight microsatellite loci described by Spatola et al. (2013; see Appendix for 

PCR amplification conditions, and allele-calling approaches). At each of three locations in HSNF 

and one location in BNF we collected 9-11 individuals. These four sample sets were tentatively 

assumed to each represent panmictic groups for the purpose of testing for null alleles, Hardy 

Weinberg Equilibrium, and linkage disequilibrium, using Genepop v 4.2 (Raymond and Rousset 

1995). Based on the full genetic dataset, the R (R Core Team 2019) package “PopGenReport” 

(Adamack and Gruber 2014) was used to quantify percent missing data, number of alleles per 

locus, and mean allelic richness in each forest region. An examination of overall population 

structure within each forest region was performed via genotypic clustering using STRUCTURE 

v. 2.3.4 (Prichard et al. 2001). Briefly, we examined K values from 1–5 (3 replicates per K), 

using the correlated allele frequencies and admixture ancestry models (with alpha and lambda 

inferred separately for each cluster), with a burn-in of 1×105 MCMC iterations, and run length of 

1×106 iterations. The best fit value of K was identified via comparison of the mean log likelihood 

of each value of K, and calculation of delta K following Evanno et al. (2005) in STRUCTURE 

HARVESTER (Earl and vonHoldt 2012). Also within each forest region, we used GenAlEx v. 

6.503 (Peakall and Smouse 2012) to test for spatial autocorrelation using, 999 permutations, 999 

bootstrap replicates, and tests for heterogeneity. For these analyses, a distance class (i.e., bin 

size) size of 3 km was chosen to encompass the smallest distances between sampling locations, 

which were greater than 8 km.  
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To determine pair-wise individual-based genetic distances within each forest region, we 

conducted a principal components analysis and calculated Euclidean distance between the first 

64 axes of the ordination using the “ade4” package (Dray and Dufour 2007) in R. This method 

has been shown to perform better than others when genetic structure and sample sizes are low 

(Shirk et al. 2017). Pairwise genetic distances among individuals from the same sampling 

location were removed from further analyses to avoid skewing landscape genetics models.  

 

Landscape Analysis 

 

To test the hypothesis that land use type would influence gene flow, we classified spatial 

data into six distinct land use classes using multi-spectral raster files from the USGS Landsat 8 

satellite (see Figure 1, left panel). Through the supervised classification feature in ERDAS 

Imagine 2014 (Hexagon Geospatial, Norcross GA, USA), each pixel in the 30 x 30 m 

multispectral image was classified as either agricultural, hardwood, manmade (e.g., paved 

surfaces and buildings), pine, wetland, and water body land uses using training areas developed 

using high-resolution imagery and previous knowledge of the study area and a maximum 

likelihood algorithm. We overlaid wetland, water flowline, and road shapefiles onto the 

classified image to ensure forested wetlands, small water features, and small roads were included 

in the classification. The overlay was created using raster calculator in ArcGIS 10.2.2 (ESRI 

2011). We used the final maps to calculate the amount of habitat, patch density, correlation 

length, clumpiness, patch cohesion, and an aggregation index for each landscape variable using 

the software FRAGSTATS v 4.2 (McGarigal et al. 2012). We then conducted a series of 
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univariate moving window analyses on the classified images using five separate kernel sizes 

(100, 250, 500, 750, and 1000 m) for each land use class with the PLAND calculation in 

FRAGSTATS (see Figure 1, middle panels). Each pixel in the resulting maps (a total of five 

maps for each land use class) reflected the percent of a given land use class within the kernel 

(i.e., if a 100 m square surrounding a given pixel is completely made up of agriculture, that pixel 

would be given a value of 100 for the agriculture variable). These distance calculations were then 

transformed using the eight transformations found in the R package “ResistanceGA” (named and 

illustrated in Figure 1, right panels; also see Peterman 2018). The genetic algorithm optimization 

method available in “ResistanceGA” would be computationally restrictive due to the large size 

of the study areas, so for purposes of tractability, we calculated transformed values using the 

“ResistanceGA” package with max=100 and shape=2.  

 

Using the “gDistance” package (van Etten 2017) in R, we computed pairwise random-

walk distance between individuals for each map, resulting in 40 distance calculations for each 

land use class. We also created a raster file that had a uniform pixel value of one to calculate a 

random-walk distance that would represent the geographic distance between points and could be 

used to test for isolation by distance (IBD). To remove the effect of geographic distance from our 

land use class random-walk calculations, we performed a series of simple linear regressions of 

the uniform pixel distance and each random-walk calculation using the “lme4” package in R 

(Bates et al. 2015). The residuals from these linear regressions were then used in model testing.  
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Figure 1. Depiction of landscape classification and optimization for scale and 
transformation.  
 
Landsat 8 imagery was classified into 5 landscape variables. Each variable was tested for five 
scales (100, 250, 500, 750, and 1000 meters) and eight transformations (a. monomolecular, b. 
reverse monomolecular, c. inverse monomolecular, d. inverse-reverse monomolecular, e. ricker, 
f. reverse ricker, g. inverse ricker, and h. inverse-reverse ricker) and a linear relationship, for a 
total of 45 univariate tests per landscape variable. The transformation graphs show the 
relationship between the original resistance value (i.e., a value 0-100, indicating the percent of 
the given landscape variable within 100, 250, 500, 750, or 1000 meters) on the x-axis, and the 
new resistance value as a result of transformation on the y-axis, as is depicted in the inset. 
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Model Testing 

 

To optimize each land use type for both transformation and scale, we ran a series of 

univariate maximum likelihood population effects models (MLPE). These linear random effects 

models account for the lack of independence between pairwise comparisons. This method was 

the most robust among seven regression-based model selection methods tested using inter-

individual landscape genetic simulations (Shirk et al. 2018). Furthermore, in species distribution 

modeling simulations, generalized linear mixed models have been shown to be more transferable 

than those generated using machine learning and random forest methods (Wegner and Olden, 

2012). Univariate models were ranked using corrected Akaike Information Criterion (AICc; 

Hurvich and Tsai 1989). The most strongly supported scale and transformation of each land use 

class (i.e., that with the lowest AICc score) was used for final model testing.  

 

We tested several hypotheses of resistance with Maximum likelihood population effects 

(MLPE) models (Table 1). Each model included the geographic distance variable derived from a 

uniform raster, as well as a combination of land use variables. Models were then ranked using 

AICc (Table 1). Summaries of the best-fit models were examined to determine the sign of effect 

for each model component (i.e., each landscape variable). A positive sign of effect indicated that 

the variable resisted gene flow, whereas a negative sign of effect indicated the variable facilitated 

gene flow (Row et al. 2017). 
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Table 1. Maximum likelihood population effects models and AICc scores.   

 
The lowest AICc scores for each forest are in bold. 

 

 

 

 

 

 

 

 

Results 

 

Genetic Analysis 

 

Multilocus genotypes were produced from 113 of 114 individuals sampled in HSNF with 

1.7% missing data, and 107 of 109 individuals sampled in BNF with 4.1% missing data. The 

remaining individuals (one individual in HSNF and two individuals in BNF) were excluded from 

the dataset because they failed to amplify at greater than two loci after repeated attempts. The 

locus 402 failed to amplify reliably in BNF, and was therefore removed from datasets in BNF 

but not HSNF. The locus B8DRY was found to be monomorphic in HSNF but not BNF, so it was 

removed from datasets in HSNF but not BNF. Loci within the HSNF dataset had 4-32 alleles, 

and loci within BNF had 10-29 alleles. Tests for departures from HWE using sampling locations 

with 9-11 individuals showed all loci were in HWE except one (QWZ) in HSNF and one (43M) 

Model Name Variables Included HSNF BNF 
Full Model Geographic Distance, Agriculture, Manmade, Pine, 

Hardwood, Wetlands 
29467 25809 

Isolation by Distance Geographic Distance 30089 26324 
Modified Habitat Geographic Distance, Agriculture, Manmade 29879 25990 
Moderate Habitat Geographic Distance, Pine, Agriculture 29467 25937 
Forest Cover Geographic Distance, Pine, Hardwood, Wetlands 29914 26192 
Agriculture Geographic Distance, Agriculture 29952 26018 
Manmade Geographic Distance, Manmade 29991 26249 
Pine Geographic Distance, Pine 30025 26269 
Hardwood Geographic Distance, Hardwood 29954 26209 
Wetlands Geographic Distance, Wetlands 29893 26104 
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in BNF. Tests for linkage disequilibrium and null alleles found no linkage, and only one 

possibility of null alleles (43M) in BNF. QWZ was in HWE in BNF, and 43M was in HWE in 

HSNF, and there was no indication of null alleles in 43M in HSNF, therefore both loci were kept 

in the dataset. Mean allelic richness in HSNF was 14.5, and mean allelic richness in BNF was 

18.9. STRUCTURE analysis supported K = 1 clusters (Evanno et al.'s 2005 method calculates a 

delta K value which by definition cannot be calculated for K=1, therefore we relied on the 

highest mean estimated log likelihood for each forest, which was at K=1). There was significant 

spatial autocorrelation within both forests (test for heterogeneity p<0.001), with the x intercept at 

7.38 km in HSNF and 16.28 km in BNF (Appendix Figures A1 and A2).  

 

Landscape Analysis 

 

Supervised classification of the Landsat 8 imagery and subsequent analysis with 

FRAGSTATS revealed HSNF and BNF have a number of similarities in the amount and 

distribution of landscape variables as well as a number of differences (Table 2). There are similar 

amounts of hardwood, manmade, and wetland areas in both forests, however there is 

approximately ten times more pine in HSNF than BNF. Patches of pine patches were more 

densely distributed across the landscape in HSNF (i.e., higher patch density) and they also had a 

higher correlation length, which is a measure of the distance an individual could travel and 

remain in a single patch when dropped in a random location and traveling in a random direction 

(Keitt et al. 1997; McGarigal et al. 2012). The amount of agriculture in HSNF was higher than in 

BNF, but the patches were at a similar density and the forests had similar correlation lengths. 

Areas containing manmade structures were considerably denser in BNF, however HSNF had a 
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higher average manmade correlation length, suggesting manmade structures in HSNF are mainly 

roads, and in BNF they are more commonly buildings and paved lots. Hardwood patches were 

denser in HSNF, but had a higher correlation length in BNF, and wetlands in BNF had a much 

higher correlation length than in HSNF.  

 

Model Testing  

 

The full model had the lowest AICc and was thus the best-fit model for both forests, 

indicating all of the tested landscape variables contribute to the genetic distances found in P. 

mississippi. The rank of model components differed between forests (Table 3), with agriculture 

and wetlands the top two components for both forests and the remaining variables contributing 

less to P. mississippi genetic distance variability. Agriculture, pine, and hardwoods had the same 

sign of effect in both forests, with agriculture and hardwoods resisting gene flow of P. 

mississippi and pine facilitating gene flow. In HSNF, manmade areas facilitated gene flow, 

whereas in BNF they resisted gene flow. The opposite was true for wetlands, which resisted gene 

flow in HSNF and facilitated gene flow in BNF (Table 4). 

   

Univariate tests for scale and transformation resulted in few similarities between the 

forests (Figure 2). Only one landscape variable, pine, was optimized to the same transformation 

(inverse-reverse ricker). The presence of pine on the landscape resulted consistently in increased 

gene flow in both forest regions. In HSNF, gene flow was at its highest when ten percent of the 

area within 1000 m was comprised of pine. As the percentage of pine increased within the 1000 



21 
 

m area, the facilitation of gene flow decreased until it reached 80%, at which point it 

exponentially increased. The scale at which this occurred in BNF was 750 m.  

 

Table 2. Comparison of landscape metrics for Holly Springs National Forest and Bankhead 
National Forest.  
 
Habitat amount (km2) Patch Density (number of patches per 100 ha), Correlation Length, 
Clumpiness Index, Patch Cohesion, Aggregation Index for Holly Springs National Forest (grey 
rows) and Bankhead National Forest (white rows).  

 

 
 
 
Table 3. Rank and model coefficients of landscape variables in most supported Maximum 
likelihood population effects model for each forest region.  
 

HSNF BNF 

Wetlands 0.91 Agriculture 1.14 

Agriculture 0.69 Wetlands -0.48 

Hardwoods 0.65 Manmade 0.47 

Manmade -0.43 Pine -0.40 

Pine -0.25 Hardwoods 0.26 

 

Landscape 
Type 

Amount 
of Habitat 

Patch 
Density 

Correlation 
Length 

Clumpiness 
Index 

Patch 
Cohesion 

Aggregation 
Index 

Hardwood 1339.41 14.04 353.68 0.59 93.24 68.73 
1382.44 9.96 912.92 0.59 97.52 79.60 

Pine 2230.41 17.22 562.51 0.61 95.53 76.65 
236.40 6.41 211.13 0.69 89.43 71.51 

Agriculture 958.83 8.03 295.24 0.69 92.13 74.53 
271.55 4.10 258.56 0.73 92.09 75.42 

Manmade  291.75 1.42 5511.04 0.53 98.80 55.50 
311.57 10.66 3838.83 0.51 98.61 56.48 

Wetlands 245.30 11.59 91.31 0.41 73.57 43.67 
441.08 17.71 279.73 0.55 89.24 62.20 



22 
 

Table 4. Comparison of scale, transformation, and sign of effect for Holly Springs National 
Forest and Bankhead National Forest. 
 
Results for Holly Springs National Forest are in grey and results for Bankhead National Forest 
are in white. A negative sign of effect indicates the variable facilitates gene flow, and a positive 
sign of effect indicates the variable reisists gene flow. For example, in Holly Springs National 
Forest, gene flow among P. mississippi populations is restricted by the presence of hardwoods up 
to 500 m away. This resistance is at its lowest when hardwoods comprise 20% of the 500 m 
kernel, and at its greatest when hardwoods comprise 100% of the 500 m kernel. 
 

Landscape 
Type Scale (m) Transformation Sign of 

effect 

Hardwood 500  Inverse Ricker + 
100  Inverse-Reverse Ricker + 

Pine 1000  Inverse-Reverse Ricker - 
750  Inverse-Reverse Ricker - 

Agriculture 500  Inverse-Reverse Ricker + 
500  Inverse Ricker + 

Manmade  250  Inverse Ricker - 
1000  Ricker + 

Wetlands 1000  Inverse Ricker + 
100  Monomolecular - 
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Figure 2. Comparison of the facilitation or resistance to gene flow created by land use types 
in Holly Springs National Forest versus Bankhead National Forest.  
 
Maps illustrate the optimized scale, transformation, and sign for each land use type to give a 
visual representation of the effect of each land use type on gene flow of P. mississippi.  
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Only one landscape variable, agriculture, was optimized at the same scale (500 m). 

Agriculture resulted in a resistance to P. mississippi gene flow in both study regions. The 

transformation, or function of the relationship between gene flow and the amount of agricultural 

land, differed between forest regions. In HSNF, small percentages of agriculture created the 

highest resistance (i.e., the area within 500 m comprised of 20% agriculture) and the lowest 

amount of resistance was seen when 80% of the surrounding area was agriculture. Conversely, in 

BNF, the lowest resistance to gene flow occurred when 20% of the surrounding landscape was 

agricultural.  

 

The largest difference in scale was found in wetlands, with wetlands in HSNF impacting 

gene flow at a scale of 1000 m, but wetlands in BNF impacting gene flow at a scale of 100 m. 

Wetlands in HSNF correlated with resistance to gene flow, with increasing resistance from 20–

100% wetlands within 1000 m. In contrast, wetlands in BNF correlated with facilitation of gene 

flow at a scale of 100 m with increasing facilitation with an increasing percentage of wetlands 

within a 100 m kernel. 

 

The manmade landscape variable showed the most drastic difference in transformation, 

with HSNF optimized to an inverse ricker transformation and BNF optimized to a ricker 

transformation. In HSNF, manmade structures facilitate gene flow, whereas in BNF, manmade 

structures correlate with resistance to gene flow. However, facilitation is at its lowest when 

manmade structures comprise 20% of the landscape in HSNF, and resistance is at its highest 

when manmade structures comprise 20% of the landscape in BNF. 
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Hardwoods created resistance to P. mississippi gene flow in both forest regions, however 

both the scale and function (i.e., transformation) of their effect was different. The scale of effect 

in HSNF was at 500 m, with increasing resistance from 20-100% of the immediate area 

consisting of hardwoods. In BNF, the scale of effect was at 100 m, showing decreasing 

resistance from 0–80% hardwoods.  

 

 

Discussion 

 

In this study, landscape genetics models for the Mississippi slimy salamander were 

evaluated in each of two forest regions that, despite being geographically separated by ~190 km, 

are nonetheless qualitatively similar in many respects (e.g., forest types, land uses, management, 

climate, and precipitation). This metareplication allowed us to understand the extent to which 

landscape genetics inferences are transferable to neighboring regions. Indeed, due to the general 

similarity between the two forest regions, the present study represents a case where 

transferability is potentially quite high. In both forest regions, the most strongly supported MLPE 

model included all five of the landscape variables under consideration, indicating they all 

influence P. mississippi gene flow in non-negligible ways, even if the magnitude of influence is 

weak for some. We found that the rank ordering of variable effects was different between forests, 

and so generally speaking, the notion of a single landscape genetic model that is broadly 

applicable across the species’ range was not supported. Notably, wetlands and agriculture were 

consistently at the top of the rankings for both regions. Furthermore, some variables affected 

gene flow in the same way across the two forest regions (e.g., agriculture generated resistance to 
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gene flow), suggesting some generality the responses of P. mississippi individuals to 

characteristics of the intervening matrix. That said, there was also a number of variables, 

including some of large effect (e.g., wetlands), which differentially affected gene flow, 

indicating context-dependent responses that may make extrapolation of landscape genetics 

models to as-yet unstudied areas difficult. Below, we discuss the variables in descending order of 

rank of effect, and compare our findings with those of other relevant studies. We close by 

considering some limitations of our work, and point to future directions for understanding the 

effects of landscape genetics model optimization (e.g., choice of geographic scale, 

transformation of resistance distances) upon generating broadly applicable inferences about how 

individuals perceive and move through their habitat.  

 

Based on our data, agriculture was ranked as one of the top two most influential variables 

affecting gene flow in the best-fit landscape genetics models for P. mississippi in both forest 

regions. We found that agricultural areas caused resistance to gene flow at a relatively 

intermediate spatial scale of 500 m. Notably, the most prominent agricultural practices within 

both study regions include a rotation of corn, wheat, and soybeans, as well as cotton and sweet 

potatoes. In all of these cases, the crops are grown as monocultures, and harvesting/planting 

times are such that there is high probability of bare earth during spring and fall, which are the 

most active seasons for P. mississippi in terms of dispersal of individuals (Salmerón et al. 2016; 

Petranka 1998; S. Burgess personal observation). The lack of vegetative cover and increased 

ground disturbance associated with planting and harvest activities may explain the resistance to 

gene flow caused by agricultural areas. Abundance surveys of plethodontid salamanders have 

shown a direct relationship between individual salamanders and the amount of herbaceous cover 
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(Riedel et al. 2008) and recent landscape genetics analyses of marbled newts have shown an 

increase in population structure due to agricultural areas (Costanzi et al. 2018).  

 

Like agriculture, wetlands ranked in the top two most influential variables. However, the 

effects of wetland configuration on gene flow differed between the two forest regions; gene flow 

was resisted at a large scale (1000 m) in HSNF, whereas gene flow was facilitated at a much 

smaller scale (100 m) in BNF. These contrasting outcomes may be due to differences in the 

shape and connectedness of wetland patches across each forest region. For instance, in BNF, the 

correlation lengths of wetland patches (i.e., a metric of the amount of time an individual can 

move forward from a random starting point in a random direction and stay within the same 

patch) are considerably higher than in HSNF. In this context, simulations by Cushman et al. 

(2011; 2013) are particularly relevant, as these authors explored how the distribution of 

landscape variables within a study area impacts their effect on gene flow, finding the most 

prominent effects from differences in correlation length and patch cohesion, (i.e., a metric 

indicating the physical connectedness of patches). Thus, our data suggest that in BNF, individual 

P. mississippi can move relatively large distances without exiting wetland areas, but not in 

HSNF. While the notion of long distance dispersal in salamanders is counter to the traditional 

view of extreme philopatry in these taxa, it is worth nothing that for most species, dispersal 

distributions are leptokurtic. This has been demonstrated by occasional dispersal greater than 

400m by the spring salamander, Gyrinophilus porphyriticus (Lowe 2010), and the Near Eastern 

fire salamander, Salamandra infraimmaculata (Bar-David et al. 2007). Overall, our data 

underscore the notion that if wetlands are well connected, they facilitate gene flow in terrestrial 
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salamanders such as P. mississippi, however isolated wetlands, such as those found in HSNF, 

may lead to restriction of gene flow. 

 

Our results showed that the magnitude of influence on gene flow of hardwood, manmade, 

and pine landscape variables were consistently ranked relatively low in the best-fit MLPE 

models for both forest regions. While hardwoods consistently generated resistance to gene flow 

in both forest regions, the function of resistance (i.e., the transformation) differed. Specifically, 

in HSNF, there was a positive relationship between amount of hardwoods and amount of 

resistance, whereas in BNF, the reverse was true. As with wetlands, the correlation lengths of 

hardwood patches in BNF were higher than in HSNF. One possible explanation for these 

relationships is that P. mississippi typically reside in cool, moist, bottomland hardwood forests 

(Petranka 1998) and thus may be unprompted to leave. Smith and Rissler (2010) reported that 

hardwood dominated understories were characteristic of "pristine" habitat for terrestrial 

herpetofauna in Talladega National Forest, Alabama, and the population genetic effects of local 

philopatry have been reported for plethodontid salamanders, in continuously forested habitat 

(e.g., P. cinereus; Cabe et al. 2007). Thus, in the case of P. mississippi, the reduction in gene 

flow, and associated apparent “resistance” generated by hardwoods in the best fit landscape 

genetic modes, should not be equated to that caused by agriculture. Indeed, Richardson et al. 

(2016) cautioned that even when a set of landscape variables each show evidence of resistance, 

the underlying reasons may differ ecologically. 

 

 In HSNF, we found that manmade structures facilitated gene flow among P. mississippi, 

whereas in BNF they correlated with resistance to gene flow. Notably, patches of manmade 
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structures in HSNF are considerably less dense, but have a greater correlation length, suggesting 

their distribution across the landscape is more linear (i.e., more roads than buildings and paved 

lots). Studies of salamander gene flow have found variable responses to roads, showing both 

resistance to gene flow (Marsh et al. 2008) and no effect (Purrenhage et al. 2009). Our analysis 

was unique due to the inclusion of manmade structures, however our results support separating 

roads and other manmade structures in the future to differentially determine the effect of each 

land use type.  

 

Although pine ranked as one of the least influential landscape variables in each best-fit 

MLPE model, it did have the most consistent effect across the two forest regions (i.e., same sign, 

scale, and transformation). This consistent facilitation of gene flow by a landscape type that is 

less than ideal habitat for P. mississippi (Petranka 1998) may seem counter to predictions based 

on the species' natural history. However, increased dispersal—and by extension, gene flow—

through moderately hostile habitat has been reported for ambystomatid (Wang et al. 2009) and 

plethodontid (Peterman et al. 2014; Prunier et al. 2014) salamanders. In each of the two forest 

regions studied here, pine is typically found immediately adjacent to hardwoods and, as a 

consequence of being evergreen, provides year-round canopy cover. Furthermore, a considerable 

amount of the pine habitat found in both forest regions is routinely burnt via prescribed low-

intensity fire (U.S. Department of Agriculture Forest Service 2004, 2012), resulting in a 

reduction of pine litter, which has been experimentally shown to increase the movement of an 

ambystomatid salamander (Ambystoma talpoideum, Moseley et al. 2004). Thus the combination 

of these factors—close proximity to ideal habitat, protection by year-round canopy cover, and 
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potential to increase movement—may explain the consistent increase in gene flow found in 

response to pine habitat.  

 

Due to the nature of metareplications, there are a number of potential limitations that 

arise both during analysis and in the interpretation of results. Because the goal of metareplication 

is to compare the effect of each landscape variable in multiple areas, researchers must include 

environmental and landscape variables that have both the potential to affect the genetic structure 

of their study organism (Keller et al. 2014) and are also present in all study locations (Short Bull 

et al. 2011; Castillo et al. 2016; Vergara et al. 2017). When results are intended to apply to 

conservation throughout a species range (Row et al. 2015) researchers may focus on the 

inclusion of a smaller number of landscape variables in an attempt to strike a balance between 

the number of parameters evaluated and the transferability of model inferences. By focusing on a 

smaller number of landscape variables, researchers may fail to identify a landscape feature that 

affects gene flow. There is also a potential source of error in the interpretation of metareplication 

results. Because metareplications must, by definition, occur in separate geographic areas, they 

inherently include the potential for erroneous conclusions due to unidentified phylogeographic 

breaks between study areas. Divergent lineages can be cryptic, abrupt, and even counter to 

morphologic differences (e.g., in two Desmognathus species identified by Jones and Weisrock 

2018). If a phylogeographic break exists, any inferred location-specific differences between 

study regions (e.g., response to a particular landscape variable) may instead be due to deeply 

divergent lineages and separate evolutionary histories. In the present study, we have prioritized 

the optimization of a limited number of landscape variables to maintain the ability to compare 

their effects across forest regions while attaining detailed information about the scale and 
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function (i.e., transformation) of those effects. While the possibility of an unidentified 

phylogeographic break exists between P. mississippi in our two forest regions, both HSNF and 

BNF lie well within the range delineated for P. mississippi by Highton (1989).  

 

Management Implications 

 

Through metareplication, we have obtained information about the relationships between 

P. mississippi and their environment that would not have been apparent when using a single 

study area. This information can be used to generate management recommendations for the 

species in as-yet unstudied locations. The consistent resistance to gene flow by agriculture, 

coupled with the consistent facilitation of gene flow by pine, indicates that land managers 

overseeing multi-use areas could increase P. mississippi gene flow by prioritizing silviculture 

over agricultural leasing. Our results also indicate that the connectivity of wetland patches (as 

seen in our analyses as a high correlation length) is an important factor in their ability to 

facilitate P. mississippi gene flow. Thus, managers should focus efforts on improving the 

connectivity of wetlands, potentially through targeted restoration.  
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CHAPTER 3 

THE EFFECT OF GEOGRAPHIC SAMPLING SCALE ON LANDSCAPE GENETICS 

INFERENCES FOR THE SLIMY SALAMANDER (PLETHODON MISSISSIPPI) 

 

Abstract 

 

Within landscape genetics, the effects of sampling density and study area size upon 

inferences are largely unknown. A common recommendation is that sampling locations be 

placed no further apart than average individual dispersal distance, leading to a small, 

unrepresentative study area or a logistically challenging number of sampling locations. We tested 

the effects of sampling density and study area size on landscape genetics models for Plethodon 

mississippi in Mississippi, USA, via comparative analysis of nested datasets that differed in 

sampling density and study area size. Genetic distances among individuals were divided into 

datasets representing dense sampling across a small study area, sparse sampling across a small 

study area, and sparse sampling across a large study area. These datasets were used in models 

that assessed the influence of land use classes on resistance or facilitation of gene flow. Wetlands 

were a significant contributor to genetic distance, correlating with gene flow resistance in all 

datasets. Correlations between gene flow facilitation and manmade structures, and gene flow 

resistance and hardwoods were also consistent across datasets. Small study areas resulted in 

correlation between pine and gene flow resistance, whereas a large study area found correlation 
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to gene flow facilitation. The relationship between agriculture and gene flow appeared to be 

affected by both study area and sampling density. Differences found when using study areas of 

different sizes and patch configurations suggest these factors may affect model inferences. 

Differences found when using dense versus sparse sampling suggest that short distance 

dispersers may interact with their environment differently than long distance dispersers. 

Metareplication in areas with different patch configuration combined with reanalysis of 

"thinned" subsets of original data, mimicking different sampling densities, may capture these 

important differences.  

 

 

Introduction 

 

In the field of landscape genetics, features of the environment that may affect dispersal 

and gene flow are represented by a suite of ecological distances (i.e., predictor variables) that are 

compared to corresponding genetic distances (i.e., the response variable) between individuals or 

local populations (Manel et al. 2003). The results of this comparison are intended to identify 

abiotic or biotic characters of the landscape that influence genetic connectivity, such as riverine 

or road barriers (Hartmann et al. 2013), agricultural land use practices (Goldberg and Waits 

2010; Prunier et al. 2014; Costanzi et al. 2018), and the spatial configuration of preferred or non-

preferred habitat (Vergara et al. 2017). Landscape genetics analyses have been conducted on 

many species and can be applied broadly across different landscape settings (Storfer et al. 2010). 

Accordingly, these studies have spanned a broad range of spatial scales [e.g., a study area <40 

km2 for the Natterjack toad, Epidalea calamita (Cox et al. 2017), up to the entire state of 
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Wyoming, USA (250,000 km2), for the greater sage-grouse, Centrocercus urophasianus (Row et 

al. 2015)]. Given that spacing between locations where DNA samples are collected can affect 

inferences about which ecological variables have the greatest impact on gene flow (Richardson 

et al. 2016), sampling density and size of the study area are important considerations.  

 

Decisions about geographic sampling scale are made a priori, based in part on an 

understanding of species’ dispersal ability, whereby species with short dispersal distances are 

often sampled more densely than species for which long distance dispersal is common. Given 

that fieldwork can be labor-intensive and expensive, in the case of species with short distance 

dispersal, researchers may be faced with the decision to either increase the spacing between 

sampling locations, or conduct their study within a smaller area. However, smaller study areas 

may fail to incorporate the level of environmental heterogeneity needed to answer research 

questions. For instance, to test the effect of roads on gene flow, a study area must encompass a 

moderate to large number of roads, preferably of varying sizes (Keller et al. 2014; Richardson et 

al. 2016)—a requirement that may not be satisfied by a small study area. Accordingly, there is a 

need for investigations that explicitly evaluate the impacts of alternative spatial arrangements of 

sampling sites, using the same focal species and landscape setting, such that the direct effects of 

geographic sampling scale on outcomes from landscape genetics can be examined. 

 

 Researchers have cautioned that landscape genetics inferences based on sparse genetic 

sampling (i.e., where average distances among locations far exceed typical movement of 

individuals) may fail to capture relationships between abiotic features of the landscape and gene 

flow that are unique to short distance dispersal events (Angelone et al. 2011). Angelone et al. 
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(2011) analyzed the relationship of 16 landscape variables and gene flow among populations of 

European tree frog (Hyla arborea). To assess the impact of different geographic sampling scales, 

the authors subdivided pairwise comparisons of breeding ponds into geographic distance classes, 

and analyzed these datasets separately. This tiered analysis resulted in different ecological 

predictor variables being identified as causing resistance to gene flow for each distance class 

examined. The outcome was considered to be consistent with a scenario where individuals 

exhibiting short distance dispersal were affected by the presence of rivers or lakes, whereas 

geographic distance, wetlands, hedgerows and the density of forests more strongly affected long 

distance dispersers (Angelone et al. 2011). Sparse sampling can also result in a weaker 

relationship between genetic distance and the ecological variables that impact gene flow due to 

the greater potential for stochastic events (e.g., local extreme weather, invasive or predatory 

species interactions, disease spread) to occur between sampling sites (Epperson et al. 2010). For 

example, in a wetland grasshopper (Stethophyma grossum), Keller et al. (2013) found the 

greatest model fit (measured by strength of correlation between genetic and ecologically-

informed geographic distances) was obtained when only including pairs of sampling locations 

that were within close proximity (i.e., up to 3 km apart; the threshold for minimum population 

connectivity in that study system). Those authors suggested that the decrease in model fit when 

examining widely separated populations may occur because the rarity of long distance dispersal 

events reduces the ability to detect a relationship between ecological variables and long distance 

movements. Both groups of researchers recommended that sampling locations be spaced no 

further than the average individual dispersal distance of the focal species.  
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Just as there may be negative consequences for landscape genetics inferences when 

sparse sampling is used, this may also be true for extremely fine scale sampling. The typical 

logistical tradeoff in which dense sampling is coupled with a smaller overall study area may 

create a situation where a representative range of values of one or more ecological predictor 

variables (e.g., the magnitude of differences between high versus low amounts of agriculture) are 

not captured by the study design, such that it becomes difficult to identify an environmental 

variable’s true, overarching impact on gene flow (Keller et al. 2014). Haran et al. (2017) 

repeatedly subsampled their dataset of individual-based genetic distances among pine sawyer 

beetles (Monochamus galloprovincialis) from the Iberian Peninsula, and found significant 

relationships between gene flow and environmental variables were more likely to be detected 

when using larger study areas. When testing the relationship between environmental variables 

and genetic distance in over 30,000 alternative demarcations of a study area (220–1,000 km in 

diameter), the number of significant relationships between gene flow and high elevation, cooler 

temperatures, and pine forests was highest when study areas were large (1,000 km diameter), and 

the relationships between gene flow and cooler temperatures was highest when study areas were 

smaller (600 km diameter.) While this study highlights the need to include large study areas, its 

findings are also consistent with Angelone et al. (2011) and Keller et al. (2013) in supporting the 

idea that the impact of environmental variables on gene flow may be scale-dependent. Thus, 

there are reasons for concern regarding overly small study areas, as these studies may fail to 

detect significant relationships between ecological predictor variables and gene flow that do 

exist.  
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In the present study, we explored the impact of sampling density and study area size on 

landscape genetics inferences for a low-mobility amphibian—the Mississippi slimy salamander, 

Plethodon mississippi (Highton 1989). We approached this by first sampling at two contrasting 

densities, and then by reanalyzing a subset of the empirical data. This salamander is found within 

the bottomland hardwood forests and wet pine-woods of Mississippi, Alabama, and Tennessee, 

USA (Petranka 1998). The species develops terrestrially without the need to disperse to aquatic 

environments for reproduction. In northern Mississippi, P. mississippi is distributed continuously 

throughout Holly Springs National Forest (HSNF), a 630 km2 federally managed forested area 

that contains a mosaic of hardwood forests, manmade structures, agricultural fields, roads, and 

pine plantations (U.S. Department of Agriculture Forest Service 2012). In order to determine the 

effect of this mosaic on gene flow among populations of P. mississippi, the sampled area must 

encompass a representative portion of the forest. However, given that individuals typically 

disperse less than 92 meters in their lifetime (Wells and Wells 1976), spanning such a large area 

with locations spaced no further than average dispersal distances is intractable. Thus, this is a 

suitable model for investigating the relationship between sampling density and study area size. 

Here, we assessed the relationship between five ecological predictor variables and P. mississippi 

gene flow using genotypic data from eight microsatellite loci. The effects of sampling density on 

landscape genetic inferences were examined using three different sampling schemes: sparse 

sampling across a large area, sparse sampling across a small area, and dense sampling scale 

across the same small area (Figure 3). Based on this, we addressed the following two questions: 

1) Does sparse sampling fail to identify relationships between ecological predictor variables and 

gene flow that are identified using dense sampling? 2) If differences exist between inferences 
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obtained from the two contrasting sampling densities, are they a consequence of sampling 

density (i.e., sparse versus dense) alone, or does study area size also play a role?  

 

 

Methods 

 

Study Design 

 

To examine the effect of sampling density on landscape genetic inferences, hierarchically 

nested datasets were created. These datasets contained combinations of two sampling strategies 

and two study area sizes. The first, herein referred to as the dataset generated using “sparse 

sampling across a large study area,” consisted of 19 sampling locations placed approximately 

seven kilometers apart distributed evenly across HSNF—a forest region that spans 

approximately 45 km x 70 km (Figure 3A). The second, herein referred to as the dataset 

generated using “dense sampling across a small study area”, consisted of 14 sampling locations 

placed approximately three kilometers apart across a 16 km x 16 km area nested within the larger 

HSNF study area that was similar in land use composition (Figure 3B). The third dataset, herein 

referred to as “sparse sampling in a small study area,” included only the “dense sampling in a 

small study area” pairwise comparisons between individuals greater than seven kilometers apart 

(Figure 3C). 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3. Sampling locations of P. mississippi within Holly Springs National Forest (HSNF), 
Mississippi USA.  
 
A) In the sparse sampling across a large study area (630 km2), 19 sampling locations (black dots) 
were spaced approximately 7 km apart across the entirety of HSNF. Within the small study area 
(256 km2) demarcated by a dashed box, 14 sampling locations were spaced approximately 3 km 
apart. The circled sampling locations within the small study area were also part of the large study 
area dataset (Inset: map of southeastern USA showing location of HSNF). B) The dense 
sampling across a small study area included pairwise genetic distances between individuals from 
all sampling locations. C) The sparse sampling across a small study area only included pairwise 
genetic distances from individuals that were > 7 km apart.

A. B.

C.
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Figure 4. Different combinations of sampling density and study area size, and hypothetical 
outcomes relating to similarity of landscape genetics inferences among datasets.  
 
A) similar outcomes are obtained for all three datasets. B) sparse and dense sampling across a 
small study area yield similar outcomes, but differ from the sparse sampling across a large study 
area. C) sparse samplings across a large and small study area yield similar outcomes, but differ 
from dense sampling across a small study area. D) sparse sampling across a large study area and 
dense sampling across a small study area yield similar outcomes, but differ from sparse sampling 
across a small study area. E) all models differ. A combination of the effects seen in B) and C) 
may be the cause of D) or E).  

A.

D.

C.

B.

E.
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Comparison of the three datasets can be used to assess support, or lack thereof, for the 

research questions outlined above. If the effects seen for a given ecological predictor variable are 

consistent across these three datasets (e.g., Figure 4A), this would indicate that sparse sampling 

may be adequate to detect this relationship between the ecological predictor variable and gene 

flow, and dense sampling may not be necessary. If the sparse datasets (both in large and small 

study areas) result in a consistent effect, but that effect is different from that found using dense 

sampling in a small study area (Figure 4B), it would suggest that sparse sampling may fail to 

detect relationships between ecological predictor variables and gene flow among P. mississippi 

populations. If the datasets in small study areas (both sparse and dense sampling) result in similar 

effects that are different from those generated using sparse sampling in a large study area (Figure 

4C), this would imply that datasets using a large study area may detect relationships between 

ecological predictor variables and gene flow among populations that go undetected in small 

study areas. Additionally, there may be similarities between the datasets using sparse sampling in 

a large study area and dense sampling in a small study area, or all of the results may differ 

(Figure 4D and E, respectively). These similarities and differences may be due to a combination 

of the effects described above. 

 

Geographic Sampling Schemes 

  

To determine where to place the boundaries of small study area so that it best represented 

the land use composition of the larger, forest-wide study area, we first created land use maps 

using NASA Landsat 8 satellite imagery. Spectral bands 3, 4, 5, and 6 of the 30 x 30 m images 

were classified into six land use classes (agriculture, hardwood forest, pine forest, manmade 
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structures, water bodies, and wetlands) using a supervised classification method in ERDAS 

Imagine 2014 (Hexagon Geospatial, Norcross, GA, USA). Flowline and wetland shapefiles 

obtained from the US Fish and Wildlife Service National Wetlands Inventory and roads 

shapefiles derived from the US Forest Service Motor Vehicle Use Map (developed using data 

from the US Census Bureau) were overlaid onto the classified image using the raster calculator 

tool in ArcGIS 10.2.2 (ESRI 2011) to classify roads, wetlands, and waterways that may be 

difficult to identify using aerial classification. To determine the most representative location for 

the small study area, a 16 km x 16 km square polygon shapefile was created in ArcGIS, and was 

then moved across the classified raster file until the land use class percentages were within 6.3% 

of the percentages found in the larger study area (Appendix Table A4). Three of the large study 

area sampling locations also fell within the small study area, thus individuals from these 

locations were included in both large study area and small study area datasets.  

 

Genetic Sampling 

 

At each sampling location, tail tissue was sampled from at least five P. mississippi 

individuals following procedures approved by University of Mississippi IACUC approval #15-

020 and Mississippi Department of Fish and Wildlife Permit #0324164, and then stored in 95% 

ethanol. In total, tissues were collected from 184 individuals from 33 sampling locations within 

HSNF.  
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Genetic Analysis 

 

Genomic DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit (Valencia 

CA, USA), following the manufacturer's recommendations. Eight microsatellite loci reported by 

Spatola et al. (2013) were used to genotype individuals (see Appendix and Tables A1, A2, and 

A3 for amplification conditions, and allele-calling approaches). One individual that failed to 

amplify at more than one locus after multiple attempts was removed, leaving 183 individuals 

with multilocus genotypes. Given that P. mississippi is a continuously distributed species for 

which discrete local populations are not apparent within HSNF, we grouped individuals in three 

ways for the purpose of basic validation of molecular marker inheritance patterns. First, the 

entire dataset was grouped as a single, panmictic population. Second, three sampling locations 

(two within the large study area dataset, and one in both large and small study area datasets) 

where tissue from 9–10 individuals was collected, were each used to represent local populations. 

Third, the entire dataset was divided into putative populations by grouping sampling locations 20 

km apart (past the extent of spatial autocorrelation as determined by our semivariogram; see 

Results) into eight different populations. Each of these three grouping schemes for designating 

putative populations were used to test for null alleles and departures from Hardy-Weinberg 

Equilibrium, using the package “PopGenReport” (Adamack and Gruber 2014) in R (R Core 

Team 2019). MICRO-CHECKER v. 2.2.3 (van Oosterhout et al. 2004) was used to test for 

departures form linkage equilibrium. “PopGenReport” was also used to calculate percent missing 

data, number of alleles per locus, and mean allelic richness across the total dataset.  
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We conducted analyses using an individual-based genetic distance measure (Shirk and 

Cushman 2014). We conducted a principle components analysis (PCA) with 64 axes of 

ordination using the R package “ade4” (Dray and Dufour 2007), given that this approach has 

been shown to out-perform other individual-based genetic distance measures when sample sizes 

and genetic structure are low (Shirk et al. 2017). We then calculated pairwise Euclidian distance 

between individuals using the 64 PCA axes. Pairwise genetic distance was calculated between all 

sampled individuals (from both large and small study area datasets) to assess the overall 

variation of genetic distance over geographic space. To determine whether the relationship 

between genetic distance and straight line geographic (Euclidean) distance was stronger for 

different distance classes, we regressed geographic distance against genetic distance using the 

lme4 package (Bates et al. 2015) in R for three nested groups: all pairs of individuals less than 10 

km apart, all pairs of individuals less than 20 km apart, and all pairs of individuals. Nested group 

sizes were chosen so that the smallest group, 10 km, would include comparisons from both 

sparse and dense sampling efforts. Additionally, to assess evidence for spatial autocorrelation, 

determine if genetic differentiation occurs at multiple spatial scales (Wagner et al. 2005), and 

allow for visual representation of the geographic extent of any spatial autocorrelation, a 

semivariogram was created from genetic and geographic Euclidean distances using 52 distance 

classes with a distance interval of 1.5 km in the “phylin” package (Tarroso et al. 2019) in R. 

Distance class size was designated as smaller than the shortest distance between observations 

(i.e., 3 km) while minimizing the number of bins that lacked observations (50 of 52 bins 

contained observations). If the relationship between geographic and genetic distance differed 

across distance classes, we would expect this to be evident from different slopes for the nested 

regressions, and multiple plateaus within the semivariogram. For the remaining analyses, 
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pairwise genetic distance was calculated separately for the large and small study area sampling 

locations.  

 

Landscape Analysis   

            

The classified land use raster (see Geographic Sampling Schemes¸ above) was used to 

create a series of maps for each land use class using a square moving window analysis in 

FRAGSTATS v. 4.2 (McGarigal et al. 2012). The size of square moving windows were 

designated using the length of a side, thus a 250 m moving window represents a 0.0625 km2 area. 

The value of each pixel within the map was calculated using the function PLAND, which 

determines the percent of the window that contains a given land use class (i.e., in the case of a 

250 m window if all but a small 80 m x 80 m area consisted of pine, the pixel value would be 

90). Five maps were created for each land use class, with moving windows of 100, 250, 500, 

750, and 1000 m. To test for non-linear relationships between percent land use and gene flow, 

each moving window map was then transformed into eight different maps (named and illustrated 

in Figure 5) using the R package “ResistanceGA” (Peterman 2018). For purposes of 

computational tractability, we calculated all transformations using a max=100 (maximum 

resistance of 100) and shape=2 (an indicator of the shape of each function, unique to 

“ResistanceGA”).  

 

 Pairwise random-walk distances between individuals within each dataset (i.e., large study 

area or small study area) were calculated using each of the transformation maps (i.e., 45 maps for 

each land use class) using the R package “gDistance” (van Etten 2017). A raster file with a 
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uniform pixel value of one was also created to calculate random-walk distance on a homogenous 

landscape. The latter was used to test the effects of straight-line geographic distance on genetic 

distance. A series of linear regressions were performed between random-walk distances using the 

R package lme4 to assess correlation between land use classes. To isolate the effect of each land 

use class on gene flow, the random-walk distance for each map was regressed against the 

homogenous landscape distance using a simple linear regression, thereby removing the effect of 

geographic distance. The residuals from these simple linear regressions were used in model 

testing.  

 

Model Testing 

 

 Three different datasets were analyzed (see Study Design¸ above). For each of these, we 

optimized for the best-fit scale (i.e., 100, 250, 500, 750, or 1000 m) and for the best-fit 

transformation (see Figure 5) of each land use class using a series of maximum likelihood 

population effects (MLPE) models. These models are a form of random effects model that 

account for the lack of independence introduced by including multiple individuals per sampling 

location, and for individual-based comparisons, MLPE models are considered robust (Shirk et al. 

2018). Pairwise genetic distances between individuals that were collected from the same 

sampling location were removed to prevent skewing models. For each land use class, models 

were ranked using the corrected Akaike Information Criterion (AICc; Hurvich and Tsai 1989). 

Models with the lowest AICc score were considered to have the best fit, and were used in all 

subsequent analyses.  
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 Using the optimized scale and transformation for each land use class, several multivariate 

models were generated to test combinations of land uses that contribute to variance in genetic 

distance (Table 5). These MLPE models tested pairwise genetic distance against straight-line 

geographic distance (generated using the random-walk across a homogenous surface) and a 

combination of optimized land use class distances. Models were ranked using AICc, and the 

best-fit models were examined to determine the sign of effect for each land use class, where land 

use classes with negative signs of effect facilitate gene flow, and those with positive signs of 

effect restrict gene flow (Row et al. 2017).  

 

 

Results  

     

Genetic Analysis 

 

Total missing genotypic data for 183 individuals was 1.8%. A comparison of the results 

from our three alternative population grouping strategies showed that although loci QWZ and 

241 showed evidence of homozygote excess in some putative populations, these loci did not 

consistently depart from HWE across all grouping strategies. Similarly, while the same two loci 

showed the possibility of null alleles, the frequency of potential null alleles was very low (i.e., 

<0.1, as calculated in PopGenReport using the method outlined by Brookfield 1996). Thus, we 

retained all loci. Based on all 183 individuals, the number of alleles per locus ranged from 6–32, 

with a mean of 16.5 alleles per locus. The relationship between geographic and genetic distance 
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was significant for only the regression containing individuals less than 10 km apart (individuals 

less than 10 km apart: slope=0.07, adjusted R2=0.002 p=0.004, individuals less than 20 km apart:  

slope=0.01, adjusted R2=-0.00005, p=0.78, all pairs of individuals: slope=0.0006, adjusted 

R2=0.0001, p=0.17). Consistent with these results, the semivariogram plateaued only once at 10 

km (Figure 8), indicating only one scale over which spatial autocorrelation occurred. 

 

Landscape Analysis and Model Testing 

 

Tests for non-independence of predictor variables revealed a strong positive correlation 

between the wetland and water land use classes. Because the primary habitat for P. mississippi is 

wetland areas, we were interested in the effect of wetland connectivity on gene flow and 

continued the analysis without the water land use class. Therefore only five land use classes (i.e., 

agriculture, hardwoods, manmade structures, pine, and wetlands) were retained in further 

analyses. For all MLPE model-testing analyses, the full model had the lowest AICc and was 

therefore considered the best-fit (Table 5). Wetlands were the land use class that explained the 

greatest amount of variation in genetic distance for the sparse sampling across a large study area 

and dense sampling across a small study area datasets, and the second most influential land use 

class in the sparse sampling across a small study area dataset (Table 6). Furthermore, in all three 

datasets, wetlands consistently had the same sign of effect (i.e., restricting gene flow), and this 

variable was optimized at the same geographic scale (1000 m) in the sparse sampling across a 

large study area and dense sampling across a small study area datasets with the same 

transformation (inverse ricker; Table 7). In the sparse sampling across a small study area dataset  
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Figure 5. Transformations of original resistance values.  
 
The x-axis shows the original resistance value, which indicates the percent of a given land use 
class within a moving window. The y-axis represents the new resistance value. The alternative 
transformations are as follows: A) reverse monomolecular, B) inverse monomolecular, C) 
monomolecular, D) inverse-reverse monomolecular, E) ricker, F) reverse ricker, G) inverse 
ricker, and H) inverse-reverse ricker.  
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Table 5. AICc scores for each multivariate Maximum Likelihood Population Effects model 
for each set of analyses. 
 
The lowest AICc scores for each category (i.e., sparse/large vs. dense/small vs. sparse/small) are 
in bold. Land use classes are abbreviated as follows: A=agriculture, H=hardwoods, P=pine, 
M=manmade structures, and W=wetlands. The effect of geographic distance, calculated using 
random-walk distance across a homogenous landscape, is represented by GD.  
 
 

 

  

Model name Variables included Sparse/large Dense/small Sparse/small 
Full model GD, A, H, P, M, W 29467 17565 11517 
Isolation by distance  GD 30089 18814 11693 
Moderate habitat GD, A, P 29879 17885 11769 
Modified habitat GD, A, M 29870 17868 11671 
Forest cover GD, P, H, W 29914 17935 11687 
Agriculture only GD, A 29952 18046 11739 
Manmade structures only  GD, M 29991 17963 11708 
Pine only GD, P 30025 17966 11702 
Hardwoods only GD, H 29954 18015 11750 
Wetlands only GD, W 29893 17847 11728 
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Figure 6. Distribution of the “pine” land use class in Holly Springs National Forest.  
 
Map illustrating the distribution of the “pine” land use class across large and small study areas in 
Holly Springs National Forest.
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Figure 7. Nested regressions of geographic distance against genetic distance.  
 
Nested regressions of geographic distance against genetic distance. Genetic distance was 
calculated by first conducting a principle components analysis (PCA) of individual microsatellite 
genotypes, then calculating pairwise Euclidean distance between PCA coordinates of individuals. 
Individuals less than 10 km apart: slope=0.07, adjusted R2=0.002 p=0.004, individuals less than 
20 km apart: slope=0.01, adjusted R2=-0.00005, p=0.78, all pairs of individuals: slope=0.0006, 
adjusted R2=0.0001, p=0.17. 
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Figure 8. Semivariogram created using pairwise genetic distances and geographic 
Euclidean distances using 52 distance classes with a distance interval of 1.5 km.  
 
The plateau at approximately 20 km indicates that this is the spatial scale over which spatial 
autocorrelation is the strongest. N size denotes the number of pairwise comparisons within the 
given distance class.  
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wetlands were optimized at a scale of 250 meters with an inverse-reverse monomolecular 

transformation These outcomes indicate that for the sparse sampling across a large study area 

and dense sampling across a small study area datasets, when the amount of wetlands within 1000 

m of a given location (i.e., the percent of pixels within 1000 m that are classified as wetlands) is 

at approximately 20%, gene flow is less restricted. However, as the amount of wetlands within 

1000 m approaches 100%, there is a greater restriction of gene flow among P. mississippi 

populations. For the sparse sampling across a small study area dataset, when the amount of 

wetlands within 250 m is low, gene flow is highly restricted. However, as the surrounding area 

approaches 100% wetlands, gene flow is less restricted. 

 

The four remaining land use classes were ranked differently among the three datasets 

(Table 6). Manmade structures were the second most influential land use class in the sparse 

sampling in a small study area dataset, however in the dense sampling in a small study area 

dataset they were third, and in sparse sampling in a large study area dataset they were the forth. 

The sign and transformation of effect of manmade structures was consistent within the sparse 

sampling across a large study area and dense sampling across a small study area datasets (inverse 

ricker). The sparse sampling across a large study area dataset was optimized linearly (Table 7). 

In all three datasets, the presence of manmade structures correlated with facilitation of gene flow, 

with low percentages of manmade structures in the nearby area correlating with a small increase 

in gene flow. As the percent of manmade structures approached 100%, gene flow increased. The 

scale at which this occurred differed between datasets, with gene flow impacted by manmade 

structures up to 500 m away in the dense sampling across a small study area dataset and the  
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Table 6. Rank of effect of landscape variables in best-fit maximum likelihood population 
effects models for each dataset.  
 
Landscape variables are abbreviated as in Table 5. The number of individuals included in each 
dataset is indicated by N. Model coefficients, or relative contribution of each landscape variable 
to genetic distance between individuals, are listed next to each landscape variable.  

 

 

 

 

 

 

 

Table 7. Comparison of the final optimized transformation, scale, and sign of effect for 
each land use class in all three datasets.  
 
Datasets were developed with either sparse sampling in a large study area (dark grey; >7 km 
apart), dense sampling in a small study area (light grey; >3 km apart), and sparse sampling in a 
small study area (white; > 7 km apart, subset area). A positive sign of effect indicates the land 
use class correlates with a restriction of gene flow, and a negative sign of effect indicates a 
correlation with facilitation of gene flow.  
 

 
 
 

 

 

 Sparse/large 
dataset  
N=103 

Dense/small  
dataset 
N=89 

Sparse/small 
dataset 
N=89 

Closest distance between 
sampling locations 7 km 3 km 7 km 

Size of sampling area 630 km2 256 km2 256 km2 

Landscape variable 
rank of effect 

and model coefficients 

W 0.91 W 0.81 P 0.84 
A 0.69 P 0.68 M -0.74 
H 0.65 M -0.60 W 0.67 
M -0.43 A 0.58 H -0.41 
P -0.25 H 0.23 A -0.09 

Land use class  Dataset Transformation Scale (m) Sign 

Agriculture 
Sparse/large Inverse-Reverse Ricker 500 + 
Dense/small Inverse Ricker 500 + 
Sparse/small Inverse-Reverse Ricker 1000 - 

Hardwoods 
Sparse/large Inverse Ricker 500 + 
Dense/small Reverse Monomolecular 100 + 
Sparse/small Inverse-Reverse Ricker 750 + 

Pine 
Sparse/large Inverse-Reverse Ricker 750 - 
Dense/small Inverse Ricker 250 + 
Sparse/small Monomolecular 1000 + 

Manmade structures 
Sparse/large Inverse Ricker 250 - 
Dense/small Inverse Ricker 500 - 
Sparse/small Linear 500 - 

Wetlands 
Sparse/large Inverse Ricker 1000 + 
Dense/small Inverse Ricker 1000 + 
Sparse/small Inverse-Reverse Monomolecular 250 + 
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sparse sampling across a small study area dataset, but only 250 m away in the sparse sampling 

across a large study area dataset.  

 

Hardwood forests were consistently positively correlated with resistance of gene flow 

among P. mississippi populations (Table 7). However, the relationship between the amount of 

hardwood forests within the moving window and level of resistance differed across datasets. In 

the sparse sampling across a large study area and the sparse sampling across a small study area 

datasets, low percentages of hardwoods within the moving window were correlated with a low  

level of resistance, and high percentages of hardwoods were correlated with a high amount of 

resistance. The scales of these effects were different, however, with the sparse sampling across a 

large study area showing an effect from hardwood forests 500 m away, and the sparse sampling 

in a small study area showing effects from 1000 m away. In the dense sampling across a small 

study area dataset, low amounts of hardwoods within a 100 m moving window were correlated 

with high resistance, whereas high amounts of hardwoods were correlated with lower resistance.  

 

The sign of effect for pine and agriculture varied across the three datasets (Table 7). Pine 

was correlated with facilitation of gene flow in the sparse sampling across a large study area 

dataset, however pine forests were correlated with restricted gene flow in both the dense and 

sparsely sampled datasets within the small study area. In the sparse sampling across a large study 

area dataset, low amounts of pine within a 750 m moving window correlated with higher gene 

flow, whereas higher percentages of pine were correlated with less facilitation of gene flow. In 

the dense sampling across a small study area dataset, the presence of pine was correlated with 

restricted gene flow. Low percentages of pine within a 250 m moving window were correlated 
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with low levels of resistance, and higher levels of pine were correlated with high resistance. In 

the sparse sampling across a small study area dataset, low percentages of pine within a 1000 m 

moving window were correlated with lower resistance. As the amount of pine increased, 

resistance increased. Agricultural areas were correlated with resistance of gene flow in the sparse 

sampling across a large study area dataset and dense sampling across a small study area dataset, 

however this land use class was correlated with facilitation of gene flow in the sparse sampling 

across a small study area dataset. In the sparse sampling in a large study area dataset, low 

amounts of agriculture within 500 m correlated with high levels of resistance, and the lowest 

amount of resistance to gene flow was found when the window of analysis was comprised of 

approximately 80% agriculture. In the dense sampling across a small study area dataset, 

approximately 20% of pine within a 500 m moving window correlated with low resistance. As 

the amount of agriculture increased, the resistance increased as well. In the sparse sampling 

across a small study area dataset, pine forests within 1000 m correlated with facilitation of gene 

flow, with the highest facilitation at approximately 20% pine in the surrounding area, and the 

lowest facilitation of gene flow when pine forests comprised 80% of the surrounding area.  

 

 

Discussion 

 

 Landscape genetics is still a relatively young sub-discipline, and as such, a number of 

knowledge gaps remain (Richardson et al. 2016). One of these relates to understanding the 

effects of sampling density and study area size on inferences about environmental predictor 

variables that impact gene flow. In this paper, we used a comparison of three landscape genetics 
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models for P. mississippi, a low-mobility salamander species to begin to bridge this knowledge 

gap. One important consideration in our approach is that the use of ecological predictor variables 

that have been optimized for scale and transformation separately for each dataset potentially 

leads to final best-fit models with a number of non-identical features. As such, there can be many 

nuanced differences among models, some of which may not reflect the specific impacts of 

sampling density and scale. Accordingly, our assessment of similarities in outcomes generated 

by the three datasets was necessarily focused at a relatively coarse level (i.e., primarily, which 

land use classes were included in each best-fit landscape genetic model, their rank ordering of 

importance, and their overall role in facilitating versus limiting gene flow). Due to the structure 

of our nested study design, these more substantive differences are likely to be a result of study 

area or sampling density. Below we discuss the similarities and differences among the sparse 

sampling across a large study area, sparse sampling across a small study area, and dense 

sampling across a small study area within the framework of our original research questions (see 

Introduction). We then close by considering the limitations of our optimized empirical design, 

and the broader implications of the present study for landscape genetics study design.  

 

 The coarsest level of comparison, an examination of the three best-fit MLPE models 

showed the full model, containing all five land use classes, was the best model in all cases. 

Wetlands were the most influential land use class in the sparse sampling across a large area and 

dense sampling across a small area datasets, and the second most influential land use class in the 

sparse sampling across a small study area dataset. In all three cases there was a correlation 

between the presence of wetlands and resistance to gene flow among salamander populations. 

Another notable similarity between all three datasets was consistent correlation between 



59 
 

hardwood forests and resistance to gene flow. Given that P. mississippi individuals often reside 

in bottomland hardwood forests and wetland areas (Petranka 1998), it may seem counterintuitive 

that high quality habitats such as wetlands and hardwood forests are associated with resistance to 

gene flow. However, on the basis of empirical (Keely et al. 2016) and simulation (Keely et al. 

2017) studies, some researchers have reported that high quality habitat can lead to decreased 

gene flow among populations, presumably because individuals choose to stay in areas with 

preferred resources. The final resemblance across all three datasets was a correlation between 

manmade structures and increased gene flow. This relationship has been seen in other 

salamander species. Prunier et al. (2014) found a correlation between roads (a significant 

component of the “manmade structure” land use class in our analysis) and increased gene flow 

among alpine newt (Ichthyosaura alpestris) populations. Although avoidance of road edges has 

been documented in many amphibian species, Marsh and Beckman (2005) found no effect of 

forest roads on the presence of slimy salamanders (Plethodon glutinosus, the sister species to P. 

mississippi) supporting the idea that they may move freely across them. Thus, the correlation 

between facilitation of gene flow and manmade structures may be species specific.  

 

 Based on the nested design of our sampling, differences between the datasets sampled 

densely and the datasets subsampled sparsely across a small study area and the dataset sampled 

sparsely across a large study area can shed light upon the effect of study area on landscape 

genetic inferences. For instance, if the best-fit models for sparse and dense sampling across a 

small study area were similar to each other, but differed from the large study area (only sparsely 

sampled for purposes of tractability), this would indicate that study area size was important in its 

own right. In our analyses, we found this effect with respect to pine forests. When comparing 
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datasets within the small study area to the large study area dataset, we found contrasting 

directionality (i.e., sign) of the correlations between presence of pine forests and gene flow 

among P. mississippi populations. Specifically, the analyses based on sparse sampling across a 

large study area detected a correlation between pine and facilitation of gene flow, whereas the 

analyses based on dense and sparse sampling across a small study area identified this land use 

class as being associated with restricted gene flow (Table 7). A number of factors may have led 

to different inferences, including the configuration and variability of land use patches across the 

landscape. For example, in landscape genetics analyses of the American pika (Ochotona 

princeps) Castillo et al. (2016) found the configuration (patch connectivity) of a given 

environmental predictor variable impacted the relationship between the variable and gene flow. 

Other landscape genetics studies have found habitat patch characteristics (e.g., density, cohesion, 

and correlation length) can drive different outcomes in replicated or nested analyses (Cushman et 

al. 2012; Cushman et al. 2013; Vergara et al. 2017). When comparing these patch configuration 

metrics in the small versus large study area, we find that the patch density of pine forests within 

the small study area is much lower than the pine patch density within the large study area (Table 

A4, Figure 6). Although patch density calculations can be affected by the size of the area in 

which they are calculated (McGarigal et al. 2012), the difference in pine patch densities is far 

greater than the differences found among the patch densities of agricultural areas, hardwood 

forests, manmade structures, and wetlands in the two study areas. These results support the idea 

that patches of pine may lead to increased P. mississippi dispersal if they are densely positioned 

across the habitat matrix, however, when patches of pine forest are more fragmented they lead to 

decreased dispersal and resistance to gene flow. 
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 The final landscape variable, agriculture, followed a pattern that does not clearly 

support an effect of study area size or sampling density, but may instead be a combination of 

effects from sampling density and study area size (Figure 4D). Here, we break down the 

potential effects of both study area size and sampling density on these different inferences. The 

densely sampled dataset across the small study area resulted in inferences similar to those found 

using a large study area (correlation with resistance to gene flow, Table 7), however the dataset 

that represented sparse sampling across a small study area did not, instead correlating with 

facilitation of gene flow. While our results indicated the difference between inferences generated 

in the large and small study areas with respect to pine were driven by patch configuration, the 

patch density, patch cohesion, and correlation length of agricultural patches in the large and 

small study areas were relatively similar. However, our agricultural land use class includes a 

wide array of crops, including soy beans, cotton, sweet potatoes, and corn. Thus, it is possible 

that the agricultural areas found within the small study area are not a representative subset of the 

large study area, and the relationship between gene flow among P. mississippi populations and 

agriculture is dependent upon crop type.  

  

 We also found differences in the inferences generated by datasets sampled sparsely 

and densely across a small study area. Agricultural areas correlated with resistance to gene flow 

when sampled densely across a small study area, however they were correlated with facilitation 

of gene flow when subsampled sparsely across the same area. Based on the nested design of our 

sampling and analysis, differences between sparse sampling and dense sampling would indicate 

the relationship between long distance dispersers and environmental variables may be different 

than that of short distances dispersers and that environmental variable. In many species, dispersal 
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can be divided into two categories: a movement that is the result of several small, “routine” 

movements, versus a singular “special” movement (Van Dyck and Baguette 2005). For example, 

in an experimental analysis of the ringed salamander, Ambystoma annulatum, Ousterhout and 

Semlitsch (2018) found individuals could be identified as “resident” salamanders that dispersed 

small distances, and “dispersing” salamanders that dispersed greater distances. In that study, the 

movement of residents was not impacted by habitat type, whereas movement of dispersing 

salamanders was, with dispersing individuals moving farther through grasslands than hardwood 

forests. In a landscape genetics analysis, this differentiation between the behavior of short versus 

long distance dispersers would likely manifest as different inferences when using dense versus 

sparse sampling. While our results did not match a pattern that supported a clear effect of 

sampling density on landscape genetics inferences (i.e. both sparsely sampled datasets resulted in 

similar inferences that were different from the densely sampled dataset), we did find contrasting 

directionality (i.e., sign) of the correlations between presence of agricultural areas and gene flow 

among P. mississippi populations. The potential for scale-dependent relationships between 

movement and environmental heterogeneity of the intervening landscape has also been reported 

in other studies of dispersal behavior in mammal and amphibian species. For example, for 

Iberian lynx (Lynx pardinus), agricultural areas cause resistance to movement within an 

individual’s home range, however when dispersing long distances, agricultural areas and 

manmade structures caused less resistance (Gastón et al. 2016). In the invasive cane toad 

(Rhinella mariana), this relationship also appears to be affected by whether an individual is at 

the core versus edge of the species’ range, as individuals at range margins exhibited more long 

distance, exploratory movement (Gruber et al. 2107). Collectively, these studies show that 

dispersal behaviors can vary, and a component of that variation is often a different relationship 
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between environmental variables and dispersal distance. Our findings suggest a there may be a 

similar relationship between dispersal distance and the presence of the type of agricultural areas 

found in the small study area, where short distance dispersers did not regularly disperse through 

agricultural areas, yet long distance dispersers more readily moved through it.  

 

 The present study was examined the effects of sampling density and study area size on 

landscape genetics inferences, via reanalysis and comparison of empirical datasets. To date, 

landscape genetics methods have largely been explored using simulations (e.g., Cushman et al. 

2010; Landguth et al. 2012). While empirical studies have the ability to assess interactive and 

additive forces (Resasco et al. 2017), their use in testing the effect of different methods has 

limitations. For example, geographic replicates are never identical, and so as in the present study, 

multivariate models created using optimized predictor variables (e.g., land use classes) often 

include predictor variables of different scales and transformations (Castillo et al. 2016; Vergara 

et al. 2017). The overall size of HSNF also limited the possible combinations of sampling 

density in our nested design. For example, we did not include dense sampling across a large 

study area, or more than one subset area. We also did not include a very fine-scale sampling 

strategy in which geographic spacing among sampling locations matched average individual 

dispersal distance, because a feasible number of sampling locations would encompass a very 

small area unlikely to include all five land use classes. Despite these limitations, the use of 

nested empirical analyses allows for a greater understanding of the effect of landscape genetics 

methodology that is limited by the complexities of empirical datasets (e.g., non-uniform 

sampling, previously undefined population structure, missing data, etc).    
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Implications for sampling design of empirical landscape genetics studies 

 

 The nested sampling design used in the present study detected relationships between 

gene flow and the environment that were unique to study areas as well as to short distance 

comparisons. Although the relationship between gene flow and wetland areas, manmade 

structures, and hardwood forests were similar regardless of sampling density and study area size, 

analyses revealed patch density likely affected the relationships between gene flow and pine 

forests, and agricultural type may have played a role in the relationships between agricultural 

areas and gene flow. These findings highlight the strength of potential influence patch 

configuration may have on the relationship between gene flow and environmental variables. 

They also support the use of finer categorical resolution when determining the effect of 

agriculture on salamander dispersal.   In order to capture the potential effects of habitat 

configuration on landscape genetics inferences, we recommend conducting analyses in multiple 

study locations with different patch configurations. Furthermore, inferences revealed that within 

the small study area, P. mississippi disperse that disperse long distances move more readily 

through agricultural areas than those that disperse short distances.  These findings are consistent 

with the idea that the relationship between the environment and dispersal via repeated routine 

movements (i.e., short distance dispersal) is not the same as for special, long distance dispersal. 

Furthermore, our results indicate these differences between short and long distance dispersal are 

different for each land use class. Thus, in order to understand the extent to which short and long 

distance dispersers are affected by the environment, we recommend the use of a dense sampling 

scheme followed by reanalysis of these data using “sparse” pairwise comparisons. By carrying 

out landscape genetics analyses at in multiple areas of diverse patch configurations as well as 
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multiple sampling densities, researchers may identify correlations between gene flow and the 

environment that are unique to habitat configurations or short versus long distance dispersal. 
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CHAPTER 4 

ANALYSIS OF CUTANEOUS AND LOCAL SOIL MICROBIOMES IN A TERRESTRIAL 

SALAMANDER: THE ROLE OF SIBLINGS VERSUS SOIL 

 

Abstract 

 

The mutualistic relationship between amphibians and their cutaneous microbial 

community can strengthen the host’s ability to fight pathogens such as Batrachochytrium 

salamandrivorans (Bsal). Manipulation of the amphibian cutaneous microbiome via probiotic 

inoculation is a promising strategy for mitigation and containment of Bsal outbreaks. An 

understanding of the mechanisms by which amphibians acquire their cutaneous microbiome is 

pivotal to the development of effective probiotic mixtures. Using microsatellite-based 

salamander genotypes and 16s rRNA microbiome characterization, we investigated the impact of 

genetic relationships on salamander cutaneous microbiomes, as well as the relationship between 

the individual salamander microbiomes and the microbiomes of their immediate environment 

(i.e., soil). Neither relatedness nor kinship of salamanders was correlated with the composition of 

their cutaneous microbiomes. Approximately half of salamander microbiomes were similar to 

soil microbiomes, while the other half clustered separately in ordination space. The unique 

components of the salamander microbiomes were genetically similar to antifungal operational 

taxonomic units (OTUs). In a series of exact tests between salamander cutaneous microbiomes 
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and the microbiomes of their immediate environment, salamanders showed higher, statistically 

significant abundance of members of the family Methylobacteriaceae, which is known to include 

several antifungal taxa. However, several families with antifungal properties were found to be 

more abundant in soil microbiomes, suggesting the mere presence of potentially beneficial 

bacteria does not necessarily lead to their incorporation into amphibian cutaneous microbiomes. 

Knowledge of this relationship could be used to in the use and development of environmental 

probiotic mixtures.  

  

 

Introduction 

 

The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) has been 

identified as the cause of mass fatalities in salamander populations throughout Europe (Marten et 

al. 2014; Spitzen-Van Der Sluijs et al. 2016). Bsal has not yet been introduced into North 

America, however, if the fungus reaches the continent, disease risk assessments have projected 

significant decreases in salamander biodiversity within the Pacific, southern Appalachian, and 

mid-Atlantic regions (Richgels et al. 2016). Accordingly, researchers, managers, and policy 

makers throughout North America have focused efforts on preparing for the potential outbreak of 

Bsal by developing response plans that include mitigation and containment measures (Grant et 

al. 2015; Bsal Task Force 2019). An important facet of these plans is increasing the resilience of 

salamander populations to Bsal infection by understanding and potentially manipulating the 

mutualistic relationship between amphibians and their native cutaneous microbiome (Becker and 

Harris 2010; Woodhams et al. 2014). Although some of the microbiome includes fungal and 
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microeukaryotic species that may prove to be beneficial (Kueneman et al. 2016), the primary 

focus of amphibian cutaneous microbiome research (and the focus of this study) is on beneficial 

bacterial taxa. Bacterial isolates from amphibian skin that inhibit the growth of fungi have been 

identified (Harris et al. 2009; Becker et al. 2009), leading to a collaborative database of 

amphibian skin bacterial isolates that exhibit antifungal properties in laboratory trials 

(Woodhams et al. 2015). Currently, understanding the mechanisms by which individuals acquire 

these antifungal bacteria is ongoing. 

 

As in any community, microbiome species composition and acquisition is often the 

product of responses to biotic and abiotic factors, such as species invasion, species loss, and 

environmental variability (Prosser et al. 2007). To predict the likelihood of individual 

salamanders incorporating probiotic bacterial species into their cutaneous microbiome, managers 

first need to understand how cutaneous microbial communities interact with environmental 

microbial communities. Experimental manipulation has shown amphibians rely on their 

environment as a species reservoir that can increase the diversity of their cutaneous microbiome. 

For example, salamanders housed in sterile laboratory conditions exhibit lower microbial species 

diversity than individuals housed with their native soil (Loudon et al. 2014) and individual 

salamanders housed in soil inoculated with a proposed probiotic Janthinobacterium lividum 

incorporate the bacterium into their cutaneous microbiomes (Muletz et al. 2012). However, in 

these experiments, individuals’ existing microbiomes were removed or disturbed, either through 

the use of antibiotics (Loudon et al. 2014) or hydrogen peroxide (Muletz et al. 2012). A 

significant knowledge gap currently exists regarding the relationship between intact cutaneous 

microbiomes and environmental microbiomes. Thus, to predict the likelihood of individual 
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salamanders incorporating probiotic bacterial species into their cutaneous microbiome, managers 

need to first understand how cutaneous microbial communities interact with environmental 

microbial communities. 

 

The composition of amphibian cutaneous microbiomes has been attributed to both 

environmental inocula and host selection pressures (e.g., via peptide secretions; Walke et al. 

2014). Researchers have found the microbiomes of individuals within the same location (i.e., the 

same habitat) are more similar to one another than to the microbiomes of individuals from 

different locations, regardless of the salamander species (Muletz-Wolz et al. 2018) or even genus 

(Bird et al. 2018) to which individuals belong. This suggests the effect of the local environment 

is more important that the selective pressures unique to a given species. However, when 

comparing the microbiomes of individuals from different orders (e.g., frogs versus salamanders) 

the difference in selection pressures is more important than habitat (Ellison et al. 2018). These 

studies provide support for the influence of broad host-specific selective pressures on cutaneous 

microbiomes, however they have not investigated the effect of fine-scale host genetic 

differentiation on cutaneous microbiome composition, such as the potential variability among 

distinct populations of a focal species (Becker et al. 2017). A significant positive relationship 

between the kinship of two individuals and the similarity of their cutaneous microbiomes could 

indicate a type of natal influence, wherein the microbiome of an individual’s natal environment 

impacts the structure of their cutaneous microbiome later in life. The effect of kinship has been 

found to have a significant impact on the fecal microbial similarity in tortoises (Yuan et al. 

2015). If individual relatedness is significantly positively correlated with cutaneous microbiome 

similarity, the use of microbiome manipulation (i.e. probiotics) as a response to disease spread 
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may be differentially effective across salamander populations, as effectiveness may depend on 

the birthplace of an individual.  

 

In the present study, we investigated the impact of relatedness on salamander cutaneous 

microbiomes, as well as the relationship between the individual salamander microbiomes and the 

microbiomes of their local environment (i.e., soil). The Mississippi slimy salamander (Plethodon 

mississippi) is a low mobility species (Wells and Wells 1976) that resides under rotting logs in 

the bottomland hardwood forests of Mississippi and Alabama. P. mississippi is within the same 

species complex as P. glutinosus, which has been shown to exhibit transient skin invasion when 

experimentally infected with Bsal, meaning member of this species complex may serve as a 

reservoir or carrier of the fungus in the event of a North American invasion (Martel et al. 2014). 

Using P. mississippi relatedness and the individual salamander’s cutaneous microbiomes, we 

asked whether genetic relatedness between individuals predicts the similarity of their cutaneous 

microbiomes. We also compared salamander cutaneous microbiomes to the microbiomes of their 

local soil environment to determine whether microbial taxa in cutaneous microbiomes are 

differentially abundant in the salamander’s immediate environment. 

 

 

Methods 

 

Sampling 
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In April 2017, we sampled 70 Plethodon mississippi individuals from 14 locations spaced 

approximately 3 km apart in Holly Springs National Forest in northeastern Mississippi. Upon 

capture, each individual was placed in a clean plastic container and rinsed with distilled water to 

remove soil and transient bacteria. Each salamander was then swabbed 20 times each on its 

ventral and dorsal sides with a sterile polyester-tipped applicator. The applicator was placed in a 

Qiagen DNeasy Powersoil Kit (Valencia, CA, USA) collection tube and frozen at -20˚C for 

storage. A tail tip was also taken from each individual and placed in ethanol for DNA extraction 

and genotyping. A sample of soil from the immediate location where the salamander was found 

was also placed in a separate Qiagen DNeasy Powersoil Kit collection tube and frozen at -20˚C 

for storage. Sampling was approved by the University of Mississippi IACUC (#15-020), the 

Mississippi Department of Fish and Wildlife (Permit #0324164), and the USDA Forest Service. 

 

DNA Extraction, Bacterial Sequencing, and Salamander Genotyping 

 

Bacterial genomic DNA was extracted from skin and soil samples with the Qiagen 

DNeasy Powersoil Kit using manufacturer-recommended protocol. The V4 region of bacterial 

16s rRNA gene was amplified using a dual-index barcoding approach (Kozich et al. 2013). 

Polymerase chain reactions (PCRs) contained 1 µL genomic DNA and 17 µL AccuPrime Pfx 

Supermix (Invitrogen, Grand Island, NY). PCR was performed for 30 cycles of 95°C for 20 s, 

55°C for 15 s, and 72°C for 2 min with a preliminary 95°C denaturation for 2 min and a final 

72°C elongation for 10 min. Products were standardized with SequalPrep normalization plates 

(Life Technologies, Grand Island, NY), pooled, and sequenced at the Molecular and Genomics 

Core Facility at the University of Mississippi Medical Center using an Illumina MiSeq platform. 
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Raw FASTA sequences were processed using the mothur v. 1.35.1 (Schloss et al. 2009) pipeline 

following the protocol detailed by Jackson et al. (2015) to remove sequencing errors, chimeras, 

and sequences with ambiguities. Remaining sequences were aligned using the SILVA version 

132 database (Quast et al. 2013), and classified using the RDP (release 11) database (Wang et al. 

2007). Highly similar bacterial sequences (>97% similarity) were pooled together to form 

operational taxonomic units (OTUs).  

 

Salamander DNA was extracted using the Qiagen DNeasy Blood and Tissue Kit 

(Valencia CA, USA) using manufacturer-recommended protocol. Individuals were genotyped at 

eight microsatellite loci described by Spatola et al. (2013; see Appendix and Tables A1, A2 and 

A3 for PCR conditions and allele-calling approaches). The resulting dataset of multilocus 

microsatellite genotypes was tested for adherence to basic molecular marker inheritance patterns 

by grouping all individuals into a single putative population. The R (R Core Team 2019) package 

“PopGenReport” (Adamack and Gruber 2014) was used to test for deviations from Hardy-

Weinberg Equilibrium and null alleles, and to calculate percent missing data, number of alleles 

per locus, and mean allelic richness. We tested for departures from linkage equilibrium using 

MICRO-CHECKER v 2.2.3 (van Oosterhout et al. 2004).  

 

Statistical Analysis 

 

Using the most common sequence as a representative sequence for each OTU, an 

approximately-maximum likelihood tree of OTUs was created with a generalized time reversible 

model of DNA sequence evolution in the program FastTree 2.1.11 (Price et al. 2010). The 
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resulting tree was combined with mothur outputs in the R package “phyloseq” (McMurdie and 

Holmes 2013). To determine the presence and composition of a core microbiome among 

salamanders, “phyloseq” was used to identify only those OTUs that were present in at least 80% 

of salamander samples. To describe differences in microbial community diversity among 

samples, a subset of OTUs present in at least 25% of all samples (i.e., salamander and soil) was 

used to calculate pairwise weighted UniFrac (Lozupone and Knight 2005) distance among all 

samples and the UniFrac distances were plotted using Principle Coordinates Analysis (PCoA). 

The effects of microbiome origin (i.e. either soil or salamander) and site on weighted UniFrac 

distances were tested using a PERMANOVA with 999 permutations. Each OTU in the subset of 

OTUs that were present in >25% of all samples was subjected to a custom BLAST against the 

Amphibian Skin Antifungal Isolates 16s rRNA Database (Woodhams et al. 2015). OTUs were 

classified as “inhibitory” if their identity to an isolate labeled inhibitory was >97%. An 

asymptotic Wilcoxon-Mann-Whitney test was then used to test for differential distribution of 

“inhibitory” and “non-inhibitory” OTUs along axis 1 of the PCoA. To test for differential 

abundance of bacterial families in paired salamander and soil samples, (i.e., when comparing 

salamander microbiomes to the microbiomes of soil collected in their immediate environment), 

our dataset was first agglomerated to the family taxonomic level. The R package “edgeR” 

(Robinson et al. 2010) was used to conduct a series of exact tests between paired microbiomes 

while accounting for the differences in average library size between salamander and soil samples 

using variance stabilization.  

 

Pairwise relatedness (r) between individual salamanders was estimated using maximum 

likelihood in the program ML-Relate (Kalinowski et al. 2006). The inverse of relatedness (1-r) 
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was calculated to generate a measure of dissimilarity between individuals. The resulting 

dissimilarity matrix was tested for correlation with pairwise UniFrac distance between 

salamander cutaneous microbiomes using a mantel (Mantel 1967) test in the “vegan” (Oksanen 

et al. 2019) package in R with 9999 permutations. Salamander cutaneous samples clustered in 

two distinct groups along axis 1 of the PCoA of UniFrac distances described above. Individuals 

were divided into clusters according to their location along PCoA axis 1: cluster A consisted of 

individuals that grouped closely with soil microbiomes and had axis 1 scores <0.11, whereas 

cluster B consisted of individuals whose microbiome grouped separately from soil microbiomes 

and had axis 1 scores >0.11. A Welch two-sample t-test using base R functions was conducted to 

test for a significant difference between the mean relatedness of individuals within PCoA 

clusters.  

 

 

Results 

 

Of the 70 soil samples, all 70 showed successful amplification at the 16s rRNA V4 region 

and were sent to the Molecular and Genomics Core Facility at the University of Mississippi 

Medical Center. Of the 70 salamander cutaneous swabs, 57 were successfully amplified at the 

V4 region. Following initial analysis to remove sequencing errors, chimeras, sequences with 

ambiguities, and non-bacterial (chloroplast, mitochondrial, Eukarya, and Archaea) sequences, 45 

salamander swab samples and 45 corresponding soil samples were retained for further analysis 

on the basis of rarefaction curves that approached level. The 90 microbiome samples retained 

contained 1,283,727 sequences, of which 111,212 were unique and clustered into 27,906 OTUs. 
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Both salamander cutaneous and soil microbiomes contained a large percentage of Proteobacteria, 

as well as Planctomycetes, Acidiobacteria, and Bacteriodetes (Figure 9A). OTUs within the 

phylum Proteobacteria were mostly Alphaproteobacteria (Figure 9B).  

 

The salamander core microbiome consisted of 12 OTUs that were present in at least 

>80% of salamander swab samples (Table A5). A total of 276 OTUs were present in at least 25% 

of both salamander and soil samples and were used for UniFrac calculation and paired exact 

tests. Five of the 12 “core” OTUs were identified as inhibitory using the Amphibian Skin 

Antifungal Isolates 16s rRNA Database. Similarly, 27 of the 276 OTUs used to describe 

microbial community diversity in UniFrac calculations were identified as inhibitory. UniFrac 

distances did not differ statistically by site (p=0.273), however they differed significantly by 

microbiome origin (i.e. salamander or soil, p<0.001). PCoA axis 1 explained 68.6% of variance 

found in salamander and soil in microbiome diversity, with 26 salamander samples clustering 

with soil samples along axis 1, and 19 clustering separately (Figure 10A). Several OTUs also 

clustered with the differentiated salamander cutaneous samples along axis 1 (Table A6). Of the 

14 OTUs with axis 1 scores > 0.2, three OTUs were identified as inhibitory by >97% identity 

with OTUs listed as “inhibitory” in the Woodhams et al. (2015) antifungal database. An 

asymptotic Wilcoxon-Mann-Whitney test showed inhibitory and non-inhibitory OTUs were 

differentially distributed along axis 1 (p<0.0001) with inhibitory OTUs closer to cluster B (non-

inhibitory axis 1-inhibitory axis 1= -0.0388). Exact tests of salamander-soil pairs showed 66 

bacterial families were differentially abundant (log-fold change > |2|, p<0.001) in salamanders 

versus their local soil environment (Figure 11). Five families were more abundant in salamander 

cutaneous microbiomes, and 61 families were more abundant in soil microbiomes. 
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Figure 9. Relative abundance by sample of a) common phyla and b) subphyla within 
Proteobacteria.  
 
Samples are sorted into salamander swab samples (left) and soil samples (right). Within the 
salamander and soil groupings, samples are arranged by site.  
 

Salamander 
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Figure 10. Principal Coordinates Analysis (PCoA) of pairwise UNIFRAC distances 
between all microbiome samples.  
 
A PCoA of weighted UNIFRAC distances between all microbiome samples shows clustering of 
soil and half of salamander microbiomes, with differentiation of the remaining salamander 
samples along Axis 1 (68.6% of variation). B) Species scores from the above PCoA classified as 
either “fungus-inhibiting” or “non-inhibitory” by their >97% identity match to bacterial isolates 
known to inhibit Batrachochytrium dendrobatidis (Bd) (Woodhams et al. 2015). 
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Figure 11. Bacterial families with significant differential abundance between paired 
samples of salamander cutaneous microbiomes and the microbiomes of their immediate 
environment.  
 
An exact binomial test that accounts for very different total species counts was used to test for 
differential abundance between soil and salamander microbiomes. Families with a negative log-
fold change show greater abundance in soil microbiomes when compared to the microbiomes 
of salamanders caught in that immediate location. Families with a positive log-fold change 
show greater abundance in salamander microbiomes that the microbiomes of the salamander’s 
immediate environment. For all listed families, p<0.001
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Multi-locus genotypes were successfully generated for all 70 salamanders, however the 

only genotypes included in this study were those of the 45 individuals with cutaneous 

microbiome data. Within this dataset, total missing genotypic data was 2.5%. The number of 

alleles per locus ranged from 3-19, with a mean of 9.8 alleles per locus. Tests for deviation from 

Hardy-Weinberg Equilibrium identified homozygote excess at locus 43M, suggesting the 

possibility of a null allele. The locus was retained for further analysis, however 43M was 

identified as locus with null alleles when calculating pairwise relatedness and kinship in ML-

Relate. Of the possible 990 pairwise combinations of salamanders, there were 44 pairs of half 

siblings, 3 pairs of full siblings, and 11 parent-offspring pairings. A Mantel test comparing 

inverse relatedness to UniFrac distance (between salamanders only) was not significant (Mantel r 

= -0.04913, p=0.9438). Mantel tests comparing inverse relatedness to UniFrac distance in cluster 

A (PCoA axis 1 scores <0.11) and cluster B (PCoA axis 1 scores >0.11) were also not significant 

(cluster A: Mantel r = -0.04816, p=0.7864; cluster B: mantel r = -0.0983, p=0.9032). Cluster A 

contained 10 parent-offspring pairs, 2 pairs of full siblings, and 22 pairs of half siblings. Cluster 

B contained 1 parent-offspring pair, 1 pair of full siblings, and 22 pairs of half siblings. The 

mean UniFrac distances between parent-offspring pairs, full siblings, half siblings, and unrelated 

pairs were not statistically different (Figure 12, Kruskal-Wallis p=0.31). 

 

 

Discussion 

 

We tested for correlation between genetic relatedness of individuals and the similarity of 

their microbiomes, which, if significant, would indicate individual cutaneous microbiomes are  
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Figure 4. UniFrac distances by kinship category.  
Mean UniFrac distances between individuals identified as full siblings, half siblings, parent-
offspring pairs, and unrelated pairs were not statistically different (p=0.31). 
 

 
 
 
 
 
 
 
Figure 12. UniFrac distances by kinship category.  
 
Mean UniFrac distances between individuals identified as full siblings, half siblings, parent-
offspring pairs, and unrelated pairs were not statistically different (p=0.31). Box plots illustrate 
the 75th percentile (top), 50th percentile (median, middle line), and 25th percentile (bottom) of 
pairwise UniFrac distances. Dots, triangles, squares, and crosses represent pairwise UniFrac 
distances between full siblings, half siblings, parent-offspring pairs, and unrelated individuals 
respectively.  
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impacted by their natal environment. However, our results show a lack of correlation between 

relatedness or kinship and cutaneous microbiome composition (Figure 12). To date,the 

diversity of amphibian cutaneous microbiomes has not been shown to correlate with relatedness 

or kinship. Within a different microbial environment, Griffiths et al. (2018) found distance 

between tadpole mouthpart microbiomes significantly correlated with genetic distance between 

Phofung river frog (Amietia hymenopus) hosts. However, frog population genetic patterns were 

strongly shaped by a river network, where populations that were adjacent along the river were 

more genetically similar than those that were not. Yet the distances among mouthpart 

microbiomes did not follow this same pattern. Their results illustrate that it is often difficult to 

determine whether the similarities between microbiomes of individuals in a shared environment 

are due to host relatedness or the environment itself. Because we did not see a relationship 

between relatedness or kinship and the composition of cutaneous microbiomes, we propose P. 

mississippi cutaneous microbiomes are largely a contemporary product of their environment, as 

opposed to a product of their natal environment.  

 

In our investigation of salamander and soil microbiome diversity, we found 26 of 45 

salamander microbiomes were similar to soil microbiomes (Figure 10A). The remaining 

salamander microbiomes clustered separately along an axis of ordination that explained a large 

portion of microbial variance (68.6%). Of the OTUs that clustered with this group, three are 

antifungal, and an additional four are within families with known antifungal species. However, 

while the salamanders that clustered separately from soil have an increased number of 

antifungal OTUs when compared to the other cluster, all salamander samples contained some 

antifungal OTUs. Of the OTUs present in at least 80% of salamander samples (i.e. the core 
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salamander microbiome), 42% were antifungal. Furthermore, paired salamander-soil exact tests 

show a significant log-fold increase in the abundance of OTUs within the Methylobacteriaceae 

family, which contains a considerable number of antifungal species. From this information, it is 

clear that antifungal OTUs are commonly part of the salamander cutaneous microbiome. 

However, several of the bacterial families that were found to be more common in the soil than 

on the salamander also contain antifungal OTUs, suggesting the mere presence of potentially 

beneficial bacteria in the environment does not guarantee their incorporation into amphibian 

cutaneous microbiomes.  

 

It is important to note that this study offers only a snapshot of salamander microbiomes 

and the microbiomes of their environment, which may be influenced by biotic or abiotic 

factors. Clinical trials have shown decreases in antifungal OTUs on salamander skin due to 

increased temperatures (Muletz-Wolz et al. 2019), and soil microbiomes can be influenced by a 

number of factors, including micropredators, carbon availability, and environmental pH (Fierer 

et al. 2017). Furthermore, because these are wild-caught individuals, we lack knowledge of the 

history of the salamanders infections, wounds, or interaction with other salamanders. In a series 

of experimental trials, Muletz-Wolz et al. (2019) found infection with Batrachochytrium 

dendrobatidis increased the presence of antifungal OTUs within Plethodon cinereus 

microbiomes, suggesting skin infections can have lasting effects on an individual’s cutaneous 

microbiome. While our comparisons of salamanders to their immediate environment is 

informative, future research should also include experimental manipulation of individuals to 

determine the effects of life history and abiotic features on the species composition of 

cutaneous microbial communities.  
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Management Implications  

  

One of the most promising management strategies to slow potential Bsal outbreak is 

manipulation of the cutaneous microbiome through antifungal probiotics. In their list of 

probiotic screening recommendations, Woodhams et al. (2014) have suggested components of 

probiotic mixtures be chosen from locally present culturable microbiota, have the capacity to 

inhibit the pathogen in isolation, co-culture, and the environment, and resist any host immune 

defenses. We argue for additional consideration of the method in which hosts incorporate 

OTUs from the environment into their cutaneous microbiomes. Our results support a view of 

cutaneous microbiomes as functioning communities that are unlikely to incorporate new 

species without new resources (i.e., novel niches) or a significant disturbance. In their 

keystone-probiotic hypothesis, Bletz et al. (2013) introduced the concept of a rare yet impactful 

keystone bacterium that may affect significant changes in the community structure of an 

organism’s microbiome when introduced. This concept is similar the shift in species 

composition within plant or animal communities following the introduction of invasive species 

(Maskell et al. 2006; Strayer 2010). In order for probiotics to be an effective deterrent of Bsal 

spread, they must be incorporated into the microbiome quickly and before infection. As such, 

we recommend further development of probiotics include trials of probiotic mixtures that 

include keystone species, and testing of probiotic mixtures using wild-caught salamanders with 

intact cutaneous microbiomes. 
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CHAPTER 5 

CONCLUSION 

 

A common thread among the results of my studies has been the identification of 

previously unidentified environmental factors that likely impact the biology of P. mississippi. 

Through the use of regionally replicated landscape genetics models in Chapter 2, we now know 

wetland connectivity plays an important role in P. mississippi dispersal. Knowledge that 

disconnected wetlands act as resistors to gene flow (as occurred in Holly Springs National 

Forest) and connected wetlands act as facilitators of gene flow (as occurred in Bankhead 

National Forest) could prove to be pivotal should the species become one of conservation 

concern in the future. We also saw consistent correlation between agricultural areas and 

resistance to gene flow among P. mississippi populations. The effects of hardwoods and 

manmade structures on salamander gene flow were mixed in Chapter 2, and both land use classes 

correlated with both facilitation of gene flow and resistance to gene flow under different 

conditions. As such, the effects of these land use types likely warrant further research. The 

results of Chapter 3 further emphasized the potential impact of patch configuration on the way 

landscape variables affect gene flow. The results also led to the identification of differences in 

the relationship between gene flow and agriculture in two different study areas that may be due 

to different agricultural uses. Within one of these study areas, they also illustrated a difference in 

the way short distance and long distance dispersers perceive agricultural areas, showing short 

distance dispersers are likely hesitant to move through agricultural areas, whereas long distance 
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dispersers move readily through them. These findings suggest there is no “one size fits all” 

approach to management of this species, and the configuration of land use types is instrumental 

in the movement of individuals across the landscape.  

 

Chapter 4 led to a deeper understanding of the cutaneous microbiome of P. mississippi. 

There was no evidence of effect of kinship on salamander cutaneous microbiomes, suggesting 

cutaneous microbial communities are likely a product of an individuals’ environment. The 

species harbored a number of known antifungal OTUs within its microbiome. However, a 

number of antifungal OTUs were significantly more abundant in the microbiomes of individuals’ 

immediate environment than on their skin.  

 

Staying true to the hallmark of scientific investigation, the research within this 

dissertation has led to even more questions regarding the transferability and methodology of 

landscape genetics analyses, as well as the relationship between amphibian cutaneous 

microbiomes and their environment. The results also highlight the importance of using repeated 

analyses, whether they are regional replicates or created via hierarchical thinning of datasets, to 

generate a more complete view of the relationship between environment and wildlife species. 

Together, the results of Chapters 2 and 3 can be combined to provide recommendations for the 

design of future landscape genetics studies. The field of landscape genetics was originally 

introduced as an intuitive method for describing patterns of genetic structure among focal species 

populations (Manel et al. 2003). At their simplest, landscape genetics studies seek to answer the 

specific question of if and how environmental variables restrict gene flow. However, studies 

using replication, such as those described in Chapters 2 and 3, highlight the potential predictive 



86 
 

power of landscape genetics inferences. By conducting repeated analyses across multiple habitat 

configurations or sampling densities, conservation practitioners can develop a suite of 

information about the way focal species respond to environmental change. This broader 

knowledge of the relationships between wildlife and their environment can then be incorporated 

into dynamic, adaptive management plans that are able to address the challenges presented by an 

ever-changing planet. 
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Summary of Laboratory Methods 

 

We assessed 27 loci developed by Spatola et al. (2013), and found nine loci that reliably 

amplified for Plethodon mississippi from Holly Spring National Forest, Mississippi (HSNF) and 

Bankhead National Forest, Alabama (BNF). Of these nine loci, PLAL_B8DRY was 

monomorphic in HSNF, and PLAL_402 failed to amplify in over half the BNF samples. 

Accordingly, each these two loci were used only for screening samples from the forest region in 

which the locus was both polymorphic and amplified reliably. Polymerase chain reactions 

(PCRs) were performed in 15 µL volumes, each containing the reagents listed in Table A1. 

Several samples failed to amplify and in these cases, amplifications were performed in 15 µL 

volumes, each containing the reagents listed in Table A2. 

 

 

PCR products were sent to Yale University’s DNA Analysis Facility on Science Hill for 

fragment analysis. A ROX-500 size standard was used to estimate allele lengths. We used the 

software Geneious v.9.1.2 (http://www.geneious.com) to examine the resulting .fsa files and 

score genotypes. Allele sizes were assigned using bins whose bounds were set -2 base pairs (bp) 

and +1 bp the size of each allele (all loci contained tetranucleotide repeat motifs). Each .fsa file 

was viewed and scored individually. MICRO-CHECKER v.2.2.3 (Van Oosterhout et al. 2004) 

was used to identify alleles sizes that were indicative of stutter peaks or errors created when 

recording allele sizes (Table A3).  
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Table A1: Reagent list for standard PCRs. 

Reagent Concentration Volume 
5X GoTaq Flexi Buffer (Promega) - 3.0 µL 
MgCl2 (Promega) 25mM 1.2 µL 
dNTPs (Promega) 1.25mM 2.4 µL 
Bovine Serum Albumin (New England Biolabs) 10mg/mL 0.75 µL 
dH2O - 3.25 µL 
Forward primer  (with 5' M13 tail) 1µM 0.75 µL 
Reverse primer 10µM 0.75 µL 
Universal M13 primer (with 5' HEX fluorescent label) 10µM 0.75 µL 
GoTaq (Promega) 5U/ µL 0.15 µL 
Genomic DNA Approx. 40ng/ µL  2.0 µL 

 

Table A2. Reagent list for PCRs of difficult samples using Qiagen’s Type-It Microsatellite 
PCR Kit. 
 

Reagent Concentration Volume 
Type-It Microsatellite PCR Kit Master Mix (Qiagen) - 7.5 µL 
dH2O - 3.75 µL 
Forward primer  (with 5’ M13 tail) 1µM 0.75 µL 
Reverse primer 10µM 0.75 µL 
Universal M13 primer (with 5' HEX fluorescent label) 10µM 0.75 µL 
Genomic DNA Approx. 40ng/ µL  1.5 µL 
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Figure A1. Spatial autocorrelation analysis for P. mississippi individuals in Holly Springs 
National Forest (HSNF) generated using GenAlEx 6.503.  
 
The x-axis displays correlogram bins of 3km, and the y-axis displays the spatial autocorrelation 
coefficient “r”. The red dotted lines indicated the upper (U) and lower (L) confidence intervals 
and 95% and 5% respectively. A heterogeneity test for correlogram significance was significant 
(p<0.001). The x-intercept, or genetic neighborhood size, was 7.4km.  
 
 

 

Figure A2. Spatial autocorrelation analysis for P. mississippi individuals in Bankhead 
National Forest (BNF) generated using GenAlEx 6.503.  
 
The x-axis displays correlogram bins of 3km, and the y-axis displays the spatial autocorrelation 
coefficient “r”. The red dotted lines indicated the upper (U) and lower (L) confidence intervals 
and 95% and 5% respectively. A heterogeneity test for correlogram significance was significant 
(p<0.001). The x-intercept, or genetic neighborhood size, was 16.3km.  
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Table A4: Percent of each land use class found in the large and small study area within 
Holly Springs National Forest.  
 

Land use class Large study area 
(630 km2) 

Small study area 
(256 km2) 

Agriculture 8.2% 9.9% 
Hardwoods 31.5% 25.2% 
Pine 41.8% 45.9% 
Manmade structures 4.6% 4.6% 
Water 10.6% 11.4% 
Wetlands 3.3% 3.0% 
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