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ABSTRACT

Alpha/beta hydrolases are a sub-family of enzymes with a variety of different 

structures and functions. Though there is great diversity in size, structure, and function, 

there is a common fold within this alpha/beta hydrolase family called the alpha/beta fold. 

It consists of 8 mostly parallel beta sheets enclosed between two sets of alpha helices. 

Cutinase, the smallest of the alpha/beta hydrolases, is missing 2 alpha helices and 3 beta 

sheets. In this experiment we aimed to develop a set of plasmids with a gene for mutated 

cutinase DNA. Studying deletion mutations of cutinase can lead to understanding the 

structure of cutinase. Cutinase is missing so much of the characteristic fold; the question 

this lab would like to begin to answer is what is there about the cutinase structure keeps it 

active while missing so much of the alpha/beta hydrolase fold. There has not yet been a 

successful transformation of mutated plasmid DNA into the XL-10 gold bacteria but we 

have reason to believe that the mutated plasmid gene has been successfully made.
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CHAPTER 1: INTRODUCTION

1.1 ALPHA/BETA HYDROLASES

The alpha/beta hydrolase family consists of several hydrolases, all of which have the 

alpha/beta hydrolase fold. The fold of each alpha/beta hydrolase enzyme is similar such 

that each contains an alpha/beta sheet consisting of eight mostly parallel beta-sheets 

surrounded by alpha helices [10]. In Figure 1.1 the subfamily of alpha/beta hydrolases is 

depicted in a phylogenetic tree. Starting with the smallest of the alpha/beta hydrolases, 

the family is mapped and compared based on similar protein structure. All of these 

alpha/beta hydrolases share the same core structure; yet there is huge sequence diversity. 

All of these groups within the subfamily of alpha/beta hydrolases have different size and 

shape, and hydrolyze different substrates. For example, acetylcholinesterase hydrolyzes 

acetylcholine in our neural synapses; the carboxylesterase hydrolyze carboxyl esters, and 

thioesterases hydrolyze thioesters. Between cutinase, one of the smallest alpha/beta 

hydrolases, and acetylcholinesterase, one of the largest, we have a huge range of sizes 

and substrates. Yet, all the members of this alpha/beta hydrolase family share the same 

canonical fold.
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Though the subfamily of alpha/beta hydrolases is diverse in structure and catalytic 

function, they all share this canonical fold (Figure 1.2). They also share a similar 

catalytic triad, which consist of a nucleophile, a Histidine, and an acid residue. In the 

characteristic canonical fold of the alpha/beta hydrolases, there are 8 mostly parallel beta 

sheets and 6 alpha helices. All the alpha/beta hydrolases begin with the n-terminns 

followed by beta sheets 1 and beta sheet 2. The characteristic fold then tucks beta sheet 3 

into the protein before alpha helix A. Alpha helix A leads into beta sheet 4, followed by 

alpha helix B. Alpha helix B leads into beta sheet 5, which is always associated with the 

nucleophile of the catalytic triad. The nucleophile is followed by alpha helix C, which 

leads into beta sheet 6 followed by alpha helix D. Alpha helix D leads into beta sheet 7, 

which is always associated with the acid of the catalytic triad. Then, following the acid, 

alpha helix E leads into beta sheet 8, which leads into the Histidine, alpha helix F, then 

the COOH terminus.

Alpha/beta hydrolases come in a variety of sizes. One of the largest enzymes in this 

subfamily is acetylcholinesterase with 534 amino acids. The smallest known alpha/beta 

hydrolase, cutinase, is a mere 197 amino acids (Figure 1.3).
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Figure 1.1 Phylogenetic Tree of Subfamily Alpha/Beta Hydrolase

Figure 1.2 The Canonical Fold of Alpha/Beta Hydrolases*

*Canonical fold figure from: Nardini et al. Curr Opin Struct Biol, 1999. 9. pp 732-7
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1.2 CUTINASE

Cutinase is named for the ability to degrade cutin polymers [1], which protect plants 

from infection by pathogens. The degradation of cutin is the first step in the process of 

fungi infecting the plant. The secretion of extracellular cutinase from pathogenic fungi 

degrades the cutin on the roots of plants [2]. Cutin is composed of ester linkages, which 

are cleaved by cutinase.

The structure of cutinase is much smaller compared to the larger alpha/beta 

hydrolases with several alpha helices and beta sheets removed from the characteristic 

canonical fold. Figure 1.3 is a comparison of cutinase, the smallest known alpha/beta 

hydrolase, and acetylcholinesterase, one of the largest alpha/beta hydrolases. 

Acetylcholinesterase has a massive 534 residues in comparison to cutinase with only 197 

residues. In addition, acetylcholinesterase has all of the components of the canonical fold 

that is characteristic to all members in the alpha/beta hydrolase subfamily. In cutinase, 

however, alpha helices D, E and beta sheets 1, 2 and 8 are missing from the core 

structure.

The catalytic triad of cutinase is similar to the catalytic triad of all alpha/beta 

hydrolases in that it consists of a reaction between a nucleophile, a Histidine, and an acid. 

In cutinase, the nucleophile is Serine and the acid is Aspartate. As shown in figure 1.4, 

the catalytic triad functions to hydrolyze or cleave the ester bonds in cutin. This is 

possible due to the interaction of the catalytic triad. The reaction begins with a negatively 

charged Aspartate causing the deprotonation of Histidine. The deprotonation of Histidine 

causes a negative charge which consequently deprotonates the Serine. The serine is then 

very nucleophilic and forms a tetrahedral intermediate with the cutin (Figure 1.5). The
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reaction continues with the OR group on the cutin leaving, hydrolyzing the ester bond. 

Water removes the Serine from the substrate and protonates it such that the reaction could 

take place again.

Figure 1.3 A Comparison of Cutinase and Acetylcholinesterase

Figure 1.4 Catalytic Triad of Cutinase Ping Pong Reaction
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Figure 1.5 Hydrolysis of Cutin by Cutinase

1.3 THESIS FOCUS

When cutinase is compared to the typical alpha/beta hydrolase fold, it is missing two 

alpha helices and three beta sheets. This led us to wonder how cutinase is still able to 

function as a hydrolase with so many sections of the gene missing compared to its larger 

counterparts. This work addresses the question of whether or not cutinase is the smallest 

possible functioning alpha/beta hydrolase. How is it possible that with all the sections 

deleted from the characteristic canonical fold that cutinase still is stable and can catalyze 

reactions? This raises the question that if cutinase can still be stable and functional with 

all of these components of the parental canonical folds missing, then can there be an even
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smaller alpha/beta hydrolase? Could nature make an even smaller alpha/beta hydrolase or 

does cutinase represent the core structure that every alpha/beta hydrolase relies on? We 

asked how deleting some of the major alpha helices and beta sheets of cutinase affected 

the catalytic function of the deletion mutants to better understand the cutinase stability 

and if there is anything smaller possible. Given the wide variation in sizes between 

different members of the alpha/beta hydrolase family, there is a question of exactly what 

part of the alpha/beta hydrolase fold is essential for the structure and catalytic activity for 

this family of enzymes.
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CHAPTER 2: BACKGROUND OF METHODS

2.1 POLYMERASE CHAIN REACTION

Kary B. Mullis created polymerase chain reaction (PCR). PCR is used to amplify a 

small amount of DNA. A PCR reaction requires a buffer, polymerase, forward and 

reverse primers, template DNA, and dNTPs. The first step of PCR is denaturing the 

DNA. Denaturing the DNA separates it into two pieces of single-stranded DNA. The 

second step of PCR is annealing. The primers anneal to the template DNA as the 

thermocycler cools the mixture down. Once the primers are annealed and while the DNA 

strands are separated, the polymerase enzyme creates two new DNA strands using the 

original strands as the template. This step is called extension and it is the third and final 

step of the cycle. The new DNA will have one strand from the original sample and one 

newly synthesized strand. This can be done multiple times resulting in a huge 

amplification of DNA (Figure 2.1). Thirty cycles of a PCR reaction will result in 230 

amplification of DNA. The reaction takes place in a short amount of time and is 

completed in a machine called a thermocycler. With PCR, a small amount of DNA can 

be easily amplified for further analysis. In this experiment a variation of PCR was used 

to create a deletion mutant plasmid.
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Figure 2.1 Exponential Amplification of PCR Product*

*Exponential Amplification of PCR used under Commons License from Wikipedia

9



2.2 INVERSE POLYMERASE CHAIN REACTION

In this experiment, inverse PCR was used to create a deletion mutant plasmid. 

Inverse PCR is a little valuation on the original PCR method. The difference is the 

primers are designed to anneal to the template just adjacent to the sequence to be deleted 

so that everything gets amplifies but the deleted sequence. Using specifically designed 

primers (see Appendix), a section of the gene was not amplified, thereby deleting the 

gene from the final PCR product as well as amplification of the deletion plasmid (Figure 

2.2). Using the pUC57 plasmid as a template, the primers are designed to anneal to the 

plasmid directly adjacent to the sequence that will be deleted. The remaining fragment 

gets amplified. This linear PCR product can be ligated resulting in a mutated plasmid 

[15].

Figure 2.2 Inverse PCR"

*Inverse PCR figure from Williams et al. Malaria Journal 2007
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2.3 DNA GEL ELECTROPHORESIS

Gel electrophoresis involves creating an electric field in order to separate molecules 

based on size, shape, and difference in charge. There are two techniques used for gel 

electrophoresis, agarose gel electrophoresis and polyacrylamide gel electrophoresis 

(PAGE). In this experiment, agarose gel electrophoresis was used to analyze DNA 

samples. PAGE was not used because PAGE is normally used for very small fragments 

and proteins. The DNA fragments being analyzed in this experiment were approximately 

0.6 to 3.7 kb long, therefore too large to use PAGE. The samples are loaded into an 

agarose gel and the gel is immersed in an appropriate buffer. In this experiment, TAE 

buffer was used. When an electric field is applied to the buffer, the DNA (negatively 

charged due to the phosphate backbone) will migrate towards the positive cathode 

through the porous agarose gel. As the molecules travel through the gel, they will 

separate by size due to the agarose gel. The higher the concentration of agarose in the 

electrophoresis buffer, the smaller the pore size. Smaller fragments of DNA are able to 

travel further because they have an easier time navigating through the pores in the 

agarose gel.

The distance that the linear DNA bands travel is directly related to the size. To 

determine size of an unknown band the distance traveled is compared to the distance of a 

DNA band of known size. Multiple bands of known size make up a DNA ladder, which 

is used to calculate the size of the unknown bands. For quantitative analysis, a standard 

graph is created with the distance the band travelled in millimeters on the x-axis and the 

size of the DNA fragment in kb on the y-axis. Using the equation of the line, measuring 

the distance travelled of any band in the gel and plugging it in to the formula will 
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determine the size of that fragment in kb.

In an agarose gel DNA is initially not visible. There is no way to visualize where the 

bands are on a gel. Staining the DNA bands with Ethidium bromide stain allows for the 

DNA bands to be seen under a UV light. Ethidium bromide is used because, when 

exposed to UV light it fluoresces. Ethidium bromide is also especially good for staining 

DNA because once bound to DNA the florescence of the Ethidium bromide is increased. 

Ethidium bromide works by intercalating in between the two strands of the double helix.

2.4 BACTERIAL TRANSFORMATION

Bacterial transformation involves introducing a plasmid into a bacterial host cell in 

order to have that bacterial cell produce the desired protein that was inserted into the 

plasmid. Plasmids are small circular pieces of exogenous DNA that bacterial cells will 

accept and express as if it was their own DNA (Figure 2.3).

Plasmids contain the gene that is desired for expression as well as a gene for 

antibiotic resistance. Having a gene for an antibiotic resistance in the plasmid allows the 

bacteria to grow on selective media such as Lysogeny Broth. This also prevents the 

growth of unwanted bacteria or bacteria that did not take up the plasmid.
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Bacterial Cell

Transformed Bacteria! Cell

Figure 2.3 Transformation of Bacterial Cells

There are several types of bacterial lines that are engineered to accept plasmids 

including XL-1 Blue, Origami B, BL21(DE3), and XL-10 gold. In this experiment XL- 

10 gold cells were used because these cells grow very quickly and are easy to transform 

even with small amounts of DNA. The protocol for XL-10 gold used in this experiment 

is listed below.

1. Pre-chill 14 mL FalconBD round bottom tubes on ice

2. Thaw XL-10 gold cells on ice

3. Pipet 100 μL - 300 pL of XL-10 gold cells into pre-chilled tubes

4. Add 0.2 μl of (β-mercaptoethanol to each tube

5. Place tubes on ice for 10 minutes, swirl every 2 minutes

6. Add 50 ng of DNA the appropriate DNA to their corresponding tubes

7. Gently swirl tubes then incubate on ice for 30 minutes
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8. Heat tubes for 30 seconds in a 42°C water bath

9. Place tubes back on ice for 2 minutes

10. Add 900 μL of room temperature SOC medium to each tube

11. Incubate cells in at 37°C for 1 hour

12. Plate < 200 pL of the bacteria onto selective media

As seen in Figure 2.3, the recombinant plasmid is transformed into the competent 

bacterial cell. A competent bacterial cell is a cell that will take up a plasmid. The protocol 

for transforming the bacterial cells uses heat shock to get the competent bacterial cell to 

take up the plasmid. The bacterial cells are cooled down in the same tubes as the plasmid 

DNA. The solution cools and this causes the cell membrane of the bacterial cell to cool 

and partially solidify. Then heat shocking the bacteria involves quickly placing the tubes 

in warm water as described above, which causes the bacterial plasma membrane to 

become porous and the plasmid DNA is taken up by the cell.

2.5 RESTRICTION ENZYME DIGESTION

Restriction enzymes (RE) are enzymes that hydrolyze the phosphodiester linkages 

between DNA base pairs. Some examples of RE’s include BamH I, Hind III, EcoR I, and 

Dpn I. These restriction enzymes recognize specific sections of base pairs (Table 2.1).
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Table 2.1 List of Restriction Enzymes and Cleavage Sites*

Restriction Enzyme Cleavage Sites

BamHI G/GATCC

Hind III A/AGCTT

EcoR I G/AATTC

Dpn I GA/TC

*Cleavage sites from New England Bio Labs

Their discovery has been extremely useful in DNA technology for plasmid generation 

and gene insertion into plasmids. If a both a plasmid and a gene are cleaved with the 

same restriction enzyme, corresponding ends are created. Using DNA ligation, the 

phosphodiester linkages can be reconnected to create a hybrid plasmid that has the 

desired gene to be expressed.

2.6 DNA LIGATION

DNA ligases are enzymes that catalyze the formation of the phosphodiester bond 

between the 3' hydroxyl and 5' phosphate of neighboring DNA bases. In this experiment, 

T4 DNA ligase was used to ligate linear PCR product into a circular plasmid for 

transformation into bacterial cells. The linear PCR product was subjected to a blunting 

reaction to fix the 5’ and 3’ overhangs then ligated according to NEB (New England Bio 

Lab) protocol.
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CHAPTER 3: “IS CUTINASE THE SMALLEST 
POSSIBLE ALPHA/BETA HYDROLASE?

INSIGHTS INTO STRUCTURE AND FUNCTION 
USING DELETION MUTANTS.”

3.1 INTRODUCTION

3.1.1 CUTINASE STUCTURE

Cutinase is the smallest alpha/beta hydrolase whose structure has been resolved so 

far. Cutinase consists of 197 amino acids and has the alpha/beta hydrolase fold that is 

characteristic of alpha/beta hydrolases. The active site of cutinase has a catalytic triad 

consisting of Ser 120, Aspl75, and Hisl88. Additionally, there are two important 

disulfide bonds present in cutinase that play a role in stabilizing the protein [8]. 

Cutinase contains only 4 alpha helices and 5 beta sheets from the canonical fold 

characteristic of alpha/beta hydrolases. Cutinase contains alpha helices A, B, C, and 

F and beta sheets 3, 4, 5, 6, and 7. With so much of the original fold missing, this 

raises the question of how cutinase is still able to function as a catalytic molecule. 

Studying the structure of cutinase will show us how cutinase remains a catalytic 

molecule. With cutinase being the smallest alpha/beta hydrolase, we also can ask the 
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question of whether or not there could possibly be another smaller alpha/beta 

hydrolase out there that hasn’t been found yet. If, after certain sections of the gene 

are deleted, enzyme activity doesn’t change, it can me assumed that the section of the 

gene did not contribute to the stability or function of the enzyme. Studying the 

subsequent deletion mutants will give insight to the function of substructure that was 

deleted.

3.1.2 COMPUTATIONAL EXPERIMENTS

In a previous experiment, computer generated models from Chimera for cutinase 

mutations were studied. Homology models were made based on the template wild­

type cutinase and the predicted motions of the protein with certain deletions were 

recorded. The results suggested that the deletion of alpha helices would reduce 

catalytic activity in the enzyme and deletion of beta sheets would not create a 

significant change [14]. Our lab would like to study these deletion mutations to 

determine substructure protein relationships. Because there is evidence that the 

deletion of beta sheets would not cause any damage to the protein, creating the 

mutations and testing the hypotheses will give great insight to the substructure of 

cutinase. The first step in studying the catalytic activity of the mutated proteins is to 

create the deletion mutant plasmid. Thus, the goal of this work is to create a plasmid 

with the appropriate deletions that can be used to induce mutated cutinase protein for 

study.

17



3.2 RESULTS AND DISCUSSION

3.2.1 DELETIONS

Three deletions were chosen for this experiment. Deletion 1, or mutant X. has 

residues 92-108 deleted. The removal of these resides will delete alpha helix B. The 

homology models for Deletion 1 show that the deletion of this alpha helix creates an 

odd twisting motion within the protein (Figure 3.2). The homology models show that 

the binding loop does not fold towards the catalytic triad as dynamically as it did in 

tire wild type cutinase (Figure 3.1). We hypothesize that this deletion mutant may or 

may not have catalytic activity. The only way to confirm the hypothesize that there 

will be no or diminished activity is to actually express the mutated protein.

Figure 3.1 Arrow Plot of Wild-Type Cutinase
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Figure 3.2 Arrow Plot of Deletion of Residues 92-108 or Alpha Helix B

Deletion 2, or mutant Y, has residues 49-63 removed. This caused the deletion of 

alpha helix A. According to the homology model (Figure 3.3), there is a flapping or 

sandwiching motion as a result of the deletion and once again the scooping motion of 

the binding loop into the catalytic triad is diminished. Therefore with this homology 

model we hypothesize that there would be a decrease or a complete diminish in 

catalytic activity of this mutant enzyme.
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Figure 3.3 Arrow Plot of Deletion of Residues 49-63 or Alpha Helix A

Deletion 3, or mutant Z, has residues 68-72 removed. This caused the deletion of 

beta sheet 3. According to the homology model (Figure 3.4), normal motion is 

mostly maintained in this model so we hypothesized that there would still be catalytic 

function in this mutation. Catalytic function might be diminished but the only way to 

tell is to study the actual mutated enzyme. This suggests beta sheet 3 is more of a 

structural support than part of the catalytic activity.

20



Figure 3.4 Arrow Plot of Deletion of Residues 68-72 or Beta Sheet 3

The following figures show the results of plasmid development of mutant X. Y,

and X.

3.2.2 INVERSE PCR

The first step in creating the mutated plasmid is inverse PCR. Below are the 

results of a PCR reaction for mutations X and Y (Figure 3.5).
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Figure 3.5: Post PCR Gel Results

Figure 3.5 shows a post PCR gel analysis. The far left lane of the gel and the far 

right lanes contain DNA ladders. DNA ladder is a mixture of DNA bands of known 

size that are used to qualitatively analyze gels. The first two lanes starting from the 

right are the pre and post control samples. The control is used to determine if a 

protocol is successful or not because the control is something that is confirmed to 

work properly. The control contained primers that were designed to amplify the 

cutinase sequence. The cutinase sequence is approximately 693 base pairs long. 

Therefore the control product is the cutinase gene so the control was a success

The template DNA appears in the gel in two forms: relaxed and supercoiled 

Relaxed DNA is circular so it is very bulky and takes up a lot of space. This prevents 
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it from making it very far down the gel; thus, relaxed DNA is expected to be seen 

towards the top of the gel. Supercoiled DNA is tightly wound so that it takes up much 

less space so it is able to travel much further down the gel. Both forms of DNA are 

seen and labeled on the gel.

The pUC57 plasmid is 2,710 base pairs long. pUC57 plasmid with cutinase gene 

insertion is 3,403 bp. Linear DNA product should be seen between the 3.0 kb marker 

and the 4.0 kb marker. Figure 3.4 shows that the results of the PCR reaction were a 

success. There is linear DNA product at approximately 3.5 kb, where product is 

expected to be. This means the mutated plasmid was successfully made. The next 

step in the process is a Dpn I digestion to remove template DNA.

3.2.3 DPN I DIGESTION

Dpn I cleaves at methylated DNA sites only and since the template DNA is 

methylated, a Dpn I digestion ensures that template DNA will be removed.
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Figure 3.6 Post PCR results Compared to Post Dpn I Results

Figure 3.6 shows a comparison of a post PCR gel and a post Dpn I gel to show the 

digestion of the template DNA. The gel clearly shows that the Dpn I enzyme digested 

the template DNA. There are no DNA bands at 2.7 kb which is where the template 

DNA falls on the gel in the supercoiled form. There is also no template DNA around 

the 10 kb marker where the relaxed template DNA form falls on the gel. Blunting, 

ligation, and transformation followed.

3.2.4 TRANSFORMATION

There were no successful transformations with the mutated plasmid DNA. There 

was no growth on the negative (-) control plate or the positive (+) control plate. 

There was no growth on the plates with the bacteria containing the mutated plasmid.
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The fact that nothing grew on the positive (+) control indicates that the cells used in 

the transformation protocol were not competent, or able to take up a plasmid. This 

means it is not necessarily the mutated plasmid DNA preventing successful 

transformation.

3.3 CONCLUSION

Cutinase is the smallest known alpha/beta hydrolase. The purpose of this 

experiment was to create plasmids with mutated cutinase DNA. Studying the 

mutated cutinase would provide insight to the substructure and function of each 

substructure in the molecule. Deleting certain alpha helices and beta sheets and 

studying the catalytic activity after deletion would provide knowledge on the purpose 

of each of those substructures. Creating the mutant plasmid was the first step in being 

able to express the mutated cutinase for kinetic studies. Mutated plasmids were not 

successfully transformed, but there is reason to believe that the deletion mutant 

plasmid has been created.

3.4 EXPERIMENTAL

3.4.1 LB BROTH

Lysogeny broth (LB) is a medium primarily used for the growth of bacteria. 

Selective LB broth for growing bacteria was prepared by placing 10 g of NaCl, 10 g 

of Tryptone, and 5 g of yeast extract in a 1-liter flask. The final volume was brought 

to 1 liter by adding deionized H2O. Following the addition of deionized H2O, the pH 

was adjusted to approximately 7.0 with 5 M NaOH. The solution was autoclaved at
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121 °C for 30 minutes. In order to prevent undesired bacteria from growing in the LB 

broth. 100 mg of ampicillin was added once the solution cooled to 55 °C.

3.4.2 LB AGAR PLATES

Petri dishes containing LB Agar for plating bacteria was prepared by placing 10 g 

of NaCl. 10 g of Tryptone, and 5 g of yeast extract, and 20 g of agar in a 1 -liter flask. 

The final volume in the liter was brought to 1 liter by adding deionized H2O. 

Following the addition of deionized FLO, the pH was adjusted to approximately 7.0 

with 5 M NaOH. The solution was autoclaved at 121 °C for 30 minutes. In order to 

prevent undesired bacteria from growing on the LB Agar plates, 100 mg of ampicillin 

was added once the solution cooled to 55 °C. The solution was then poured into 100 

mm petri dishes, cooled until solid, wrapped in Para film, and stored in 4 °C until use.

3.4.3 INVERSE PCR

In order to make the plasmid DNA for the mutants, inverse PCR was used. The 

total volume for the PCR reaction was 70 pL. PCR reactions required 10-20 ng 

template DNA, 0.2 mM of each dNTP, 0.5 final concentrations of forward and 

reverse primers, one unit of Taq polymerase in 2.5 units of Taq polymerase buffer 

[15]. Before placing the PCR tubes in the PCR machine, a 10 pL sample was taken 

for a pre PCR sample for comparison and analysis. The following table and figure 

shows the PCR condition (Table 3.1 and Figure 3.3). Because of the temperature 

range in the primers for mutations X, Y, and Z, a gradient was applied. Denaturation, 

annealing, and extension were repeated 30 times.
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Table 3.1 Conditions of PCR

Initial Temp Denaturation Annealing Extension Final Step

95 °C 95 °C 62 °C 72 °C 72 °C

2 minutes 30 seconds 52 °C 3.5 minutes 10 minutes

40 °C

30 seconds

After completion the PCR, tubes are either stored at 4 °C overnight or continue to 

analysis of product. For Mutant X (deletion of bases 192-212) Tm-5°C is 52°C. For 

Mutant Y (deletion of bases 49-63) Tm-5°C is 40°C. For Mutant Z (deletion of bases

92-108) Tm-5°C is 62°C.

Figure 3.6 Polymerase Chain Reaction Temperature Changes
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3.4.4 ANALYSIS OF INVERSE PCR REACTION BY GEL 

ELECTROPHORESIS

A 1 % agarose gel was used with IX TAE running buffer with 50 μL of ethidium 

bromide. Samples were run at 150 V for 90 minutes.

3.4.5 DPN I DIGEST

After confirmation of PCR product, a Dpn I digestion was performed on the 

samples in order to remove the template DNA. Thirty five pL of inverse PCR 

product, 5 pL of Dpn I digest buffer, 9.8 pL of H2O, and 0.2 pL of Dpn I enzyme 

were added to a sterile micro centrifuge tube with a total volume of 50 pL. This was 

done for each sample of inverse PCR. The tubes were then places in an incubator 

overnight 37 °C. Gel electrophoresis was performed to verify digestion of the 

template DNA.

3.4.6 QIAQUICK PCR PURIFICATION

A QIAquick PCR Purification kit was used to purify PCR product. The protocol 

was followed according to the directions given by the Qiagens protocol. PCR 

Purification was performed in order to purify the DNA and get rid of primers and 

dNTPs.

3.4.7 BLUNTING PROTOCOL

In a sterile micro centrifuge tube 19 pL of purified DNA, 2.5 pL of 10X blunting 

buffer, 2.5 pL 1 mM dNTP mix, 1.0 pL blunt enzyme mix and 2.5 μL of deionized
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H2O was mixed (total volume of 30 pL). The mixture was incubated at room 

temperature (16 °C) for 30 minutes then the enzyme was inactivated by heating at 70 

°C for 10 minutes. Samples were then cooled to room temperature and submitted to a 

ligation reaction. Blunting was performed to fix the 3’ and 5’ overhanging’s of the 

mutated plasmid.

3.4.8 T4 LIGATION

1 μL of T4 DNA Ligase and 2 μL of T4 DNA Buffer were added to cooled 

samples from blunting reactions with a total volume of 20 pL. The mixture was then 

incubated at room temperate overnight.

3.4.9 TRANSFORMATION OF BACTERIA

In order to have a positive control 100 pL of XL-1 gold ultra competent cell were 

transferred to a 14 mL BDFalcon tube along with 1 pL of pUC57-cutinase template 

DNA. In this protocol, the DNA was added after the XL-10 gold cells and the BME 

incubate. A negative control (no DNA), was 100 pL of XL-1 gold ultra competent 

cells transferred to a 14 mL BDFalcon tube with the absence of DNA. For the 

samples with mutant DNA, 300 pL of XL-1 gold ultra competent cell were 

transferred to a 14 mL BDFalcon tube with the entire purified DNA sample left over 

from the Blunting Protocol and T4 Ligation. The following protocol was done to 

each tube. Two hundred pL of β-mercaptoethanol (BME) was added to the tube and 

incubated at room temperature for 10 minutes. The solution was carefully swirled 

every 2 minutes. The DNA described earlier was added to the appropriate tubes. The

29



tubes were then incubated on ice for 30 minutes. The tubes were then heat pulsed in a 

42 °C hot water bath for 30 seconds. The tubes were then incubated on ice again for 

2 minutes. In the positive and negative control tubes, 0.9 mL of pre heated (42 °C 

SOC media) was added and incubated at 37 °C for 1 hour while shaking at 250 rpm. 

In the tubes with mutant DNA, 2.0 mL of pre heated (42 °C SOC media) was added 

and incubated at 37 °C for 1 hour while shaking at 250 rpm. After incubation, 

approximately 200 μL of the transformation mixture was plated onto the LB agar (+ 

ampicillin) plates. The plates were incubated overnight and bacteria were given time 

to grow.

3.4.10 GROWING BACTERIA CULTURES

To begin, 5 mL of LB broth containing ampicillin was inoculated with one 

isolated colony of bacteria in a 14 ml BD Falcon tube. One colony is procured from 

the plate using a sterile inoculating loop under a sterile hood. The tubes were placed 

in an incubator at 37 °C overnight while shaking at 250 rpm. After the bacteria had 

grown in the BD Falcon tubes, the 5 mL sample was decanted into a 1 Liter 

volumetric flask of LB Broth and ampicillin. The 1 Liter flask was placed in an 

incubator at 37 °C overnight while shaking at 250 rpm.

3.4.11 QIAPREP SPIN MINI PREP

A QI Aprep Spin Mini Prep Kit was used to complete this protocol. The protocol 

was followed according to the directions given by the Qiagens protocol. This 
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protocol was completed to isolate the DNA from the bacteria grown in culture. This 

protocol was performed to extract template DNA from transformed bacteria.
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APPENDIX

Primer Sequence

49-63 Forward 5’ GGCAAGGACGGTGTCTGGATT 3’

49-63 Reverse 5’ CAAGTTGCCCGTCTC 3’

68-72 Forward 5’ GTTGGCGGTGCCTACCGAGCCACTCTT  3’

68-72 Reverse 5’ACCGTCCTTGCCGAAGGCGGATCAAG 3’

92-108 Forward 5’ TGCCCTGACGCGGACTTTGATC 3’

92-108 Reverse 5’ AGAGGTTCCGCGAGGGAGAGCATT 3’

Table A: Primer Sequences for Deletion Mutations
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CUTINASE SEQUENCE
■ TC- ■- • ■ ""C GC" C"C ACC ACA CTT CTC GCC GCC ACG GCT TCG GCT CTG CCT 

/•CT * ■■ - a CC7 GCC CAG GAG CTT GAG GCG CGC CAG CTT GGT AGA ACA ACT

•7 GC GA .A a- CTG atc A/C GC-C AAT AGC GCT TCC tGC CGC GAT GTC ATC-TFC ATT-TAT" 
z 1 Del 49 63

GGT "C A -• C A G G a c C- GC-C X AC TTG GGA ACT CTC GGT CCT AGC ATT GCC

TCG AAC CTT GAG TCC GCC TTC SGC AAG GAC GGT GTC TGG ATT CAG GGC C~ GGC
Q V Del 68 72 J /

GG" GCC T-'-C CC-/ —- - ~t - — GC- X G.XC AAT C-C" CTC CC CGC GGA ACC TCT AGC
De 92 103 O k

GCC GCA ATC AGG GAG ATG CTC GGT CTC TTC CAG CAG GCC AAC ACC AAG GC CCT 

GAc GC G c- a. GCC C-GT GGC TAC AGC CAG GGT cCT GCA CTT GCA GCC

GC C *C C ' "C GA G GAG CTC GAC TCG GCC ATT CGT GAC AAG ATC GCC GGA ACT GTT 

C'G TTC GGC * \C ACC AAG AAC CT.A CAG AAC CGT GGC CGA ATC CCC AAC TAC CCT 

GC C C- C a C-G '• C C AAG GTC TTC 'GC AAT ACA GGG GAT CTC GTT TGT ACT GGT AGC 

TTC- /.TC G"" GC " GC A C C C AC TTG GCT TAT GGT CC" GAT GCT CGT GGC CCT GCC CCT 

G. **. G TTC CTC ‘"TC c AG A A G GT CGG GCT GTC CGT GGT TCT GCT

Figure A: Cutinase Sequence
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CL TINASE RESIDUES

START K F FALTTLLAATASALPTS 
NPAQELEARQLGRTTRDDLI 
NGNSASCRDVIFIYARGSTE 
TGNLGTLGPSIASNLESAFG 
KDGVWIQGUGGAYRATLGDN 
ALPRGTSSAAIREMLGLFQQ 
A N T K C PDATLIAGGYSQGAA 
LAAASIEDLDSAIRDKIAGT 
VLFGYTKNLQNRGRIPNYPA 
DRTKVPCNTGDLVCTGSLIU 
AAPHLAYGPDARGPAPEFLI 
EKVRAVRGSA STOP

Figure B: Amino Acid Residues of Cutinase
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AMINO ACID CODONS
U_______ C ’ A j G 1

u | UUU PHE UCU SER UAU TYR UGU CYS U
1 UUC UCC UAC UGC

1 UCA . ____ Ci
I UUA UCG I UAA UGA ST0P A
s UUG LEU UAG --------------- ----------
j STOP UGG TRP G '

c
1 • ...................................... ........... - -........... -........■ i

CUU LEU CCU PRO CAU HiS CGU ARG U i
cue ; CCC ! CAC : CGC ----------
CUA i CCA ' ' CGA c J
CUG i CCG ' CAA " CGG h A '

i । CAG ■ GIN ----------
! G 
i . . j

A AUU ILE ACU THR : AAU ■ ASN AGU SER U
AUC j ACC : AAC AGC ----------
AUA ACA 1 C

AUG ,.CT ACG , MA IVC AGA A ;

MET I AAG : LYS AGG
! G

I , ARG

G GUU VAL GCU i ALA GAU ASP GGU GLY U :
GLC i GCC ; ■ GAC ; GGC ---------- 1
CuA i GCAG ! ________J GGA C I
GUG CG । GAA GGG A ;

? : GAG GLU "■ ......1
1 ; ! G

1 . i . . . ; . ... .... . _____j

Table B: Amino Acid Codons
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.X X11XO ACID ABBREVIATIONS

Amino 3 1 letter abbr H HIS HISTIDINE

Acid letter 
abbr K LYS LYSINE

G GLY GLYCINE R ARG ARGININE

P PRO PROLINE

A ALA ALANINE
Q GLN GLUTAMINE

V VAL VALINE N ASN ASPARAGINE

L LEU LEUCINE

1 ILE ISOLEUCINE E GLU GLUTAMIC ACID

M MET METHIONINE D ASP ASPARTIC ACID

C CYS CYSTEINE

F PHE PHENYLALANINE S SER SERINE

Y

W

TYR

TRP

TYROSINE

TRYPTOPHAN
T THR THREONINE

Table C: Amino Acid Abbreviations
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